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A compressible liquid-drop model (CLDM) is used to correlate uncertainties associated with the
properties of the neutron star (NS) crust with theoretical estimates of the uncertainties associated
with the equation of state (EOS) of homogeneous neutron and nuclear matter. For the latter, we
employ recent calculations based on Hamiltonians constructed using Chiral Effective Field theory
(χEFT). Fits to experimental nuclear masses are employed to constrain the CLDM further, and
we find that they disfavor some of the χEFT Hamiltonians. The CLDM allows us to study the
complex interplay between bulk, surface, curvature, and Coulomb contributions, and their impact
on the NS crust. It also reveals how the curvature energy alters the correlation between the surface
energy and the bulk symmetry energy.
Our analysis quantifies how the uncertainties associated with the EOS of homogeneous matter
implies significant uncertainties for the composition of the crust, its proton fraction, and the volume
fraction occupied by nuclei. We find that the finite-size effects impact the crust composition,
but have a negligible effect on the net isospin asymmetry of matter. The isospin asymmetry
is largely determined by the bulk properties and the isospin dependence of the surface energy.
The most significant uncertainties associated with matter properties in the densest regions of
the crust, the precise location of the crust-core transition, are found to be strongly correlated
with uncertainties associated with the Hamiltonians. By adopting a unified model to describe
the crust and the core of NSs, we tighten the correlation between their global properties such as
their mass-radius relationship, moment of inertia, crust thickness, and tidal deformability with
uncertainties associated with the nuclear Hamiltonians.

I. INTRODUCTION

The understanding of neutron star (NS) properties
from fundamental nuclear physics inputs requires the pre-
cise determination of the relation between nuclear physics
uncertainties and dense matter predictions. This became
possible recently due to advances in theoretical efforts to
predict properties of nuclei and dense nuclear matter, and
advances in experimental nuclear physics that are now
providing more stringent constraints. In addition, recent
observations of NS radii by 1 NICER [1, 2], and tidal
deformabilities by the LIGO-Virgo collaboration [3] have
also reached the accuracy to sharply constrain the dense
matter EOS. These developments motivate the construc-
tion of models that can provide a unified description of
the EOS of the crust and the core.

Our current understanding of NS crusts suggests that
it is composed of finite nuclei, usually referred to as
nuclear clusters since their properties are modified by
the dense matter environment and differ from those of
isolated nuclei probed in the laboratories, see for in-
stance Ref. [4]. The outer crust is dominated by the
presence of an electron gas filling the whole volume in
beta-equilibrium with neutrons and protons bound in-
side nuclear clusters. The nuclear symmetry energy con-
trols the energy difference between neutrons and pro-
tons, and thus the isospin asymmetry inside the nuclear
clusters. Electric charge neutrality is ensured by the

presence of electrons, and its rapid increase with den-
sity favors the appearance of increasingly neutron-rich
nuclear clusters [5]. From the experimental viewpoint,
neutron-rich nuclei can be produced in nuclear facilities
and provide strong constraints on the properties of nu-
clei present in the outer crust, see Refs. [6, 7] for recent
updates. Nuclear clusters in the inner crust are signifi-
cantly more neutron-rich and coexist with a neutron fluid
and their properties cannot be directly probed by experi-
ments. Their description relies on theoretical models that
are sensitive to the properties of bulk nuclear matter and
the density and isospin dependence of the nuclear surface
tension [8]. The neutron fluid in the inner crust is very
likely to be in a superfluid state at low temperature and
superfluidity is known to impact NS spin and thermal
evolution

Recently, several conceptual milestones have been
reached in the prediction of neutron star matter from
microscopic ab initio approaches which are based on re-
alistic nuclear Hamiltonians constrained by nucleon scat-
tering data. In particular, Hamiltonians derived using
chiral effective field theory (χEFT) incorporate the sym-
metries of QCD and provides a systematic expansion of
the operators in powers of the nucleon momenta. χEFT
has two distinct features: (1) it consistently include three
and higher-body interactions along with the two-body in-
teractions that are well constrained by experiments, (2)
it provides a robust method to estimate errors associ-
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ated with the truncation of the momentum expansion
when the nucleon p is small compared to the breakdown
scale ΛχEFT of the χEFT. Beginning with the pioneer-
ing work of Hebeler and Schwenk [9], several groups have
used χEFT to predict the EOS of homogeneous neutron-
rich matter [10–14]. At sufficiently low densities, neutron
matter is well understood because three-body interac-
tions are small, and the two-body neutron-neutron in-
teraction is strongly constrained by the neutron-neutron
scattering phase shifts [15, 16]. However, with increas-
ing density and correspondingly larger nucleon momenta,
higher-dimension operators including three-body forces
begin play an increasingly important role. For both these
reasons the associated uncertainty which can be esti-
mated quite systematically grows. The densities up to
which χEFT remains useful is still a matter of debate,
current expectations are that it breaks-down between sat-
uration density (nsat) and twice-nsat [17–19].

Nuclear clusters in NS crust result from the equilib-
rium between attractive volume interaction, and repul-
sive surface and Coulomb interactions, at leading order.
Despite recent progress in the description of finite nuclei
based on chiral nuclear interaction, it is still computa-
tionally not feasible to calculate directly the properties
of nuclear clusters in NS crust. Several well-motivated
approximations could however be employed to predict
and understand the properties of this complex system.
Among them, the liquid-drop model (LDM) is a macro-
scopic approach that allows us to combine together the
nuclear matter predictions from χEFT with finite-size
(FS) terms generated from a leptodermous expansion of
the total energy. The compressible liquid-drop model
(CLDM) includes variations of the cluster density from
one nucleus to another, through the density dependence
of the bulk contribution to the total energy. The LDM
and CLDM describe the collective degrees of freedom.
They are different from the microscopic approach, typi-
fied by the Shell model or the energy-density functional
approach, which centers around the single-particle de-
grees of freedom. Since the microscopic approach is the
most general one, it contains the macroscopic one as an
average.

In the leptodermous expansion of the total energy [20],
the different contributions are sorted by decreasing pow-
ers of A1/3. The order A belongs to the domain of nuclear
matter studies, as can be directly related to the meta-
model approach for nuclear matter, the orders A2/3 and
A1/3 characterizes the finite-size contributions, and fi-
nally, orders A0 and below belong to the single-particle
contributions, e.g. shell effects or pairing contribution,
described by microscopic theories. In our study, we in-
vestigate several FS terms which are sorted by decreasing
powers of A1/3 as in the leptodermous expansion. In the
following, we illustrate the fact that the leptodermous ex-
pansion provides an interesting scheme where the effects
of different terms play a lower role as they contribute
to a higher order. Our analysis is however stopped at
a given order in the leptodermous expansion, hereafter

called FS4, and we disregard higher order corrections for
the present work. For instance, the neutron skin is not
implemented and the in-medium surface modification of
cluster energy is also currently disregarded. Some more
microscopic effects are also not implemented, such as for
instance the actual cluster density profile, non-uniform
in Thomas-Fermi and Hartree-Fock approaches as well
as quantum shell effects, see for instance the following
Refs. [21, 22]. We discuss the impact of such approxi-
mations in Sec. IV and VI. Being systematical in the
implementation of the leptodermous expansion allows us
however to compare our findings with previous ones, as
well as to evaluate the impact of these different terms on
the NS crust properties.

The impact of nuclear physics uncertainties on the NS
crust has been analyzed in earlier work. Steiner [23], for
instance, has constructed several NS crust using inputs
from current experimental information while allowing ex-
ploration of the EOS uncertainties, in particular the one
induced by the symmetry energy. Other approaches are
constructed from currently available EOSs, which may
not respect the low-density neutron matter expectations
because they are fit to the properties of nuclei near satu-
ration densities. In the present work, we explore both the
nuclear experimental uncertainties from the knowledge of
measured nuclear masses, as well as the theoretical un-
certainties in the nuclear matter equation of state from
many-body approach based on chiral NN and 3N interac-
tions. This is first systematic investigation that accounts
for these two sources of uncertainties. Our main findings,
obtained by incorporating these two sources of informa-
tion in our CLDM are:

• A suggested upper limit for the energy density
of nuclear matter at saturation density: εmax

sat ≈
−2.30 MeV fm−3. Above this limit, our model can
not equilibrate the bulk and FS terms over the nu-
clear chart.

• The CLDM disfavors some χEFT Hamiltonians,
even if the FS terms in the CLDM vary indepen-
dently to the bulk term while they are correlated
from first principle. This is a strong rejection since
in our modeling the FS terms are optimized to fit
nuclear masses, while in reality they shall be fixed.
So even if – by chance – nature chooses to fix these
FS terms to be equal to our optimization, these
models would still be rejected.

• The correlation between the surface energy
(isoscalar and isovector properties) and the bulk
symmetry energy depends on the considered FS
model. The inclusion of the curvature contribution
suggests however a typical value for the symmetry
energy (≈ 32 MeV) where the model dependence is
minimal.

We find that the present CLDM predicts the following
properties for the neutron star crust:
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• The crust composition (Acl, Zcl) is mainly deter-
mined by the considered FS model, which - for most
part of them - are controlled by the experimental
nuclear energies. We find however that the cluster
asymmetry Icl is much less impacted than Acl and
Zcl.

• The crust composition (Acl, Zcl, Icl), the proton
fraction Ye, and the volume fraction u are essen-
tially determined by the bulk contribution to the
energy, fixing the nuclear cluster and the neutron
fluid contributions. The bulk term is varied across
the chiral Hamiltonians in our study.

• In the densest region of the crust both the Hamil-
tonians and the surface energy isospin parameter
psurf have a dominant role in the determination of
the crust-core properties and of the matter com-
position. These two properties are crucial for the
determination of the crustal moment of inertia.

• While not negligible, the influence of the loss func-
tion in the fit to finite nuclei as well as of the effec-
tive mass is more sub-dominant.

Finally, we analyze the global NS properties and produce
uncertainties for a few observables associated to light and
canonical mass NS (1.0M� and 1.4M�). We obtained the
following results:

• Global properties, e.g. mass, radius, moment of in-
ertia, tidal deformability, are critically determined
by the chiral Hamiltonian properties in uniform
matter.

• Other ingredients discussed here – FS terms, psurf ,
effective mass, loss function – play a much smaller
role than the present uncertainties from astronom-
ical observations, e.g. radius uncertainty from
NICER or tidal deformability uncertainty from
LIGO-Virgo gravitational wave detectors.

• Assuming the absence of phase transition in mas-
sive NS, we found that the present uncertainty in
the nucleonic effective mass modifies the spherical
NS maximum mass, MTOV, by about 0.15M� at
maximum.

The paper is organized as follows. Sec. II is reserved to
homogeneous matter where the meta-model and the fit
to χEFT are described. We detail the CLDM used to de-
scribe finite-size effects on the clusterized matter in Sec.
III. We compute and quantify uncertainties on the NS
crust in Sec. IV, while details on NS macroscopic prop-
erties are discussed on Sec. V. Finally, the conclusions of
the present work are drawn on Sec. VI.

II. HOMOGENEOUS MATTER

For homogeneous matter, we consider the six Hamilto-
nians, H1-H5 and H7 (H6 being disregarded for not fitting

well the binding energy of 3He), which have been gener-
ated by many-body perturbation theory (MBPT) based
on chiral NN and 3N interactions [24] and the two recent
χEFT predictions from Ref. [25]: DHSL59 and DHSL69.
These eight predictions for nuclear matter are used to cal-
ibrate a set of eight nuclear meta-models (MM), and the
version we consider here is a small extension of the orig-
inal one [26]. This extension has already been presented
in Ref. [27]. The low density correction to the energy
is now controlled by the function b(δ) = bsat + bsymδ

2

instead of the parameter b.
Let us briefly summarize the main ingredients of the

MM. The energy density is the sum of a kinetic and po-
tential terms, eMM = t∗ + epot, where the kinetic term
reads,

t∗(n, δ) =
tsat

2

(
n

nsat

)2/3 [ m

m∗
n(n, δ)

(1 + δ)5/3

+
m

m∗
p(n, δ)

(1− δ)5/3
]
, (1)

with tsat = 3~2k2
F /(10m) and given τ3 = 1(−1) for neu-

trons (protons), the effective mass reads

m

m∗
τ (n, δ)

= 1 +

(
κsat

nsat
+ τ3δ

κsym

nsat

)
n. (2)

In the present work we explore the effect of including
or not the effective mass on the kinetic energy. We show
results with the effective mass equal to the bare mass
m∗
τ = mτ , and also with the effective mass given by Eq.

(2). In order to obtain the parameters κsat and κsym

for the Hamiltonians we consider here, we first derive
the density dependent Landau effective mass for neu-
trons from its single-particle spectrum, as it was done
in Ref. [27]. Then Eq. (2), with τ = n, was fit to this
quantity in symmetric matter (SM) and neutron mat-
ter (NM) for each individual Hamiltonian. As far as the
finite residuals of the fits are concerned, the uncertain-
ties on the parameters κsat and κsym are negligible for
all Hamiltonians. There is however a spread in the re-
sults of the fit across different Hamiltonians reflecting an
intrinsic uncertainty in the χEFT predictions. Ref. [27]
performed a Bayesian quantification of this uncertainty,
whereas in this work we probe the χEFT uncertainty by
making distinct predictions for each individual Hamil-
tonian and then monitoring the dispersion among these
predictions.

The isospin splitting of the effective mass is defined as,

∆m∗
sat = m∗

n(n = nsat, δ = 1)−m∗
p(n = nsat, δ = 1)

=
−2κsym

(1 + κsat)2 − κ2
sym

mN , (3)

where we fixed mn = mp = mN . Sometimes, the proton
effective mass in NM is not calculated from microscopic
approaches, but SM and NM calculations are performed.
In these cases, it is interesting to consider the difference
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MMbare MMm∗

Model m∗
sat/mN Dm∗

sat/mN ∆m∗
sat/mN m∗

sat/mN Dm∗
sat/mN ∆m∗

sat/mN

H1 1.00 0.00 0.00 0.59 0.29 0.43

H2 1.00 0.00 0.00 0.61 0.26 0.41

H3 1.00 0.00 0.00 0.61 0.22 0.34

H4 1.00 0.00 0.00 0.63 0.25 0.38

H5 1.00 0.00 0.00 0.66 0.20 0.33

H7 1.00 0.00 0.00 0.67 0.26 0.41

DHSL59 1.00 0.00 0.00 – – –

DHSL69 1.00 0.00 0.00 – – –

TABLE I. Effective mass m∗
sat at saturation in symmetric matter, the effective mass splittings Dm∗

sat and ∆m∗
sat, see Eqs. (2),

(4) and (3). Note that m∗
sat and Dm∗

sat are determined from the microscopic predictions, while ∆m∗
sat is inferred from the MM.

between the neutron effective masses in NM and SM de-
fined as,

Dm∗
sat = m∗

n(n = nsat, δ = 1)−m∗
n(n = nsat, δ = 0).

(4)

The effective mass, the splitting of the effective mass
∆m∗

sat and Dm∗
sat for the eight Hamiltonians are shown

in Table I. We find that Dm∗
sat, which is obtained di-

rectly from the MBPT single-particle spectrum as ex-
plained before, is in good agreement with our previous
study in Ref. [27]. The splitting of the effective mass can
be inferred using the MM parametrization of the effective
mass, see Eq. (2). We found a very good correlation be-
tween Dm∗

sat and ∆m∗
sat, suggesting that ∆m∗

sat is about
50% larger than Dm∗

sat. Finally, for DHSL59 and DHSL69

we only consider the bare mass case.

In the MM, the potential term is expressed as,

epot(n, δ) =

N∑
j=0

1

j!

(
vsat,j + vsym2,jδ

2
)
xj

+epot,low−n (5)

with the low-density correction expressed as

epot,low−n = vlow−n(δ)xN+1e−b(δ)n/n
emp
sat , (6)

with vlow−n(δ) = vlow−n
sat + vlow−n

sym δ2. The parame-

ters vlow−n
sat and vlow−n

sym are fixed by the condition that

epot(n = 0, δ) = 0 for δ = 0 and δ = 1, and the pa-
rameters bsat and bsym are adjusted to reproduce the
very low density dependence of the MBPT calculations,
see Ref. [27] for more details. With the MM, the bind-
ing energy eMM(n, δ) can be obtained for any arbitrary
value of the density n and the isospin asymmetry pa-
rameter δ. There are two interesting limits which are
SM and NM defined as eSM(n) = eMM(n, δ = 0) and
eNM(n) = eMM(n, δ = 1).

Table II shows the residual χ2 values for the fit, where
the χ2 loss function is defined as

χ2 =
1

2

∑
i

(
edata,i − eMM,i

σi

)2

, (7)

where σi was taken to be a 10% uncertainty on the data,
due to imperfect modeling [28]. The fit was performed
by minimizing the χ2 with data in 0.4 < kFn < 1.6 by
using the standard Levenberg-Marquardt algorithm im-
plemented in python’s scipy package. The impact of the
effective mass is very small. At most it improves the re-
duced χ2/N by 10% in SM, no effect in NM. In addition,
in the density region out of the data, the impact of the
effective mass is also very small. This will also be con-
firmed in Sec. V where the impact of the effective mass on
the mass-radius relation will be presented. In Table II,
for Hamiltonians H1-H5 and H7, the number of data
points N is 11 (11) for SM (NM) when 0.4 < kFn < 1.0
and 22 (24) for SM (NM) when 0.4 < kFn < 1.6. For
the other two Hamiltonians, N is 17 (9) in SM (NM)
when 0.4 < kFn < 1.6 and 2 (-) for SM (NM) when
0.4 < kFn < 1.0.

A detail comparison of the MBPT calculations (dots)
and the MM fit (lines) is shown in Fig. 1, the well known
SLy4 Skyrme model prediction is also shown for refer-
ence. For the bare mass case (top panels) we also repre-
sent the recent MBPT calculations DHSL59 and DHSL69.
The three models DHSL59, DHSL69 and H7 present stiffer
NM energy at high densities compared to H1-H5. There
is a very good agreement between the data and the MM
down to kF = 0.4 fm−1 (in density n ≈ 0.004 fm−3), as
shown in panels (b) and (d) for instance. The vertical
gray band shows the region where the fit is less accurate.
In the following, the MM calibrated on the Hamiltonian
Hn will be labelled as HnMM.

Note in Fig. 1(b) that the MM reproduces very well
the NM energies as predicted by χEFT, at variance with
SLy4 which overestimates the energy per particle at low
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FIG. 1. Left: Energy per particle as function of the baryon density, in NM and SM. Right: Energy per particle normalized to
the free Fermi gas energy (EFFG = (3/5)EF with EF = ~2k2

F /(2m) and kF the Fermi momentum) in SM and NM function
of the neutron Fermi momentum kFn for the six Hamiltonians H1-H7 (except H6). Top panels include DHS Hamiltonians for
comparison. Data from the original model are plotted in dots (squares) for H1-H5 and H7 (DHSL59 and DHSL69), with the
same color as the MM version. Bottom panels include the nucleon effective mass.

density. This is indeed a general feature of Skyrme inter-
actions. We recently analyzed the impact of this system-
atical differences between χEFT and Skyrme SLy4 in low
density NM on the crust EOS within the CLDM [29]. We
found that some observables are very sensitive to these
differences, e.g. energy density, pressure, sound speed,
while other are much less impacted, e.g. cluster config-
uration (Acl, Zcl, Icl), which are mostly determined by

experimental nuclear masses. Having a good description
of NM as predicted by χEFT is however important to
predict NS crust properties.

The symmetry energy is defined as the energy differ-
ence between NM and SM,

esym(n) = eNM(n)− eSM(n) , (8)
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χ2/N 0.4 < kFn < 1.6 0.4 < kFn < 1.0

Model SM NM SM NM

H1 0.56(0.48) 0.03(0.02) 0.60(0.52) 0.02(0.02)

H2 0.55(0.48) 0.03(0.02) 0.58(0.51) 0.02(0.02)

H3 0.35(0.30) 0.01(0.01) 0.46(0.41) 0.01(0.01)

H4 0.55(0.50) 0.03(0.03) 0.57(0.51) 0.02(0.02)

H5 0.55(0.51) 0.03(0.03) 0.53(0.49) 0.02(0.04)

H7 0.16(0.14) 0.05(0.05) 0.27(0.23) 0.04(0.07)

DHSL59 0.76 0.01 1.6 –

DHSL69 1.67 0.09 3.51 –

TABLE II. Reduced χ2/N in SM and NM considering the bare
(effective) nucleon mass reflecting the residuals between the
MBPT data and the MM, for 0.4 < kFn < 1.6 on left (used by
the fit), and 0.4 < kFn < 1.0 fm−1 on the two right columns
(not used by the fit). All quoted values are dimensionless, see
Eq. (7).

and the quadratic contribution to the symmetry energy
reads,

esym,2(n) =
1

2

∂2e(n, δ)

∂δ2

∣∣∣
δ=0

, (9)

The topological properties of the energy per particle
around saturation density, with empirical expectation
nemp

sat ≈ 0.155(5) fm−3, are encoded into the nuclear em-
pirical parameters (NEP), e.g. Esat, Esym, Esym,2, which
are defined as,

eSM(n) = Esat +
1

2
Ksatx

2 +
1

6
Qsatx

3 +
1

24
Zsatx

4 + . . . ,

(10)

esym(n) = Esym + Lsymx+
1

2
Ksymx

2 +
1

6
Qsymx

3

+
1

24
Zsymx

4 + . . . , (11)

esym,2(n) = Esym,2 + Lsym,2x+
1

2
Ksym,2x

2 +
1

6
Qsym,2x

3

+
1

24
Zsym,2x

4 + . . . , (12)

where the density expansion parameter is defined as x =
(n− nsat)/(3nsat).

The low order NEP of the 8 Hamiltonians are given in
Tab. III. The values are rounded and the uncertainties in
these parameters are smaller than the rounding. These
uncertainties are thus not given. The dispersion of the
NEPs across the different Hamiltonians however serves
to capture uncertainties intrinsic to the χEFT expan-
sion. The saturation energy and density of H2MM-H4MM

agree reasonably well with the empirical ones determined
from experimental data, see for instance Ref. [26], while
the saturation energy of H5MM and H7MM is higher than

the expected one. The saturation density of H7MM is
also quite lower than the empirical one. For H1MM the
saturation density is higher than the expected one, and
the saturation energy is lower. In the following, we will
confirm that the fit to the experimental masses is poorer
for H5MM and H7MM compared to the other Hamilto-
nians, as we can already anticipate from their empirical
properties.

It is well known that the high order empirical pa-
rameters Qsat/sym and Zsat/sym are not constrained by
χEFT calculations in uniform matter, since χEFT is lim-
ited to low densities, n < 2nsat [27]. In the present
study, we fix the following values for all Hamiltonians:
Qsat = −220 MeV, Zsat = −200 MeV, Qsym = 700 MeV,
and Zsym = 500 MeV. This choice allows all the consid-
ered Hamiltonians to reach the astrophysical constraint
related to the observed maximum mass of NSs, which is
2.0(1) M� [30, 31]. The recent measurement for PSR
J0740+6620, suggesting MTOV ≥ 2.14(10) M� is also
compatible with this constraint [32].

The symmetry energy esym(n) is shown in Fig. 2. Left
panel shows in light (dark) blue band the constrains
from isobaric analog state IAS (IAS + neutron skin,
∆rnp), from Ref. [33]. In yellow are shown the PREX-
II predictions for the symmetry energy, where we vary
Esym = 38.1 ± 4.7 MeV and Lsym = 106 ± 37 MeV as
suggested by the publication [34]. The symbols repre-
sent the MBPT calculations [24, 25] as in Fig. 1. Right
panel shows the symmetry energy, esym, normalized by
the free fermi gas symmetry energy. Note the higher
value for the symmetry energy predicted by SLy4 com-
pared to the Hamiltonians at low densities. This is a
direct effect of the high NM energy predicted by SLy4,
as seen in Fig. 1(b) and (d). The solid lines shows the
MM with the bare mass while the dashed lines include
the corrections induced by the effective mass, see Eqs. (1)
and (2). Note that the effect of the effective mass is very
small on these curves.

There is a disagreement between χEFT predictions and
the recent constrain from PREX-II [34] for the symmetry
energy and its density dependence, as shown in Fig. 2.
To reproduce PREX-II predictions not only a large value
for Lsym is necessary, like DHSL59 and DHSL69, but also
for Esym.

The β-equilibrium with e and µ satisfies the following
equations,

µn = µp + µe , µe = µµ . (13)

The total pressure, including baryon and lepton contri-
butions, at β-equilibrium is shown in Fig. 3 for the eight
Hamiltonians and SLy4. The prediction by the LIGO-
Virgo collaboration inferred from GW170817 for the pres-
sure at 2 nsat [35] is also shown. Fig. 3 shows that the
eight models are in well agreement with GW170817 con-
strain. The impact of the effective mass m∗ (dashed lines
versus solid lines with the bare mass) remains small for
the pressure.
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Model Esat nsat εsat Ksat Esym Lsym Ksym Esym,2 Lsym,2 Ksym,2 bsat bsym

(MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

H1MM -17.0 0.186 -3.17 261 33.8 46.8 -154 33.0/31.4 45.3/37.2 -152/-169 10.73/11.37 9.91/10.46

H2MM -15.8 0.176 -2.78 237 32.0 43.9 -144 31.3/29.9 42.4/35.4 -142/-156 9.14/9.59 8.86/9.34

H3MM -15.3 0.173 -2.65 232 31.8 50.6 -96 31.0/29.8 49.1/42.8 -94/-108 9.83/10.35 18.17/20.56

H4MM -15.0 0.169 -2.54 223 31.0 42.1 -138 30.2/29.0 40.7/34.5 -136/-148 8.03/8.37 8.23/8.70

H5MM -13.9 0.159 -2.22 207 29.4 40.2 -128 28.7/27.7 38.8/33.9 -127/-137 6.22/6.41 7.70/8.24

H7MM -13.2 0.139 -1.84 201 28.1 36.5 -150 27.4/26.4 35.3/30.3 -148/-158 8.98/9.40 -1.12/-1.46

DHSL59
MM -14.0 0.168 -2.36 200 31.4 58.9 -30 30.6 57.4 -28 9.00 10.00

DHSL69
MM -14.6 0.173 -2.53 216 33.7 69.0 -20 33.0 67.5 -19 9.00 10.00

SLy4MMm∗ -16.0 0.160 -2.55 230 32.0 46.0 -120 31.3 44.7 -118 6.90 0

Exp. [26] -15.8(3) 0.155(5) -2.45(12) 230(30) – – – 32(2) 50(10) -100(100) – –

TABLE III. Empirical parameters for the Hamiltonians derived from chiral EFT used in the present work. The energy density
at saturation density is defined as εsat = nsatEsat. The last two columns show the low density correction parameters bsat and
bsym. For the empirical parameters for which the effective mass plays a role, we give the value obtained with the bare mass
first and then the one obtained with the effective mass.

FIG. 2. Left: Symmetry energy w.r.t the baryon density for H1-H5 and H7, DHSL59, DHSL69 and SLy4. Yellow band shows
constrain from neutron skin experiments by PREX-II. Blue bands show constrains from isobaric analog state IAS (IAS + neutron
skin, ∆rnp). Right: symmetry energy normalized to the free Fermi gas symmetry energy (Esym,FFG = (3/5)(EF,NM −EF,SM))
w.r.t the Fermi momentum kF . Continuous (dashed) lines consider bare (effective) nucleon mass.

In summary, we have shown that the MM can accu-
rately reproduce the MBPT predictions for each of the
considered eight Hamiltonians. In addition, we impose a
prescription for the high order empirical parameters that
allows the present extension of the MBPT to reach the
astrophysical constraint for the TOV mass. We have also

checked that all the present Hamiltonians are consistent
with the inferred pressure at 2 nsat by the LIGO-Virgo
collaboration.
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FIG. 3. Pressure as function of the baryon density in β-
equilibrium for the six Hamiltonians, DHSL59, DHSL69 and
SLy4. Continuous (dashed) lines consider bare (effective) nu-
cleon mass. Error bar shows the constrain for the pressure
at 2nsat inferred by the LIGO/Virgo collaboration with the
GW170817 observation at 90% credible level.

III. THE COMPRESSIBLE LIQUID-DROP
MODEL FOR FINITE NUCLEAR SYSTEMS

Finite nuclear systems results from the equilibrium be-
tween the bulk attraction, as seen in homogeneous mat-
ter, and the surface repulsion, which originates mostly
from the surface tension and the Coulomb repulsion. In
the present study, we consider various extensions of the
compressible liquid-drop model (CLDM), see for instance
the seminal BBP model [36], which can be justified from
the leptodermous expansion [20].

In the crust of NS, we consider the following compo-
sition: the nuclear clusters are composed of neutrons
and protons, which are described by Acl and Icl, be-
ing the mass number and the isospin asymmetry. The
neutron and proton particle numbers in the nuclear clus-
ters are obtained from: Ncl = Acl(1 + Icl)/2 and Zcl =
Acl(1−Icl)/2. In addition, clusters are embedded in elec-
tron and neutron gases, described by their uniformly dis-
tributed densities ne and nng. We have implicitly as-
sumed the r-representation [37] for the Wigner-Seitz cell.
In this representation, the particles in the cluster volume
Vcl are in equilibrium with the ones in the outside vol-
ume VWS − Vcl, where VWS is the Wigner-Seitz volume.
There are therefore five variables in total (four particles
and one volume), but the actual variables can be any
combination of these variables. In the present study, we
consider the following ones: Acl, Icl, ncl, ne and nng,
where ncl = Acl/Vcl as in Ref. [38].

The total cluster energy in NS crust is expressed as the
sum of the independent contributions from the clusters

Ecl, the electrons Ee and the neutron gas Eng,

Etot(Acl, Icl, ncl, ne, nng) = Ecl(Acl, Icl, ncl) + Ee(ne)

+Eng(nng) . (14)

The cluster contribution in the CLDM is expressed as
a bulk energy contribution, determined from homoge-
neous matter, and a finite-size contribution, including
Coulomb, surface, curvature terms at leading orders. The
cluster binding energy contributing to Eq. (14) is given
by,

Ecl(Acl, Icl, ncl, ne) = Ebulk(Icl, ncl)+EFS(Acl, Icl, ncl, ne) ,
(15)

ncl being the cluster density. Note that in the CLDM the
cluster density ncl is fixed to be uniform, at variance with
the droplet model [39], Thomas-Fermi approaches [40, 41]
or microscopic models [21, 22, 42, 43] where it decreases
at the surface and depends on the radial coordinate r as
ncl(r). The non-uniformities are however incorporated in
a effective way by adjusting the FS terms to the exper-
imental nuclear masses. Also, the neutron and proton
radii are identically equal to the cluster radius Rcl (there
is no neutron skin in the present model).

In the NS crust, the total density nB = (Acl+Ng)/VWS

is further imposed, contributing to fix one constraint
among the five independent variables. This constraint is
treated with the Lagrange multiplier technique, as sug-
gested in Ref. [44] for instance.

The energy of an isolated nucleus such as the ones
present on Earth is simply defined as,

Enuc(Acl, Icl, ncl) = Ebulk(Acl, Icl, ncl)

+EFS(Acl, Icl, ncl, ne = 0) . (16)

Note that there are only three independent variables in
this case. There are no electron and neutron gases sur-
rounding the nuclear cluster. In addition, note that the
Wigner-Seitz volume VWS is undefined (it is indeed infi-
nite for isolated nuclei) but the cluster volume Vcl is.

In the present CLDM, the global asymmetry of the
cluster Icl = (Ncl − Zcl)/Acl coincides with the cluster
bulk asymmetry δcl = (ncl,n − ncl,p)/nB since the neu-
tron or proton skin are not considered here. Note how-
ever that neutron skin has been considered in Ref. [23]
by introducing a fit parameter ζ relating Icl and δcl, as
δcl = ζIcl. If ζ is unity, there is no skin, while if ζ < 1,
then all nuclei with Ncl > Zcl will have a neutron skin
(Rn > Rp). In reality, the parameter ζ is function of
Acl and Zcl, see Ref. [45], as well as of the nuclear in-
teraction, as illustrated by the correlation between the
neutron skin in 208Pb and the slope of the symmetry en-
ergy Lsym [46, 47]. It is thus a strong approximation to
impose the relation δcl = ζIcl with ζ constant that we
prefer not to consider here. The skin contribution mod-
ifies the Coulomb term by using the proton radius in-
stead of the cluster radius, which modified the Coulomb
energy by a factor proportional to the difference between
the bulk asymmetry δcl and the global asymmetry Icl.
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This term increases with the nuclear size and asymmetry
and can be important for nuclear clusters present close
to the crust-core transition. However, this modification
is small compared to the leading order terms considered
here and we follow the procedure of recent works [38, 48]
and neglect the presence of neutron skin in the present
study. In a future development, a consistent derivation
in the spirit of Ref. [45] for instance will be considered.

The CLDM we consider is comparable to the pioneer-
ing BBP model [36] and is well suited to analyze the ori-
gin of the uncertainties in the predictions of the NS crust.
More microscopic models for the crust have indeed been
developed, see for instance Ref. [42] and recent efforts in
Refs. [22]. While being less accurate than microscopic
models in reproducing finite nuclei, the present CLDM
allows us a better understanding of the various features
influencing the properties of the NS crust, which are dif-
ficult to analyze in a microscopic model. There are how-
ever missing features, such as shell and pairing effects,
but these feature are sub-dominant in the leptodermous
expansion: they represent a refinement in the description
of experimental binding energies which is of the order of
a few MeV in total energy, compared to the leading order
contributions which are of the order of hundred of MeV.
The uncertainties are indeed still large at the leading or-
der, as we will see in the following.

The contributions to the energy Ebulk, EFS, Ee and
Eng will be detailed in the following sub-sections.

A. The cluster bulk contribution

The cluster bulk contribution to the energy per particle
is the leading order term in the leptodermous expansion
(order Acl, the mass term). It is related to the homo-
geneous matter calculation, represented here by the MM
energy density εMM(nn, np) = nBeMM(nn, np), given by

ebulk(Icl, ncl) =
1

nB

(
εMM(nn, np)− nnmnc

2 − npmpc
2
)
,

(17)
where the neutron and proton masses mn and mp are
fixed to their bare mass, mnc

2 = 939.565346 MeV and
mpc

2 = 938.272013 MeV, and nn and np are the uniform
neutron and proton densities in the cluster.

B. The finite-size contribution

The finite-size term in Eq. (16) incorporates the nu-
clear contributions to the cluster energy at all orders in
the leptodermous expansion. In the present study, we
limit ourself to the leading order terms: the Coulomb

term is in Z2
cl/A

1/3
cl ≈ A

5/3
cl (dominant term at large A

which prevents super-heavy nuclei to exist), the surface

is in A
2/3
cl , and the curvature term is in A

1/3
cl . They are

expressed as

EFS(Acl, Icl, ncl) = ECoul(Acl, Icl) + Esurf(Acl, Icl)

+Ecurv(Acl, Icl), (18)

where the Coulomb term for a spherical and uniform dis-
tribution of protons is given by the direct and exchange
contributions,

ECoul = CCoul (ECoul,Dir + ECoul,Ex) , (19)

with

ECoul,Dir =
3

5

Z2
cle

2

Rp
fCoul(u) (20)

= ac

(
1− Icl

2

)2

fCoul(u)A5/3 (21)

ECoul,Ex = −3

4

(
3

2π

)2/3
Z

4/3
cl e2

Rp
hCoul(u) (22)

= −5ac
4

(
3

2π

)2/3(
1− Icl

2

)4/3

hCoul(u)A ,(23)

where e2 ≈ ~c/137 and the functions fCoul and hCoul

are defined as: fCoul(u) = 1 − (3/2)u1/3 + (1/2)u and
hCoul(u) = 1 + u1/3, with u the volume fraction of the
cluster, defined as,

u =
Vcl

VWS
=

ne
ncl,p

=
2ne

(1− Icl)ncl
, (24)

where ncl,p = ncl(1 − Icl)/2 is defined as the proton
density in the cluster. In the function fCoul, the first
term corresponds to the proton-proton repulsive interac-
tion, the second term is the ”lattice contribution” includ-
ing the electron-proton and electron-electron interaction,
under the hypothesis of a globally neutral Wigner-Seitz
cell. Then the third term in fCoul stands for the finite-
size correction which becomes important when the clus-
ter volume is comparable with the Wigner-Seitz volume.
This term is important near the crust-core transition and
pushes the transition to nuclear matter towards higher
densities. The first term is the only one remaining in the
case of isolated nuclei, corresponding to the limit u = 0.
Since there is no proton-electron contributions to the ex-
change Coulomb energy, the first (second) term in hCoul

corresponds to the proton-proton (electron-electron) con-
tribution.

The coefficient CCoul in Eq. (19) is a variational pa-
rameter which is fine tuned over the nuclear mass table.
It describes – in an effective way – the effect the dif-
fusive nuclear surface on the Coulomb energy, which is
neglected in the sharp drop off density profile that we
consider here. Since the diffusive surface is expected to
be a small correction, the fit value is expected to remain
close to 1, CCoul ≈ 1.

Note that the direct Coulomb term scales like A
5/3
cl

and therefore dominates the CLDM energy at large Acl.
Since the Coulomb term is repulsive, this induces a limi-
tation in the maximum Acl for finite nuclei. However, for
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σsurf,sat σsurf,sym psurf σcurv,sat βcurv

MeV fm−2 MeV fm−2 MeV fm−1

1.1 2.3 3.0 0.1 0.7

TABLE IV. Standard FS parameters for the CLDM consid-
ered in this work. Note the associated value bsurf = 29.9.

most of nuclei in the nuclear chart, the Coulomb inter-
action remains small compared to the nuclear one. For
this reason, the bulk term in Acl and the Coulomb direct

contribution in A
5/3
cl are considered at the same order

in the leptodermous expansion. It is also interesting to
note that the exchange Coulomb term contributes to two

order lower compared to the direct term in the A
1/3
cl lep-

todermous expansion. It is thus expected to effectively
contribute at one order below the curvature contribution.

Neglecting the difference between the neutron and pro-
ton radii – no skin approximation –, we have Rp = Rcl =

rcl(ncl)A
1/3
cl with r3

cl(ncl) = 3/(4πncl), and the Coulomb
factor reads,

ac(ncl) =
3

5

(
4π

3
ncl

)1/3

e2 . (25)

Note that the Coulomb factor ac defined from Eq. (25)
depends on the cluster density. The Coulomb parameter,
ac, is however often taken as a constant, see for instance
Ref. [38], either as a free parameter to be fitted or as
function of the constant nsat. The different assumptions
for ac give differences on the description of isolated nuclei.
Note that if ac is taken to be constant (often taken to
be of the order ∼ 0.7 MeV), neither the Coulomb nor
the surface energy contributes to nuclear pressure, the
pressure derives from the bulk term only. In NS crust
however, the Coulomb term contributes to the pressure
thanks to its dependence in the volume fraction u. We
show the difference of having ac constant or not in the
sequence of the paper, FS1 refers to ac = ac(nsat), while
in FS2 and others we have ac = ac(ncl).

The surface energy is proportional to the surface ten-

sion σsurf(Icl) and scales as A
2/3
cl . It reads

Esurf(Acl, Icl, ncl) = 4πR2
clσsurf(Icl) (26)

= 4πr2
clσsurf(Icl)A

2/3
cl , (27)

with σsurf(Icl) as expressed, as suggested in [49], as

σsurf(Icl) = σsurf,sat
2psurf+1 + bsurf

Y −psurf
p + bsurf + (1− Yp)−psurf

,

(28)
where Yp = Zcl/Acl = (1 − Icl)/2 is the cluster proton
fraction and σsurf,sat is a parameter that determines the
surface tension in symmetric nuclei. The parameter psurf

entering into the expression of the surface tension (28)
plays an important role at large isospin asymmetries. It

is usually fixed to be psurf = 3 since the seminal contri-
bution [49], but a small variation around 3 plays an im-
portant role at large asymmetries, which occurs around
the core-crust transition densities in NSs [48].

For small asymmetries,

σsurf(Icl) ≈ σsurf,sat − σsurf,symI
2
cl (29)

with

σsurf,sym = σsurf,sat
2psurfpsurf(psurf + 1)

2psurf+1 + bsurf
. (30)

One can thus relate the parameter bsurf to the surface
symmetry energy σsurf,sym. We have

bsurf = 2psurf
[
psurf(psurf + 1)

σsurf,sat

σsurf,sym
− 2

]
. (31)

In the following, we prefer to use the parameter σsurf,sym

instead of bsurf , since it directly reflects the isospin de-
pendence of the surface tension for small isospin asym-
metries, as shown in Eq. (29). For this reason the do-
main of variation of σsurf,sym is better constrained than
the one for the parameter bsurf , which ease the determi-
nation of the prior for this parameter, see section III C.
The surface energy parametrization (29) do not include a
correction due to the presence of the neutron gas, while
it has been adjusted on Hartree-Fock microscopic cal-
culations including this effect [50]. The authors of this
parametrization already realized this ”paradox” and con-
cluded that the contribution of the neutron gas and that
induced by the change of the surface density as clusters
get more and more neutron rich play an opposite role.
The in-medium effects (neutron gas and nuclear surface
modifications) can however be important for the descrip-
tion of the crust-core transition, as suggested from the
following authors [21, 22, 41]. Microscopic calculations
shall be used to further refine the functional dependence
of the the surface energy term, like in [51, 52] for instance.

Tab. IV suggests standard values for the FS parame-
ters obtained by averaging over the usual parameters, see
Ref. [48] for a sample of these parameters associated to
various Skyrme interactions.

The curvature energy is controlled by the curvature
tension σcurv(I), and follows [53],

Ecurv(Acl, ncl, Icl) = 8πrclσcurv(Icl)A
1/3
cl , (32)

with

σcurv(Icl) = ασcurv,sat
σsurf(Icl)

σsurf,sat

[
βcurv −

1− Icl

2

]
. (33)

The parameter α is fixed to be α = 5.5, since we allows
the variation of the parameter σcurv,sat in the fit to the
binding energy over the nuclear chart. The standard val-
ues for the curvature parameters σcurv,sat and βcurv are
also given in Tab. IV.

In the present paper, we explore the role of various ap-
proximations in the FS terms on the NS crust properties.
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Model Variables FS1 FS2 FS3 FS4

Bulk from MM (Icl, ncl) × × × ×

FS Surface (nsat) × − − −

FS Coulomb (Dir.) (nsat) × − − −

FS Surface (ncl) − × × ×

FS Coulomb (Dir.) (ncl) − × × ×

FS Curvature (ncl) − − × ×

FS Coulomb (Ex.) (ncl) − − − ×

Number of param. 3 3 5 5

TABLE V. Definition of nuclear macroscopic models used in
this work. In the left column we have the different terms on
the CLDM implemented in this work. On the first line we
have the label of the model. The table show which term and
how many parameters are necessary to fix each model.

We order these approximations by their expected impact
and selected four of them, that we call FS1 to FS4, see
Tab. V:

• FS1 is the simplest approximation for the FS term
that we consider, where only the surface and direct
Coulomb contributions are included and for which
the Coulomb and surface parameters, which are re-
lated to rcl, are taken constant and fixed by setting
ncl = nemp

sat .

• FS2 is an improved version of FS1, where the
Coulomb and surface parameters are varied and
fixed from the actual value of the cluster density
ncl.

• In FS3, we additionally incorporate the effect of the
curvature contribution.

• Finally in FS4, we add the exchange Coulomb con-
tribution to the Coulomb energy term.

In the future, we plan to incorporate more contri-
butions and go beyond FS4. The approximations cap-
tured into the FS1-4 models represent however a system-
atical development where the refinements are expected
to play a smaller and smaller role. This will be con-
firmed in Sec. IV. The FS1-4 models allows also to un-
derstand the differences between the models proposed
for the crust. In their seminal paper in 1971, Bethe,
Baym, and Pethick [54] have introduced the first version
of the CLDM with Coulomb and surface terms only, sim-
ilar to our FS2 with the addition of neutron skin effect
and without optimization to the nuclear chart. Another
well-known model for the crust was proposed by Douchin
and Haensel in 2001 [55], still considered a CLDM model
with the additional contribution of the curvature term,
as in our model named FS3. The surface and curvature
terms were however determined from many-body meth-
ods [56]. They have also considered different geometries

in the pasta phase and incorporated the effect of skins in
the CLDM, which go beyond the present approximations.
In 2008, Steiner considered a CLDM [23] with surface and
Coulomb terms comparable to our FS2 approximation,
but introduced in addition an effective way to describe
skins that we have previously discussed. Newton et al.
suggested in 2012 [53] a CLDM with a full Coulomb term
(direct and exchange) as well as surface and curvature
contributions, as our FS4 approximation. They addition-
ally studied different geometries in the core-crust region
(pasta phases). In 2016, Tews adopted the same CLDM
as the one suggested by Steiner [23] and he additionally
considered a bulk contribution determined by chiral EFT
calculations [57]. The FS terms were also adjusted to re-
produce the binding energy over the nuclear chart. These
two features make this study comparable to our model
for the crust. In 2017, Viñas et al. [40] extended the
CLDM by considering the Thomas-Fermi approximation
and introduced surface, Coulomb and curvature terms,
all FS terms being function of the proton radius. This
treatment is similar to our FS4 approximation, but with
additional contribution due to skin and pasta phases.
In 2019, Carreau et al. use a CLDM with surface and
Coulomb terms in [38], which can be compared to our
FS1 approximation, and then included in 2020 curvature
and shell effects [58], which can be compared to our FS3,
but fixing ac constant and including shell effects.

Fantina et al. [21] constructed a unified EOS within
Brussels-Montreal Skyrme (BSk) functionals, using ex-
perimental nuclear masses at the outer-crust, with the
Brussels-Montreal mass model when there is no data,
and a extended Thomas-Fermi plus Strutinsky integral
method at the inner crust [59]. This model is an inter-
esting alternative to describe neutron star crust, where it
is possible to model shell effects. Recently this approach
inspired a new model combining the advantage of CLDM
with the modelling of shell effects [58].

In conclusion, there is not a strict equivalence between
the FS1-4 approximations we suggest and the various
models for the crust which have been investigated, but
we believe our series of approximation is incremental and
well suited to the understanding of the role of various
terms, and associated uncertainties, on the properties of
the crust of NS. The comparison to other crust models
suggests also that our FS approximation series could be
extended in order to incorporate neutron skins, shell ef-
fects, and different geometries in the core-crust region.

C. Fit to experimental nuclear masses

In this section we discuss the impact of the fit on iso-
lated nuclei. We analyse two definitions for the loss func-
tion, ∆E or ∆E/A, which are defined as:

∆X =

[
1

N

N∑
i=1

(Xi
exp −Xi

nuc)2

]1/2

, (34)
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FIG. 4. Sum of surface and curvature energies normalized by 4πr2
0,satA

2/3
cl function of the cluster asymmetry Icl in isolated

nuclei. The left panel shows a comparison between the four finite-size models, in the case they are fixed by the standard values
given in Table IV (solid lines) and in the case they are fit to the nuclear masses (dotted lines). The right panel shows the
influence of the surface parameter psurf at large Icl, after the fit to the nuclear masses.

FIG. 5. Loss function ∆E fitted to the total energy (left) and ∆E/A fitted to the energy per particle (right) w.r.t εsat for
FS1-FS4 for H1-H5 and H7 (DHSL59 and DHSL69) in lines (symbols). Solid lines stand for the bare mass while dashed lines
for the effective mass.

where X = E or X = E/A: Xi
exp is the experimental val-

ues and Xi
nuc is the energy given by the CLDM model. In

the present fit, we have considered N = 3375 nuclei taken
from the 2016 Atomic Mass Evaluation (AME) [60], with
nuclei in the range: A = 12− 295 and Z = 6− 118.

It is interesting to analyze the overall impact of the
fine tuning of the mass models on the surface and cur-
vature contributions to the nuclear energy. To do so,
we represent in Fig. 4(a) the following quantity (esurf +

ecurv)/(4πr2
satA

2/3
cl ) as function of the nuclear asymme-

try Icl for a typical value Acl = 100. The homogeneous
contribution is also fixed to be given by SLy4MM. The

different colors shows the result of the different FS terms,
as indicated in the legend, the solid lines correspond to
the standard values, given in Tab. IV, while the dashed
lines results from the minimization of the loss function
∆E/A. The overall trend is similar for all the considered
cases. The contribution of the curvature term for FS1
and FS2 is null. The difference between FS1 and FS2
reflects the role played by the parameter r2

cl in FS2 while
it is fixed to be r2

sat in FS1: since the cluster density ncl

decreases as Icl increases, r2
cl becomes larger than r2

sat at
large Icl, as shown in Fig. 4(a). The consistent treatment
of the cluster radius in the FS terms, included in FS2 and
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further approximation, tends to increase the surface term
at large asymmetry Icl compared to FS1, where the val-
ues radius parameter is constant.

Employing the standard parameter set (solid lines),
FS3 and FS4 predict larger values than FS1 and FS2,
since the contribution of the curvature ecurv adds up to
the surface one esurf . The exchange Coulomb term has
no effect on the surface tension, therefore FS3 and FS4
shows identical curves in the figure. The dispersion be-
tween the dotted lines is smaller than between the solid
lines as a result of the minimization which is performed
for each FS model. Finally, in the fit the curvature con-
tribution is absorbed by a reduction of the surface one,
such that the sum remains identical, as seen from the
comparison of FS3 to FS4 (dashed lines). The fit with
the Coulomb exchange in FS4, absent in FS3, tends to
slightly increase the surface and curvature terms around
Icl ≈ 0.

Fig. 4(b) shows the influence of the surface parameter
psurf on the same quantity as in Fig. 4(a), where we
show only FS2 and FS3 for clarity. Around Icl ≈ 0 the
impact of varying psurf is null, while it plays an major
role for Icl > 0.3, as it was already remarked in Ref. [38].
As a consequence psurf cannot be determined from the
confrontation to the experimental nuclear chart [38]. It
however plays an important role in the densest layers of
the NS crust at the vicinity of the core, where matter is
the most neutron rich. The value of the parameter psurf

is thus an important source of uncertainties which cannot
be controlled by the nuclear experimental data. This will
be illustrated in Sec. IV D.

We now vary both the bulk and the FS terms, where
the bulk terms we consider are the ones which reproduce
the MBPT predictions based on chiral interactions, see
Sec. II. The impact of varying the bulk contribution on
the minimization based on either the two loss functions
∆E and ∆E/A is shown in Fig. 5. The horizontal axis
is chosen to be εsat = nsatEsat and the different colors
represent the best fit obtained for each FS approxima-
tion (FS1 to FS4). The solid (dashed) lines are obtained
with the bare (effective) nucleon mass. There is a small
improvement using the effective mass instead of the bare
mass, but it however remains small compared with the
impact of changing the Hamiltonian.

For instance, the Hamiltonians for which εsat >
−2.30 MeV fm−3 are less good in reproducing the ex-
perimental nuclear masses than the others. The reason
is that the reproduction of the experimental binding en-
ergies requires a delicate balance between the attractive
bulk term εsat and the repulsive FS term εFS. As εsat in-
creases, the FS term decreases such that the sum remains
constant. The compensation can happen until the FS
term becomes almost zero. Above this limit, if εsat con-
tinues to increase the energy density becomes too large
to be able to reproduce the experimental masses, and the
quality of the fit gets worst and worst, as illustrated in
Fig. 5.

The groups FS3-4 – where the curvature term has been
incorporated – reduce the loss function compared to the
groups FS1-2. The best models are H1, H2, H3, and H4,
among which H2 and H3 are even better. In the following
analysis, the predictions based on H1-H4 will be marked
with a light grey band, while the ones based on H2-H3
will be identified with a darker grey band, as illustrated
in Fig. 5.

We also analyse in Fig. 5 the CLDM based on the
Hamiltonians DHS. Note that it is still εsat which drives
the goodness of the model: the closer it is to -2.6/-
2.8 MeV fm−3 the better is the agreement with exper-
iments. There is however a reduction of the goodness of
these models as the value of Lsym departs from the one
of the other models by 10 to 15 MeV, see Table III. Since
the DHS Hamiltonians do not show a good reproduction
of experimental masses, we neglect them on the NS crust
study. In the next section we show the Hamiltonians
which better reproduced nuclear masses, H1-H4, in gray
band together with H5 and H7 for comparison.

Finally, we explore the correlation between the surface
energy parameters σsurf,sat and σsurf,sym and the sym-
metry energy Esym for the Hamiltonians H1-H7, the FS
models FS1-FS4, the prescription of the nucleon mass,
and the loss function used for the minimization, as shown
in Fig. 6. Having or not the curvature contribution in the
CLDM is the main source of difference between these cor-
relations. With the contribution of the curvature term
the parameters σsurf,sat and σsurf,sym are almost linearly
correlated with Esym. The correlation between σsurf,sym

and Esym was already discussed in Ref. [23], but we note
here that this correlation is model dependent: without
the curvature term it become an anti-correlation, which
can even be almost flat if the minimization of the mass
table is based on the loss function ∆E/A.

It is further interesting to note that even if these cor-
relations are model dependent, they are crossing for the
value of the symmetry energy around 32 MeV, compara-
ble to the one of the Hamiltonians H2 and H3. Therefore,
selecting H2-H3 Hamiltonians reduces strongly the model
dependence of the parameters σsurf,sat and σsurf,sym. In
the future, it will be interesting to check if this property
remains while adding more terms to the FS approxima-
tion.

The conclusion of this confrontation of the CLDM
to the experimental nuclear masses is that the Hamil-
tonians H1-H4 which satisfy the condition εsat <
−2.30 MeV fm−3 reproduce well the experimental masses
over the mass table. A better reproduction over the
mass table is obtained for the Hamiltonians for which
εsat = −2.70(20) MeV fm−3. We obtained the best re-
sults for the confrontation of the CLDM to the experi-
mental masses for the Hamiltonians H2 and H3, which
will represent in the following the best models for the NS
crust properties.
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FIG. 6. Top: The isoscalar surface tension parameter σsurf,sat is represented against Esym for the six Hamiltonians H1-H5 and
H7, and for the FS models FS1 to FS4. The two Hamiltonians DHS are included with dots (squares) for the minimization to
the total energy (energy per particle). Bottom: Same for σsym. Silver band shows the values for the two Hamiltonians which
best reproduce nuclear masses, H2 and H3.

D. The electron and neutron gas contributions

At variance with isolated nuclei, the energetics of the
NS crust incorporates the contributions from the elec-
tron and neutron gas, that we briefly present here for
completeness.

Similarly to the contribution to the bulk properties for
the nuclear clusters, the energy of the neutron gas is given
by the MM as,

eng(nng) =
1

nng
εMM(nng = nn, np = 0) . (35)

Note that by considering the same model providing the
core properties and the bulk and gas contribution in the
crust, our CLDM provides a unified description of the
entire NS [21, 55, 61].

Since the electron interaction between electrons and
between electrons and protons have already been ab-
sorbed in the Coulomb term, the remaining electron gas
contribution is purely kinetic and reads for a relativistic
gas,

εe = Ce

[
xe(1 + 2x2

e)
√

1 + x2
e − asinh(xe)

]
. (36)

where xe = ~c kFe
/mec

2, the electron Fermi momen-

tum kFe = (3π2ne)
1
3 , and the overall constant Ce =

(mec
2)4/(8π2(~c)3). The electron chemical potential is

expressed as,

µe = mec
2
√

1 + x2
e , (37)

and the pressure,

Pe = −εe + neµe . (38)

IV. NS CRUST PROPERTIES

In this section, we derive the equilibrium configura-
tions in the crust of NS described by the CLDM (15). We
first derive the equilibrium equations and then present
and discuss our results for the NS equation of state.

A. Equilibrium equations in the crust

The CLDM cluster energy (15) is minimized under the
constraint of the baryon density nB defined as,

nB =
Acl +Ng
VWS

= nclu+ nng(1− u) , (39)

= nng +
2ne

1− Icl

(
1− nng

ncl

)
. (40)

In Eq. (40), the density nB is expressed in terms of four of
the five independent variables: Acl, Icl, ncl, ne and nng.
We use the Lagrange multipliers technique, as suggested
in Ref. [44], to minimize the µcanonical energy density
εµcan in the Wigner-Seitz cell,

εµcan = εtot − µBnB . (41)

The total energy reads,

εtot(Acl, Icl, ncl, ne, ng) = uεcl + (1− u) εg

+ne(mpc
2 −mnc

2) + nBmnc
2 + ρe ,

(42)

where u = Vcl/VWS is the volume occupied by a nucleus
in a Wigner-Seitz cell, ρe is the electron energy density
(with rest mass), εg = εMM(nng = ng, np = 0) is the
neutron gas energy density and εcl = εMM(nn,cl, np,cl) +
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εFS(Acl, Icl, ne, ncl) is the cluster energy density, with the
finite-size contributions given by Eq. (18) and discussed
in the previous section.

In fact εµcan coincides with the pressure, εµcan = −Ptot.
So minimizing εµcan is equivalent to maximizing the to-
tal pressure Ptot. Moreover, minimizing the total energy
Etot ≡ εtotVWS at fixed baryon density nB is equivalent
to minimizing the total Gibbs energy Gtot at fixed total
pressure, as discussed in Ref. [59].

We define the following thermodynamical quantities
(q = n, p),

Pcl ≡ n2
cl

∂Ecl/Acl

∂ncl

∣∣∣
Acl,Icl

, (43)

Pg ≡ −εg + ngµg , (44)

µcl,q ≡ µnuc,q +
Pg
nB

, (45)

µe ≡
∂Ee
∂Ne

∣∣∣
Ncl,Zcl

+
2ne

(1− Icl)Acl

∂ECoul

∂ne
, (46)

with

µnuc,n ≡
∂Enuc

∂Ncl

∣∣∣
Zcl,Ne

, µnuc,p ≡
∂Enuc

∂Zcl

∣∣∣
Ncl,Ne

. (47)

From Eq. (43), we deduce,

Pcl = Pbulk + PCoul + Psurf + Pcurv , (48)

with obvious definitions for these partial contributions.
We impose the stationary of the canonical potential

(41) with respect to the five independent variables, con-
sidering µB as a constant parameter, and obtain the fol-
lowing equilibrium relations [58],

2ECoul = Esurf + 2Ecurv , (49)

Pcl = Pg , (50)

µcl,n = µg , (51)

µcl,n = µcl,p + µe + ∆mc2 , (52)

µB = µg

+
2ne

nclAcl(1− Icl)− 2ne

∂Esurf

∂ng

∣∣∣
Acl,Icl,ncl

,(53)

where ∆m = mp−mn. These equilibrium relations have
a physical understanding: Eq. (49) is an extension of
the virial theorem [36] including the curvature energy,
Eq. (50) reflects the mechanical equilibrium, Eq. (51) de-
scribes the chemical equilibrium between the cluster and
the gas in the r-representation, and finally Eq. (52) as-
sures the β-equilibrium. The last Eq. (53) describes the
baryon chemical potential which fixes the baryon density.

Equations (49)-(53) are solved by using the robust
Newton-Rhapson method. Note that since the sur-
face energy (27) is independent of the gas density nng,
Eq. (53) is subsumed to µB = µg.

In the following, we analyse the role played by the
different terms in the CLDM and discuss their role in
the uncertainties on the various observables in the NS
crust.

B. Impact of the FS terms and of the loss function

We first discuss the role of the FS terms and of the
loss function, see Eq. (34), used for the confrontation to
experimental nuclear masses.

The neutron gas Pg and the electron Pe pressures are
shown in Fig. 7 as function of the baryon density nB .
We remind that the equilibrium condition in the WS
cell imposes that Pg = Pcl, and the total pressure is
Ptot = Pg + Pe. Fig. 7(a) shows the impact of the FS
terms by fixing the FS parameters to their standard val-
ues (without optimization), see Table IV, and the bulk
term is derived from SLy4MM. The neutron gas pressure
is largely impacted by the FS approximation at low den-
sity. The differences between the curves reflects the dif-
ferent density at which the outer-inner crust phase tran-
sition takes place. The main differences are between the
groups FS1-FS2 and FS3-FS4, reflecting the important
role of the curvature term. As the density increases, the
effect of FS terms on the cluster pressure is weakened.
Note that at low densities the electron pressure domi-
nates over the neutron gas pressure. As a consequence,
the total pressure will be weakly impacted by the FS
terms, but the equilibrium configurations at the bottom
of the inner crust could potentially be.

Fig. 7(b) is similar to Fig. 7(a), but we show the elec-
tron and gas pressure after the optimization of the FS
parameters, i.e. including the impact of the experimental
nuclear masses. The dashed (dotted) lines stand for the
minimization employing the loss function ∆E (∆E/A).
We observe that the optimization of the FS parameters
on the experimental nuclear masses considerably reduces
the dispersion between the various FS terms, as shown in
Fig. 7(a). There are still some differences, but they are
smaller once the experimental nuclear masses are consid-
ered. For instance, the transition density between the
outer and the inner crust is better determined. The im-
pact of the loss function, while not negligible, is also small
compared to the uncertainties from the FS terms.

We now analyze more globally the properties of the
crust – from outer to inner – in terms of composition (Acl

and Zcl), isospin asymmetries (Icl and Ye) and volume
fraction u, see Fig. 8. Here the bulk term is still SLy4MM.
Note that the right panels (b, d, f, h) shows the same
quantities as the left panels (a, c, e, g), but zooming in
the crust-core transition region. The end of the curves in-
dicates the boundary of the inner crust where the phase-
transition to uniform matter occurs. The crust-core tran-
sition is defined as the density at which the energy den-
sity in the crust given by Eq. (42) matches with eMM the
energy density in uniform matter given from the MM at
the same density.

As expected, there is a hierarchy in the contributions
of the FS terms – from FS1 to FS4 – since the largest dif-
ference is observed between FS1 and FS2, then between
FS2 to FS3, and finally from FS3 to FS4. The different
observable are however not identically sensitive to the
FS terms. For instance Acl, Zcl, and Icl are impacted,
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FIG. 7. Neutron gas and electron contribution to the pressure on the NS crust. Left panel shows the difference originated by the
four finite-size models (with standard parameters, see Table IV). Right panel shows the influence of the different optimization
procedures (see Section III C).

while Ye, u and ncc (the crust-core transition density)
are almost insensitive to the FS terms. For reference,
the magic number Zcl=28 and the quasi-magic number
Zcl=40 are shown in Fig. 8(c). The number of protons Zcl

in the inner crust is more stable employing FS4, which
includes curvature and exchange Coulomb terms, as well
as a proper treatment of the cluster density ncl in the
equilibrium equations, compared to the lower order FS
terms. We will see in the following that this stability is
also due to the value taken of psurf . The impact of the loss
function is also minimal for FS4, compared to the other
FS terms. The composition of the neutron star crust is
important for the determination of transport properties
[62, 63], which has a direct impact on shear frequencies
of neutron stars [57].

Note that even if the effect of the FS terms on the
crust-core transition density ncc is small, it can still be
discussed from the right panels in Fig. 8. There is a re-
duction of ncc from FS1 to FS2, consequence of the con-
sistent treatment of the cluster density in the Coulomb
and surface terms, which decreases at high density in
FS2 while it is fixed to be nsat at all densities in FS1.
The cluster energy thus gets higher in FS2, compared to
FS1, as the density increases and the crust-core transi-
tion occurs at a lower density. From FS2 to FS3, the pos-
itive curvature term contributing to the energy is com-
pensated in the fit to experimental nuclear masses by a
reduction of the surface term for densities given by the
experimental data (close to nemp

sat ). As a consequence FS2
and FS3 are quite similar. However, the surface and cur-
vature terms have a different density dependence in FS2
and FS3. Then as the global density increases in the
crust, implying a decrease of the cluster density, the FS
term in FS3 becomes lower than the FS term in FS2,
and as a consequence ncc slightly increases. Finally, the
exchange Coulomb term is attractive, opposite to the di-

rect Coulomb term, but being a small contribution, it
very slightly pushes up ncc.

C. Impact of the bulk terms

In this section, we analyse the impact of the bulk terms
by varying the Hamiltonians and by analyzing the effect
of the effective nucleon mass. We contrast the predictions
obtained from the Hamiltonians H1-H4, which represent
the best models reproducing the experimental nuclear
masses, with the Hamiltonians H5 and H7 for which the
reproduction of the experimental data are poorer.

The crust predictions by the chiral Hamiltonians H1-
H5 and H7 within the FS4 model are displayed in Fig. 9
similarly to Fig. 8. We notice that the Hamiltonians H5
and H7 – already excluded from the finite nuclei anal-
ysis – significantly depart from the predictions by the
Hamiltonians H1-H4, which define the light gray band in
Fig. 9. They predict lower values for Acl, Zcl, Icl and
slightly larger values for Ye and u. Note also that while
the nucleon effective mass prescription plays a role, it
is much smaller than the uncertainty in the Hamiltoni-
ans. The biggest uncertainties are for the composition
(Acl, Zcl, Icl), as seen on top panels. Note that the un-
certainty in the value of Zcl originating from the Hamil-
tonian H1-H4 is small in the outer crust (about 2-4),
larger at the bottom of the inner crust (about 8-10), and
then becomes very large close to the core-crust transi-
tion (about 20 or more). The uncertainties from our
best models H2-H3 is however smaller. For instance, in
the inner crust, these models predict quite stable values
for Zcl up to about 0.01 fm−3: 34 < Zcl < 40. The
vertical gray band in Fig. 9(h) shows the width for ncc

corresponding to the two best Hamiltonians H2 and H3:
ncc = 8.4− 9.3 10−2 fm−3.
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FIG. 8. Crust composition (top), asymmetry (center) and volume fraction occupied by the cluster (bottom) for the different
ingredients in the CLDM within SLy4MM interaction. FS1 (red), FS2 (magenta), FS3 (green) and FS4 (black) as explained
in Tab. V. Dotted lines on panel (c) represents the magic numbers Zcl = 28 and Zcl = 40. Continuous lines represent the
parameters fitted to the total energy, while dashed lines represent the fitting to the energy per particle. Left: outer and inner
crust. Right: zoom at crust-core transition.

D. Impact of the surface parameter psurf

In Fig. 10 we illustrate the dependence of the EOS on
the surface parameter psurf for a reduced set of models.
We thus consider our two best models H2 and H3 with
FS4 and we fix the loss function to be ∆E . We vary psurf

from 2.5 to 3.5 as suggested in Refs. [38] and [48].

Let us remind that the precise value for psurf cannot
be determined from finite nuclei, since its influence on
the surface energy becomes important for isospin asym-
metries which are way beyond the experimental ones. It
was first claimed in Ref. [48] and is similarly illustrated in
Fig. 4(b). Fig. 10 shows that psurf has however a remark-
able impact in the high density region of the inner crust,
close to the core-crust transition. It largely controls for
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FIG. 9. Crust composition (top), asymmetry (center) and volume fraction occupied by the cluster (bottom) for the different
ingredients in the CLDM. In the left panels we show the 6 H from outer to inner crust, on the right we show the 4 H allowed
by the finite nuclei analysis with a zoom close the crust-core transition. Dotted lines on panel (c) represent the magic numbers
Zcl = 28, Zcl = 40 and Z = 50. Dashed lines include the nucleon effective mass. All figures use FS4∆E model.

instance the slope of Zcl close to the core-crust transi-
tion: a large value of psurf (here 3.5) predicts a decrease
of Zcl below 30 at high density while a low value (here
2.5) predicts a increase of Zcl above 40. The stability of
Zcl at high density is found only for a very specific value
of psurf .

The impact of psurf on the core-crust density ncc is
large and comparable with the impact of the Hamiltonian
as shown in Fig. 9.

In conclusion, the impact of psurf on the composition of
the crust (Acl, Zcl, Icl) in the high density region is large
and quite uncontrolled. More microscopic calculations
are required in order to better determine the value of
psurf .
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FIG. 10. Same as Fig. (9). Comparison of three different values of the surface parameters psurf , within the H2FS4,∆E
MMm∗ and

H3FS4,∆E
MMm∗ models.

V. GLOBAL NS PROPERTIES

The structure of non-rotating neutron stars is pro-
vided by the solution of the spherical hydrostatic equa-
tions in general relativity, also named the Tolmann-

Oppenheimer-Volkof equations [64, 65],

dm(r)

dr
= 4πr2ρ(r), (54)

dP (r)

dr
= −ρ(r)c2

(
1 +

P (r)

ρ(r)c2

)
dΦ(r)

dr
,

dΦ(r)

dr
=
Gm(r)

c2r2

(
1 +

4πP (r)r3

m(r)c2

)(
1− 2Gm(r)

rc2

)−1

,
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where G is the gravitational constant, c the speed of
light, P (r) the total pressure, m(r) the enclosed mass,
ρ(r) = ρB(r) is the total mass-energy density and Φ(r)
the gravitational field. P and ρ have contributions from
both the baryons (PB , ρB) and the leptons (PL, ρL).

The four variables (m, ρ, P , Φ) are obtained from the
solution of the three TOV equations (54) and the EOS.
In the present calculation, the crust and core EOS are
unified, i.e., the same nuclear interaction describes crust
and core, as seen in the previous sections. The tidal de-
formability ΛGW induced by an external quadrupole field
is expressed in terms of the Love number k2 as ΛGW =
2k2/(3C

5), where the compactness is C = GM/(Rc2),
and k2 is calculated from the pulsation equation at the
surface of NS [67, 68],

k2 =
8C5

5
(1− 2C)

2
(2− yR + 2C(yR − 1))

×
(

2C(6− 3yR + 3C(5yR − 8))

+4C3
(
13− 11yR + C(3yR − 2) + 2C2(1 + yR)

)
+3(1− 2C)2 (2− yR + 2C(yR − 1)) ln(1− 2C)

)−1

,(55)

where yR is the value of the y function at radius R,
yR = y(r = R), and y(r) is the solution of the follow-
ing differential equation,

r
dy

dr
+ y2 + yF (r) + r2Q(r) = 0 , (56)

with the boundary condition y(0) = 2 and the functions
F (r) and Q(r) defined as,

F (r) =
1− 4πr2G[ρ(r)− P (r)]/c4

1− 2M(r)G/(rc2)
, (57)

r2Q(r) =
4πr2G

c4

(
5ρ(r) + 9P (r) +

∂ρ(r)

∂P (r)
[ρ(r) + P (r)]

)
×
(
1− 2M(r)G/(rc2)

)−1 − 6
(
1− 2M(r)G/(rc2)

)−1

− 4G2

r2c8
(
M(r)c2 + 4πr3P (r)

)2 (
1− 2M(r)G/(rc2)

)−2
.

(58)

The NS moment of inertia is obtained from the slow
rotation approximation [69, 70] as

I =
8π

3

∫ R

0

drr4ρ(r)

(
1 +

P

ρ(c)c2

)
ω̄

Ω
eλ−Φ , (59)

where ω̄ is the local spin frequency, which represents
the general relativistic correction to the asymptotic an-
gular momentum Ω and λ is defined as exp(−2λ) =
1 −Gm/(rc2). The crust moment of inertia Icrust is de-
duced by considering on the contribution of the crust to
the general expression (59).

As usual, for a given EOS the family of solutions is
parameterized by the central density or pressure or en-
thalpy. The EOS are characterized by their evolution in

the mass-radius diagram, where both masses and radii
of compact stars could in principle be measured, see also
Ref. [71].

We show the mass and radius relations for families
of NS in Fig. 11. Horizontal error bars show the con-
strains from NICER analyzis of the pulsar J0030+0451[1]
and J0740+6620[2], and the constrain from Capano et
al.[66] combining multi-messengers signals with nuclear
physics. Gray band shows the maximum mass constrain
of 2 M� ± 0.1 NS [30, 31]. Wheat band marks the low-
est NS mass observed of 1.17M�[72]. Fig. 11(a) shows
the influence of the Hamiltonians H1-H4 and the loss
function, used in the fit to experimental nuclear masses,
on the mass-radius diagram. All curves are calculated
with FS4 model and include the effective mass m∗. The
square-symbols on the curves shows the density above
which causality is violated for a given EOS. We note that
the loss function has a very small influence for the mass-
radius relation, especially in the domain of observed NS
(we observe a very small effect for H3 and H4 for masses
below 1.1M�). The Hamiltonian H1 predicts the smallest
radius (about 11.5km for 1.4M�), while H3 the highest
one (about 12.3km for 1.4M�). Note that this predic-
tion is also influenced by the extrapolation of the chiral
Hamiltonian at high density, which we do not discuss in
this paper.

In Fig. 11(b) we show the impact of the nucleon mass
prescription (bare versus effective mass), considering FS4
finite-size term and ∆E loss function. The impact of
the nucleon mass prescription is smaller than the one
of the Hamiltonian, but it is the largest one among all
other terms discussed here. Note that the use of the bare
nucleon mass makes all EOSs a bit stiffer compared to
the use of the effective mass, but the overall impact on
the radius is not larger than about 100 m (less than 1%
of the radius). The maximum mass is also influenced
by the effective mass prescription. We remark that it is
increased by 0.15M� between the effective mass and the
bare mass.

In Fig. 11(c) we show the mass-radius predictions for
the two best Hamiltonians, H2 and H3, for which the
different FS approximation are shown, fixing the nucleon
effective mass and the ∆E loss function. We note that
the finite-size terms has essentially no effect on the global
mass-radius relation.

Finally, in Fig. 11(d) we show the effect of varying the
surface parameter psurf for H2 and H3, fixing FS4, m∗

and the ∆E loss function. Although this parameter has
shown to be important for the composition and crust-core
transition density, for the macroscopic quantities shown
Fig. 11(d) we see no effect of psurf .

While the global mass-radius relation is rather insensi-
ble to the details of the energetic modeling of the crust,
some more specific properties could be. We show for in-
stance in Fig. 12 the correlation of the crust thickness,
CT , with the symmetry energy evaluated at half satu-
ration density for three NS masses. We note that the
higher Esym(n = nsat/2) the smaller the crust thickness.
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FIG. 11. Mass and radius relation. Observational constrains from NICER to the pulsar J0030+0451 and J0740+6620, and the
constrain from Capano et al. [66] combining multi-messengers signals with nuclear physics are shown in error bars. Wheat
band shows the lowest mass NS observed with a mass of 1.17M�. Marks on curves represent the density where causality is
broken for a given EOS. Top panels show the results for H1-H4 and (a) Influence of the optimization procedure (b) effect of the
inclusion of the nucleon effective mass. Bottom panels show the results for the two Hamiltonians the better reproduce nuclear
masses, H2 and H3, and (c) the impact of finite-size terms, (d) the impact of the surface parameter psurf . See text for more
details.

By changing the effective mass and the loss function, we
also note small effects: the effective mass reduces CT by
about 5% compared to the bare mass, while ∆E reduces
by about 1% CT compared to ∆E/A.

We have performed a more systematical study of the
uncertainties related to the crust properties which is
shown in Table VI. We present in this table the values
obtained by averaging over the different parameters, as
well as the standard deviations reflecting their present
uncertainties.

We compare low mass NS (1.0M�) with canonical mass
NS (1.4M�) for the following quantities: radius, crust
thickness, tidal deformability, and crustal moment of in-
ertia. In more details, we have varied the bulk term from

H1 to H4, with and without effective mass within the
two loss functions, keeping however FS4 fixed. We note a
≈ 3% uncertainty on the radii. Note that this error could
be larger if one assumes a non-unified EOS, as shown in
Ref. [61]. For the crust thickness we found an error of
≈ 6%. The size of the crust impacts directly the crust
moment of inertia, therefore we see an error of the same
order for Icrust/I. Here we bring attention again for the
importance of using a unified EOS, since this error could
be as high as 10% [61] in case of a not consistent treat-
ment for the NS crust and core. Regarding the tidal
deformability of the 1.4 M� NS, the models presented in



22

FIG. 12. Correlation of crust thickness for a 1.0 M�, 1.2 M�
and 1.4 M� NS and the symmetry energy evaluated at nsat/2.
Dashed lines include the nucleon effective mass.

R1.0 (km) CT1.0 (km) Λ1.0 (Icrust/I)1.0 (%)

11.84 (0.36) 1.65 (0.10) 2040 (375) 5.80 (0.42)

R1.4 (km) CT1.4 (km) Λ1.4 (Icrust/I)1.4 (%)

11.91 (0.34) 1.10 (0.07) 337 (56) 3.25 (0.25)

TABLE VI. Average value (± uncertainty) on neutron star ra-
dius, crust thickness (CT), tidal deformability Λ and fraction
of crust moment of inertia for a 1.0 and 1.4 M� NS. Com-
parison among the four Hamiltonians selected from the finite
nuclei study, H1-H4, the different fit prescriptions and the
inclusion or not of the nucleon effective mass. Noting that
the biggest uncertainty comes from the Hamiltonian choice
(H1-H4).

this work predict Λ1.4 = 337(±56), therefore all models
are inside the constrain from the GW170817 event [3].

VI. CONCLUSIONS

In the present paper we produce a set of compress-
ible liquid-drop models (CLDM) at different orders in
the finite-size terms. These CLDM are qualified as uni-
fied models for the NS crust and core since the bulk
contribution in these two regions are derived from the
same model. Here we use the meta-model fitted to a
set of Hamiltonians constructed from chiral EFT inter-
actions. Based on these ingredients, we build a set of
unified EOS which allows us to explore a number of ap-

proximations leading to uncertainties in the crust EOS.
We have then investigated the impact of various nuclear
approximations and model uncertainties on the predic-
tion for NS crust properties and global quantities. While
the present crust model could be extended in the future,
we reached some conclusions on the respective impact of
various sources of uncertainties which are already inter-
esting for the understanding of NS modeling and of their
predictive power.

The confrontation of the CLDM to the experimental
nuclear masses presented in this work allowed us to ex-
clude four Hamiltonians: H5, H7, DHSL59 and DHSL69.
We also predicted for the first time the existence of an
upper limit for the energy density at saturation εmax

sat , in-
duced by the finite-size terms. Based on the CLDM and
chiral EFT Hamiltonians, we obtained the following value
for this upper limit: εmax

sat ≈ −2.30 MeV fm−3. The good
models considered here (H2 and H3) lead to an even more
refined value for the energy density at saturation which
is εbest

sat = −2.70(20) MeV fm−3. We have also discussed
the effect of including the curvature term in the CLDM:
this term leads to a substantial reduction of the residu-
als between the CLDM and the experimental data, and
it also impact the correlation of the surface parameters
σsurf,sat and σsurf,sym versus the symmetry energy Esym.
In the latter case, we found that the model dependence of
this correlation is minimal for our best Hamiltonians H2
and H3. The origin of this effect is still to be understood.

The analysis of NS crust shows that the finite-size
terms impact directly the crust composition (Acl, Zcl,
and Icl) and very marginally Ye and the volume fraction
u. The impact of the finite-size terms on the core-crust
transition density ncc is also small, while non negligible.
ncc is however very largely impacted by the Hamilto-
nian and the surface energy parameter psurf . We finally
make predictions on the EOS properties based on the best
models we have (H1-H4 for the wider ones and H2-H3 for
the smaller ones). Our results somehow establishes new
boundaries based on our present knowledge on nuclear
physics (χEFT and experimental nuclear masses) and NS
crust modeling (represented here by the different finite-
size terms employed in the CLDM). These boundaries
are important for the modeling of NS phenomenology,
such as for instance NS cooling or the understanding of
QPO in x-ray flares, oscillation modes in the NS crust as
well as spin glitches observed in young NS. In the future,
the present approach could be enriched by incorporating
the contribution of pairing, neutron skins, different ge-
ometries, and of shell effects, and better determination
of the parameter psurf shall also be explored.

We remind that several approximations were consid-
ered in the present analysis, and it would be interesting
to add further terms in the leptodermous expansion to
check, for instance, if this expansion continues to provide
a pertinent ordering of the missing terms. Among im-
portant corrections for future extensions of the present
work, let us mention the neutron skin, the in-medium
effects on the surface energy, as well as the superfluid
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contribution from the neutron gas. Thomas-Fermi and
Hartree-Fock microscopic calculations also show that the
density distribution in the nuclear clusters is not uni-
form and that shell effects play a role, see for instance
the following Refs. [21, 22] among others. Finally pro-
ton shell effects and neutron pairing could play opposite
roles as illustrated in Ref. [43] based on Hartree-Fock-
Bogoliubov approach: In the bottom layers of the crust
where neutrons are nonexistent or very few, the shell ef-
fects induced by protons dominate and impose magicity
for the proton number Z, while in the deep layers of the
crust where neutrons dominate, superfluidity is maximal
for mid-shell nuclei reducing the stabilizing influence of
the proton shells.

Finally, the uncertainties on NS macroscopic proper-
ties are dominated by the Hamiltonians themselves. A
realistic estimation of this error requires however a uni-

fied description of nuclear matter in the crust and the
core of NS, as implemented in this work.
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