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Insights on the possible existence of a soft dipole mode in 8He
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(Dated: March 25, 2022)

With an extreme neutron-to-proton ratio of N/Z = 3, 8He provides an ideal laboratory for the
study of a variety of exotic phenomena, such as the emergence of a soft dipole mode that is dominated
by transitions into the continuum. In this contribution, a covariant density functional theory (DFT)
framework is used to compute ground-state properties and the dipole response of 8He. Although
8He is admittedly too light for DFT to be applicable, the great merit of the approach is that
the spurious contamination associated with the center-of-mass motion is guaranteed to decouple
from the physical response. Given that a strong mixing between the isoscalar and isovector dipole
modes is expected for a system with such a large neutron-proton asymmetry as 8He, the narrow
structures that emerged at low energies in the isovector dipole response are attributed to the shift
of the spurious strength to zero (or near zero) excitation energy. Thus, the theoretical framework
implemented here disfavors the emergence of a soft dipole mode in 8He.

PACS numbers: 21.60.Jz, 24.10.Jv, 24.30.Cz

I. INTRODUCTION

What combinations of neutrons and protons can form a
bound atomic nucleus is one of the overarching questions
animating nuclear science today [1]. A core mission of
nuclear science is to map the neutron drip line, which re-
quires the identification of the most neutron-rich element
in an isotopic chain that remains stable against particle
decay. So far, the neutron drip line has been mapped up
to an including fluorine and neon [2]—a challenging ex-
perimental task that took almost two decades since the
confirmation of 24O as the Z = 8 dripline nucleus [3, 4].
In the case of helium, the last stable isotope is 8He—an
exotic nucleus with an extreme neutron-to-proton ratio
of N/Z=3; see Ref.[5] and references contained therein.
Among the novel behavior that emerges at the limits of
stability is the development of neutron halos and neu-
tron skins, due to either a low neutron separation energy
or a large neutron-proton asymmetry. Besides the devel-
opment of extended spatial distributions, weakly bound
nuclei often give rise to soft modes of excitation that in-
volve transitions into the continuum.

An early experiment using the Coulomb excitation of
8He identified a soft dipole resonance at an excitation
energy of about 4 MeV [6, 7]. Later on, Golovkov, Grig-
orenko, and collaborators populated the low-lying spec-
trum of 8He via a transfer reaction and confirmed the
existence of a soft dipole mode, albeit at a slightly lower
energy of about 3 MeV [8, 9]. In contrast, one of the main
findings of the dissociation experiment on 8He performed
at Michigan State University concluded that an insignifi-
cant fraction of no more than 3% of the energy weighted
sum rule is exhausted by the low-energy mode [10]. This
result has been validated by the recent inelastic proton
scattering experiment that concluded that the measured

∗ jpiekarewicz@fsu.edu

angular distribution is not consistent with a dipole exci-
tation [11]. It is anticipated that the high statistics ex-
periment already finalized at the RIKEN facility in Japan
will settle the issue [12].

From the theoretical perspective, ground-state proper-
ties of 8He have been computed using a variety of state-
of-the-art ab initio methods [11, 13–15]. However, to our
knowledge, it is only the very recent ab initio work by
Bonaiti, Bacca, and Hagen [15] that addresses the pos-
sible existence of a soft dipole mode in 8He. The au-
thors have merged the coupled-cluster framework to the
Lorentz-integral-transform approach [16] to report on the
emergence of low-energy dipole strength around 5 MeV,
in agreement with Refs.[6–9], but in disagreement with
Refs.[10, 11].

In this paper I offer an alternative theoretical per-
spective based on density functional theory. Density
Functional Theory (DFT) is a powerful technique de-
veloped by Kohn and collaborators [17, 18], whose great
merit is that the exact ground-state energy and one-
body density of the complicated many-body system is
obtained from minimizing a suitable energy density func-
tional (EDF). To make the problem tractable, Kohn and
Sham demonstrated how the complex interacting many-
body system can be made equivalent to a system of
non-interacting electrons moving in an external—mean-
field-like—potential [18]. Among the advantages of the
Kohn-Sham formulation is that self-consistent problems
of this kind are routinely solved in many fields, includ-
ing nuclear physics. Indeed, nuclear EDFs, although
not always known as such, have a long and successful
history in nuclear physics; see Ref. [19] and references
contained therein. The widely used density-dependent
Skyrme forces were developed almost a decade before the
inception of density functional theory [20, 21]. In this pa-
per a covariant formulation of DFT is implemented that
is based on an extension of the work by Walecka, Serot,
and many others [22]. For details of the particular im-
plementation used in this work, see the recent review
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published in Ref.[23].
Advocating in favor of mean-field-like approaches for

light systems such as 8He may come as a surprise. Al-
though not a problem in the case of electrons bound to a
heavy nucleus, the main problem with self-bound systems
such as atomic nuclei is the absence of a natural external
potential and a proper treatment of the center of mass
(COM). Indeed, as pointed out by Engel [24], without a
proper decoupling of the COM, the ground state of a self-
bound system has a—manifestly incorrect—density that
is uniformly distributed over space [19, 24]. Among the
treatments dealing with the removal of the COM contri-
bution to the energy is an approach based on a harmonic-
oscillator approximation. This prescription, which falls
down slowly with mass number [25], makes a significant
contribution to the energy of light nuclei—especially for
those at the drip line. As such, large COM corrections
to the energy hinder any meaningful prediction of the
ground-state energy of light systems. However, the situ-
ation improves considerably when dealing with the linear
response of the system. More than six decades ago in a
seminal paper, Thouless showed how in a self-consistent
formulation, the spurious state associated with a uniform
translation of the center of mass separates out cleanly
from the physical modes by having its strength shifted
to zero excitation energy [26]. This result is particular
relevant for isoscalar dipole excitations that share the
same quantum numbers as the center of mass. However,

for neutron-rich nuclei such as 8He, one expects a strong
mixing between isoscalar and isovector dipole modes. It
is the main goal of the present contribution to examine
the impact of such a mixing on the emergence—or lack-
thereof—of a soft dipole mode in 8He.

The paper has been organized as follows. In Sec. II a
brief description of the covariant RPA formalism used
in this work is presented, paying special attention to
the treatment of the continuum and the mixing between
isoscalar and isovector modes. Self-consistent results are
then presented in Sec. III for the ground-state properties
and distribution of isovector dipole strength of 8He. Fi-
nally, Sec. IV contains a summary of the main results.

II. FORMALISM

The energy density functional used in this work is
based on the non-linear model introduced in Ref. [27],
supplemented by an isoscalar-isovector term that influ-
ences the dynamics of neutron-rich matter [28]. Although
previously discussed in great detail elsewhere, see for ex-
ample Ref. [29] and references contained therein, the in-
teracting Lagrangian density is displayed for complete-
ness:

Lint = ψ̄
[
gsφ−

(
gvVµ+

gρ
2
τ · bµ+

e

2
(1+τ3)Aµ

)
γµ
]
ψ

− κ

3!
(gsφ)3− λ

4!
(gsφ)4+

ζ

4!
g4v(VµV

µ)2 + Λv

(
g2ρ bµ · bµ

)(
g2vVνV

ν
)
, (1)

where the isodoublet nucleon field ψ interacts through
the exchange of photons (Aµ) and three “mesons” of
diverse spin-isospin character: a scalar-isoscalar (φ) a
vector-isoscalar (V µ), and a vector-isovector (bµ) [27].
Further, to improve the predictive power of the model,
various self-interacting meson terms have been added.
Ground-state properties of the system—namely, single-
particle energies and Dirac orbitals, one-body densities,
and mean-field-like potentials—are obtained from a self-
consistent solution of the Kohn-Sham equations [23].

Given that the Kohn-Sham equations may be derived
from a variational approach, one can examine the small
oscillations around the ground state. The consistent lin-
ear response of the ground state to an external perturba-
tion is encapsulated in the RPA formalism that ensures
that important symmetries are preserved [30, 31]. Par-
ticularly critical to this work is the decoupling of the
spurious state associated with a uniform translation of
the center of mass [26].

The first step in generating the RPA response is the
calculation of the uncorrelated polarization tensor, de-

picted by the thin (blue) bubble in Fig. 1. The spec-
tral content of the uncorrelated polarization is both sim-
ple and illuminating: it contains simple poles at the
single-particle excitations of the system with the asso-
ciated transition densities obtained from the residues at
the pole [30]. One obtains the RPA polarization tensor,
depicted by the thick (black) bubble in Fig. (1), by iter-
ating the uncorrelated polarization to all orders. If many
particle-hole pairs with the same quantum numbers are
involved, then the RPA response is strongly collective
and one “giant resonance” tends to dominate, namely,
the resonance exhausts most of the classical sum rule [32].

The diagrammatic structure of the RPA equations is
depicted in Fig. 1. Two aspects of the RPA equations are
particularly important. First, the wavy lines in the figure
denote the residual particle-hole interaction. It is only by
using a residual particle-hole interaction consistent with
the interaction used to generate the mean-field ground
state that the spurious strength associated with a uni-
form translation of the center of mass is decoupled from
the physical response. Second, the variety of isospin and
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FIG. 1. (Color online) Diagrammatic representation of the
RPA equations. The bubble with the thick lines represents
the fully correlated polarization tensor, while the one depicted
with the thin lines is the uncorrelated polarization. The resid-
ual interaction denoted with the wavy line must be identical
to the one used to generate the ground-state. The arrow in
the figure indicates that the the RPA bubble contains mixed
contribution of various isospin and Lorentz structures.

Lorentz structures of the residual interaction leads to a
highly-complex set of RPA equations. In particular, for
nuclei with large neutron excess, the mixing of isoscalar
and isovector modes is strong [31]. This is illustrated by
the arrow in the figure that indicates that the RPA bub-
ble contains mixed isoscalar-isovector contributions. It is
precisely such strong isoscalar-isovector mixing that will
become critical in our interpretation of the emergence, or
lack-thereof, of a soft dipole mode in 8He.

I conclude this section by relating the distribution of
isovector dipole strength R(ω) to the photoabsorption
cross section and by defining various moments of the dis-
tribution. As shown in Ref. [33], R(ω) may be obtained
from the dynamic longitudinal response, which is a func-
tion of both the excitation energy ω and the momentum
transfer. In turn, the product ωR(ω) is directly propor-
tional to the photoabsorption cross section, namely,

σabs(ω) =
16π3

9

e2

~c
ωR(ω). (2)

Often used in the literature are moments of the distribu-
tion of strength which are defined as follows:

mn =

∫ ∞
0

ωnR(ω)dω. (3)

In particular, the energy weighted sum m1 satisfies a clas-
sical sum rule [32], whereas the inverse energy weighted
summ−1 is proportional to the electric dipole polarizabil-
ity αD [34]—a physical observables that has been shown
to be a good isovector indicator [35, 36]. That is,

m1 =
9~2

8πM

(
NZ

A

)
≈14.8

(
NZ

A

)
fm2 MeV , (4a)

α
D

=
~c

2π2

∫ ∞
0

σabs(ω)

ω2
dω =

8πe2

9
m−1. (4b)

III. RESULTS

Following the organizational scheme of Ref.[15], one
starts this section by presenting results for the ground-
state properties of 8He followed by a discussion on the
distribution of dipole strength. Predictions are made us-
ing three covariant energy density functionals: RMF016
(also known as “FSUGarnet”), RMF022, and RMF028
(or “FSUGold2”) [37]. All three EDFs are identical in
the isoscalar sector but differ in their isovector properties.
Specifically, the EDFs were calibrated assuming different
values for the (at the time) unknown value of the neu-
tron skin thickness of 208Pb. In particular, RMF016 was
calibrated assuming a neutron skin thickness of 0.16 fm,
RMF022 of 0.22 fm, and RMF028 of 0.28 fm. Based
on the result published by the PREX collaboration [38],
namely, R208

skin =0.283± 0.071 fm, the RMF016 prediction
falls within the two-sigma interval.

One should note that within the context of covariant
DFT, all three accurately calibrated EDFs have been suc-
cessful in describing a host of physical observables, such
as ground-state properties of medium- to heavy-mass nu-
clei, their linear response, and the structure of neutron
stars. Moreover, such EDFs have also been used to ex-
plore the evolution of the ground-state energy of the oxy-
gen isotopes [37]. Whereas no lighter system than oxygen
has been studied with this set of EDFs, it is interest-
ing to explore their predictions for the isovector dipole
response of 8He, primarily due to the critical role that
self-consistency plays in eliminating any spurious con-
tamination.

A. Ground State Properties

Self-consistent predictions for the bound single-particle
spectrum of 8He are displayed in Fig.2, with the blue(red)
lines indicating the occupied(vacant) single-particle or-
bitals. The two thin arrows indicate the two lowest
“sharp” dipole transitions on the proton side. In con-
trast, all dipole excitations on the neutron side involve
transitions into the continuum. Within the DFT frame-
work employed here, the soft-dipole excitations indicated
by the thick arrow involve the transition of the weakly
bound p3/2 orbital into the sd shell, which lies entirely
in the continuum. These low-energy excitations will be
discussed in greater detail in Sec.III B.

Listed in Table I are energies and root-mean-square
radii for 8He as predicted by the three models introduced
earlier. The second column lists the single-particle energy
of the p3/2 neutron orbital which displays a significant
model dependence that is attributed to the difference in
the isovector properties of the models. As shown in Fig.3,
the model with the stiffest symmetry energy (RMF028)
generates the most attractive neutron potential at the
large distances of relevance to the weakly-bound p3/2 or-
bital. Indeed, as indicated in the inset to Fig.3, the p3/2
orbital peaks at a distance of about 3.7 fm where the neu-
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FIG. 2. (Color online) Single-particle spectrum for 8He as
predicted by the covariant energy density functional FSUG-
arnet=RMF016. The blue(red) lines denote occupied(empty)
orbitals and the thin arrows indicate discrete excitations into
bound states. In turn, the thick arrow indicates that low-
energy strength is expected to emerge from the excitation of
the weakly-bound neutron p3/2 orbital into the continuum.

tron potential generated by the RMF028 model is about
2 MeV deeper than the one generated by the model with
the softest symmetry energy (RMF016). Note that the
neutron potential is an effective Schrödinger-like poten-
tial obtained from a linear combination of the relativistic
scalar and vector potentials [22].

Model ε(p3/2)(MeV) E/A(MeV) Rp(fm) Rn(fm) Rn−Rp(fm) Rch(fm) Rwk(fm)

RMF016 1.714 2.241-3.764 1.897 3.206 1.309 1.998 3.354
RMF022 2.740 2.521-4.044 1.883 3.023 1.140 1.981 3.175
RMF028 3.784 2.785-4.308 1.876 2.904 1.028 1.970 3.060

Experiment 2.535(8) 3.925 1.807(28) 2.73(9) 0.92(10) 1.929(26) —

TABLE I. Predictions for a few ground-state properties of 8He for the three models used in this work. The binding energy of
the neutron p3/2 orbital is compared against the experimental one-neutron separation energy listed in the National Nuclear
Data Center database. The quoted experimental energy per nucleon was obtained from Refs. [39–41], the experimental charge
radius from Ref. [42], while the derived quantities for Rp and Rn were extracted from Ref. [43].

The third column in Table I displays the binding en-
ergy per nucleon and makes abundantly clear one of
the problems of using DFT for a light, self-bound sys-
tem such as 8He. The lower value listed on the table
does not include any center-of-mass correction, while the
higher value includes a significant COM correction of
1.52 MeV, obtained by assuming a harmonic oscillator
approximation [25]. Note that the lightest nucleus that
was used in the calibration of the three covariant EDFs
was 16O [29, 37], twice as heavy as 8He.

The rest of the columns in Table I are predictions for
rms radii. Based on the statistical analysis carried out in

Ref.[29], an error of at least 0.03 fm should be attached
to all theoretical predictions. Although several “exper-
imental” values are listed in the table, only the charge
radius of 8He can be regarded as a model-independent
determination [39, 42, 44]. Instead, the proton radius Rp
quoted in Table I requires the unfolding of the finite pro-
ton size [43]. However, as indicated in Eq.(19) of Ref. [45],
the charge radius includes spin-orbit contributions that
go above and beyond the finite size of the proton. In the
case of the experimental neutron radius quoted in Ta-
ble I, it was obtained from both Rp and a determination
of the matter radius from an elastic proton scattering ex-
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periment [43]. However, besides the inherent uncertain-
ties involved in the determination of nuclear radii using
hadronic probes [46], the determination of Rn is also hin-
dered by the uncertainties in the extraction of Rp men-
tioned above.
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FIG. 3. (Color online) Effective “Schrödinger-like” neutron
potential for the three models considered in this work. The in-
set shows the two bound neutron orbitals in 8He supported by
the RMF016=FSUGarnet potential and illustrates the large
spatial extent of the p3/2 orbital.

Within the context of density functional theory and the
Kohn-Sham equations, one has access to the entire spa-
tial distributions, from which radii—as well as any other
moment of the distribution—may be computed. Proton,
neutron, charge, and weak-charge densities are displayed
in Fig. 4(a) as predicted by FSUGarnet=RMF016. Note
that both the charge and weak-charge densities incorpo-
rate spin-orbit corrections as outlined in Ref. [45]. In all
four cases the spatial distribution can be accurately fitted
by a one-parameter Gaussian form. For example, in the
case of the charge density and its associated form factor
one obtains

ρch(r) =

(
3Z

2πR2
ch

)3/2
e−3r

2/2R2
ch , (5a)

Fch(q) = e−q
2R2

ch/6, (5b)

where Z is the nuclear charge, Rch is the charge radius of
the distribution, and the form factor has been normalized
to Fch(q=0)=1. The Gaussian fit to the charge density
is displayed with the small circles in Fig. 4(a). Plotted in
Fig. 4(b) is a quantity for which the area under the curve

equals the mean-square radius. The circles in the figure
denotes the cumulative (or running) sum of the charge
distribution and converges to R2

ch≈(2 fm)2.
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FIG. 4. (Color online) (a) proton, neutron, charge, and weak-
charge densities for 8He as predicted by the relativistic FSUG-
arnet density functional. The dots represent a one-parameter
Gaussian fit to the charge density. (b) Ground-state densities
suitably scaled so that the area under the curve equals the
mean-square radius of the distribution.

So what can be concluded from comparing the exper-
imental results against a theoretical framework that is
likely being pushed beyond its limits of applicability. In-
sofar as the energy per nucleon is concerned, the viola-
tion of translation symmetry inherent to any mean-field-
like description results in a center-of-mass correction that
makes a significant contribution to the total energy of the
system, calling into question the relevance of the predic-
tions. However, COM corrections to the charge radius
are relatively small [47] and comparable to the statisti-
cal error obtained in the calibration of the functional.
Further, the experimental value quoted in Table I is only
one of three experimental determinations of the charge
radius of 8He. Taking into account all the measurements
up to date [39, 42, 44], one obtains at the one-sigma level
an estimate of the charge radius of 8He that lies in the
interval 1.903 . Rch(fm) . 1.975. This, together with
the 0.03 fm theoretical uncertainty, yields a prediction
for the charge radius that appears to be in reasonably
good agreement with experiment. Finally, an inescapable
consequence of the small one-neutron separation energy
is the emergence of low-energy dipole strength in the
uncorrelated (single-particle) response. How the dipole
strength rearranges as a result of the inclusion of RPA
correlations is the main topic of the next section.

B. Dipole Response

In the previous section several ground state properties
of 8He were discussed. As alluded earlier, a self-consistent
solution to the Kohn-Sham equations yield: (a) single-
particle energies and Dirac orbitals, (b) ground-state den-
sities, and (c) the self-consistently determined mean-field
(or Kohn-Sham) potential. Critical to the consistency
of the formalism is that the potential so determined,
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must be used without modification to generate the single-
nucleon propagator from which the uncorrelated polar-
ization tensor is obtained [31, 48]. Moreover, to avoid
any reliance on artificial cutoffs and truncations, the nu-
cleon propagator (depicted by the thin line in Fig. 1) is
computed non-spectrally using Green’s function meth-
ods [30].
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FIG. 5. (Color online) Uncorrelated energy-weighted dipole
response for 8He for the three models considered in the text.
The uncorrelated response is made up of individual particle-
hole excitations with the correct quantum numbers. The ar-
rows indicate the location of the proton excitations based on
the single-particle spectrum displayed in Fig.2.

The uncorrelated dipole response R(ω), weighted by
the excitation energy ω, is displayed in Fig.5. Clearly
visible in the figure are the two sharp proton transi-
tions involving the excitation of the s1/2 orbital into the
bound p3/2-p1/2 spin-orbit partners, in perfect agreement
with the single-particle spectrum displayed in Fig.2. Also
shown in the figure is the emergence of low-energy dipole
strength resulting from the excitation of the p3/2 neu-
tron orbital into the continuum. Note that among the
advantages of displaying the energy weighted dipole re-
sponse is that the area under the curve is directly related
to “classical” energy weighted sum rule (EWSR) given in
Eq.(4a) [32]. That is,

m1 ≈ 14.8

(
NZ

A

)
MeV fm2

8He−−→ 22.2 MeV fm2. (6)

For the uncorrelated response displayed in Fig.5, the en-
ergy weighted sum is predicted to be equal to 22.4, 22.6,
and 22.8 MeV fm2 for RMF016, RMF022, and RMF028,
respectively—in excellent agreement with the classical
EWSR.

One now proceeds to discuss the RPA response, which
represents the consistent linear response of the ground
state to an external perturbation [30]. As depicted in
Fig.1, the RPA response goes beyond the single-particle
response by building collectivity through the coherent
contribution of many particle-hole pairs. Although large

center-of-mass corrections preclude meaningful predic-
tion of the ground state energy of 8He, the self-consistent
RPA response offers a unique and powerful solution to the
center-of-mass problem: spurious states associated with a
uniform translation of the center of mass decouple from
the physical modes by having their strength shifted to
zero excitation energy [26]. This is particularly relevant
to the distribution of isoscalar dipole (Jπ = 1−, T = 0)
strength that shares the same quantum numbers as the
center of mass. But given that for nuclei with a signif-
icant neutron excess, such as 8He, a significant mixing
between the isoscalar and isovector modes is expected,
the possible emergence of a soft dipole mode will un-
doubtedly be affected by the decoupling of the spurious
center-of-mass mode.
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FIG. 6. (Color online) (a) Correlated (RPA) dipole response
for 8He for the three models considered in the text. Also
shown is the isoscalar dipole response to illustrate the mi-
gration of the spurious mode to zero excitation energy. (b)
The narrow structures appearing at low energies in the en-
ergy weighted RPA response are associated with the spurious
center-of-mass mode.

To investigate the mixing between modes, the distri-
bution of isovector dipole strength obtained from a self-
consistent covariant RPA calculation is displayed (on a
logarithmic scale) on Fig. 6(a). Also shown is the dis-
tribution of isoscalar dipole strength predicted by the
RMF028 model. As argued by Thouless [26], the spuri-
ous state associated with the translation of the center of
mass is shifted to zero excitation energy. Indeed it ap-
pears that most (if not all!) of the uncorrelated isoscalar
dipole strength shown in Fig. 5 is shifted to zero energy;
note that the uncorrelated response is identical in both
the isoscalar and isovector channels. Given the antic-
ipated strong mixing between the isoscalar and isovec-
tor dipole modes, it is reasonable to identify the nar-
row structures appearing at low energies in the isovector
dipole response—best seen in Fig. 6(b)—as contaminants
associated with the spurious center-of-mass mode. Thus,
the theoretical formalism implemented here disfavors the
emergence of a soft dipole mode in 8He—in agreement
with the conclusions from Refs.[10, 11].

In an effort to remove the spurious contribution from
the isovector dipole response, a smooth extrapolation to
zero frequency is implemented in Fig. 7. By doing so, one



7

can now provide estimates for the various moments of the
distribution as listed in Table II.

Model m1(fm2 MeV) m0(fm2) m−1(fm2/MeV) αD(fm3)

RMF016 16.37 0.829 0.065 0.262
RMF022 16.70 0.849 0.060 0.242
RMF028 16.84 0.852 0.055 0.220

TABLE II. Estimates for various moments of the isovector
dipole response of 8He, as defined in Eq.(3). Also shown is
the electric dipole polarizability αD. All these estimates are
based on the smooth extrapolation to zero excitation energy
depicted in Fig.7.
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FIG. 7. (Color online) Correlated (RPA) energy-weighted
dipole response for 8He as predicted for the three models con-
sidered in the text. The solid lines at low excitation energy
represent an ad-hoc attempt to remove the spurious strength
in favor of a smooth extrapolation to zero excitation energy.

One should underscore that the estimates listed in Ta-
ble II are based on the removal of the spurious strength
in favor of a smooth extrapolation to zero excitation en-
ergy. This largely ad-hoc procedure has a particularly
strong effect on the electric dipole polarizability, which
is particularly sensitive to the low-energy part of the
response because of the ω−1 weighting. In the case of
the energy weighted sum, the estimates are now signifi-
cantly reduced relative to the classical EWSR quoted in
Eq.(4a). Finally, although the information encapsulated
in the various moments is valuable, there is no substitute
for a direct comparison between theory and experiment
of the entire dipole distribution.

IV. CONCLUSIONS

The fascinating dynamics of exotic neutron-rich nuclei
has led to a paradigm shift in nuclear structure. Be-
sides providing unique insights into the limits of nuclear
existence and the production of heavy elements in the
cosmos, the study of nuclei with large isospin asymme-
tries offers meaningful experimental constraints on the
isovector sector of the nuclear interaction. In this paper
the possible emergence of low-energy dipole strength in
8He was investigated, a drip-line nucleus with the largest
neutron-to-proton ratio known to date.

The possible existence of a soft dipole mode in 8He
has been a highly controversial issue, with some exper-
iments identifying low dipole strength at an excitation
energy of about 3-4 MeV [6–9] and others refuting those
claims [10, 11]. From the theoretical perspective, a re-
cent ab initio approach that merges the Lorentz integral
transform with coupled-cluster theory reports a dipole
response that shows strength at about 5 MeV.

In this contribution, a theoretical formalism based on
covariant density functional theory was used to examine
the emergence of low energy dipole strength. Admit-
tedly, using such a formalism for the study of a nucleus
as light as 8He is questionable. Indeed, given that center-
of-mass corrections fall down slowly with mass number,
they make an appreciable contribution to the total en-
ergy of 8He, limiting the value of most theoretical pre-
dictions. However, the strength of DFT lies in its self-
consistency. Whereas COM corrections to the ground-
state energy may be large, any spurious contamination
from the COM is guaranteed to decouple from the phys-
ical isoscalar dipole response [26]. This has important
consequences for the isovector dipole response because
the mixing between the isoscalar and isovector modes
is anticipated to be strong for neutron-rich systems like
8He. Hence, the narrow structures that emerged at low
energies in the isovector dipole response were attributed
to the shift of the spurious strength to zero—or close
to zero—excitation energy. Based on this interpretation,
one concludes that the emergence of a soft dipole mode in
8He is disfavored by the adopted theoretical framework.
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