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Abstract

The nuclear transparency of the charged hadrons produced in the (e, e′) reaction
on nuclei has been calculated using Glauber model for the nuclear reaction. The
color transparency (CT) of produced hadrons and the short-range correlation (SRC)
of nucleons in the nucleus have been incorporated in Glauber model to investigate
their effects on the nuclear transparency. The calculated results for the proton and
pion are compared with the data.

1 Introduction

The hadron-nucleus cross section is less than that in the plane wave impulse approximation
(PWIA) because the initial and(or) final state interaction(s) of a hadron with the nucleus
are neglected in PWIA. This phenomenon is characterized by the nuclear transparency
TA, defined [1] as

TA =
σhA

σhA(PWIA)

, (1)

where σhA represents the hadron-nucleus cross section.
The transverse size d⊥ of the hadron produced in a nucleus due to the space-like high

momentum transfer Q2 is reduced as d⊥ ∼ 1/Q [1, 2]. The reduced (in size) hadron is
referred as point like configuration (PLC) [1]. According to Quantum Chromodynamics, a
color neutral PLC has reduced interaction with the nucleon in a nucleus because the sum
of its gluon emission amplitudes cancel [1, 3]. The PLC expands to the size of physical
hadron, as it moves up to a length (∼ 1 fm) called hadron formation length lh [1, 4]:

lh =
2kh
∆M2

, (2)

where kh is the momentum of hadron in the laboratory frame. ∆M2 is related to the mass
difference between the hadronic states originating due to the (anti)quarks fluctuation in
PLC. The interaction of PLC with the nucleon in a nucleus increases, as its size enlarges
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during its passage through the nucleus. The decrease in the hadron-nucleon cross section
in a nucleus, as explained by Glauber model [5], leads to the increase in the hadron-
nucleus cross section. Therefore, the transparency TA in Eq. (1) of the hadron raises.
The enhancement in TA due to the above phenomenon is referred as color transparency
(CT) of the hadron. The physics of CT for hadrons have been discussed elaborately in
Refs. [3, 6].

The experiments on the nuclear transparency in the A(p, pp) reactions had been done
at Brookhaven National Laboratory (BNL) [7] to search the CT of proton (pCT). The
measured spectra for nuclei show a peak in the energy distribution that could not be
reproduced by the results calculated considering the pCT in Glauber model [8]. The data
can be understood by other mechanisms (e.g., see Brodsky et al. [9] and Ralston et al.
[10]) for the pp scattering in a nucleus. The pCT is not also seen in the A(e, e′p) experiment
done at Standford Linear Accelerator Center (SLAC) [11] and Jefferson Laboratory (JLab)
[12] for the photon virtuality Q2 = 0.64 − 8.1 GeV2. The transparency measured in the
(e, e′p) reaction on 12C for 8 ≤ Q2(GeV2) ≤ 14.2 [13] at the upgraded JLab facility
agrees with the previous observations [11, 12]. The calculated proton transparency in this
reaction [14, 15]) corroborates the experimental finding.

Since the meson is a bound state of two quarks (i.e., quark-antiquark) the PLC for-
mation of it can be more probable than that of the baryon, a three quarks (qqq) system.
The color transparency is unambiguously reported from Fermi National Accelerator Lab-
oratory (FNAL) [16] in the experiment of the nuclear diffractive dissociation of pion (of
500 GeV/c) to dijets. The color transparency is also illustrated in the π− meson pho-
toproduction [17] and ρ0 meson electroproduction (from nuclei) experiments [18]. There
exist calculated results for the ρ-meson color transparency in the energy region available
at JLab [1, 19].

The nuclear transparency of the π+ meson produced in the A(e, e′) process was mea-
sured at JLab for Q2 = 1.1−4.7 GeV2 [20]. The data have been understood by the pionic
color transparency (πCT) [4]. Larson et al., [21] described the momentum dependence of
πCT in the above reaction. The πCT in the electronuclear reaction has also been studied
by Cosyn et al., [22] and Kaskulov et al., [23] for the energy region available at JLab [20].
Larionov et al., [4] estimated the πCT in the (π−, l+l−) reaction on nuclei for pπ = 5− 20
GeV/c, which can be measured at the forth-coming facilities in Japan Proton Accelerator
Research Complex (J-PARC) [24]. This reaction provides informations complementary to
those obtained from the A(γ∗, π) reaction. Miller and Strikman [25] illustrated large CT
in the pionic knockout of the proton off nuclei at the energy 200 GeV available at CERN
COMPASS experiment.

The enhancement in TA due to σhA in Eq. (1) can also occur because of the short-
range correlation (SRC) of nucleon in the nucleus. The SRC arises because of the repulsive
(short-range) interaction between the nucleons bound in a nucleus. This interaction keeps
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the bound nucleons apart (∼ 1 fm), which is called nuclear granularity [8]. Therefore, the
SRC prevents the shadowing of the hadron-nucleon interaction due to the surrounding
nucleons present in a nucleus. This occurrence, as elucidated by Glauber model [5], leads
to the enhancement in σhA. The SRC is widely used to investigate various aspects in the
nuclear physics [26].

2 Formalism

The hadron h is produced in the A(e, e′)X reaction because of the interaction of the virtual
photon γ∗ (emitted at the ee′ vertex) with the nucleus A. In this reaction, the nucleus in
the final state denoted by X is unspecified. The scattering amplitude for the γ∗A → hX
transition, according to Glauber model [1], can be written as

FX0[(q− kh)⊥] =
iq

2π

∫

dbei(q−k
h
)⊥·bΓγ∗h

X0 (b), (3)

where q and kh are the momenta of γ∗ and h respectively. Γγ∗h
X0 (b) describes the matrix

element for the transition of the nucleus from its initial to final states, i.e.,

Γγ∗h
X0 (b) =< X|Γγ∗h

A (b, r1, ..., rA)|0 >, (4)

where |0 > denotes the ground state of the target nucleus and |X > represents the un-
specified nuclear state in the exit channel. The nuclear profile operator Γγ∗h

A (b, r1, ..., rA)
[1, 27] is given by

Γγ∗h
A (b, r1, ..., rA) =

∑

i

Γγ∗h(b− bi)e
i(q−kh)‖ziΠA−1

j 6=i [1− ΓhN(b− bj)θ(zj − zi)]. (5)

The summation i is taken over the number of nucleons in the nucleus participated for the
hadron production, e.g., the protons in the nucleus take part to produced charged hadron
in the reaction.

Γγ∗h(b̃) is the two-body profile function for the hadron produced from the nucleon,
i.e., γ∗N → hN process. It is related to the reaction amplitude fγ∗h(q̃⊥) [1] as

Γγ∗h(b̃) =
1

i2πq

∫

dq̃⊥e
−iq̃⊥·b̃fγ∗h(q̃⊥). (6)

The two-body profile function ΓhN(b̃) is connected to hN (hadron-nucleon) elastic scat-
tering amplitude fhN(q̃⊥) [1, 5] as

fhN(q̃
′
⊥) =

ikh
2π

∫

db̃′eiq̃
′
⊥
·b̃′

ΓhN(b̃′). (7)
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The nuclear states, assuming the independent particle model [28], can be written in
terms of the single particle state Φ as |0 >= ΠA

l=1|Φ0(rl) > and |X >= |ΦX(rm) >
ΠA−1

n 6=m|Φ0(rn) >. Using those, Γγ∗h
X0 (b) in Eq. (4) can be written as

Γγ∗h
X0 (b) =

∑

i

∫

driΦ
∗
X(ri)Γ

γ∗h(b− bi)e
i(q−kh)‖ziΦ0(ri)D(b, zi), (8)

where D(b, zi) is given by

D(b, zi) = ΠA−1
j 6=i

∫

drjΦ
∗
0(rj)[1− ΓhN(b− bj)θ(zj − zi)]Φ0(rj)

=
[

1−
1

A

∫

dbjΓ
hN(b− bj)

∫

dzjθ(zj − zi)̺(rj)
]A−1

. (9)

̺(rj) in above equation is the matter density distribution of the nucleus, i.e., ̺(rj) =
A|Φ0(rj)|

2. ̺(bj , zj) can be replaced by ̺(b, zj) since ΓhN(b− bj) varies much rapidly
than ̺(bj , zj) [1]. Using Eq. (7) and Ltn→∞(1 + x

n
)n = ex, the above equation can be

simplified to
D(b, zi) ≃ e−

1

2
σhN

t
[1−iαhN ]T (b,zi), (10)

where αhN denotes the ratio of the real to imaginary part of the hadron-nucleon scattering
amplitude fhN(0), and σhN

t = 4π
kh
Im[fhN(0)] is the hadron-nucleon total cross section.

T (b, zi) is the partial thickness function of the nucleus, i.e.,

T (b, zi) =
∫ ∞

zi
dzj̺(b, zj). (11)

Using Eq. (8), FX0[(q− kh)⊥] in Eq. (3) can be expressed as

FX0 =
iq

2π

∫

dbei(q−kh)⊥·b
∑

i

∫

driΦ
∗
X(ri)Γ

γ∗h(b− bi)e
i(q−kh)‖ziΦ0(ri)D(b, zi),

=
∑

i

∫

driΦ
∗
X(ri)f

(i)
hN([q− kh]⊥)e

i(q−kh)·riΦ0(ri)D(ri), (12)

where f
(i)
hN , defined in Eq. (7), can be considered identically equal for all nucleons.

3 Result and Discussions

The nuclear transparency TA of the hadron produced in the A(e, e′)X reaction has been
calculated to describe its dependence on the photon virtuality Q2 in the multi-GeV region.
The nucleus in the final state |X > differs from its initial state |0 > (i.e., ground state)
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for the charged hadron production, i.e., ΦX 6=Φ0 and F00 = 0. To calculate the cross
section, |FX0|

2 is to multiply by the phase-space of the reaction and that is to divide by
the incident flux. Since the final state |X > of the nucleus is not detected, the summation
over all states X has to carry out. In the multi-GeV region, the phase space of the reaction
can be considered independent of the state X , and therefore, the nuclear transparency TA

can be written [1] as

TA =

∑

X 6=0 |FX0|
2

∑

X 6=0 |FX0|
2
PWIA

. (13)

The hadron-nucleon cross section σhN
t in the free-space is used in Eq. (10) to evaluate

TA in Glauber model. To look for the color transparency (CT), σhN
t (according to quantum

diffusion model [2, 21]) has to replace by σhN
t,CT :

σhN
t,CT (Q

2, lz) = σhN
t

[{

lz
lh

+
n2
q < k2

t >

Q2

(

1−
lz
lh

)}

θ(lh − lz) + θ(lz − lh)

]

, (14)

where Q2 is the space-like four-momentum transfer, i.e., photon virtuality. nq denotes
the number of valence quak-(anti)quark present in the hadron, e.g., nq = 2(3) for pion
(proton) [2]. kt illustrates the transverse momentum of the (anti)quark: < k2

t >1/2= 0.35
GeV/c. lz is the path length traversed by the hadron after its production. The hadron
formation length lh(∝

1
∆M2 ) is already defined in Eq. (2).

The short-range correlation (SRC) can be incorporated by replacing the nuclear den-
sity distribution ̺ in Eq. (11) by

̺(b, zj) → ̺(b, zj)C(|zj − zi|), (15)

where C(u) represents the correlation function [8]. Using the nuclear matter estimate, it
can be written as

C(u) =

[

1−
h(u)2

4

]1/2

[1 + f(u)], (16)

with h(u) = 3 j1(kF u)
kFu

and f(u) = −e−αu2

(1 − βu2). The Fermi momentum kF is chosen

equal to 1.36 fm−1. C(u) with the parameters α = 1.1 fm−2 and β = 0.68 fm−2 agrees
well that derived from the many-body calculations [8].

The nuclear transparency TA of the charged hadron, i.e., proton and π+ meson, pro-
duced in the semi-inclusive electronuclear reaction has been calculated using Glauber
model (GM), where the measured nuclear density distribution ̺(r) [29], and hadron-
nucleon cross section σhN

t [30] are used. As shown later, the calculated results due to GM
(presented by the medium-dashed curves) underestimate the measured TA for both proton
and pion. Therefore, GM has been modified by taking account of the CT and SRC. The
dot-dot-dashed and dot-dashed curves denote the calculated TA due to the incorporation
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of the CT in GM for ∆M2, defined in Eq. (2), taken equal to 0.7 and 1.4 GeV2 respec-
tively. The calculated results increases with Q2 because the CT depends on the energy.
TA evaluated due to the SRC included in GM are presented by the solid curves. They do
not show Q2 dependence since the SRC (unlike CT) is independent of energy.

The proton transparency TA(p) in the A(e, e′p)X reaction has been calculated using
the CT of proton (pCT) in Glauber model (GM+pCT) for 12C, 56Fe and 197Au nuclei.
The calculated results vs Q2 are compared in Fig. 1 with the data reported from SLAC
[11] (white squares) and JLab [12, 13] (black circles). Fig. 1(a) shows the CT does not
exist for the proton moving through 12C for a wide range of Q2, i.e., 0.64 − 14.2 GeV2.
This is corroborated by the results for other nuclei shown in Figs. 1(b) and (c), where
the data are available for lesser range of Q2, i.e., 0.64 ≤ Q2 ≤ 8.1 GeV2 for 56Fe and
0.64 ≤ Q2 ≤ 6.77 GeV2 for 197Au. Fig. 1 also shows the calculated TA(p) due to the
inclusion of the SRC in Glauber model (GM+SRC) reproduce the data reasonably well
for all nuclei.

There exist calculations where the pCT is not considered to evaluate TA(p) in the
A(e, e′p)X reaction. For example, Frankel et al. [14] have calculated TA(p) using Glauber
Monte Carlo method (GMCM) in which Jastrow-type spatial correlation is included. The
density of the C, Fe and Au nuclei is described by Woods-Saxon (WS) single-particle
density. They have also calculated TA(p), only for 12C nucleus, using the nuclear density
accounted by filled 0s1/2-0p3/2 shell-model (SM) wave functions. The calculated results
are shown in Fig. 2, where the long-dashed curves arise due to GMCM+WS and the short-
dashed curves occur because of GMCM+SM. Lava et al. [15] have shown TA(p) evaluated
using the relativistic distorted-wave impulse approximation (RDWIA) and relativistic
multiple-scattering Glauber approximation (RMSGA). The final-state interaction treated
in those approaches differs from each-other. As mentioned in Ref. [15], the SRC of nucleon
has been let out and the calculated TA(p) for

208Pb is compared to 197Au data. The results
due to RDWIA (short-dashed curves) and RMSGA (long-dashed curves) are presented in
Fig. 3. The above mentioned calculated results are compared with TA(p) due to GM+SRC
(solid curves in Figs. 2 and 3) in the present work, as explained in Fig. 1. The data are
taken from Refs. [11, 12, 13].

The pionic transparency TA(π
+) for Q2 = 1.1 − 4.69 GeV2 in the A(e, e′π+)X reac-

tion was measured at JLab [20] for 12C, 27Al, 63Cu and 197Au nuclei to search the color
transparency of pion (πCT). The data for all nuclei (except 12C) show the enhancement
of TA(π

+) with Q2. Proposals are there to measure TA(π
+) at JLab for higher Q2, i.e.,

5 ≤ Q2 ≤ 9.5 GeV2 [3, 31]. Therefore, TA(π
+) for Q2 = 1.1− 9.5 GeV2 have been calcu-

lated and those are presented in Fig. 4 along with the data available from JLab [20]. The
calculated results due to the πCT comprised in Glauber model (GM+πCT) are accord
with both the Q2 dependence and magnitude of the data. TA(π

+) estimated incorporating
the SRC in Glauber model (GM+SRC) do not describe the Q2 dependence of the data
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but those agree with large number of data points within the errors. Therefore, the data
of TA(π

+) in the region of Q2 = 5−9.5 GeV2 are necessary to prove the existence of πCT.
The effects of πCT (for ∆M2 = 0.7 GeV2) and SRC (Jastrow-type) on TA(π

+) in the
A(e, e′π+)X reaction have also been discussed by Cosyn et al. [22] in their calculation
based on the relativistic multiple-scattering Glauber approximation (RMSGA). In Fig. 5,
the calculated results due to RMSGA+πCT and RMSGA+SRC are denoted by the long-
dashed and short-dashed curves respectively. Kaskulov et al. [23] have studied TA(π

+)
in the above reaction using the couple-channel (CC) treatment for the pion-nucleus in-
teraction, and discussed the effects of pion production mechanisms in the elementary
(γ∗, π+) reaction. However, they have not considered the SRC of nucleon. Amongst the
calculated results [23], TA(π

+) evaluated using Lund model (LM) for the pion formation
time (dilatated) along with the pedestal value of the pion-nucleon effective cross-section
(Q2 independent) provides good description of the data. The calculated results due to
CC+LM are denoted by the long-dashed curves in Fig. 6. Other curves in Figs. 5 and 6
occurred due to present work (see Fig. 4) are shown for comparison. The data are taken
from Ref. [20].

4 Conclusions

The nuclear transparencies TA of the proton and π+ meson produced in the (e, e′) reaction
on nuclei have been calculated using Glauber model for the wide range of photon virtuality
Q2. TA estimated using Glauber model do not reproduce the measured transparencies
for both proton and pion. To realize the data, TA is calculated incorporating the color
transparency of the produced hadron and the short-range correlation of the bound nucleon
in Glauber model. The calculated results for the proton and pion are compared with the
data. The transparency of proton TA(p) evaluated using the color transparency in Glauber
model does not reproduce the data, where as the calculated TA(p) due to the short-
range correlation added in Glauber model is well accord with the data. The calculated
transparency of pion TA(π

+) considering the color transparency in Glauber model agrees
with both the Q2 dependence and magnitude of the data, available for 1.1 ≤ Q2 ≤
4.69 GeV2. The calculated TA(π

+) due to the inclusion of the short-range correlation in
Glauber model agree with large number of data points within the errors, but those do not
explain the Q2 dependence of the measured spectra. Therefore, TA(π

+) for Q2 = 5− 9.5
GeV2 to be measured at JLab are required to confirm the pionic color transparency.
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Figure 1: (color online). The calculated nuclear transparency of the proton TA(p) vs.
photon virtuality Q2. The medium-dashed curves denote TA(p) evaluated using Glauber
model (GM). The dot-dot-dashed and dot-dashed curves illustrate the proton color trans-
parency (pCT) for two different values of ∆M2 used in Glauber model (GM+pCT), see
text. The solid curves arise due to the inclusion of short-range correlation (SRC) in
Glauber model (GM+SRC). The data are taken from Refs. [11, 12, 13].
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Figure 2: (color online). The proton transparency TA(p) calculated by Frankel et al.
[14] using Glauber Monte Carlo method (GMCM). The density of nuclei is accounted
by Woods-Saxon (WS) and that also is done by shell-model (SM) for 12C only. The
long-dashed and short-dashed curves arise because of GMCM+WS and GMCM+SM re-
spectively. Those results are compared with TA(p) due to GM+SRC (solid curves) in the
present work described in Fig. 1. The data are taken from Refs. [11, 12].
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Figure 3: (color online). The short-dashed and long-dashed curves refer to the calculated
proton transparency TA(p), as shown by Lava et al. [15], due to the relativistic distorted
wave approximation (RDWIA) and relativistic multiple-scattering Glauber approxima-
tion (RMSGA) respectively. The solid curves due to GM+SRC in the present work (as
illustrated in Fig. 1) are shown for comparison. The data are taken from Refs. [11, 12, 13].
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Figure 4: (color online). Same as those presented in Fig. 1 but for the pionic transparency
TA(π

+). The data are taken from Ref. [20].
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Figure 5: (color online). The pionic transparency TA(π
+) calculated by Cosyn et al.,

[22] using the relativistic multiple-scattering Glauber approach (RMSGA). The effects of
pionic color transparency (πCT) for ∆M2=0.7 GeV2 and short-range correlation (SRC)
comprised in RMSGA are described by the long-dashed curves (RMSGA+πCT) and short-
dashed curves (RMSGA+SRC) respectively. Those results are compared with TA(π

+) due
to GM+πCT (dot-dot-dashed curves) and GM+SRC (solid curves) in the present work,
see Fig. 4. The data are taken from Ref. [20].
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Figure 6: (color online). The transparency TA(π
+) calculated by Kaskulaov et al., [23]

based on Lund model (LM) and couple-channel (CC) approach, see text. The long-dashed
curves represent the calculated results due to CC+LM. Other curves occurred due to the
present work (see Fig. 4) have been shown for comparison. The data are taken from
Ref. [20].
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