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Measurements from the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider
(RHIC) can be used to study the properties of quark-gluon plasma. Systematic constraints on these
properties must combine measurements from different collision systems and methodically account
for experimental and theoretical uncertainties. Such studies require a vast number of costly numer-
ical simulations. While computationally inexpensive surrogate models (“emulators”) can be used
to efficiently approximate the predictions of heavy ion simulations across a broad range of model
parameters, training a reliable emulator remains a computationally expensive task. We use transfer
learning to map the parameter dependencies of one model emulator onto another, leveraging similar-
ities between different simulations of heavy ion collisions. By limiting the need for large numbers of
simulations to only one of the emulators, this technique reduces the numerical cost of comprehensive
uncertainty quantification when studying multiple collision systems and exploring different models.

I. INTRODUCTION

The RHIC and LHC collider facilities create nuclear
matter under extreme conditions by colliding heavy nu-
clei at relativistic velocities. These high energy collisions
melt the nuclei and create a strongly interacting, ex-
otic phase of nuclear matter called quark-gluon plasma
(QGP) [1]. The QGP filled the universe microseconds
after the Big Bang, before it cooled down to produce
atomic hydrogen, helium and other light atomic nuclei
that we observe in the universe today [2]. Due to its ex-
tremely short lifetime (∼ 10−23 s) and size (∼ 10−14 m),
the QGP created in relativistic heavy ion collisions can-
not be observed directly; it can only be studied through
the final particles it emits.

Modeling of relativistic nuclear collisions is a challenge
that involves a succession of phases of many-body nu-
clear physics with different degrees of freedom; the QGP
is only one of them. Realistic numerical simulations of
such collisions have many physical parameters that are
related to the properties of this QGP. To constrain these
properties, one must effectively solve the inverse problem,
i.e. find the model parameters, including their uncertain-
ties, for which simulated observables agree well with the
experimental data.

Relativistic heavy ion collision experiments have accu-
mulated a vast body of measurements and are continuing
to do so. These experimental data vary widely in the size
of their uncertainties, which can also have non-trivial cor-
relations. Theoretical simulations add additional uncer-
tainties to the error budget, of two different types: sta-
tistical (aleatoric) uncertainties from measuring a finite
number of samples from a stochastic process, and sys-
tematic (epistemic) uncertainties arising from imperfect
modeling of the (not yet fully understood or only approx-
imately implemented) physics underlying the dynamical
evolution process. These experimental and theoretical
uncertainties limit the precision with which the desired
model parameters can be inferred.

Bayesian inference or Bayesian parameter estimation is
a modern statistical method that provides a way to reli-
ably infer the properties of QGP, by accounting method-
ically for both theoretical and experimental uncertain-
ties. Tremendous progress has been made in the study
of relativistic heavy ion collisions over the past decade
by providing increasingly reliable constraints and error
estimates for the properties of QGP using Bayesian sta-
tistical techniques [3–14]. As both the model and data
have uncertainties, comparing them results in a probabil-
ity distribution for the model parameters, specifying the
probability for a model with a given set of parameters to
provide predictions that agree with the experimental ob-
servations. A single model with n parameters will have
an n-dimensional probability distribution, called in brief
“the posterior”, describing its agreement with a set of
measurements. For a class of competing models, the di-
mensionality of model parameter space increases accord-
ingly. Bayesian uncertainty quantification depends on
the ability to accurately sample this posterior probability
distribution, which is generally not known analytically
[15]. Markov Chain Monte Carlo (MCMC) techniques
provide such sampling methods [16]. They are practical
only if fast approximations of otherwise expensive com-
puter simulations are available. Emulation with surro-
gate models has thus become an essential component in
any Bayesian inference involving a computationally ex-
pensive likelihood function.

Emulators are machine learning models that provide a
computationally efficient prediction of the simulator over
the parameter space when trained on a sparse set of full
simulation data. While a modeler can choose from a
wide range of learning models (e.g., linear regression, de-
cision trees, neural networks) as surrogates for expensive
simulations, the standard practice in relativistic nuclear
physics [4–14] has been to use Gaussian Process (GP) em-
ulators [17]. There are two reasons for this: (i) GPs pro-
vide a flexible non-parametric framework for emulation
modeling and (ii) they also provide an efficient quantifica-
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tion of the predictive uncertainty associated with the in-
terpolation between training points in the n-dimensional
parameter space. In Bayesian parameter estimation, the
latter integrates seamlessly with the aleatoric and epis-
temic uncertainties to yield an accurate quantification of
the total uncertainty for the inferred model parameters.

Relativistic heavy ion collision experiments have been
conducted at various experimental facilities around the
world, using different collision systems (ranging from
p+p and p+A to U+U) and different collision energies
(ranging from

√
sNN = 3 GeV to 13 TeV).1 When study-

ing these different systems with Bayesian parameter in-
ference methods, one typically builds separate emulators
for each individual system. Each collision is simulated
using a multistage model [14, 20–29] that describes the
successive dynamical evolution stages. For each stage
there typically exist multiple physics models (“modules”)
based on different physics assumptions. Mixing-and-
matching these modules leads to a plethora of theoretical
models that, in principle, could all be used to simulate the
collision. As recently shown using Bayesian Model Av-
eraging [11], this ambiguity in the theoretical framework
can add a significant model uncertainty in the parameter
inference. But accounting for it systematically requires
studying multiple models, and this generates a need for
efficient emulators describing the predictions from differ-
ent but typically closely related evolution models. If each
model emulator needs the same number of training data,
the computational cost for building the emulators scales
linearly with the number of models. This quickly renders
a global Bayesian parameter inference, which includes a
representative set of simulation models to describe large
sets of experimental data from a variety of collision sys-
tems, computationally infeasible.

We introduce here a novel emulation method that sig-
nificantly reduces the computational barrier for a global
Bayesian parameter estimation by requiring a smaller
volume of training data for building accurate emulators.
This is accomplished by realizing that physical observ-
ables from different collision systems are related to each
other by common trends resulting from the uniqueness of
the underlying physics, and that predictions for these ob-
servables from models based on different sets of approx-
imations for this underlying physics also share common
trends reflecting this common ancestry. We use “transfer
learning” [30–32] to transfer knowledge about such trends
from emulators for a specific model trained on a larger,
much more expensive set of already existing training data
generated for a previously analyzed system, to new em-
ulators for a different simulation model of the same col-
lision system or for simulations of a different collision
system. We provide illustrative examples on the use of

1 For readers trying to follow this rapidly-evolving field we recom-
mend the series of proceedings for the annual to biannual Quark
Matter conferences, the latest of which is published in [18, 19].

this new technique; the code2 generating these examples,
including full documentation, can be found at [34].

This work is organized as follows. Sec. II provides an
introduction to transfer learning and Gaussian Process
emulation. Applications of transfer learning techniques
for emulation of relativistic heavy ion collisions are intro-
duced and illustrated in Sec. III. In Sec. IV we illustrate
a new way of performing sensitivity analysis offered by
transfer learning. We then compare the accuracy of and
computational savings from the new emulation method
to the existing usage of Gaussian Processes in Sec. V. Ap-
plications of this method and its limitations in analyzing
relativistic heavy ion collisions and beyond are discussed
in Sec. VI. We conclude in Sec. VII with an outlook on fu-
ture work. The Appendix describes the standardization
process for experimental observables used in our work.

II. TRANSFER LEARNING AND GAUSSIAN
PROCESS EMULATION

A. Transfer learning

Transfer learning methods (see, e.g., [32, 35]) aim to
improve learning in a designated task (called the target
task), by leveraging information from other related tasks
(called source tasks). This is in contrast to traditional
machine learning methods, which instead build separate
learning models for each task in isolation. Transfer learn-
ing methods are becoming increasingly popular in the
machine learning literature, since it allows for efficient
learning of target systems where training data can be
expensive to obtain [36].

While there are many types of transfer learning mod-
els, the one most relevant for the current study is in-
ductive transfer learning [32], where the source and tar-
get problems have identical input domains but different
tasks. In such problems, the training data for the target
task is typically scarce, so a model trained solely on such
data does not provide good predictive performance. Ex-
isting transfer learning techniques tackle this problem by
learning and correcting the bias between source and tar-
get tasks. One such method is TrAdaBoost [37], which
weighs each source data point by a measure of similar-
ity to the target for better classification performance on
the target task. This approach is extended for regres-
sion tasks in [38]. [39] proposes an importance-weighted
approach for reweighing the source data to predict on
the target task. The authors of [40] present an adap-
tive transfer learning model using Gaussian processes, in
which a transfer kernel learns to model similarities be-
tween target and source tasks. Their model assumes the
same kernel for both target and source, with a dissimi-
larity parameter accounting for the correlation between
them. Our proposed model builds on these ideas but

2 We use the EMUKIT package [33] to implement transfer learning
emulation.
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takes instead an additive approach where we introduce a
discrepancy function between source and target, modeled
by a GP. This provides a more flexible way of transfer-
ring information and also makes it possible to analyze
the differences between source and target via sensitivity
analysis on the discrepancy function. A comprehensive
survey on existing transfer learning techniques can be
found in [41].

The proposed transfer learning emulator is based on
the popular Kennedy-O’Hagan (KO) model for multi-
fidelity emulation [31]. Here we address the bias between
target and source by applying a correlation factor and a
discrepancy function. This work provides a novel appli-
cation of the KO model for modeling heavy ion collisions
between different nuclear species, or for the same species
using different but related dynamical evolution codes.

B. Gaussian process emulation

Gaussian processes (GPs) [42] are a popular choice
for emulation of computer simulations [43] and have
been exploited in diverse applications from rocket de-
sign [44] to 3D printing [45]. GPs are an essential tool
for Bayesian parameter estimation of complex simulation
models, where they are used to efficiently interpolate be-
tween full model runs taken on a sparse set of design
points in a high-dimensional parameter space, largely due
to their ability to efficiently provide a probabilistic quan-
tification of the incurred interpolation uncertainty.

Let f(x) denote the simulation output at parameter
point x = (x1, · · · , xq)∈X , where X is the parame-
ter space. A Gaussian process is a stochastic process
{f(x)∈R : x∈X}, for which any finite collection of
points f(x1), . . . , f(xn) have a joint Gaussian distribu-
tion. A GP is fully characterized by a mean function
µ(x) = E[f(x)] and a covariance function k(x,x′) =
Cov[f(x), f(x′)]. This will be denoted as

f(·) ∼ GP{µ(·), k(·, ·)}.

The mean function µ(x) denotes the mean of the process
while the covariance function controls the smoothness of
its sample paths.

From a Bayesian perspective, the GP model f(·) prior
to conditioning on data from the full model runs repre-
sents a modeler’s prior belief on the simulation output
before observing it. In practice, the mean function µ(·)
prior to conditioning is typically set to be a constant
µ. There are several popular choices for the covariance
function k(·, ·), including Gaussian3, Matérn, and cubic
covariances [42]. In this study, we employ the anisotropic
Gaussian covariance function, widely used for computer

3 In the statistical literature the Gaussian function is often called
a “squared-exponential”, indicated here by the superscript SE.

experiment emulators [17]:

kSE(x,x′) = σ2 exp

[
−

q∑
j=1

(xj − x′j)2

2l2j

]
. (1)

Here σ2 > 0 is a variance parameter controlling the
variation of the process around its mean, while the pa-
rameters lj > 0 (j = 1, 2, · · · , q) are characteristic
length-scales. Larger lj induce stronger correlations be-
tween nearby points, resulting in smoother sample paths,
whereas smaller lj result in more wiggly sample paths.

We now integrate the data obtained from the full model
simulations. Suppose noisy outputs y = (y1, . . . , yn)
are simulated at parameters x1, . . . ,xn via the sampling
model

yi = f(xi) + εi, εi
i.i.d.∼ N(0, γ2), (2)

where εi represents statistical uncertainty, i.i.d. stands
for “independent and identically distributed”, and
N(0, γ2) denotes a Gaussian normal distribution with
zero mean and variance γ2. Conditioning on the data
y (and assuming fixed parameters µ, σ2 and l), the pos-
terior distribution of f at a new point on the parameter
space xnew can be shown to be [17]

[f(xnew)|y] ∼ N(µ∗(xnew), σ2∗(xnew)), (3)

where the posterior mean and variance are given by

µ∗(xnew) = µ+ k>new(K + γ2In)−1(y − µ1n)

σ2∗(xnew) = k(xnew,xnew)− k>new(K + γ2In)−1knew.

(4)

Here, knew = [k(xnew,xi)]
n
i=1 is the covariance vector

between the n existing design points of full-model runs
and a new, interpolated point in the parameter space,
and K = [k(xi,xj)

n
i,j=1] is the covariance matrix for the

simulated data. Equations (3,4) provide the basis for em-
ulator modeling: the posterior mean µ∗(xnew) serves as
the emulator model prediction at a new point xnew, and
the posterior variance σ2∗(xnew) yields a quantification
of emulator model uncertainty. A key appeal of GP em-
ulators is that both their prediction and uncertainty can
be efficiently computed via such closed-form expressions.
In practice, the parameters µ, σ2 and l are first estimated
using the maximum likelihood method [46], then plugged
into the predictive equations (4) for emulation (see [17]
for further details on plug-in predictors).

C. Emulator model specification

We now extend the above GP modeling framework to
build a transfer learning emulator model. Let fT (x) de-
note the simulator output at parameter x for the target
system, i.e., the system for which data4 are limited and

4 Here and in the following “data” is short for “full-model simula-
tion predictions”.



4

emulation is desired. Let fS(x) denote the simulator out-
put at parameter x for the source system, i.e., the system
for which a large set of simulation data is available. We
assume that the source and target systems share the same
parameter space.

We adopt the following transfer learning model linking
the source and target systems:

fT (x) = ρfS(x) + δ(x). (5)

Here, ρ is a linear correlation coefficient linking the source
system to the target and will be estimated from data
using maximum likelihood methods. The function δ(x)
models the discrepancy (i.e. systematic differences) be-
tween source and target after accounting for correlations.
Since neither fS(x) nor δ(x) are known with certainty,
we then place independent priors on both terms:

fS(x) ∼ GP{µS , kSES (·, ·)}, δ(x) ∼ GP{µδ, kSEδ (·, ·)},
(6)

where different variance and length-scale parameters are
used for the squared-exponential kernels kSES and kSEδ . As
before, the GP mean parameters µS and µδ, variances σ2

S
and σ2

δ , and length-scales lS and lδ are estimated from
data using maximum likelihood methods.

Consider now the simulation data for training: for the
source system, suppose noisy outputs yS =

(
yS1 , . . . , y

S
m

)
are available at parameters XS = (xS1 , . . . ,x

S
m) via the

sampling model

ySi = fS(xSi )+εSi , εSi
i.i.d.∼ N(0, γ2S), i = 1, . . . ,m. (7)

For the target system, suppose also that noisy outputs
yT =

(
yT1 , . . . , y

T
n

)
are simulated at parameters XT =

(xT1 , . . . ,x
T
n ) via

yTj = fT (xTj )+εTj , εTj
i.i.d.∼ N(0, γ2T ), j = 1, . . . , n. (8)

The goal is to realize computational savings by keeping
the sample size n for the target system much smaller than
the sample size m for the source system.

Conditioning on both sets of data yS and yT (and
assuming fixed GP model parameters), the posterior dis-
tribution for the target system fT at a new parameter
xnew can be shown to be

[fT (xnew)|yS ,yT ] ∼ N(µ∗T (xnew), σ2
T
∗
(xnew)), (9)

where the posterior mean and variance of the transfer
learning emulator model are given by

µ∗T (xnew) = ρµS + µδ

+ k>newΣ−1

([
yS
yT

]
−

[
µS1m

(ρµS + µδ)1n

])
,

σ2
T
∗
(xnew) = ρ2kS(xnew,xnew) + kδ(xnew,xnew)

− k>newΣ−1knew,

(10)

with knew = [kSnew,k
T
new] and kSnew = [k(xnew,xi)]

m
i=1,

kTnew = [k(xnew,xj)]
n
j=1, and

Σ =

[
KS(XS) + γ2SIm ρKS(XS ,XT )
ρKS(XS ,XT )T ρ2KS(XT ) + Kδ(XT ) + γ2T In

]
.

Equation (10) provides the predictive equations for our
transfer learning emulator model: µ∗T (xnew) serves as the

emulator model prediction while σ2
T
∗
(xnew) quantifies its

uncertainty. These closed-form equations enable efficient
probabilistic predictions from the proposed model. As
before, the parameters µ, σ2, l and ρ are estimated using
maximum likelihood [46] (first for the source, then for
the discrepancy), then used in the predictive equations
(10) for emulation of the target system.

The discrepancy function δ(x), which captures the sys-
tematic differences between the source and target, can
then be estimated from equation (5) as:

δ̂(x) = µ∗T (x)− ρµ∗S(x), (11)

where µ∗T (x) is the posterior mean in equation (10) and
µ∗S(x) is the posterior mean of Gaussian process emula-
tor in equation (4). A careful analysis of the estimated

discrepancy function δ̂(x) can yield useful insights on the
different physics between the source and target systems.
We explore this further in Section IV.

The above transfer learning emulator model is closely
related to the KO model which is widely used for multi-
fidelity emulation. The KO model aims to emulate a
high-fidelity computer simulation, using data simulated
from lower-fidelity approximations of the same system.
The KO model is similar in spirit to Equation (5) in
that the high-fidelity code is modeled as a linear au-
toregressive formulation of the low-fidelity code, plus a
discrepancy term to account for systematic bias. The
key difference for the proposed model is that instead of
transferring learning from simulations of different fideli-
ties for the same system, our emulator model is trained
by transferring knowledge between high-fidelity simula-
tions of different systems that have common traits.

III. TRANSFER LEARNING EMULATORS FOR
RELATIVISTIC HEAVY ION COLLISIONS

All large scale Bayesian parameter estimations for rel-
ativistic heavy ion collisions have been made computa-
tionally feasible by using GPs as surrogates for compu-
tationally expensive simulations. The biggest computa-
tional cost associated with any such analysis is in gener-
ating training data for the GPs. In this section, we com-
pare the accuracy and the computational cost associated
with two distinct emulation methods: direct emulation
with traditional Gaussian Processes and our novel trans-
fer learning emulation method. We show that transfer
learning requires significantly fewer training data from
the computationally expensive simulation and thus low-
ers the computational barrier associated with Bayesian
parameter estimation for complex problems, such as the
one posed by the dynamical modeling of relativistic heavy
ion collisions. Transfer learning is a particularly power-
ful tool for situations where (i) the training data on the
target alone are insufficient to fit a good emulator, and
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Observable Type
Centralities

Au+Au at 0.2 TeV Pb+Pb at 2.76 TeV
Charged particle multiplicity; dNch/dη None [0-5], [60-70]
Pion multiplicity; dNπ/dy [0-5], [40-50] [0-5], [60-70]
Mean transverse momenta of pions; 〈pT 〉π [0-5], [40-50] [0-5], [60-70]
Two-particle elliptic flow of charged particles; v2{2} [0-5], [40-50] [0-5], [60-70]
Fluctuation in the mean transverse momentum of charged
particles; δpT /pT

None [0-5], [55-60]

TABLE I. Observables used for emulation

(ii) the amount of training data available on the source
is much larger than that for the target.

A. Multistage model of relativistic heavy ion
collision simulations

The relativistic heavy ion collision model used in the
present work [14] involves the following modules describ-
ing different evolution stages:

1. TRENTo: A phenomenological model of the initial
energy deposition after the impact of the nuclei [47,
48].

2. Freestreaming: A model for weakly-coupled pre-
equilibrium dynamics, covering the first fm/c or so
[49–51].

3. Relativistic viscous hydrodynamics, describing the
dissipative evolution of near-equilibrium QCD mat-
ter with the code MUSIC [52–56].

4. Particlization: Conversion of the fluid into particles
after it cools down below the critical temperature
where QGP converts back into hadrons, described
by the Cooper-Frye formula [57, 58]. To parameter-
ize the local hadron phase space distributions using
only the ten components of the energy momentum
tensor evolved by the hydrodynamic model, three
different models with different physics assumptions
are explored:

(a) Grad viscous corrections, which expand the
distribution function up to second order in
hadron momenta [59];

(b) Chapman-Enskog (CE) viscous correc-
tions, which solve the Relaxation-Time-
Approximation Boltzmann equation for
linearized corrections to the distribution
function [60]; and

(c) Pratt-Torrieri-Bernhard (PTB) modified equi-
librium viscous corrections [61] which uses an
exponential ansatz ensuring a positive definite
distribution function.

These corrections are implemented using the iS3D
sampler [62, 63].

5. Hadronic decays and re-scatterings are modeled
with Boltzmann kinetic transport using the code
SMASH [64, 65].

To apply and test transfer learning techniques in this
setting, we use a very large set of full-model simulation
data that were generated for calibrating the JETSCAPE
modeling framework [14], including the following sys-
tems:

1. Pb+Pb collisions at
√
sNN = 2.76 TeV with

(a) Grad viscous corrections,

(b) Chapman-Enskog viscous corrections, and

(c) Pratt-Torrieri-Bernhard viscous corrections;

2. Au+Au collisions at
√
sNN = 0.2 TeV center of

mass energy with Grad viscous corrections.

All these simulations share the same set of 17 model
parameters described in [11, 14]. For model calibra-
tion, full-model simulations were performed at 500 de-
sign points that uniformly cover the 17-dimensional pa-
rameter space within a finite 17-dimensional cube de-
scribed in [11, 14], using maximin Latin Hypercube sam-
pling [66].5 For each design point and each particlization
model, 2500 simulations were performed with stochasti-
cally fluctuating initial conditions and particlization re-
sults. For each design point and particlization model,
a multitude of experimental observables were computed
and compared with the corresponding experimental data.
We use full-model predictions for only a subset of these
observables (listed in Table I) to illustrate the proposed
transfer learning emulator. For simplicity, we focus here
on only two collision centralities, “central” ([0%-5%] cen-
trality) and “peripheral” ([40%-50%] centrality for the
Au+Au collisions at RHIC, and [55%-60%] or [60%-70%]
(whichever was the most peripheral bin available) for the
Pb+Pb collisions at the LHC), and also leave out the
yields and mean transverse momenta of kaons and pro-
tons, charged hadron triangular flow and transverse en-
ergy (ET ) distributions.

For each choice of collision system and particlization
model, we thus have a set of 473 samples of the param-
eter space (design points) that provide mean values and

5 For technical reasons, only the simulation results from 473 of
these 500 design points were used in the present analysis.
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errors for each observable to train its emulator. To test
the performance of the trained emulator we also gener-
ated additional test data sets for each model: 100 design
points from a separate maximin Latin Hypercube design.
Note that the emulators are not trained directly on the
observables (as predicted by the simulations) listed in
Table I: we first perform a standardization of each of the
observables using the means and variances of the source
simulation data. These transformations are slightly dif-
ferent from those used in [14] – see Appendix A for de-
tails.

The test data set for each model is used to evaluate the
performance of each emulator by calculating the mean
squared error (MSE):

MSE =
∑

i∈{test design}
l∈{observables}

[
Ŷ lsim(xi)− Ŷ lemu(xi)

]2
NtestNobs

, (12)

where xi are the model parameters for the ith test de-
sign point and Ŷ lsim, Ŷ

l
emu represent standardized (See

Appendix A) simulation and emulation outputs for the
lth observable. We will show plots of the MSE for tar-
get emulators constructed with n target training points
(1 ≤ n ≤ 473), using either the standard GP training
protocol or the transfer learning protocol, and compare
their performance as a function of n. As discussed in
Sec. II C, the transfer learning emulator is trained by us-
ing these n sets of target data on top of a source emulator
that has been previously trained with a larger number m
of design points from the source system (here m = 473).

B. Transfer learning between different collision
systems

As our first application of transfer learning meth-
ods, we build emulators for simulated Au+Au collisions
at
√
sNN = 0.2 TeV as the target system, using avail-

able trained emulators for Pb+Pb collisions at
√
sNN =

2.76 TeV as our source. The two emulation methods
discussed previously are trained for each of the six ob-
servables shown in the Au+Au column of Table I, as
a function of the number of design points n for which
full-model simulations of the target system are available.
We do this by first randomly dividing the total set of
nmax = 473 simulation data for the target from previ-
ous work [11, 14] into 10 roughly equal size sets (nine
batches of 47 plus one batch of 50 design points). We
then train the emulators using only one batch of target
design points, and then repeat the training procedure af-
ter successively adding the remaining batches. After each
training step, we compare the predictions for the observ-
ables from the trained emulators with the full-model test
data for the 100 parameter sets in the test design, and
compute its mean squared error (MSE, Eq. (12)). The
result is shown in Fig. 1 as a function of the number n
of target designs used for training.

FIG. 1. Mean squared error prediction accuracy of emulators
for Au+Au collisions at

√
sNN = 200 GeV using the Grad

particlization model. The transfer learning emulator uses a
source emulator trained on model simulations for Pb+Pb col-
lisions at

√
sNN = 2700 GeV. The MSE shown is averaged

over all observables, but the curves for the MSE of individual
observables look all very similar. See text for discussion.

The dashed orange line in the figure (labeled GP)
shows the MSE for the GP emulator of the target system
using the standard training protocol, without any help
from the source system emulator. The dotted red hori-
zontal line shows the final MSE reached by this method
using all 473 available target design points from the full-
model simulation data, with the shaded band represent-
ing a 10% variation around this value. The solid blue
line (labeled TL) shows the MSE for the proposed trans-
fer learning emulation method, which, in addition to the
n target design points, also makes use of the information
from the previously trained, costly GP emulator for the
source system. The two red dots indicate the smallest
number n of target design points needed, for each emu-
lator, for its MSE to come within 10% of the “asymp-
totic precision” (defined by the MSE at the maximally
available number of target training points) shown by the
dotted red line.

The solid blue curve denoting the transfer learning
MSE clearly shows that the TL emulator is more ac-
curate than the traditional GP emulator (dashed orange
curve), for all values n of the number of target design
points used. The relative advantage of the transfer learn-
ing emulator is particularly evident for small numbers of
target system design points. For example, when using
only 47 design points for Au+Au, the transfer learning
emulator has approximately half the mean squared er-
ror of the traditional emulator. Note that, even in the
“asymptotic limit” when all 473 target design points are



7

used, the proposed transfer learning emulator still yields
improved precision over the standard GP emulator, by
leveraging information from the source system emulator.

As expected, for both emulator models, the emulation
prediction error (in terms of MSE) decreases monoton-
ically with increasing number of target training points
n. For the proposed transfer learning emulator, the rate
of decrease is not always uniform, which suggests that
there is a diminishing marginal decrease in MSE for each
additional target design point. In other words, at a cer-
tain point, the “new” information provided by the target
training data is minor compared with the “old” informa-
tion already contributed by the source system emulator.

Another way to quantify the success of the proposed
transfer learning emulator is via the two large red dots in
Fig. 1, where it can be seen that the same Au+Au colli-
sion simulation can be emulated with the same accuracy
at half the number of full-model simulations. This level of
success of transfer learning is quite encouraging, consid-
ering that the target here (Au+Au at

√
sNN = 200 GeV)

involves collisions at more than an order of magnitude
lower center of mass energy than the source system
(Pb+Pb collisions at

√
sNN = 2760 GeV).

C. Transfer learning between different viscous
corrections at particlization

As discussed in Section III A, the multistage dynamical
modelling of heavy ion collisions requires approximations
and switching between different physical pictures which
is associated with theoretical uncertainty: different mod-
elling choices can be made in each collision stage, based
on different assumptions or approximations of the gov-
erning physics. Different choices lead to models whose
predictions differ from each other in quantitative detail
but share qualitative features and common trends un-
der variation of certain experimental control parameters,
such as collision energy, collision centrality, system size
etc. For each such model variant, teaching these trends
to an emulator for its observables requires evaluating the
full model at a large number of design points. Transfer
learning offers a more computationally efficient strategy:
after having spent large numerical resources on the train-
ing of sufficiently accurate emulators for the observables
predicted for one such model variant (the source), equally
accurate emulators for other variants (the targets) can be
obtained at a fraction of the cost by transferring some of
the qualitative tendencies from source to the targets.

We illustrate this idea here by considering as source
and targets model variants obtained by swapping out one
particular module in the multistage model, the particliza-
tion module (we refer to the discussion in Sec. III A). We
consider Pb+Pb collisions at the LHC, simulated with
Grad model particlization, as our “source”, and the same
collisions simulated with Pratt-Torrieri-Bernhard (PTB,
Fig. 2) or Chapman-Enskog particlization (CE, Fig. 3)
as our “targets”.

The data we work with are the simulated model out-

FIG. 2. Mean squared error prediction accuracy of emulators
for Pb+Pb collisions at

√
sNN = 2760 GeV using the Pratt-

Torrieri-Bernhard particlization model. The transfer learning
emulator uses a source emulator trained on model simulations
for Pb+Pb collisions at the same

√
sNN using the Grad parti-

clization model. The MSE shown is averaged over all observ-
ables, but the curves for the MSE of individual observables
look all very similar. See text for discussion.

puts for each of the three particlization models from the
same design points discussed in the preceding subsection,
a maximum of 473 points for emulator training plus a
fixed number of 100 design points for emulator testing.
Different from before, a larger set of observables is avail-
able for Pb+Pb collisions at the LHC than we had to
emulate for Au+Au collisions at RHIC (c.f. Table I).
We follow the same training strategy as described in the
preceding subsection, for emulators predicting the model
outputs for this larger set of observables but using the
same design point batches as considered before. To zero
in on the relative performance of the TL and GP em-
ulators for the hypothetical case where only very small
numbers of target model design points are available, we
additionally divided the 473 total target design points to
which had access randomly into smaller batches of 5 de-
sign points each, allowing studies of the evolution of the
emulators’ MSE with n for smaller n-values (see inset in
Fig. 3).

In Figs. 2 and 3 we note that the transfer learning emu-
lators again already approach their asymptotic accuracy
within 10% for a much smaller number of target design
points than those generated with the standard GP train-
ing protocol, similar to the preceding subsection. We also
note that for the case of different particlization routines
shown in Figs. 2 and 3 the accuracy advantage of the TL
emulators over their GP siblings begins to disappear once
about 60% of the maximally available number of target
training points (nmx = 473) have been used.
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FIG. 3. Same as Fig. 2 but for a target using Chapman-
Enskog particlization.

For small numbers of target design points n ∼ 50,
the TL emulators have approximately one third or less
of the mean squared error of the traditional GP emu-
lators for the targets involving a change of particliza-
tion model, compared to the factor two reduction for
the target involving a lower collision energy studied in
Sec. III B. Amazingly, the inset in Fig. 3 shows that for
the CE particlization model the MSE prediction accu-
racy of the TL emulator needs only 35 target training
points to reach within 10% of its asymptotic value, and
is not much worse even for as few as only 5 target train-
ing points. This means that the qualitative trends of the
observables predicted by the Grad and CE particlization
models must be very close (much closer than between
the source and the other two target models studied in
this work), and teaching these trends to the target emu-
lator via transfer learning almost completely obviates the
need for additional information from full-model simula-
tions of the target model. While this is clearly a special
situation, it illustrates the huge cost-saving potential of
transfer learning if ways can be found to reliably diag-
nose the convergence of the emulator accuracy towards
its asymptotic value.

IV. SENSITIVITY ANALYSIS

There is evident interest in understanding the effect of
individual model parameters on specific observables, to
gain intuition about what the experimental data might
tell us about the underlying physics and medium proper-
ties. This relation between parameters and observables is
often explored through “sensitivity analysis”, though the
exact method varies. Examples from the field of heavy
ion physics can be found in Refs. [5, 14, 67, 68].

Transfer learning offers an interesting new way of per-
forming sensitivity analysis, by systematically investigat-
ing which model parameters contribute to non-trivial dif-
ferences in parameter dependencies between source and
target models. As described in Sec. II, Eq. (11), these
differences can be characterized by the correlation coeffi-
cient ρ and its corresponding discrepancy function δ(x).

By estimating both ρ and δ̂(x) from data, we can then
perform a sensitivity analysis on the estimated discrep-

ancy function δ̂(x). Below, we perform such an analysis
using the proposed transfer learning emulator and the
scenarios discussed in the preceding section.

There are two main types of sensitivity analysis meth-
ods from the uncertainty quantification literature [69]:
local or global ones. Local sensitivity analysis can quan-
tify the model sensitivity for an observable at a fixed pa-
rameter value, such as the maximum a posteriori (MAP)
estimate obtained from parameter inference. On the
other hand, global sensitivity analysis provides an av-
eraged quantification of sensitivity for each parameter
over the full parameter space. In what follows, we focus
on the latter global sensitivity analysis of the estimated

discrepancy function δ̂(x) (11).
We first introduce the first-order Sobol’ indices [70], a

popular method for analyzing global sensitivity. Sobol’
indices [71, 72] quantify the importance of each parame-
ter for a given function δ(x), by decomposing its contri-
bution to the variance of δ(·) over the parameter space.
The first-order Sobol’ index for model parameter xj is
defined as:

VarXj (EX−j (δ(X)|Xj))

VarX(δ(X))
, j = 1, . . . , q. (13)

Here, Xj is an independent uniform random variable
for parameter xj over its parameter range, and X =
(X1, · · · , Xq) is its corresponding random vector for all
parameters. The term EX−j

(δ(X)|xj) is called the main
effect of parameter xj : given fixed j-th parameter Xj =
xj , it averages the function δ(·) uniformly over the re-
maining parameters X−j = X \ Xj . This is formally
defined as

EX−j
(δ(X)|Xj) =∫
X−j

δ(x1, . . . , xq) dU(x1, . . . , xj−1, xj+1, . . . , xq),

(14)

where U(x1, . . . , xj−1, xj+1, . . . , xq) is the uniform proba-
bility measure over X−j , the parameter space X omitting
the j-th parameter. The first-order Sobol’ index (13) thus
quantifies the importance of parameter xj , by taking the
ratio of VarXj

(EX−j
(δ(X)|Xj)), the variance accounted

for by the main effects EX−j
(δ(X)|Xj), over VarX(Y ),

the total variance of δ(·) over all parameters. For costly
simulations such as for heavy ion collisions, the integral
in (14) can be expensive to evaluate. A standard ap-
proach [69] (which we adopt) is to replace the expensive
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δ(·) with the estimated discrepancy δ̂(·) (11) from the
emulator model.

One can further modify the Sobol’ indices in (13) by
grouping together similar model input parameters. The
grouped Sobol’ indices in [70] accomplish this. The q
input parameters X = (X1, · · · , Xq) (assumed again to
be uniformly distributed) are first divided into J groups
(X1, · · · ,XJ), given by:

(X1, · · · , Xq) = (X1, . . . , Xk1︸ ︷︷ ︸
X1

, . . . , XkJ−1+1, . . . , Xq︸ ︷︷ ︸
XJ

).

The first-order grouped Sobol’ indices can then be defined
as:

Sj =
VarXj (EX−j (Y |Xj))

VarX(Y )
, j = 1, · · · , J, (15)

where X−j = X\Xj consists of all parameters except for
those in group j.

In our implementation, all simulation models consider
the same q= 17 input model parameters. We group these
parameters into six groups according to similarities of
their functionality in our model. We employ the following
parameter grouping:6

• N: The normalization parameter in TRENTo

• TRE: All other parameters in the TRENTo initial-
state module.

• Free-streaming: Parameters controlling the free-
streaming time

• η/s: All model inputs that parameterize the tem-
perature dependence of the specific shear viscosity.

• ζ/s: All model inputs that parameterize the tem-
perature dependence of the specific bulk viscosity.

• Tsw: The particlization temperature separating hy-
drodynamics and hadronic transport.

This grouping provides meaningful insight on the global
sensitivity of the discrepancy between the source and tar-
get systems. Our grouped sensitivity analysis agrees with
previous sensitivity studies, while providing more concise
results with clearer implications.

The left column of Fig. 4 shows the global sensitivity
of the model for Pb+Pb collisions at 2.76 TeV with Grad
viscous corrections, obtained from the source model em-
ulators discussed before. The six panels in that column
correspond to three different observables, each at two
different centralities. Within each panel, each of the six

6 Note that the results from grouped sensitivity analysis may de-
pend on both the grouping of parameters as well as the choice
of model parameterization (e.g., how η/s(T ) is parameterized),
thus one must be careful about the interpretation of such analy-
ses. Further details on this can be found in [73].

FIG. 4. First order group Sobol’ sensitivities of the Pb+Pb
2.76 TeV source simulation (left) and of the discrepancy GP
for Au+Au 200 GeV target simulation (right).

bars represents a different group of model parameters. In
central collisions (0-5% centrality), the overall pion yield
is mostly sensitive to the normalization constant N for
the initial energy density profile, the pion mean trans-
verse momentum reacts most strongly to changes in the
specific bulk viscosity, and the charged hadron elliptic
flow is most sensitive to TRENTo model parameters (in
particular, to the granularity of the initial energy den-
sity fluctuations). At first it may seem surprising that v2
reacts more strongly to the TRENTo parameters than to
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the specific shear viscosity but this becomes clearer once
one remembers that η/s controls the hydrodynamic re-
sponse to the initial-state source eccentricity ε2, i.e. the
ratio v2/ε2. The large sensitivity of v2 to the TRENTo pa-
rameters really reflects their dominant effect on ε2 which
is bigger than that of η/s on the ratio v2/ε2. In pe-
ripheral collisions, on the other hand, the left column of
Fig. 4 exhibits additional sensitivities that are much less
prominent in central collisions: The overall pion yield
now also exhibits sensitivity to the TRENTo parameters;
this would be consistent with a stronger viscous heating
effects caused by increased granularity in the smaller fire-
balls generated when the nuclei hit each other at larger
impact parameters. The pion mean transverse momen-
tum shows additional sensitivity to the TRENTo param-
eters and free-streaming time which control the early
build-up of radial flow [49]. And the influence of η/s
on the charged hadron v2 grows in relative importance.

In the right column of Fig. 4 we show the sensitiv-
ity of the discrepancy GPs between Pb+Pb

√
sNN =2.76

TeV Grad (source) and Au+Au
√
sNN =200 GeV (tar-

get) model outputs. Clearly, for all three observables,
at both collision centralities, the discrepancy GPs share
a high sensitivity to the normalization parameter N .
This is expected since the most striking difference be-
tween these two collision systems is their total multi-
plicity, driven by the much higher collision energy at
the LHC compared to RHIC. We further observe that
the discrepancy GPs related to mean transverse momen-
tum (〈pT 〉π) and flow observables (v2{2}) have a signif-
icant sensitivity to the model parameters related to the
pre-equilibrium stage, both via the TRENTo initialization
model and the duration of the free-streaming stage. This
indicates that the pre-equilibrium dynamics depends sen-
sitively on the center of mass energy of the collision.
Interestingly, the discrepancy GPs for the mean trans-
verse momentum observable are found to be insensitive
to the TRENTo parameters and the switching tempera-
ture (which is mostly constrained by the chemical com-
position of the final hadronic stage [14]). Similarly, the
discrepancy GPs for the elliptic flow observables show
only weak sensitivity to the specific viscosities.7 In other
words, these observables share roughly the same degree
of sensitivity to these parameters at both collision en-
ergies – these are the types of systematic trends in the
simulations that make transfer learning efficient.

In Fig. 5 we show the analogous sensitivity plots for
the discrepancy GPs for the Pb+Pb CE (left column)
and Pb+Pb PTB (right column) target models.8 Com-

7 The non-vanishing (albeit weak) sensitivity of v2{2} to the pa-
rameters describing the temperature dependence of the specific
shear viscosity in central collisions and to the specific bulk viscos-
ity in peripheral collisions supports the frequently made assertion
that collisions at different center of mass energies should help to
constraint the temperature dependence of these viscosities.

8 The source sensitivities shown in the left column of Fig. 4 are
the same for all three targets.

FIG. 5. First order group Sobol’ sensitivities of discrepancy
GPs. Pb+Pb with CE viscous corrections (left) and Pb+Pb
with PTB viscous corrections (right).
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pared to Fig. 4 we include two additional observables
(the total charged hadron multiplicity density dNch/dη
and the normalized pT -fluctuations δpT /〈pT 〉), again for
two collision centralities, resulting in ten panels for each
target model. In central collisions, for both targets the
majority of the discrepancy GPs (with the exception of
the ones emulating the pT fluctuations and elliptic flow)
are found to be most sensitive to the bulk viscosity pa-
rameters. Remembering that here the difference between
source and targets is how the viscous corrections are han-
dled during particlization, the sensitivity to the viscosity
parameterizations is not surprising. More insightful is the
observation that the sensitivity to the bulk viscosity sec-
tor is mostly stronger than to the shear sector. This may
be related to the fact that particlization at Tsw happens
just after hadronization of the QGP, and that the bulk
viscosity peaks near the hadronization phase transition.
The situation is, however, more complex in peripheral
collisions where the sensitivities to the bulk and shear
viscous sectors of parameter space differ between the CE
and PTB targets. Furthermore, the mean values and
fluctuations of the pion transverse momenta show dom-
inant sensitivities to different sectors of the parameter
space than the other observables. All this suggests that
Bayesian inference based on the available experimental
data should allow us to discriminate between the different
particlization models based on their ability to describe
the full spectrum of observations, and that combining
the strengths and weaknesses of these different models in
the future via Bayesian Model Mixing [74, 75] may lead
to overall tighter constraints on the fireball properties.

We close this section by noting that relating the source
and target model emulators in the form (5) and identi-
fying the corresponding linear correlation coefficient ρ

and discrepancy δ̂(x) may be a very broadly applicable
technique for gaining valuable insights into qualitative
similarities and differences between different models and
into their success and/or failure in describing a given set
of experimental data.

V. COMPUTATIONAL SAVINGS FROM
TRANSFER LEARNING

Relativistic heavy ion collision experiments produce
measurements for hundreds of observables. Since their
dynamics is too complex to be described analytically,
they are studied theoretically by building phenomeno-
logical models that are calibrated with the experimental
data. The models have multiple parameters describing
properties of the collision dynamics that can not (yet)
be computed from first principles and must be inferred
using the experimental measurements. After calibration
the models can be tested by predicting and measuring ad-
ditional observables. Since both the experimental data
and simulation model outputs have uncertainties associ-
ated with them, model calibration (a.k.a. solving “the
inverse problem”) requires a probabilistic framework.

As already briefly summarized in the Introduction,

Bayesian parameter inference is a framework that allows
for a systematic probabilistic accounting for our knowl-
edge about the model and its uncertainties. It is based
on Bayes theorem,

P(x|yexp) =
P(yexp|x)P(x)

P(yexp)
. (16)

Here P(x) is prior probability for the parameters x, and
P(yexp|x) is the likelihood function, describing the prob-
ability that model output with a given set of model pa-
rameters x agrees with the experimental data yexp. It is
usually assumed to be a Gaussian,

P(yexp|x) =
1√
|2πΣ|

exp
[
−1

2
y>Σ−1y

]
, (17)

where y ≡ [ysim(x)−yexp] is the deviation between model
prediction and experimental measurement, and Σ is the
total uncertainty, obtained by adding the experimental
and simulation uncertainties: Σ = Σexp + Σsim(x). For
heavy ion collisions y is a vector that can have more than
100 components, and Σ is a quadratic matrix of the same
dimensionality; |Σ| denotes its determinant.

The term P(x|yexp) on the left hand side of Eq. (16)
is called the posterior (short for “the posterior probabil-
ity density”). It describes the probability of the model
parameters x given the experimental data yexp, and it is
the main quantity of interest in Bayesian parameter in-
ference. Its functional form is generally not known ana-
lytically, in particular not for heavy ion collisions. To find
the most likely range for the parameters x and quantify
their uncertainty requires numerical techniques for finely
sampling the posterior in the neighborhood of the MAP
values of the parameters. This is typically achieved by
using Markov Chain Monte Carlo (MCMC) techniques.9

For each MCMC sample of the posterior (16) the like-
lihood function (17) must be evaluated; this requires
knowledge of the model prediction ysim at the sampled
parameter set x. In a high-dimensional parameter space
millions of MCMC samples are needed to explore the
posterior in sufficient detail. In principle, this requires
running the full-model simulation millions of times. For
heavy ion collisions this is practically infeasible, due to
the computational cost of each model simulation. This
is where numerically cheap surrogate models (emulators)
for ysim(x) come to the rescue. They can be trained by
using very much smaller numbers of full-model simula-
tions (typically hundreds, not millions). They do intro-
duce an additional emulation (or interpolation) uncer-
tainty which is known and can be simply added to the
total simulation uncertainty Σsim when evaluating the

9 These techniques require only relative probabilities, so the nor-
malization P(yexp) in the denominator on the right of Eq. (16)
(which is independent of the parameters to be inferred) does not
need to be calculated.
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Gaussian function (17), but which we want to keep at or
below the other uncertainties.

The biggest computational cost is now associated with
training the emulators, which requires generating full-
model simulation output at the training points. The
number of training points needed to build an accurate
emulator is therefore of crucial importance. For exam-
ple, one of the very recent Bayesian inference attempts
in relativistic heavy ion collisions [67] which went beyond
the work in [14] by emulating additional observables and
multiple collision systems, used 64 million CPU hours for
emulator training. The authors of [67] considered only a
single evolution model which does not provide access to
estimating modeling uncertainties as in [11].

The analysis in [11] calibrated each of the different
model variants by using the same set of training points,
thus multiplying the cost of emulator training by the
number of variants. For the extended set of collision
systems and higher-statistics observables studied in [67]
this would already no longer be practical. The transfer
learning technique presented in this work lowers this bar-
rier by reducing the number of training points for subse-
quent model variants once an accurate emulator has been
trained for the first model.

The full-model simulations used in this paper take on
average O(1000) CPU hours for each design point in
model parameter space [14]. A majority (80%) of the
CPU time is spent on the hadron transport stage after
particlization; the remaining CPU time (20%) is mostly
utilized by the hydrodynamic QGP evolution code. In
figure 6 we show the CPU hours needed to build accu-
rate emulators for the three target model variants dis-
cussed in this work, with or without transfer learning

FIG. 6. Comparison between computational resources used
by transfer learning (left blue bars) and the traditional GP
emulation method (right orange bars).

from a previously trained source emulator (whose train-
ing cost was about 25% higher than the middle orange
bar).10 For this plot, we decided on the required number
of training samples for each emulator by requiring con-
vergence of the mean squared error to within 10% of the
“asymptotic” accuracy, as shown in Figs. 1–3. We note
that the transfer learning method incurs significantly less
computational cost compared to the standard GP train-
ing protocol. When the source and target models have a
much in common (such as the Pb+Pb Grad and Pb+Pb
CE models), the computational savings can exceed an
order of magnitude (see right bars in Fig. 6).

We note, however, that the cost for the 100 full-model
test samples needed to evaluate the MSE and the cost
for determining its “asymptotic” value are not accounted
for in Fig. 6.11 The (possibly large) computational cost
for additional test runs can be largely avoided by using
a cross-validation approach [76], which randomly splits
the available target data into training and validation sets
multiple times. One then obtains an error estimate by
fitting the emulator on the training set and testing on
the validation set, cycling through the different splits.
Cross-validation error estimates, however, are known to
be upwardly biased [76]. This should not be a big issue
when using the cross-validation MSEs as a criterion for
how many full-model target simulations to use in trans-
fer learning. For the current study, however, we were
interested in a precise understanding of the convergence
properties of the transfer learning method and therefore
elected to use unbiased MSE estimators by running a new
set of test samples for validation.

VI. IMPLICATIONS FOR THE STUDY OF
HEAVY ION COLLISIONS

Theoretical progress in the phenomenological study
of relativistic heavy ion collisions is made by develop-
ing increasingly accurate theoretical models of the colli-
sions that can describe both past and future experimental
data. Bayesian parameter estimation in relativistic heavy
ion physics approaches this aim in two different ways:
First, including more experimental data in the analysis,
by using multiple collision systems and adding new ob-
servables, leads to tighter bounds on the QGP properties.
Second, accounting more faithfully for theoretical uncer-
tainties results in more robust uncertainty estimates for

10 Different viscous corrections during particlization in the Pb+Pb
system at LHC energies affect only the hadronic evolution af-
ter particlization. Since we take the source simulations as given,
we exclude in the figure the computational cost incurred up to
particlization. With this accounting, exploring the effects of dif-
ferent viscous corrections in the same collision system requires
only O(800) CPU hours per design point on average, for both
emulation methods.

11 Accounting for the cost of generating the 100 full-model test
samples would add about 100,000 CPU hours to each of the bars
displayed in Fig. 6.
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the QGP parameters. Accounting for model differences
by Bayesian Model Averaging (BMA, as done in [11])
usually results in weaker constraints (broader posteriors)
on the plasma properties, but does not account differen-
tially for specific strengths and weaknesses of each model
in different regions of parameter space. Bayesian Model
Mixing [74, 75] has the potential to mitigate this short-
coming, leading to modeling uncertainties that lie be-
tween those of BMA and those of a single model analysis.

For both approaches, improved knowledge extraction
comes at a steep computational cost. Mitigation calls
for the development of increasingly efficient emulation
techniques, to reduce as much as possible the need for
computationally expensive runs of increasingly complex
models. This work offers transfer learning as one such
instrument in the Bayesian inference tool box with the
potential for significant numerical cost savings. As shown
in Sec. III, it addresses both the need for including more
observables and for studying multiple variants of the the-
oretical model. By cutting the cost of Bayesian param-
eter estimation, we open the door to viable systematic
analyses of measurements from heavy ion data from mul-
tiple collision systems, accounting for multiple sources of
theoretical model uncertainties, and yielding increasingly
accurate constraints on the properties of the plasma.

VII. CONCLUSIONS AND OUTLOOK

In this work we introduced and studied transfer learn-
ing as a novel method for training emulators for rela-
tivistic heavy ion collision simulations. We showed that
this method is surprisingly effective and can significantly
reduce the computational cost associated with building
emulators. Furthermore, we saw that there is a wealth of
information in the discrepancy GP which is a by-product
of transfer learning methods and offers new ways of com-
parison between different simulation models. To decipher
the information in the discrepancy GPs, we performed a
global first order Sobol’ sensitivity analysis in Sec. IV.

The transfer learning method introduced in this work
has the limitation of requiring the same set of parameters
in both the target and source models. We have ideas for a
more general knowledge transferring framework that can

handle different parameterizations of source and target,
but this will have to wait for future work.

The field of relativistic heavy ion collisions has gen-
erated a multitude of different dynamical simulation
models, and their number keeps growing. A system-
atic approach to accurately account for the theoreti-
cal uncertainties introduced by these model ambiguities
is urgently needed from a statistical and information-
theoretical perspective [75]. With the present contribu-
tion we hope to help lower the barrier to implementing
such a paradigm change.
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Appendix A: Standardization of the observables

We standardize all simulation data before they are used
to train the emulators. This is achieved by performing a
standard normal transformation (A1) on the training and
test data, using the means and variances of the predicted
observables of our source model, i.e. for Pb+Pb collisions
at
√
sNN = 2.76 TeV with Grad viscous corrections:

Ỹ lj =
Y lj − µlGrad

σlGrad

, (A1)

µlGrad =
∑
i

Y li,Grad

Ntrain
, (σlGrad)2 =

∑
i

(
Y li,Grad−µlGrad

)2
Ntrain

.

Y li,Grad is the lth observable from the source simulation i,
and i is summed over all events in the training design.
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