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The finite amplitude method (FAM) is a very efficient approach for solving the fully self-consistent
random-phase approximation (RPA) equations. We use FAM to rederive the RPA matrices for
Skyrme functionals, calculate the electric dipole (E1) and the magnetic dipole (M1) giant resonances,
and compare the results with available experimental and evaluated data. For the E1 transitions in
heavy nuclei, the calculations reproduce well the resonance energy of the photoabsorption cross
sections. In the case of M1 transitions, we show that the residual interaction does not affect the
transition strength of double-magic nuclei, which suggests that the spin terms in the Skyrme force
currently neglected in the present computation could improve the agreement between FAM and
experimental data.

I. INTRODUCTION

Giant resonances are collective motions of many neu-
trons and protons in the atomic nucleus induced by weak
external perturbations [1]. The electric dipole resonance
(GDR) was first observed by Bothe and Gentner in their
photo-absorption experiments [2]. Since then, various
types of giant resonances are found in nuclear experi-
ments [1, 3, 4]. Because of the time-reversal invariance
in the compound nucleus reaction, strengths of the elec-
tric dipole (E1) and the magnetic dipole (M1) excitations
are translated into the photon emission process, namely
the neutron capture cross sections [5, 6], where an im-
plicit Brink-Axel hypothesis [7] is always assumed. The
obtained capture cross sections can be applied to nucle-
osynthesis calculations in explosive astrophysical sites. It
is theoretically predicted that large numbers of unstable
nuclei are produced through nucleosynthesis of heavy el-
ements such as the r-process [8–10] and the νp-process
[11–13]. The unstable nuclei produced in these processes
decay to stable nuclei, and they contribute to a significant
fraction of heavy elements in the solar abundance. In in-
duced or spontaneous fission, neutron-rich nuclei far from
stability follow the same decay toward stability. Because
the experimental data on giant resonances are mainly
limited to stable nuclei, the reaction rates on unstable
nuclei in nuclear network calculations or fission simu-
lations inevitably depend on the theoretical prediction.
Therefore, reliable theoretical calculations of giant reso-
nances are essential to study the origin of heavy elements
and not only. In addition, phenomenological models of
GDR, which are often employed in calculating the reac-
tion rates for neutron-rich targets, should be validated
against more fundamental theoretical models.

As a contemporary theoretical approach, the nuclear
density functional theory (DFT) is used to study the
properties of the ground and excited states in the nu-
clear many-body system. Random-phase approxima-
tion (RPA) derived from the time-dependent Hartree-
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Fock (TDHF) equation can describe dynamical proper-
ties of nuclei for external fields [14]. RPA is extended to
quasiparticle random-phase approximation (QRPA) by
including the pairing correlations [15]. Collective exci-
tations like GDR have been extensively studied in the
(Q)RPA calculations [1, 16, 17]. Growing interest in-
cludes the M1 transitions, which has been studied in var-
ious (Q)RPA approaches [18–25]. Because (Q)RPA is
the small amplitude limit of time-dependent DFT, time-
dependent Hartree-Fock-Bogoliubov (TDHFB) [26] and
time-dependent superfluid local density approximation
(TDSLDA) [27] have been also used to calculate giant
resonances.

Although DFT-based microscopic approaches have few
adjustable parameters, which are usually fitted to masses
and select other static properties, solving numerically the
QRPA equations is computationally expensive, especially
in the case of deformed superfluid nuclei. The finite am-
plitude method (FAM) is a much less demanding alter-
native [28–42] to numerically solve the full self-consistent
(Q)RPA equations. In FAM calculations, the linear RPA
equations are solved iteratively. Because FAM avoids the
diagonalization of the large size of (Q)RPA matrices, it
reduces the computational costs significantly. FAM was
first proposed within the RPA framework [28] and was
used to study the E1 transitions [29]. FAM-RPA was
soon extended to the QRPA calculations [30] and has
been applied to various multipole modes in deformed nu-
clei [31–34]. There are various applications of the FAM
approach, e.g., the extension to the relativistic frame-
work [35, 36] and the construction of RPA matrices in the
matrix FAM (m-FAM) [37]. Furthermore, the Skyrme
proton-neutron FAM (pnFAM) was applied to the beta-
decay [38–40] and the two-neutrino double-beta decay
[41]. Finally, FAM-QRPA was also efficiently used to
calculate the collective inertia in fission dynamics [42].

In this paper, we analytically derive the contribution
of residual interaction in the RPA equations and calcu-
late cross sections of E1 and the M1 transitions. In our
implementation of FAM, the residual interaction is ex-
plicitly linearized. We chose to solve the RPA matrix
equations rather than following an iterative approach, as
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this involves simply the inversion of a matrix that can be
performed numerically very efficiently.

II. THEORY

A. Finite amplitude method (FAM)

We briefly review the formalism of the FAM-RPA cal-
culation following details in Ref. [28, 29]. In the static
Hartree-Fock (HF) calculation, we can obtain iteratively
the static HF Hamiltonian and the associated single-
particle states, h0 |φµ〉 = εµ |φµ〉. The single-particle
states are divided in occupied (hole) states {φi} (i =
1, ..., A) and unoccupied (particle) states {φm} (m =
A + 1, ...). Hereafter, we use indices i, j for occupied
states and m,n for unoccupied states. Nuclear exci-
tations caused by a weak external field can be studied
through the time evolution of the one-body density ma-
trix ρ(t) [14]. A time-dependent external field Vext(t)
causes the transition density δρ(t) and the associated
residual field δh(t). In the frequency space, these are
denoted by Vext(ω), δρ(ω), and δh(ω). Assuming a weak
external field, the transition density in the ω representa-
tion is expressed as

δρ(ω) =

A∑
i=1

{|Xi(ω)〉 〈φi|+ |φi〉 〈Yi(ω)|} , (1)

where |Xi(ω)〉 (|Yi(ω)〉) are the forward (backward) am-
plitudes. From the linear response of the TDHF equa-
tions, the linear RPA equations are given by

ω |Xi(ω)〉 = (h0 − εi) |Xi(ω)〉
+ P̂ {Vext(ω) + δh(ω)} |φi〉 ,

(2)

−ω 〈Yi(ω)| = 〈Yi(ω)| (h0 − εi)
+ 〈φi| {Vext(ω) + δh(ω)} P̂ ,

(3)

where P̂ = 1 −
∑A
i=1 |φi〉 〈φi| is the projector onto un-

occupied states. In the general framework of FAM, the
residual interaction is linearized by a small parameter η
and written as

δh(ω) =
h(〈ψ′i| , |ψi〉)− h0

η
, (4)

where h is the single-particle Hamiltonian of the TDHF
calculation and |ψi〉 = |φi〉 + η |Xi(ω)〉, 〈ψ′i| = 〈φi| +
η 〈Yi(ω)| are the ket and bra representations of the single-
particle state of h. The residual interaction in Eq. (4) is
obtained numerically by employing the small parameter
η and the single-particle state. Equations (2) and (3) are
solved iteratively together with Eq. (4).

The FAM calculation is often carried out in the mixed
representation [29, 34]. However, in this paper, we solve

the linear RPA equations in the matrix form. The for-
ward and backward amplitudes are decomposed by the
unoccupied states [28],

|Xi(ω)〉 =
∑
m>A

Xmi(ω) |φm〉 , (5)

|Yi(ω)〉 =
∑
m>A

Y ∗mi(ω) |φm〉 . (6)

In the matrix form, the RPA equations in Eqs. (2) and
(3) are described by

(εm − εi − ω)Xmi(ω) + 〈φm| δh(ω) |φi〉
= −〈φm|Vext(ω) |φi〉 , (7)

(εm − εi + ω)Ymi(ω) + 〈φi| δh(ω) |φm〉
= −〈φi|Vext(ω) |φm〉 . (8)

In order to simplify the notation, the index ω is dropped
hereafter. The external field and the residual interactions
are independent of ω in our numerical calculation. In the
following discussion, it is assumed that the external field
Vext does not change the isospin of the nucleon.

B. RPA equations

The RPA matrices A and B in the well-known RPA
equation [14] are derived from the explicit linearization
of the TDHF Hamiltonian with the expansion parameter
η. Because we work with Skyrme-type nuclear energy
density functionals the single-particle Hamiltonian writes
[43–46]

h =
∑
q

hq =
∑
q

(
heven
q + hodd

q

)
, (9)

heven
q = −~∇ · ~2

2m∗q
~∇+ Uq + ~Wq · (−i)

(
~∇× ~σ

)
+ δqpVcoul, (10)

hodd
q = ~Sq · ~σ −

i

2

[
(~∇ · ~Aq) + 2 ~Aq · ~∇

]
, (11)

Vcoul =
e2

2

∫
d3r′

ρp

|~r − ~r′|
− e2

2

(
3

π

)1/3

ρ1/3
p , (12)

where ~r is the space coordinate and ~σ represents the spin
of the nucleon q (q = n for neutrons and q = p for pro-
tons), while heven

q and hodd
q are the time-even and time-

odd Hamiltonian, respectively. The central potential Uq,

the effective mass m∗q , and the spin-orbit potential ~Wq in
the time-even Hamiltonian are calculated using the nu-
cleon particle density ρq, the kinetic energy density τq,
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and the spin-orbit density ~Jq [43, 45]. These local quan-
tities are computed with the single-particle states of the
TDHF Hamiltonian {ψµ, ψ′∗µ } (see the detail in Sec.II C).
Vcoul is the Coulomb potential, where ρp is the proton
density defined in Eq. (20). For even-even nuclei, the
time-odd Hamiltonian does not contribute to the static
HF calculation because the time-odd fields such as the
spin density ~sq and the current density ~jq used to com-

pute ~Sq and ~Aq are zero under the time-reversal symme-
try [43, 45]. Hence, the single particle states {φµ} are
determined solving the eigenvalue equation for heven

q . On
the other hand, the density matrix cannot be time-even
in the dynamical evolution. The time-odd contribution
must be included for even for even-even nuclei in order
to satisfy the Galilean invariance [43, 46]. In the FAM-
RPA calculation, both time-even and time-odd poten-
tials are expressed as the functions of the self-consistent
single particle states without any mixing. According to
Eqs. (5), (6), the occupied state and their complex con-
jugate of the TDHF Hamiltonian in our FAM calculation
are expanded by the small parameter η,

ψi(~r, σ, q) = φi(~r, σ, q)

+ η
∑
m∈q

Xq
miφm(~r, σ, q) +O(η2) , (13)

ψ′∗i (~r, σ, q) = φ∗i (~r, σ, q)

+ η
∑
m∈q

Y qmiφ
∗
m(~r, σ, q) +O(η2) . (14)

For a detailed discussion on how we calculate φi(~r, σ, q)
in our numerical implementation, we refer the interested
reader to Appendix A. In the limit of η → 0, the residual
interaction in Eq. (4) should be independent of η and ex-

pressed as linear combinations of coefficients {Xq′

nj} and

{Y q
′

nj},

lim
η→0

δh =
∑
q′

∑
nj∈q′

Xq′

nj

∂h

∂(ηXq′

nj)

∣∣∣∣∣
η=0

+
∑
q′

∑
nj∈q′

Y q
′

nj

∂h

∂(ηY q
′

nj)

∣∣∣∣∣
η=0

. (15)

In such explicit linearization of the residual interactions,
we no longer need the small parameter η and an iterative
procedure to solve Eqs. (7) and (8). The expansions of
the single-particle states in Eqs. (13) and (14) enable the
explicit linearization of the Skyrme potentials. When the
external field and the single-particle Hamiltonian are lo-
cal in the coordinate space, the RPA equations in Eqs. (7)
and (8) are described in the matrix form,{(

A B
B∗ A∗

)
− ω

(
1 0
0 −1

)}(
Xq′

nj

Y q
′

nj

)
= −

(
fqmi
fqim

)
,

(16)

Aq,q
′

mi,nj = (εm − εi) δmnδij

+

∫
d3r φq∗m

(
∂hq

∂(ηXq′

nj)

)
η=0

φqi , (17)

Bq,q
′

mi,nj =

∫
d3r φq∗m

(
∂hq

∂(ηY q
′

nj)

)
η=0

φqi , (18)

fqmi =

∫
d3r φq∗mVextφ

q
i , fqim =

∫
d3r φq∗i Vextφ

q
m, (19)

where the limit in Eq. (15) is used to configure the
elements of RPA matrices in Eqs. (17) and (18). In
the equations above, we use a simple notation, φqµ ≡
φµ(~r, σ, q). The matrices Aq,q

′

mi,nj and Bq,q
′

mi,nj are func-

tions of φqi , φ
q∗
m , φq

′∗
j , and φq

′

n with the various Skyrme

parameters [47]. A detailed description of the RPA ma-
trices A and B is given below.

The argument for solving iteratively the FAM equa-
tions is the size of the matrices A and B, which is sig-
nificant in the case of QRPA, especially for deformed
nuclei. While this is correct, one can also argue that
extremely efficient numerical methods are available for
inverting large matrices, especially if one uses a parallel
algorithm. Thus, while we chose to use complex ω, like in
the other FAM-based approaches, we calculate explicitly
the A and B matrices and by direct inversion, we solve
for the amplitudes X and Y in Eq. (16). Since A and
B are given at a one-time cost, the approach will most
likely compete with iterative FAM.

C. The residual interaction of heven
q

The RPA matrices A and B are composed of local den-
sities and currents given by the single-particle states of
the HF calculation. In our RPA calculation, the effective
mass m∗q and potentials such as Uq and Wq in the time-
even Hamiltonian are obtained from the nucleon density
ρq, the kinetic energy density τq, and the spin-orbit den-

sity ~Jq defined as [48],

ρq =
∑
i∈q

ψ′q∗i ψqi , (20)

τq =
∑
i∈q

~∇ψ′q∗i · ~∇ψ
q
i , (21)

~Jq = −i
∑
i∈q

ψ′q∗i

(
~∇× ~σ

)
ψqi , (22)

where ψqi ≡ ψi(~r, σ, q) and ψ′q∗i ≡ ψ′∗i (~r, σ, q) are the
wave functions in Eqs. (13) and (14), respectively. The
index i in the sums represents the occupied states of
nucleon q. The summation of the spin dependence of
wave functions can be done automatically in Eqs. (20)-
(22), when the φqµ is composed of both the spin-up state
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χ1/2(σ) and the spin-down state χ−1/2(σ). In fact, as
shown in Eq. (A1), the HF single-particle state used in
our numerical calculation includes both the spin-up and
spin-down states. The contribution of heven

q on the RPA
matrices in Eqs. (17) and (18) is described by the par-
tial derivatives of Eqs. (20)–(22). According to Eqs. (13)
and (14), the time-even fields in Eqs. (20)–(22) are ex-
panded by η. In the limit of η → 0, partial derivatives
such as ∂/∂(ηXnj) and ∂/∂(ηYnj) of the time-even fields
are derived analytically,(

∂ρq

∂(ηXq′

nj)

)
η=0

= δqq′φ
q∗
j φ

q
n, (23)

(
∂τq

∂(ηXq′

nj)

)
η=0

= δqq′ ~∇φq∗j · ~∇φ
q
n, (24)

(
∂(~∇ · ~Jq)
∂(ηXq′

nj)

)
η=0

= δqq′ (−i) ~∇φq∗j ·
(
~∇× ~σ

)
φqn, (25)

(
∂ρq

∂(ηY q
′

nj)

)
η=0

= δqq′φ
q∗
n φ

q
j , (26)

(
∂τq

∂(ηY q
′

nj)

)
η=0

= δqq′ ~∇φq∗n · ~∇φ
q
j , (27)

(
∂(~∇ · ~Jq)
∂(ηY q

′

nj)

)
η=0

= δqq′ (−i) ~∇φq∗n ·
(
~∇× ~σ

)
φqj , (28)

where φqj and φqn are occupied and unoccupied single-
particle states, respectively. Since the external field Vext

we consider here does not change the isospins of nucleons,
Eqs. (23)–(28) should be zero when q 6= q′. The diver-

gence of ~Jq has a contribution to the Skyrme potentials
[48]. After simple algebra, we can show that Eqs. (26)–
(28) are complex conjugates of Eqs. (23)–(25). Such a
property of the complex conjugate in the partial deriva-
tives in the backward amplitudes is also confirmed in the
time-odd Hamiltonian. Therefore, the RPA matrix B is
given by the complex conjugate of the partial derivative

with respect to the forward amplitude,

Bq,q
′

mi,nj =

∫
d3r φq∗m

(
∂hq

∂(ηXq′

nj)

)∗
η=0

φqi . (29)

It is enough to calculate the partial derivative

∂hq/∂(ηXq′

nj)|η=0 only to derive the RPA matrix B.
Hereafter, we mainly focus on the derivation of the RPA
matrix A. The Skyrme forces are parameterized by the t
and x coefficients [47]. We follow the detailed description
of Skyrme potentials in the form of b coefficients [45]. We
can calculate the contribution of the time-even potentials
to the RPA matrix A by using Eqs. (23)–(25). For ex-
ample, the contribution of the effective mass m∗q on the
RPA matrix A is given by∫

d3r φq∗m ~∇ ·

(
∂

∂(ηXq′

nj)

−~2

2m∗q

)
η=0

~∇φqi

= −
∫

d3r φq∗m
~∇ ·

{
b1
∂(ρn + ρp)

∂(ηXq′

nj)
− b′1

∂ρq

∂(ηXq′

nj)

}
η=0

~∇φqi

= (b1 − δqq′b′1)

∫
d3r φq

′∗
j φq

′

n
~∇φq∗m · ~∇φ

q
i , (30)

where the term ~∇φq∗m in the third line comes from inte-
gration by parts. b1 and b′1 are coefficients in the effective
mass [45]. In the same way, the contribution of the spin-
orbit potential is given by∫

d3r φq∗m

(
∂ ~Wq

∂(ηXq′

nj)

)
η=0

· (−i)
(
~∇× ~σ

)
φqi

= − (b4 + δqq′b
′
4)

∫
d3r φq

′∗
j φq

′

n
~∇φq∗m · (−i)

(
~∇× ~σ

)
φqi ,

(31)

where the second line is derived from the integration by

parts and the property of ~∇ · (~∇× ~σ) = 0. We calculate
the partial derivatives of the central and the Coulomb
potentials as Eqs. (30) and (31). Finally, the contribution
of heven

q to the RPA matrix A in Eq. (17) is described by
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d3r φq∗m

(
∂heven

q

∂(ηXq′

nj)

)
η=0

φqi = (b0 − δqq′b′0)

∫
d3r φq∗mφ

q
iφ
q′∗
j φq

′

n

+ (b1 − δqq′b′1)

∫
d3r

(
φq∗mφ

q
i
~∇φq

′∗
j · ~∇φ

q′

n + φq
′∗
j φq

′

n
~∇φq∗m · ~∇φ

q
i

)
− (b2 − δqq′b′2)

∫
d3r

{
φq∗mφ

q
i

(
φq
′∗
j ∇

2φq
′

n + φq
′

n∇2φq
′∗
j + 2∇φq

′∗
j · ∇φ

q′

n

)}
+ b3

∫
d3r

{
(α+ 2)(α+ 1)

3
(ρ0)αφq∗mφ

q
iφ
q′∗
j φq

′

n

}

− b′3
∫

d3r

2α

3
(ρ0)α−1(ρ0,q + ρ0,q′) +

2

3
(ρ0)αδqq′ +

α(α− 1)

3
(ρ0)α−2

∑
q′′

(ρ0,q′′)
2

φq∗mφ
q
iφ
q′∗
j φq

′

n


− (b4 + δqq′b

′
4)

∫
d3r

{
φq∗mφ

q
i
~∇φq

′∗
j · (−i)

(
~∇× ~σ

)
φq
′

n + φq
′∗
j φq

′

n
~∇φq∗m · (−i)

(
~∇× ~σ

)
φqi

}
+ δqpδq′p

e2

2

∫
d3r

{
φq∗mφ

q
i

(∫
d3r′

φq
′∗
j φq

′

n

|~r − ~r′|

)
− 1

3

(
3

π

)1/3

(ρ0,p)
−2/3φq∗mφ

q
iφ
q′∗
j φq

′

n

}
,

(32)

where ρ0 = ρ0,n + ρ0,p is the summation of the den-
sity of nucleon, ρ0,q =

∑
i∈q φ

q∗
i φ

q
i (q = n, p). bi, b

′
i(i =

0, 1, 2, 3, and 4) and α are the parameters in the Skyrme
forces [45]. It is clear from Eq. (32) that the residual in-
teraction of heven

q is composed of the single-particle states
of the static HF calculation without any forward and
backward amplitudes. We show the detailed descriptions

of integrands such as φq∗mφ
q
i ,
~∇φq∗m ~∇φ

q
i , φ

q′∗

j ∇2φq
′

n , and

(−i)~∇φq∗m (~∇×~σ)φqi in Appendix A. The first term in the
last line of Eq. (32) represents the contribution from the
direct term of Coulomb potential. We discuss the cal-
culation method for the double spatial integrals of the
direct term in Appendix B.

D. The residual interaction of hodd
q

The time-odd Hamiltonian hodd
q itself is a time-even

field, but this Hamiltonian is composed of time-odd fields
such as the spin density ~sq and the current density ~jq
[43, 45]. The time-odd fields of nucleon q are described
by

~sq =
∑
i∈q

ψ′q∗i ~σψqi , (33)

~jq =
1

2i

∑
i∈q

{
ψ′q∗i

~∇ψqi − ψ
q
i
~∇ψ′q∗i

}
.

(34)

In the limit of η → 0, the time-odd fields in the equa-
tions above are converged to zero when the time-reversal

symmetry is satisfied in the HF calculation. As done in
the time-even fields, We can expand Eqs. (33) and (34)
by using Eqs. (13) and (14). Then, we obtain the partial
derivatives of these time-odd fields,(

∂~sq

∂(ηXq′

nj)

)
η=0

= δqq′φ
q′∗
j ~σφq

′

n , (35)

(
∂~jq

∂(ηXq′

nj)

)
η=0

= δqq′
1

2i

(
φq
′∗
j
~∇φq

′

n − φq
′

n
~∇φq

′∗
j

)
, (36)

(
∂~sq

∂(ηY q
′

nj)

)
η=0

= δqq′φ
q′∗
n ~σφq

′

j , (37)

(
∂~jq

∂(ηY q
′

nj)

)
η=0

= δqq′
1

2i

(
φq
′∗
n
~∇φq

′

j − φ
q′

j
~∇φq

′∗
n

)
, (38)

where Eqs. (37) and (38) are the complex conjugates of
Eqs. (35) and (36). As discussed in Sec.II C, such the
complex conjugate relations lead to the property of the
RPA matrix B in Eq. (29). The time-odd potentials such

as ~Sq and ~Aq in hodd
q are composed of the time-odd fields

in Eqs. (33) and (34). The detail of these potentials is
shown in Ref. [45]. By using Eqs. (11), (35), and (36),
the partial derivative of hodd

q in the RPA matrix A is
derived;
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∫
d3r φq∗m

(
∂hodd

q

∂(ηXq′

nj)

)
η=0

φqi

=

∫
d3r

{
∂~Sq

∂(ηXq′

nj)
· (φq∗m~σφ

q
i ) +

∂ ~Aq

∂(ηXq′

nj)
· 1

2i
(φq∗m ~∇φ

q
i − φ

q
i
~∇φq

∗

m )

}
η=0

=− 2(b1 − δqq′b′1)

∫
d3r

{
1

2i
(φq∗m ~∇φ

q
i − φ

q
i
~∇φq

∗

m ) · 1

2i
(φq

′∗
j
~∇φq

′

n − φq
′

n
~∇φq

′∗
j )

}
− (b4 + δqq′b

′
4)

∫
d3r

{
1

2i
(φq∗m ~∇φ

q
i − φ

q
i
~∇φq

∗

m ) · ~∇× (φq
′∗
j ~σφq

′

n ) +
1

2i
(φq

′∗
j
~∇φq

′

n − φq
′

n
~∇φq

′∗
j ) · ~∇× (φq∗m~σφ

q
i )

}
, (39)

where the integration by parts is done in the term of ~Aq
from the first line to the second one. The detailed de-
scriptions of the integrands in our numerical calculation
are given in Appendix A.

Finally, the matrices in Eqs. (17) and (18) are derived
from Eqs. (29), (32), and (39). From these equations,
we can also confirm that these matrices are Hermitian
(Aq,q

′

mi,nj = Aq
′,q∗
nj,mi) and symmetric (Bq,q

′

mi,nj = Bq
′,q
nj,mi),

which is consistent with the general property of the RPA
matrices [14]. The RPA matrices do not include Xq

mi,
and Y qmi, so that the forward and backward amplitudes
are obtained by solving Eq. (16) without the need for a
iterative procedure.

Note that all the RPA equations given above are in
the matrix form. The same linearizatoin could be also
applied to the mixed representation [29].

Extension of non-iterative FAM-RPA to FAM-QRPA
is straightforward by employing the same technique de-
scribed by Avogadro and Nakatsukasa [30]. This cer-
tainly increases the number of particle-hole configura-
tions. However, they are important only for the states
with low excitation energies near the Fermi surface. We
limit ourselves to FAM-RPA in this paper.

E. External fields for E1 and M1 transitions

The calculated results of FAM-RPA can be compared
with experimental data of the photoabsorption cross sec-
tion. Here, we use a complex frequency, ω = E+ iγ/2. E
and γ correspond to the energy of the incoming photon
and the Lorentzian width. This γ parameter character-
izes the width of the photoabsorption cross section. The
transition strength is described by the forward and back-
ward amplitudes [28],

dB(E;Vext)

dE
= − 1

π
Im
∑
q

∑
m,i∈q

(
fq∗miX

q
mi + fq∗imY

q
mi

)
.

(40)

As the external field, we consider the electric and mag-
netic dipole operators that induce E1 and M1 transitions.

The electric dipole operator is written as the spherical
harmonics of neutrons and protons,

DK =
A∑
i=1

e
(i)
effriY1K(θi, ϕi) (K = 0,±1), (41)

where e
(i)
eff ≡ −eZ/A (eN/A) for neutrons (protons). The

(ri, θi, ϕi) represents the spherical coordinate of nucleon
i. The photoabsorption cross section of E1 transition is
given by [14, 29],

σabs(E; E1) =
16π3

9~c
E

∑
K=0,±1

dB(E;DK)

dE
, (42)

where we impose Vext =
∑
K=0,±1DK on Eq. (40). In

the case of M1 transition, the magnetic dipole operator
is represented by operators of a spin part ~σi/2 and an

orbital part ~li = −i(~ri × ~∇i) of nucleon i,

MK = µN

A∑
i=1

(
g(i)
s

~σi
2

+ g
(i)
l
~li

)
· ~∇ (riY1K(θi, ϕi))

(K = 0,±1),

(43)

where µN is the nuclear magneton. The g factors are

g
(i)
s = −3.826(5.586) and g

(i)
l = 0(1) for neutrons (pro-

tons). Similar to the case of the E1 transition, the cross
section of M1 transition can be expressed as

σabs(E; M1) =
16π3

9~c
E

∑
K=0,±1

dB(E;MK)

dE
. (44)

We note that, for the numerical calculation, we employ
the single-particle states labeled in the cylindrical coor-
dinate. Therefore, the spherical coordinates of nucleons
in Eqs. (41) and (43) should be transformed to the cylin-
drical coordinate when the coefficients in Eq. (19) are
calculated (see the detail in Appendix C).
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III. RESULTS AND DISCUSSIONS

A. E1 transition

1. Benchmark calculation

The photoabsorption cross sections of both E1 and M1
transitions are calculated based on the RPA equations
as given in Sec.II. The RPA calculations use the single-
particle states of the HF+BCS calculation. The BCS
calculation is required to include the pairing correlation
in the HF single-particle state for deformed nuclei. The
HF+BCS calculation is the same as in work by Bonneau
et al. [49], where the single particle wave functions are ex-
panded in the axially symmetric harmonic oscillator ba-
sis [48], and we solve the BCS gap equation. Deformation
parameters are taken from Table 1 of Ref. [50] to start
the iterative procedure. With these initial deformation
parameters, we can achieve very fast convergence. In the
HF+BCS calculation, we employ the parameterization
of SLy4 [47] for Skyrme interactions. We focus on even-
even nuclei whose HF equations satisfy the time-reversal
symmetry. The detailed description of the single-particle
state in the cylindrical coordinate is given in Appendix
A.

We apply the technique discussed above to a wide mass
range of nuclei in order to calculate the cross section of
the E1 transition. We solve Eq. (16) for the photon en-
ergies starting from E = 0.5 MeV at every 250 keV.

Here, we determine the size of the configuration space
of the unoccupied states by imposing a cutoff energy Ecut

measured from the Fermi energy surface. We consider
the unoccupied state of nucleon q whose single-particle
energy satisfies: εm < Ecut + εi,q,max, where the εi,q,max

is the maximum energy of the occupied states of neutron
(q = n) or proton (q = p).

Figure 1(a) shows the sensitivity of the Ecut to the E1
cross section of 40Ca. The Lorentzian width is γ = 2 MeV
in K = 0,±1. As shown by the almost identical dash-
dotted and dashed lines, we can safely say that the calcu-
lation converges when Ecut > 30 MeV. When we increase
Ecut, the tail on the higher side of GDR becomes larger,
because more energetically higher unoccupied states are
involved, although these transitions are weak.

The energy-weighted sum rule m1 [34] can be esti-
mated by integrating the photoabsorption cross section.
For Ecut = 30 MeV (dash-dotted line), the integration
up to E = 40 MeV yields m1 = 161.8 e2fm2MeV. The
energy-weighted sum rule exhausts 93% of the value com-
puted from the HF ground-state density [34],

m1 =
∑

K=0,±1

m1(DK) = (1 + κ)
e2~2

2m

NZ

A

9

4π
, (45)

κ =
2m

~2
b1

A

NZ

∫
d3r ρ0,nρ0,p, (46)

where b1 is one of the coefficients of Skyrme parameteri-
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FIG. 1. The calculated GDR cross sections in Eq. (42) for (a)
40Ca and (b) 154Sm with different energy cutoff Ecut. The
Lorentzian width is fixed to γ = 2 MeV.

zation and κ = 0.16 is the enhancement factor for 40Ca.
Adding the high-energy region (E > 40 MeV) to the in-
tegration, the sum rule is better reproduced. The value
of κ reflects the contribution from many-body interac-
tions and depends on the model of the Skyrme forces
employed.

In the case of heavy nuclei (A > 150), as shown in
Fig. 1(b), the convergence for Ecut is faster, since the
single-particle state density becomes higher. For Ecut =
20 MeV (dotted line), the m1 estimated from the energy
integration of the cross section exhausts 95% the rhs of
Eq.(45) where κ = 0.18 for 154Sm.

Hereafter, we adopt the cutoff energy, Ecut = 30 MeV
for light nuclei (A ≤ 150) and 20 MeV for heavy nuclei
(A > 150). The resonance energy of GDR becomes lower
as the mass number of the nuclei increases [3], so that we
perform the RPA calculation for A ≤ 150 and A > 150
up to E = 40 MeV and 30 MeV, respectively. Since the
Lorentzian width γ is a free parameter in the FAM calcu-
lation, we employ the recommended experimental GDR
width Γ within the Standard Lorentzian approach in Ta-
ble III of Ref. [51]. Although the accuracy of the GDR
tail region might be suffered by the Lorentzian width
used, a different photo-absorption mechanism at higher
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energies called the quasi-deuteron absorption [52, 53]
brings a larger uncertainty when the calculated results
are compared with experimental data. In this sense es-
timation of the most reasonable width might be better
conducted in the peak region of GDR rather than the tail
region.

2. Spherical nuclei

Figure 2 shows the cross sections of E1 transitions
for spherical nuclei such as 16O,40Ca,54Fe, and 208Pb.
In the case of spherical nucleus, the transition strength,
dB(E,DK)/dE (K = 0,±1) is independent of the value
of K. The solid lines show the numerical results of
Eq. (42) in our FAM calculations. The symbols are ex-
perimental data or evaluated experimental data of the
photoabsorption cross section in EXFOR [58]. The error
bar is not shown in the evaluated data of 208Pb [57] in
Fig. 2(d). The experimental GDR data are often repre-
sented by the Lorentzian distribution [3],

σGDR(E) =
σR

1 + [(E2 − E2
R)2/E2Γ2

R]
, (47)

where σR,ΓR, and ER are the peak cross section, the
full width at half-maximum, and the resonance energy,
respectively. The dashed lines in Fig. 2 show the
Lorentzian parameterized experimental GDR compiled
at IAEA [51].

For the light nuclei, the GDR resonance energy ER
in the FAM calculation tends to be smaller than that of
experimental data. In the case of 16O (Fig. 2(a)), ER
is lower by 4.3 MeV. As shown in Fig. 2(b), the devi-
ation of ER is 2.3 MeV for 40Ca. The discrepancy of
the GDR peak is more noticeable in light nuclei. Such
disagreement is also seen in the previous RPA calcula-
tions [29, 59]. The experimental data of ER can be
explained by the superposition of the Goldhaber-Teller
mode that produces the dependence ER ∝ A−1/6 and
the Steinwedel-Jensen mode that produces ER ∝ A−1/3

[3, 60]. The A dependence of ER in experiments can
be fitted by A−1/6 for light nuclei. The RPA descrip-
tion underestimates the contribution of the surface mode
(Goldhaber-Teller mode), which may imply an insuf-
ficient isovector surface energy in the present Skyrme
forces [59].

As shown in Figs. 2(c) and 2(d), the deviations be-
tween the resonance energy of FAM and that of σGDR are
0.85 MeV and 0.37 MeV in 54Fe and 208Pb, respectively.
Therefore, the discrepancy between the FAM calculations
(solid lines) and the evaluated σGDR (dashed lines) be-
comes smaller for the heavy nuclei. It seems such good
reproduction of the resonance energy for the heavy nuclei
is a common property of RPA calculations [59]. The peak
cross sections in the FAM calculations are much smaller
than those of evaluated data, σR. In the FAM calcula-
tions, we assume that the Lorentzian width γ is equal to

the width, ΓR of recommended experimental GDR pa-
rameters in Ref. [51]. This assumption overestimates the
value of γ and reduces the peak cross section in FAM
calculations. The total width of GDR is given by the
sum of three widths, ΓR = ∆Γ + Γ↑ + Γ↓ where ∆Γ, Γ↑,
and Γ↓ are the Landau damping, the escape width, and
the spreading width, respectively [1, 4, 61]. The spread-
ing width Γ↓ represents the couplings of the 1p-1h states
to more complex numerous configurations such as 2p-
2h, and 3p-3h states [4]. The Lorentzian width γ can
be regarded as Γ↓ [29, 62]. Therefore, the total GDR
width in FAM calculation, ΓFAM

R should be larger than
the ΓR evaluated based on the experimental data when
we assume γ = ΓR. In the case of Fig. 2(d) , for exam-
ple, we can estimate the ΓFAM

R by fitting the numerical
result (solid line) with Eq. (47). We confirm that the
ΓFAM
R = 5.9 MeV is larger than γ = 3.9 MeV. Then, the

damping width in the RPA is given by ∆Γ + Γ↑ = 2.0
MeV. In Fig. 3, we compare the FAM results for 208Pb
with different γ values. The γ = 3.9 MeV case in Fig. 3
is identical to Fig. 2(d). As γ decreases, the peak cross
section (GDR width) increases (decreases). The energy-
weighted sum rule is almost constant regardless the value
of γ. In Fig. 3, the peak cross section of evaluated exper-
imental data (dash line) is well reproduced by the FAM
calculation of the γ = 2.1 MeV. The value of the ∆Γ+Γ↑

might depend on the types of Skyrme forces because the
sum rule enhancement factor, κ, is different depending on
the type of Skyrme forces [63, 64]. A shoulder structure
appears near 16 MeV, which is on the right-hand side
of the resonance energy, when we employ the narrower
Lorentzian width. The right shoulder of 208Pb is also
confirmed in the previous RPA calculation of the isovec-
tor strength function [65]. Such fragmentation of GDR
might be universal for GDR of heavy nuclei irrespective
of the nuclear shape [66].

3. Deformed nuclei

It is well known experimentally that the GDR peak
splits into two for the statically deformed nuclei [3], be-
cause the degeneracy for different K values of 0, ±1 is
removed. As shown in Fig. 4, FAM reproduces the split
of GDR for well-deformed nuclei such as 154Sm and 238U.
The resonance energy of K = 0 is smaller than that of
K = ±1 because of the longer wavelength along the axis
of symmetry (z-axis), when the shape is prolate [4]. Be-
cause the pair correlations are no longer negligible for de-
formed nuclei, QRPA is commonly adopted to calculate
GDRs of deformed nuclei [34, 62]. Although the pair-
ing correlation is included in the single-particle states of
HF+BCS, the particle and hole are chosen as fully un-
occupied and occupied states above and below the Fermi
surface given by BCS in our non-iterative FAM-RPA.
This approximation results in some uncertainties in the
transitions with very small excitation energies. Neverthe-
less, as shown in Fig. 4 by the solid lines, the FAM-RPA
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FIG. 2. The GDR cross sections for spherical nuclei, (a) 16O, (b) 40Ca, (c) 54Fe, and (d) 208Pb. The solid and dashed lines
show the results of Eq. (42) and the evaluated σGDR in Eq. (47), respectively. The symbols represent both the reported and
evaluated experimental data [54–57] in EXFOR [58].

calculations for σabs(E,E1) nicely reproduce the experi-
mental data. This is because the E1 operator in Eq. (41)
changes the parities of single-particle states, hence tran-
sitions within the same shells are strongly suppressed.
These small energy transitions do not contribute to the
main part of E1, even if we extend our model to FAM-
QRPA, which is definitely planned.

In Fig. 4(a), our calculation predicts somewhat lower
cross sections than the evaluated Lorentzian distribution,
which is also seen in the QRPA calculation for 154Sm
where SLy4 is employed [62]. In both 154Sm and 238U,
the second peak cross sections of FAM results are lower
than the experimental data. This systematic disagree-
ment occurs due to the Lorentzian width γ as we dis-
cussed before. The agreement on the second peak and
the higher energy tail (E > 16 MeV) can be improved
when a slightly smaller γ is used for K = ±1.

B. M1 transition

For the M1 transition, we use the magnetic dipole op-
erator in Eq. (43) to perform almost the same calculation
as done in Sec.III A. The value of the Lorentzian width is
fixed to γ = 1 MeV. Here, we focus on the M1 transitions
for double-magic nuclei.

Figure 5 shows the cross sections of M1 transitions for
48Ca and 208Pb. The transition strengths for K = 0,±1
are almost identical. In the case of these double-magic
nuclei, the spin part in Eq. (43) dominantly contributes
to the transition strength of the M1 transitions.

The dominant peak around 8.5 MeV in Fig. 5(a) is orig-
inated from a spin-flip 1f7/2 → 1f5/2 transition of neu-
trons [23]. As shown in Fig. 5(b), there are double peaks
in the M1 transition of 208Pb. These two peaks are not
by the different K values but due to contributions from
neutron spin-flip transitions and proton spin-flip transi-
tions. The peak around 8.0 MeV (6.0 MeV) in Fig. 5(b)
reflects the contribution from a spin-flip 1i13/2 → 1i11/2

(1h11/2 → 1h9/2) transition of neutrons (protons), re-
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FIG. 3. The calculated GDR cross sections for 208Pb with
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lines) and the evaluated σGDR in Eq. (47) (dashed line). The
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result in Fig. 2(d).

spectively. In our FAM calculations, the M1 transition
strength distribution is given by

dB(M1)

dE
=

∑
K=0,±1

dB(E;MK)

dE
, (48)

where the right hand side of the above equation is cal-
culated from Eqs. (40) and (43). The results of such
distributions for 48Ca and 208Pb are shown in the solid
lines of Fig. 6. The strength distribution of 48Ca is well
consistent with that of Ref. [23]. On the other hand, ex-
periments of inelastic scatterings such as 48Ca(e, e′)[69]
and 48Ca(p, p′) [70] found a dominant peak of the M1
excitation at 10.23 MeV that is higher than the peak en-
ergy of 8.5 MeV in Fig. 5(a). As shown in Fig. 6, the
results of M1 transitions with the residual interactions
(solid lines) are identical to those without residual inter-
actions (dot lines), which indicates residual interactions
in Eqs. (32) and (39) do not contribute to the M1 tran-
sitions. Here, we employ SLy4 as the Skyrme force that
ignores the contribution from the spin terms with b̃i, b̃

′
i

[18, 19]. These spin terms may increase the repulsive ef-
fects of residual interactions and upshift the peak energy
of the M1 transitions.

Figure 6(b) shows the double-peak feature of M1 for
208Pb, which is also confirmed by other theoretical works
in the past, nevertheless the experimental data show only
one peak near 7.3 MeV [70]. Such discrepancy could be
attributed to theoretical uncertainty in Skyrme param-
eters, because some other works, which adopt different
Skyrme parameterizations (e.g. SkO and SkO), reported
single peak shapes [18, 19]. The result of the M1 tran-
sition is more sensitive to the Skyrme parameterization
than that of the E1 transition.

The total transition strength
∑
B(M1) is commonly

used to compare calculated results with experimental
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FIG. 4. The GDR cross sections for deformed nuclei,
(a) 154Sm and (b) 238U. The partial contributions from
dB(E,D0)/dE and

∑
K=±1 dB(E,DK)/dE in Eq. (42) are

shown by the dotted and dash-dotted lines. The symbols rep-
resent the experimental data [67, 68].

data. In our FAM-RPA calculation, the total strength
can be estimated from the integration of Eq. (48) over
the energy E,∑

B(M1) =

∫
dE

dB(M1)

dE
, (49)

and they are 11.7 µ2
N (32.5µ2

N ) for 48Ca(208Pb), which
are larger than the experimental data, e.g., 3.85 –
4.63 µ2

N (20.5 µ2
N ) for 48Ca(208Pb) [70]. It is also reported

that the calculated M1 transition in the past tends to
give larger

∑
B(M1) (e.g. [1] and references therein),

and they suggested to introduce the quench of the spin
g factors. The spin-flip part is dominant in the M1 tran-
sitions of double-magic nuclei so that the total strength
in Eq. (49) is almost proportional to the square of the
quenching factor. By introducing a typical value of the

quenching factor, g
(i)
s,eff/g

(i)
s = 0.6 – 0.7 [23], the total

strength in our FAM calculations is reduced by 0.36 –
0.49 times and more consistent with the experimental
data [70].

When the nucleus is strongly deformed like nuclei in



11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  5  10  15  20

(a)
48Ca, SLy4, M1

σ
a
b
s 
[m
b
]

E [MeV]

FAM
FAM (K=0)
FAM (K=±1)

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14

(b)
208Pb, SLy4, M1

σ
a
b
s 
[m
b
]

E [MeV]

FAM
FAM (K=0)
FAM (K=±1)

FIG. 5. The photoabsorption cross sections of M1 transitions
for double-magic nuclei, (a) 48Ca and (b) 208Pb. The solid
lines show the results of Eq. (44). The partial contributions
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the rare-earth or actinide region, the so-called scissors
mode may appear near 3 MeV [71], which comes from
the orbital part in Eq. (43). They are very sensitive to
the low-excitation configurations near the Fermi surface,
and unfortunately our current implementation of non-
iterative FAM-RPA brings a large uncertainty in calcu-
lating the scissors mode. This issue could be resolved by
our next modeling of non-iterative FAM-QRPA.

IV. CONCLUSION

We develop a non-iterative FAM method, where the
forward and backward amplitudes are derived from the
explicit linearization of the residual interaction without
an iterative procedure used in the other conventional
FAM-RPA calculations. We carried out the HF+BCS
calculation to prepare the ground state of the static HF
Hamiltonian, then the occupied and unoccupied states
are fed into the calculation of the E1 transitions for both
the spherical and deformed nuclei. Our calculated result
indicates that the E1 transition is not so sensitive to the
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FIG. 6. The transition strength distributions in Eq. (48) for
(a) 48Ca and (b) 208Pb. The solid (dotted) line shows the
result with (without) the residual interactions in Eqs. (32)
and (39).

detail of the single-particle states near the Fermi surface.
We also applied our FAM-RPA calculations to the

M1 transitions for double-magic nuclei and demonstrated
that the spin-flip of neutrons and protons is the main
contribution to the M1 transition. FAM-RPA tends to
overestimate the M1 transition strength, which might be
resolved when we introduce quenching of the spin g fac-
tor. We also discussed the sensitivity of the spin term
in the Skyrme force to the M1 transition, which is cur-
rently neglected in our calculations. This could shift the
M1 resonance location higher, making our calculations
more consistent with the experimental data.
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Appendix A: Integrands in the residual interaction

We show the detailed description of integrands inside
Eqs. (32) and (39). To prepare the HF single-particle
state for the FAM-RPA calculation, we carry out the
HF+BCS calculation as done in Ref. [49]. The HF single-
particle state on the right-hand sides of Eqs. (13) and
(14) is described in the cylindrical coordinate space ~r =
(r, ϕ, z) [48],

φqµ = χq(τ)

{
eiΛ
−
µ ϕ

√
2π

φ+
µ (r, z)χ1/2(σ)

+
eiΛ

+
µϕ

√
2π

φ−µ (r, z)χ−1/2(σ)

}
, (A1)

Λ±µ = Ωµ ±
1

2
, (A2)

where σ(τ) represents the spin (isospin) of the nucleon.
χq(τ) is the eigenstate of the isospin operator τz and
the index q labels neutrons or protons. The χ1/2(σ)
and χ−1/2(σ) represent the up and down states of the

nucleon spin, respectively. The wave function φ±µ (r, z)
is expanded by the cylindrical harmonic oscillator ba-
sis. The Ωµ represents the projection of the total an-
gular momentum on z-axis. The integrands such as

φq∗mφ
q
i ,

~∇φq∗m ~∇φ
q
i , φq∗m∇2φqi , and (−i)~∇φq∗m (~∇ × ~σ)φqi

in Eq. (32) are described in the cylindrical coordinate
(r, ϕ, z). The spin and isospin states inside these in-
tegrands are eliminated owing to the inner products,

χ†Σ′(σ)χΣ(σ) = δΣΣ′ (Σ,Σ′ = ±1/2) and χ†q(τ)χq(τ) = 1.
Similar to the detailed calculation of local densities and
currents in Ref. [48], the integrand functions in the resid-
ual interaction of the time-even Hamiltonian are written
as

φq∗mφ
q
i =

ei(Ωi−Ωm)ϕ

2π

(
φ+
mφ

+
i + φ−mφ

−
i

)
, (A3)

~∇φq∗m · ~∇φ
q
i =

ei(Ωi−Ωm)ϕ

2π

{
∇rφ+

m∇rφ+
i +∇zφ+

m∇zφ+
i +

Λ−mΛ−i
r2

φ+
mφ

+
i

+ ∇rφ−m∇rφ−i +∇zφ−m∇zφ−i +
Λ+
mΛ+

i

r2
φ−mφ

−
i

}
, (A4)

φq∗m∇2φqi =
ei(Ωi−Ωm)ϕ

2π

{
φ+
m

[
1

r
∇r(r∇r) +∇2

z −
(Λ−i )2

r2

]
φ+
i + φ−m

[
1

r
∇r(r∇r) +∇2

z −
(Λ+

i )2

r2

]
φ−i

}
, (A5)

(−i)~∇φq∗m · (~∇× ~σ)φqi =
ei(Ωi−Ωm)ϕ

2π

{
∇rφ+

i ∇zφ
−
m −∇rφ−i ∇zφ

+
m +∇rφ+

m∇zφ−i −∇rφ
−
m∇zφ+

i

+
Λ−m
r
φ+
m(∇rφ+

i −∇zφ
−
i ) +

Λ−i
r
φ+
i (∇rφ+

m −∇zφ−m)

− Λ+
m

r
φ−m(∇rφ−i +∇zφ+

i )− Λ+
i

r
φ−i (∇rφ−m +∇zφ+

m)

}
, (A6)

where we use simple notations, ∇r(z) ≡ ∂/∂r(z) and

φ±µ ≡ φ±µ (r, z). The operator (~∇× ~σ) in Eq. (A6) is de-
scribed in the cylindrical coordinate. ~σ operates the spin
eigenstates as in σ±χ±1/2 = 0, σ±χ∓1/2 = 2χ±1/2, and

σzχ±1/2 = ±χ±1/2. The φ±µ is a real number function in

the (r, z) space. The detailed description of ∇r(z)φ±µ is
shown in Ref. [48]. All of the ϕ dependence is summa-
rized into the factor ei(Ωi−Ωm)ϕ in Eqs. (A3)-(A6). The
spatial integrals in Eq. (32) are carried out in the cylin-
drical coordinate (r, ϕ, z). The integration towards the
ϕ direction induces a condition, Ωi − Ωm = Ωj − Ωn

for the finite value of Eq. (32). Such a condition of an-
gular momentum restricts the size of the RPA matrix
A. In the case of the RPA matrix B, the condition be-
comes Ωi−Ωm = −(Ωj−Ωn), where the negative sign on
the right-hand side comes from the relation in Eq. (29).
The integrands in Eq. (32) can be expanded by a linear
combination of Hermite (associated Laguerre) polynomi-
als in the z(r) direction by following the formalism in
Ref. [48]. The spatial integrations over z and r direc-
tions in Eq. (32) can be carried out by the Gaussian
quadratures. In the case of the time-odd Hamiltonian,
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the residual interaction in Eq. (39) includes two types of

vectors, ~∇× (φq∗m~σφ
q
i ) and 1

2i (φ
q∗
m
~∇φqi − φ

q
i
~∇φq∗m ). In the

cylindrical coordinate, the components of these vectors
are written as

{
~∇× (φq∗m~σφ

q
i )
}
r

=
ei(Ωi−Ωm)ϕ

2π
i

{
Ωi − Ωm

r
(φ+
mφ

+
i − φ

−
mφ
−
i )−∇z(−φ+

mφ
−
i + φ−mφ

+
i )

}
,{

~∇× (φq∗m~σφ
q
i )
}
ϕ

=
ei(Ωi−Ωm)ϕ

2π

{
∇z(φ+

mφ
−
i + φ−mφ

+
i )−∇r(φ+

mφ
+
i − φ

−
mφ
−
i )
}
,{

~∇× (φq∗m~σφ
q
i )
}
z

=
ei(Ωi−Ωm)ϕ

2π
i

{
−Ωi − Ωm

r
(φ+
mφ
−
i + φ−mφ

+
i ) + (∇r +

1

r
)(−φ+

mφ
−
i + φ−mφ

+
i )

}
, (A7)

1

2i
(φq∗m

~∇φqi − φ
q
i
~∇φq

∗

m )r =
ei(Ωi−Ωm)ϕ

2π

1

2i

(
φ+
m∇rφ+

i − φ
+
i ∇rφ

+
m + φ−m∇rφ−i − φ

−
i ∇rφ

−
m

)
,

1

2i
(φq∗m ~∇φ

q
i − φ

q
i
~∇φq

∗

m )ϕ =
ei(Ωi−Ωm)ϕ

2π

1

2

(
Ωm + Ωi − 1

r
φ+
mφ

+
i +

Ωm + Ωi + 1

r
φ−mφ

−
i

)
,

1

2i
(φq∗m ~∇φ

q
i − φ

q
i
~∇φq

∗

m )z =
ei(Ωi−Ωm)ϕ

2π

1

2i

(
φ+
m∇zφ+

i − φ
+
i ∇zφ

+
m + φ−m∇zφ−i − φ

−
i ∇zφ

−
m

)
, (A8)

where the dependence of ϕ is included in the factor
ei(Ωi−Ωm)ϕ. As in the case of the time-even Hamilto-
nian, Ωi−Ωm = Ωj −Ωn is necessary for the finite value
of the residual interaction in Eq. (39).

Appendix B: Calculation of the Coulomb potential

The contribution from the direct term of the Coulomb
potential in Eq. (32) is written as

(ṼC)nj =
e2

2

∫
d3r′

φp∗j φ
p
n

|~r − ~r′|

=
e2

4

∫
d3r′ |~r − ~r′|∇′2(φp∗j φ

p
n), (B1)

where the relation ∇′2|~r− ~r′| = 2/|~r− ~r′| is used. Then,
we carry out the integration by parts twice. Eq. (B1)
is a function in the cylindrical coordinate (r, ϕ, z). The
integration can be described by following the procedure
to calculate the Coulomb potential in Ref. [48],

(ṼC)nj =
ei(Ωn−Ωj)ϕ

2π
e2

∫ ∞
0

dr′
∫ ∞
−∞

dz′

×
{√

(r + r′)2 + (z − z′)2J(r′, z′)I(Ωn − Ωj , x)
}
,

(B2)

J(r′, z′) = (2π)e−i(Ωn−Ωj)ϕ
′
∇′2(φp∗j φ

p
n), (B3)

I(x,Ω) = (−1)Ω

∫ π/2

0

dϕ′
√

1− x2 sin2 ϕ′ cos(2Ωϕ′),

(B4)

x2 =
4rr′√

(r + r′)2 + (z − z′)2
, (B5)

where the factor e−i(Ωn−Ωj)ϕ
′

in Eq. (B3) cancels the
ϕ′ dependence in ∇′2(φp∗j φ

p
n) that is calculated from

Eqs. (A4) and (A5). The difference in angular momen-
tum is restricted to |Ωn − Ωj | = 0, 1 when the external
fields are the operators of E1 and M1 transitions. At
Ω = 0, Eq. (B4) corresponds to the well-known com-
plete elliptic integral of the second kind. After the Tay-
lor expansion and term by term integration, Eq. (B4) at
Ω = 0,±1 can be expressed by the infinite power series,

I(x,Ω = 0) =
π

2

∞∑
n=0

{
(2n− 1)!!

(2n)!!

}2
x2n

1− 2n
, (B6)

I(x,Ω = ±1) =
π

2

∞∑
n=0

{
(2n− 1)!!

(2n)!!

}2
n

(n+ 1)(1− 2n)
x2n,

(B7)

where (−1)!! ≡ 1. This expansions for x2 < 1 converge
sufficiently when n = 10 or higher.
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Appendix C: Coefficients of the external fields

In the case of E1 transition, the coefficient fqmi in
Eq. (19) is calculated by

fqmi =

∫
d3r φq∗m

∑
K=0,±1

DKφ
q
i

=

√
3

4π

∫ ∞
0

dr r

∫ ∞
−∞

dz gE1(Ωmi, q), (C1)

gE1(Ωmi, q) =


zeqeff(φ+

mφ
+
i + φ−mφ

−
i ) (Ωmi = 0)

∓ r√
2
eqeff(φ+

mφ
+
i + φ−mφ

−
i ) (Ωmi = ±1)

0 (otherwise)

,

(C2)
where Ωmi ≡ Ωm − Ωi and eqeff ≡ −eZ/A(eN/A) for q =
n(p). The condition of Ωmi comes from the integration
over ϕ, which restricts the size of the configuration space.
We can derive the coefficient fqim in Eq. (19) in the same
way. In the case of M1 transition, the operator ~σ can flip

the spin of nucleons. The coefficient fqmi is given by

fqmi =

∫
d3r φq∗m

∑
K=0,±1

MKφ
q
i (C3)

=

√
3

4π

∫ ∞
0

dr r

∫ ∞
−∞

dz gM1(Ωmi, q), (C4)

where the gM1(Ωmi, q) is finite only for Ωmi = 0,±1 as
in Eq. (C2). The detailed description of the function
gM1(Ωmi, q) is written as

gM1(0, q) = µNg
q
l (Λ
−
i φ

+
mφ

+
i + Λ+

i φ
−
mφ
−
i )

+
µNg

q
s

2
(φ+
mφ

+
i − φ

−
mφ
−
i ), (C5)

gM1(1, q) =
µNg

q
l√

2
φ+
m(−z∇r + r∇z)φ+

i

+
µNg

q
l√

2
φ−m(−z∇r + r∇z)φ−i

+
µNg

q
l√

2

z

r
(Λ−i φ

+
mφ

+
i + Λ+

i φ
−
mφ
−
i )− µNg

q
s√

2
φ+
mφ
−
i ,

(C6)

gM1(−1, q) =
µNg

q
l√

2
φ+
m(−z∇r + r∇z)φ+

i

+
µNg

q
l√

2
φ−m(−z∇r + r∇z)φ−i

−
µNg

q
l√

2

z

r
(Λ−i φ

+
mφ

+
i + Λ+

i φ
−
mφ
−
i ) +

µNg
q
s√

2
φ−mφ

+
i ,

(C7)

where gqs = −3.826(5.586) and gql = 0(1) for q = n(p).
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[24] T. Oishi, G. Kružić, and N. Paar, J. Phys. G 47, 115106
(2020).

[25] V. O. Nesterenko, P. I. Vishnevskiy, J. Kvasil, A. Repko,
and W. Kleinig, Phys. Rev. C 103, 064313 (2021).

[26] S. Ebata, T. Nakatsukasa, T. Inakura, K. Yoshida,
Y. Hashimoto, and K. Yabana, Phys. Rev. C 82, 034306
(2010).

[27] I. Stetcu, A. Bulgac, P. Magierski, and K. J. Roche, Phys.
Rev. C 84, 051309 (2011).

[28] T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev.
C 76, 024318 (2007).

[29] T. Inakura, T. Nakatsukasa, and K. Yabana, Phys. Rev.
C 80, 044301 (2009).

[30] P. Avogadro and T. Nakatsukasa, Phys. Rev. C 84,
014314 (2011).

[31] M. Stoitsov, M. Kortelainen, T. Nakatsukasa, C. Losa,
and W. Nazarewicz, Phys. Rev. C 84, 041305 (2011).

[32] N. Hinohara, M. Kortelainen, and W. Nazarewicz, Phys.
Rev. C 87, 064309 (2013).

[33] M. Kortelainen, N. Hinohara, and W. Nazarewicz, Phys.
Rev. C 92, 051302 (2015).

[34] T. Oishi, M. Kortelainen, and N. Hinohara, Phys. Rev.
C 93, 034329 (2016).

[35] H. Liang, T. Nakatsukasa, Z. Niu, and J. Meng, Phys.
Rev. C 87, 054310 (2013).
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