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We provide a microscopic description of the fusion reactions between 40,48Ca and 78Ni. The internuclear
potentials are obtained using the density-constrained (DC) time-dependent Hartree-Fock (TDHF) approach and
fusion cross sections are calculated via the incoming wave boundary condition method. By performing DC-
TDHF calculations at several selected incident energies, the internuclear potentials for both systems are obtained
and the energy-dependence of fusion barrier are revealed. The influence of tensor force on internuclear potentials
of 48Ca+ 78Ni is more obvious than those of 40Ca+ 78Ni. By comparing the calculated fusion cross sections
between 40Ca+ 78Ni and 48Ca+ 78Ni, an interesting enhancement of sub-barrier fusion cross sections for the
former system is found, which can be explained by the narrow width of internuclear potential for 40Ca+ 78Ni
while the barrier heights and positions are very close to each other. The tensor force suppresses the sub-barrier
fusion cross sections of both two systems.

I. INTRODUCTION

Heavy-ion fusion reactions are of particular importance
to extend the nuclear chart and for the synthesis of heavy
and superheavy elements [1,2]. The development of mod-
ern radioactive-ion-beam facilities have greatly broadened our
ability to explore the relation between nuclear structure and
reaction mechanism [3,4], especially via fusion reactions of
exotic nuclei, including weakly bound or halo nuclei and nu-
clei with a large neutron excess.

The nucleus 78Ni is found to be doubly magic with a large
neutron excess (N − Z). After its discovery [5], there have
been many theoretical and experimental investigations on its
structure properties including shell closures at Z = 28 and
N = 50 [6–9], half-life [10–12], energy spectra [13–15], and
shape coexistence [16,17]. In a recent investigation on Ni iso-
topes [18], it has been shown that the tensor part of the Skyrme
energy density functional (EDF) significantly affects the spin-
orbit splitting of the proton 1 f orbit, which may explain the
endurance of magicity far from the stability valley. This in
turn further solidifies the durability of the Skyrme EDF in re-
producing the observed shell effects.

But up to now, there has been no theoretical investiga-
tion of fusion reactions with 78Ni as reactants, particularly
also incorporating the tensor force. To study the influence
of neutron excess on fusion, doubly magic nuclei 40,48Ca
have been widely used as reactants to study reactions, such
as 40,48Ca+ 90,96Zr [19–22], 40,48Ca+ 124,132Sn [23,24], vari-
ous Ca+Ca systems [25,26], and 40Ca+ 58,64Ni [27], among
others. It has been shown that the tensor force also affects
the heavy-ion collision process [28–30], the potential bar-
rier, and fusion cross sections [31–33]. Therefore, it is in-
teresting to study the effects of tensor force for the reactions
40,48Ca+ 78Ni. To that end, the purpose of the present investi-
gation is to predict the fusion cross sections for 40,48Ca+ 78Ni
and study the impact of the tensor force on above and below
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barrier collisions. Study of such reactions may become feasi-
ble at modern radioactive-ion-beam facilities in the future.

Most of theoretical approaches used to study the fusion
cross sections at both above and below barrier energies have
similar starting point, the ion-ion potential. There are mainly
two approaches to determine the ion-ion internuclear potential
to study fusion reactions: phenomenological ones [34–44] and
(semi)microscopic ones [45–57]. Although phenomenologi-
cal models have been successfully applied to study many as-
pects of reactions data, their information content is limited due
to several adjustable parameters and the absence of dynamics
to formulate potentials, such as the Bass model [34], the prox-
imity potential [35,58], the double-folding potential [36], and
driven potential from dinuclear system model [37]. Fusion
process is particularly complex and the cross section is influ-
enced by many underlying quantal effects. For this reason, it
is preferable to use a microscopic model that incorporates the
nucleonic degrees of freedom so that the nuclear shell struc-
ture and the dynamical effects of the reaction system can be
included on the same footing for a more reliable prediction.

The time-dependent Hartree-Fock (TDHF) approach with
the mean-field approximation, has been successfully applied
to study many aspects of low-energy heavy-ion collisions
by calculating the wave functions of nucleons in the three-
dimensional grids, and considering the structure information
of the entrance channel simultaneously (see Refs. [59–63] and
references therein). Because the TDHF theory describes the
collective motion in a semiclassical way, the quantum tunnel-
ing of the many-body wave function is not included. There-
fore, the TDHF theory cannot be directly used to describe
sub-barrier fusion. The fusion cross sections at above and
below barrier energies are usually obtained by solving the
Schrödinger equation with ion-ion potentials deduced from
TDHF calculations. Several techniques have been devel-
oped to obtain internuclear potential within the framework
of TDHF, such as frozen HF [64,65], density-constrained
(DC) TDHF [50], density-constrained frozen HF [57,66],
dissipative-dynamics TDHF [54], and the Thomas-Fermi ap-
proximation [51]. Among them, the potentials from the DC-
TDHF approach can naturally incorporate all dynamic effects
including nucleon transfer, neck formation, internal excita-
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tions, deformation effects, and manifestation from the time
evolution of the initial configuration. It has been shown in
many studies that the calculated fusion cross sections based on
the ion-ion potentials with the DC-TDHF approach are gener-
ally in good agreement with measurements [31–33,50,55,67–
80].

This article is organized as follows. In Sec. II, we show
the main theoretical formulation of the DC-TDHF approach.
Section III presents the calculational details and the discussion
of results. A summary is provided in Sec. IV.

II. THEORETICAL FRAMEWORK

The theoretical framework to calculate the fusion cross sec-
tion based on the ion-ion potential with the DC-TDHF ap-
proach has been presented explicitly in Refs. [3,50,61,69].
Here we introduce the main formulation of this approach for
the convenience of discussion. In the TDHF approach, the
wave function of the many-body system is approximated as
a single Slater determinant composed of single-particle states
φi(r). With the mean-field approximation, the time evolu-
tion of the many-body wave function in the three-dimensional
space can be obtained by solving the coupled nonlinear equa-
tions for the evolution of the single-particle states

ih̄
∂

∂ t
φi(r, t) = hφi(r, t) , i = 1, · · · ,A , (1)

where h is the single-particle Hamiltonian obtained from the
Skyrme effective interaction including the contributions from
time-odd and tensor components.

Since the TDHF approach does not include the quantum
tunneling of the many-body wave function, it cannot be di-
rectly applied to study sub-barrier fusion reactions. Currently,
the fusion reaction is usually treated as a quantum tunneling
through an ion-ion potential in the center-of-mass frame. In
the DC-TDHF approach, to extract this internuclear potential
at certain times during the dynamic evolution, the instanta-
neous TDHF density ρ(r, t) is used to get the static HF mini-
mum energy [50]. This many-body state, |ΨDC〉, correspond-
ing to static HF variation process can be obtained by con-
straining the total density to be equal to the TDHF instanta-
neous density, corresponding to the internuclear separation,
R(t)

δ

〈
ΨDC

∣∣∣∣H−∫ d3rλ (r)ρ(r, t)
∣∣∣∣ΨDC

〉
= 0 . (2)

The ion-ion potential is then obtained by subtracting the bind-
ing energies of projectile and target nuclei, EP and ET, respec-
tively

V (R) = 〈ΨDC|H|ΨDC〉−EP−ET , (3)

This approach provides a microscopic internuclear potential
starting from Skyrme interactions and there is no additional
parameters.

Similarly, the coordinate-dependent mass, M(R), can be ob-
tained using the energy conservation and affects the energy-
dependence of potential [77]. For numerical advantages, we

use the reduced mass µ and transfer V (R) into a scaled poten-
tial V (R̄) via a scale transformation

dR̄ =

(
M(R)

µ

)1/2

dR . (4)

Subsequently, the penetration probabilities TL(Ec.m.), cor-
responding to orbital angular momentum L, are obtained by
solving the Schrödinger equation[
−h̄2

2µ

d2

dR̄2 +
L(L+1)h̄2

2µR̄2 +V (R̄)−Ec.m.

]
ψ(R̄) = 0 , (5)

with the incoming wave boundary condition method [81]. The
fusion cross sections at energies below and above the barrier
are then calculated as

σfus (Ec.m.) =
π h̄2

2µEc.m.

∞

∑
L=0

(2L+1)TL (Ec.m.) . (6)

III. RESULTS AND DISCUSSIONS

We start our investigations of these reaction systems by per-
forming TDHF calculations with the modified version of the
Sky3D code [82] that also incorporates the tensor part of the
effective interaction. This code was also used to perform cal-
culations in Refs. [31,32,83–86]. To obtain the ground states
of 40,48Ca and 78Ni, the static HF equation are solved on a
three-dimensional grid 28× 28× 28 fm3. These three nuclei
are all doubly magic and consequently their ground states are
spherical. Therefore, pairing correlations can be neglected in
both static and dynamic calculations. For the dynamic evo-
lution of central collisions, a three-dimensional grid with the
size of 56×40×40 fm3 is used and the grid spacing in each
direction is taken to be 1 fm. The time step is 0.2 fm/c. The
density constraint calculations are performed simultaneously
at every 20 time steps (corresponding to 4 fm/c interval). The
initial separation distance of two collision partners is taken to
be 20 fm. The convergence property in DC-TDHF calcula-
tions is as good as that in the traditional constrained HF with
a constraint on a single collective degree of freedom. All the
numerical conditions have been checked for achieving a good
numerical accuracy for all the cases studied here.

In this work, to explore the effects of tensor force on fu-
sion cross section, the Skyrme interactions SLy5 [87] and
SLy5t [88] (SLy5 plus tensor force) are used. These two in-
teractions have been used in many recent investigations with
DC-TDHF [31–33,80]. Additionally, in a recent investigation
on Ni isotopes [18], by comparing the calculations with SIII
interaction [89] and SIII plus tensor force, denoted by SIIIT,
it has been shown that the tensor part significantly affects the
spin-orbit splitting of the proton 1 f orbit that may explain the
survival of magicity far from the stability valley. Therefore,
SIII and SIIIT are also used in the present study on fusion
reactions 40,48Ca+ 78Ni. The strength of the tensor force is
taken to be the same as that given in Ref. [18].
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FIG. 1. Internuclear potentials obtained from DC-TDHF calculations for 40Ca+78Ni at ETDHF = 70 MeV (a), ETDHF = 80 MeV (b), ETDHF =
90 MeV (c) with density functionals SIII, SIIIT, SLy5, and SLy5t.
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FIG. 2. Internuclear potentials obtained from DC-TDHF calculations for 48Ca+78Ni at ETDHF = 70 MeV (a), ETDHF = 80 MeV (b), ETDHF =
90 MeV (c) with density functionals SIII, SIIIT, SLy5, and SLy5t.

In Figs. 1 and 2, we show the ion-ion potentials for 40Ca+
78Ni and 48Ca + 78Ni from DC-TDHF calculations at inci-
dent energies ETDHF = 70, 80, and 90 MeV with Skyrme in-
teractions SIII, SIIIT, SLy5, and SLy5t, respectively. As for
40Ca + 78Ni, it is found that the height and position of the
fusion barriers calculated by SLy5(t) and SIII(T) differ by
about 1.5 MeV and 0.3 fm, respectively. Since the N(Z) = 20
shell is spin-saturated while the shells with 28 and 50 are not,
the inclusion of the tensor force slightly influences the height
and position of the barriers for 40Ca + 78Ni. Although the
heights of the barriers increase slowly with the incident en-
ergy in DC-TDHF calculations, it is not so dramatic when
compared with those in heavy or superheavy systems, such
as 48Ca+ 238U [90]. For the 48Ca+ 78Ni system the effect
of the tensor force on barrier heights are more pronounced
than those for 40Ca+ 78Ni. The inner part of the potential,

which affects the sub-barrier fusion strongly, shows a more
significant change due to the tensor force in 48Ca+ 78Ni than
40Ca+ 78Ni. This may be partially due to the fact that N = 28
shell of 48Ca is spin-unsaturated while the N(Z) = 20 shell of
40Ca are spin-saturated. The effects of tensor force on the in-
ternuclear potentials of 40,48Ca+78Ni is similar with the cases
of 40,48Ca+ 48Ca shown in Ref. [32], in which the effects of
tensor force have been discussed explicitly and it is shown that
the tensor force influences internuclear potentials with spin-
unsaturated systems rather than spin-saturated ones. We also
note the more pronounced difference in the barrier widths for
the two systems. The effect of this on the fusion cross-sections
will be discussed below.

The fusion cross sections are calculated by using the trans-
formed ion-ion potentials with the reduced mass µ . Before
displaying the fusion cross sections of two reaction systems,
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FIG. 3. Transformed internuclear potentials for 40Ca + 78Ni and
48Ca+ 78Ni at ETDHF = 90 MeV with density functionals SIII and
SIIIT.
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FIG. 4. Transformed internuclear potentials for 40Ca + 78Ni and
48Ca+ 78Ni at ETDHF = 90 MeV with density functionals SLy5 and
SLy5t.

we make a comparison of transformed internuclear potentials
V (R̄) of 40Ca+ 78Ni with 48Ca+ 78Ni. Since the energy de-
pendence of potentials from DC-TDHF calculations for both
reactions are relatively weak, we show the transformed inter-
nuclear potentials with SIII and SIIIT effective interactions at
the incident c.m. energy ETDHF = 90 MeV in Fig. 3. As a re-
sult of the scale transformation, the inner part of the potentials
are broadened while the outer region of the potential barrier
are unchanged. This is due to the fact that the coordinate-
dependent mass changes the interior region of the potential
barrier since asymptotically it equals the reduced mass µ and
starts to deviate from this in the interior region. Similar con-
clusions can also be obtained for the potentials calculated with
SLy5 and SLy5t, which are shown in Fig. 4. In addition, the
difference caused by the tensor force on the inner region is
enlarged after the scale transformation, especially for the re-

action system 48Ca+ 78Ni. From Figs. 3 and 4, we see that
the position and height of the barriers for 40Ca + 78Ni and
48Ca+ 78Ni are very close to each other.

After obtaining the potentials, the fusion cross sections
can be calculated for all energies Ec.m. in the center-of-mass
frame. Usually, if the potentials are strongly dependent on
the incident energy ETDHF in TDHF simulations, they should
be applied for Ec.m. intervals close to a given ETDHF and av-
eraged over an energy interval [76,77]. For the potential of
40Ca+ 78Ni with SLy5, the height and position of the barri-
ers change from 65.7 MeV and 11.7 fm at ETDHF = 70 MeV
to 67.4 MeV and 11.3 fm at ETDHF = 90 MeV. The potential
of 48Ca+ 78Ni with SLy5 at high energy (ETDHF = 90 MeV)
has a barrier 67.5 MeV located at 11.3 fm, whereas the poten-
tial calculated at low energy (ETDHF = 70 MeV) has a barrier
66.4 MeV located at 11.6 fm. For potentials with other effec-
tive interactions, the changes caused by the ETDHF are similar
to the case of SLy5, therefore we do not discuss them in de-
tail. Generally speaking, this energy-dependence of the bar-
rier height and position for 40,48Ca+ 78Ni are relatively weak,
which is comparable with that for 16O+208Pb [69]. In present
investigation, we calculate the fusion cross section with the
potentials at ETDHF = 70, 80, and 90 MeV.
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FIG. 5. Fusion cross sections for 40Ca + 78Ni (upper panel) and
48Ca + 78Ni (bottom panel) at ETDHF = 70 MeV, 80 MeV, and
90 MeV, with density functionals SLy5 and SLy5t.

Figure 5 shows the calculated fusion cross sections for two
reaction systems at different ETDHF with SLy5 and SLy5t, and
those with SIII and SIIIT are presented in Fig. 6. First, let
us focus on the effects of tensor force. It is found that the
fusion cross sections at sub-barrier energies are lower after in-
cluding the tensor force for both two reaction systems and the
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FIG. 6. Fusion cross sections for 40Ca + 78Ni (upper panel) and
48Ca + 78Ni (bottom panel) at ETDHF = 70 MeV, 80 MeV, and
90 MeV, with density functionals SIII and SIIIT.

magnitude of this hindrance for 48Ca+ 78Ni is slightly larger
than that for 40Ca+ 78Ni. This is due to the tensor force in-
creasing the potential barrier and broadening the inner part the
potential. The influence of the tensor force on the fusion cross
section and the conclusions obtained in the present case are in
line with the conclusions of Ref. [33].

By comparing the fusion cross sections of two reaction sys-
tems, it is found that at sub-barrier energies, the fusion cross
sections of 40Ca+ 78Ni are larger than those of 48Ca+ 78Ni
by several times, meaning an enhancement of fusion cross
sections at sub-barrier energies for 40Ca+ 78Ni as compared
to the more neutron-rich system 48Ca+ 78Ni. In our cases,
by comparing the internuclear potentials, one observes that
the height and position of the barriers for both two systems
are almost the same, but the width of 40Ca + 78Ni is nar-
rower than that of 48Ca+ 78Ni, resulting in the enhancement
of sub-barrier fusion cross sections. This situation is similar
with the measurements of 132Sn+40Ca and 132Sn+48Ca [24].

The enhancement of sub-barrier fusion cross sections for
132Sn+ 40Ca has also been successfully explained by the DC-
TDHF calculations [76] and is due to its narrower width of
the ion-ion potential. Additionally, it is should be mentioned
that the transfer channels also play an important role for the
sub-barrier fusion and one can use the particle number projec-
tion methodr [91] to estimate the neutron transfer probabili-
ties. But this is beyond the scope of the present study.

IV. SUMMARY

Doubly magic nucleus 78Ni has a very large neutron excess
and its properties are connected with many essential ingre-
dients of nuclear-structure studies, thus drawing many theo-
retical and experimental interests. In this work, we present
the first microscopic study of the fusion reactions involving
this nucleus. By using the DC-TDHF approach, the ion-ion
potentials of 40Ca+ 78Ni and 48Ca+ 78Ni are obtained with
the only input being the Skyrme effective interactions. By
comparing the internuclear potential calculated by SIII (SLy5)
with SIIIT (SLy5t), we find that the tensor force increases
slightly the potential barrier and broadens the inner part the
potential, though the magnitude differs by the system. In
addition, the inclusion of the tensor force suppresses the fu-
sion cross sections at sub-barrier region. More interesting, it
is found that the height and position of the potential barriers
for 40Ca+ 78Ni and 48Ca+ 78Ni are very close to each other
while the barrier width of 40Ca+ 78Ni is more narrower than
that of 48Ca+ 78Ni. This results in an enhancement of fusion
cross sections of 40Ca+ 78Ni at sub-barrier energies. The re-
actions 40,48Ca+78Ni are expected to be performed at modern
radioactive-ion-beam facilities and the predictions presented
in this work provide a prior theoretical support.
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