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We conduct a comprehensive survey of the shape parameter space of the nuclear pasta phases
in neutron star crusts by conducting three-dimensional Hartree-Fock+BCS calculations. Spaghetti,
waffles, lasagna, bi-continuous phases and cylindrical holes occupy local minima in the resulting
constant-pressure Gibbs energy surfaces, implying multiple geometries coexist at a given depth.
Notably, the bi-continuous phase, in which both the neutron gas and nuclear matter extend contin-
uously in all dimensions appears over a large depth range.

Our results support the idea that nuclear pasta is a glassy system. At a characteristic temperature,
of order 108-109K, different phases may become frozen into domains whose sizes we estimate to be 1-
50 times the lattice spacing and over which the local density and electron fraction can vary. Above
this temperature, very little long-range order exists and matter is an amorphous solid. Electron
scattering off domain boundaries may contribute to the disorder resistivity of the pasta phases.
Annealing of the domains may occur during cooling; repopulating of local minima during crustal
heating might lead to temperature dependent transport properties in the deep crust layers.

We identify 4 regions distinguished by whether pasta is the true ground state, and whether the
pasta structure allows delocalization of protons. The whole pasta region can occupy up to 70% of
the crust by mass and 25% by thickness, and the layer in which protons are delocalized could occupy
45% of the crust mass and 15% of its thickness.

I. INTRODUCTION

As one moves deeper into the solid neutron star crust,
passing through the outer crust stabilized by degener-
ate electrons and the inner crust stabilized by neutrons
that have leaked out of the neutron-rich nuclei forming
the crystal lattice, the nuclei occupy an increasing vol-
ume of the matter. Soft-matter systems on Earth give
clues about what to expect as the separation between
nuclei become comparable with their size [1]. When
two fluid phases exist with one increasingly concentrated
with respect to another, matter is self-organized into a
number of different geometries. For example, aggregates
of amphiphilic molecules called micelles arrange them-
selves into spherical, cylindrical and planar phases with
increasing concentration in water [2]. This phenomenon
of self-orgnization can be understood to arise from frus-
tration: the microscopic components of the system are
subject to a competition between interactions operating
over similar length scales. The total energy cannot be
minimized with respect to all these microscopic interac-
tions simultaneously. There is not single potential well
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for the system to fall into; instead a rich energy landscape
of local minima separated by energy barriers of varying
heights emerges. Small changes in the initial conditions
of the system could lead to the microscopic constituents
arranging themselves in different ways. Such materials
are expected to have complex low-energy dynamics, giv-
ing rise to correspondingly complex behaviors of thermal
conductivities, electrical resistivities and elastic proper-
ties.

Our system of interest comprises a Coulomb lattice
of nuclei immersed in a fluid of neutrons. The micro-
scopic interactions in play are the nuclear force and the
Coulomb interaction. Throughout most of the inner
crust, the short range nuclear interaction binds nuclei
while the long rang Coulomb interaction drives the for-
mation and stability of the lattice, determining the spac-
ing between nuclei. As we move deeper towards the crust-
core transition, however, the separation between nuclei
becomes comparable with the length scale of the nuclear
interaction ∼ 10fm and frustration is expected to ensue.

Consequences of this convergence of length scales was
first studied by examining the compromise between sur-
face and bulk Coulomb energies of the nuclei in a liquid
drop model and led to the conclusion that a sequence of
exotic nuclear geometries became preferable at ≈ 0.5ρcc

where ρcc is the crust core transition density [3–6]. Cylin-
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drical, planar, cylindrical hole and spherical hole config-
urations was found to be energetically favored with in-
creasing density; the community has embraced a termi-
nology based on the resemblance of the shapes to different
forms of pasta [7], with the above sequence often referred
to as spaghetti, lasagna, anti-spaghetti (or bucatini [9])
and anti-gnocchi (with spherical nuclei cast as gnocchi).
Pasta phases also persist at high temperature [8]. More
recently, phases intermediate to this canonical sequence
have been explored, with perforated planar configura-
tions appearing between cylindrical and planar phases
(nuclear waffles [10]), planar phases with helical connec-
tors between sheets (parking garage structures [11]) and
bi-continuous-P and gyroid phases mediating the transi-
tion between between planar and cylindrical holes [12–
14] (we are awaiting the development of pasta forms that
mimic many of these phases). Many of these find coun-
terparts in the world in soft condensed matter [11, 15].
The behavior of soft condensed matter systems suggests
we should expect complex, potentially non-isotropic elas-
tic and transport properties in nuclear pasta.

The state-of-the-art simulating nuclear pasta over the
past two decades encompasses three dimensional quan-
tum mean-field simulations using relativistic and non-
relativistic energy density functionals (EDFs) [14, 16–
28], and classical and quantum molecular dynamics sim-
ulations which access larger computational volumes but
incorporate more schematic nuclear forces [10, 11, 29–46].
Microscopic quantum mean-field calculations demon-
strated the complexity of the energy landscape of nuclear
pasta which was shown to be enhanced by quantum shell
effects [47]. This strongly suggests the possibility that
pasta is highly disordered and amorphous with multi-
ple different nuclear shapes coexisting at a given depth
in the crust. Larger scale molecular dynamics simula-
tions reveal other sources of disorder: for example, from
topological defects in pasta [36], in which planar phases
develop defects in the form of bridges between adjacent
sheets.

As the crust cools, microscopic domains of different
pasta phases may form at the same crust depth [38] which
may persist on long timescales before annealing [48]. In-
dividual domains could have highly anisotropic elastic
and transport properties [49–51], for example arising be-
cause of the difference between electron scattering paral-
lel to spaghetti and lasagna structures and perpendicular
to them. However, averaging over domains may render
them more isotropic at the macroscopic level and reduce
the resistive effect of pasta [49]. However, the existence
of domains could give rise to another source of resistiv-
ity: electron scattering off domain boundaries. Thermal
fluctuations may destroy the long-range order of pasta
[48, 52] and may set the length scale of domains; those
length scales will determine if the rate of electron scat-
tering rate off domain boundaries is important for the
overall resistivity of the crust.

Pasta could account for 50% of the crust by mass
[53, 54], so there are observational consequences to the

microscopic organization of pasta. The increased resis-
tivity of disordered pasta could lead to potentially ob-
servable effects on the cooling curves of X-ray binaries
[55] and the evolution of pulsar magnetic fields [56].

Given that there are many low lying minima separated
by energy barriers, perhaps the best terrestrial analogue
is a glass: solids which, when heated, pass through an
amorphous phase before melting. One possible scenario
is as follows: as the neutron star cools below a charac-
teristic temperature set by the energy barriers between
local minima (either early in its life or after a period
of accretion-induced crustal heating), amorphous nuclear
pasta undergoes a transition in which it becomes frozen
into coexisting domains of a certain length scale. Anneal-
ing may then take place on a timescale that is uncertain
but could be long compared to, for example, the cooling
timescale of the crust. The energy spectrum of the pasta
phases, and the typical temperature and length scales in
play in this scenario, are the subject of this paper.

We aim to map out the energy surfaces of nuclear
pasta at a variety of densities by performing a large
number of three-dimensional Skyrme-Hartree-Fock+BCS
(3DHF+BCS) simulations at zero temperature and at
proton fractions around β-equilibrium. Although our
simulations are restricted to smaller computational vol-
umes than molecular dynamics simulations, we can ac-
cess zero temperature and lower proton fractions. Most
calculations are performed at a given density; however,
a given depth in the crust is defined by its pressure. In
order to examine coexisting domains, energy surfaces at
constant pressure must be calculated; the Gibbs free en-
ergy is the relevant quantity to compare different phases.
We will interpolate between calculations over a range of
densities to find the configurations at a constant pressure
and thus map out the Gibbs energy surfaces.

We aim to answer the following questions:

1. How many phases of pasta could coexist at a given
depth in the crust?

2. How does the structure of the energy surfaces
evolve with depth?

3. What is the characteristic temperature below which
pasta could be locked into microscopic domains?

4. What are the characteristic length scales of the do-
mains?

In section II we describe the numerical method. In sec-
tion III we describe our results, starting with a detailed
description of our analysis of one particular layer, then
displaying the rest of our results layer-by-layer. In sec-
tion IV we analyze what our results imply for the deep
layers of the neutron star crust, and in section V we give
out conclusions.
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II. NUMERICAL METHOD

There are many detailed accounts of the Skyrme-
Hartree-Fock method [57], and we have outlined the
method used in our previous paper [20]. Here we high-
light details of the implementation that are important for
this study.

A. Skyrme Hartree-Fock

Approximating the ground state many-body wave-
function as a Slater determinant Φ, and minimizing
the Skyrme energy density functional ESkyrme[Φ] =

〈Φ|ĤSkyrme|Φ〉 with respect to the single particle wave-
functions obtains the Skyrme Hartree-Fock equations.
We write them with the inclusion of a quadrupole con-
straining potential, explained below, as

[−∇ ~2

2m∗q
∇+ uq(r) + λc ·Q]φi,q(r) = εi,qφi,q(r). (1)

where q = p,n label the isospin states, i the single particle
states. uq are the one-body Hartree-Fock potentials:
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and m∗q is the effective mass.
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2 + x2)]ρq . (2)

Here ti,xi and α are parameters of the Skyrme interaction
(for which we use the NRAPR parameterization [71]),
ρ = ρp + ρn are the nucleon densities and τ = τp + τn are
the kinetic energy densities.

A key feature of our simulations is the quadrupole po-
tential term we have added to the single particle Hamilto-
nian λc ·Q to control the geometry of the nucleon density
distribution so we can systematically survey the shape

space of the pasta configurations. The quadrupole oper-
ator has elements in coordinate space

Qab = 3xaxb − r2δab (3)

with {xa} = x, y, z.
Restricting ourselves to triaxial shapes, the quadrupole

operator becomes diagonal Qa = 3x2
a − r2. The strength

of the constraining force has components λc,a. This is
an artificial potential whose strength is reduced to zero
as we approach convergence, so that it doesn’t give an
artificial contribution to the total energy [58].

B. The computational grid

We solve the Hartree-Fock equations in coordinate
space. The computational domain is taken to be a
cube defined by Cartesian coordinates xa with the ori-
gin at the centre of the cell. Each co-ordinate runs over
−la ≤ xa ≤ la so that the length of the cell in each di-
rection is 2la. The space is discretized to form a grid of
collocation points xa,i with even spacings in each direc-
tion ∆xa, defined by

xa = (i+
1

2
)∆xa i = −Na,−Na + 1, ...Na − 1. (4)

where Na is the number of collocation points we use
in direction a. In this work we use cubic cells so
Nx=Ny=Nz=N . To make a large set of calculations fea-
sible, we take parity in all three directions to be a good
quantum number. It is thus sufficient to calculate just
one octant of the computational cell. This means we
limit ourselves to surveying tri-axial shapes only. This
means that certain topologically distinct phases (such as
the gyroid) will be omitted.

φi,q(r + T) = φi,q(r), (5)

where T is the translation vector from the position r to
the equivalent positions in the adjacent cells. The bound-
ary conditions are enforced by representing the deriva-
tives and solving for the Coulomb potential in Fourier
space. The Coulomb solver is implemented using the
FFTW software package [60]. Integrals on the grid are
performed using the trapezoidal rule which is exact for
functions represented by Fourier series [61].

The restrictions we impose above on our computational
space are necessary for the large survey of densities, pro-
ton fractions and nuclear shapes to be tractable. They
impose limitations noted below.

• We do not include the spin-orbit potential. This
has the added benefit of the wavefunctions being
entirely real functions and therefore reducing the
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computational cost. Although the spin-orbit inter-
action is important in determining the details of the
energy spectrum in finite nuclei, it has been shown
to make a much smaller contribution under crust
conditions at high density, especially for the un-
bound neutron gas [62]. The spin-orbit interaction
is thus not included in our simulations at present.

• Enforcing simple periodic boundary conditions
rather than the full Bloch boundary conditions
makes the simulations susceptible to spurious shell
effects [26]. These arise in large part from the arti-
ficial discretization of the unbound neutrons’ single
particle spectrum caused by restricting the calcu-
lations to a finite volume. This makes comparing
results at different cell sizes unreliable as in low
proton fraction matter the variation of the spurious
contribution to the shell energy is of similar mag-
nitude to the the physical contribution, and conse-
quently we cannot find the energetically preferred
unit cell size. We will therefore restrict ourselves
to probing the shape of nuclear configurations at
constant cell sizes.

C. Single particle states

Our solution to the Hartree-Fock equations begins
with an initial guess for the wavefunctions. We have
found that starting the neutron wavefunctions as plane
waves and the proton wavefunctions as harmonic oscil-
lator wavefunctions leads to most efficient convergence;
other combinations of initial wavefunctions were tested,
and it was verified that they lead reliably to the same
ground state configurations so long as we impose the
quadrupole constraint to control the shape of the con-
figuration. The number of possible single particle states
we can represent on our grid is (N − 1)3, and we evolve
all of them; those that start out unoccupied often evolve
to be occupied in the converged final state.

We impose BCS pairing, so that single particle states
are occupied according to the distribution function

wpair
k,q = 1

2

(
1− εk,q − εF,q√

(εk,q − εF,q)2 + f2
k,q∆

2
q

)
. (6)

where fk,q is a function that acts to cutoff coupling to
continuum states and confine the active pairing space to
the vicinity of the Fermi surface [63]. The pairing gap ∆q

is taken to be a constant, set as ∆q = 11.2MeV/
√
A [64].

Other than the fact that pairing is a physical feature of
our system, it significantly improves convergence of our
iterations.

D. Iterative solution

We solve the HF equations iteratively, forming densi-
ties and potentials from the current wavefunctions and
solving the HF equations to obtain new wavefunctions
repeatedly until the wavefunctions converge. We com-
bine two different algorithms to achieve the convergence
to the ground state with maximum efficiency.

We start off using the imaginary time step itera-
tion [65], an adaptation of the time dependent HF it-

eration φ
(n+1)
i,q = e−iĥ

(n+1/2)
HF ∆t/~φ

(n)
i,q which evolves the

wavefunctions by a time interval ∆t. Here, ĥ
(n+1/2)
HF is a

numerical approximation to the Hamiltonian at the half
time step (n + 1/2)∆t. The imaginary time step is ob-

tained by replacing ∆t with −i∆t and ĥ
(n+1/2)
HF with ĥ

(n)
HF.

Defining the parameter λ = ∆t/~, and expanding the ex-
ponential in a power series, the (n+ 1)th wavefunction is
formed from the nth by:

φ
(n+1)
i,q = e−λĥ

(n)
HFφ

(n)
i,q =

kcut∑
k=1

1

k!
(−λĥ(n)

HF)kφ
(n)
i,q (7)

where λ controls the magnitude of the imaginary time
step, that is the size of the iterative step. We can ad-
just the number of terms contained in the exponential
expansion through kcut.

The imaginary time step iteration is very robust - even
if we start with a set of initial wavefunctions that are far
from those of the ground state solution, it will remain sta-
ble. It converges quickly initially, but as one approaches
convergence, it slows down exponentially. Thus, when we
get closer to the ground state we switch to the damped
gradient iteration [58, 66]. Here, the (n+ 1)th wavefunc-
tion is formed from the nth by:

φ
(n+1)
i,q = φ

(n)
i,q − x0D̂(e0)(ĥ

(n)
HF − ε

(n)
i,q )φi,q, (8)

where the damping operator

D̂ =

[
1 +

t̂x
e0

]−1[
1 +

t̂y
e0

]−1[
1 +

t̂z
e0

]−1

, (9)

acts to damp out large kinetic energy components of the
wavefunctions with kinetic energies above e0 that slow
down convergence. Here t̂a are the one-dimensional ki-
netic energy operators. The damped gradient iteration
requires initial wavefunctions that are relatively close to
the actual ground state wavefunctions otherwise it be-
comes unstable. It converges roughly linearly and so is
more efficient than the imaginary time step at late times.

E. The Quadrupole Constraint

In order to systematically survey the spectrum of nu-
clear geometries and their corresponding energies, we
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FIG. 1. The pure neutron matter EOS of the NRAPR Skyrme
parameterization used in this work (red dashed line) com-
pared to the region predicted by ab-initio calculations of PNM
[67–69]. Given the importance of the PNM EOS to crust
properties, it is important to consider the consistency of the
interaction used to model the crust and our best theoretical
knowledge of PNM.

need control the geometry of the ground state to which
an iteration converges without excluding any of known
pasta geometries. To do this we implement a quadrupole
constraint. Given the reflection symmetry, the next order
deformation, consistent with our boundary conditions, is
hexadecapole. It is expected to give energy variations
at least an order of magnitude smaller than that of the
quadrupole deformation.

Taking the quadrupole operator to be diagonal, the
quadrupole moments of the nucleon density distribution
are the matrix elements

qa = 〈Q̂a〉 =

N∑
i=1

〈φi|Qa|φi〉. (10)

The three non-zero quadrupole moments must also ful-
fil qx + qy + qz = 0, so just two of them are independent.
The nuclear shape can be parameterized in Cartesian or
spherical polar coordinates

R = R0(1 + αxξ
2 + αyη

2 + αzζ
2)

= R0(1 + α20Y20(θ, φ) + α2+2Y2+2(θ, φ)

+ α2−2Y2−2(θ, φ)), (11)

where qa = R0αa for {a} = x, y, z, R0 is the root mean
square nuclear radius, ξ = x/R0, η = y/R0 and ζ =
z/R0. The spherical polar moments are related to their
Cartesian counterparts via

α2±2 =

√
2π

15
(αx − αy) ≡ α2, (12)

α20 =

√
8π

90
(2αz − αx − αy) ≡ α0, (13)

where α0 is the relative stretch along the z axis of the
nuclear cluster with respect to the x and y axes and α2

is the relative difference in length between the x and y
axes. We can define the parameters β, γ [70]:

α0 = β cos γ α2 =
1√
2
β sin γ, (14)

analogous to polar co-ordinates in (α0, α2) space: β rep-
resents the magnitude of the deformation of the configu-
ration, and γ the direction of the deformation from pro-
late γ = 0o to oblate γ = 60o.

We specify our desired quadrupole moments through
the polar co-ordinates α, β given in equation (14). These
are then turned into the moments qa through equa-
tions (12) and (13), the requirement that αx+αy+αz = 0
and the definition qa = R0αa.

The force strength needs to be updated iteration by it-
eration as it drives the quadrupole moments towards the
desired values [58]. Denoting the quadrupole moments
we wish our nuclear configuration to converge towards by
qa,0, the procedure is as follows: An intermediate itera-

tion is carried out |φ̃(n)
i 〉 = OI[(ĥHF + x0λ

(n)
c · Q̂)|φ(n)

i 〉],
where I represents the operation of either the imagi-
nary time step iteration or the damped gradient iter-
ation, and x0 is the same parameter that controls the
damped gradient iteration step. Intermediate quantities

|φ̃(n)
i 〉, ρ̃(n), q̃

(n)
a , q̃

2 (n)
a are calculated. The compo-

nents of the constraining force strength are updated at
each step according to

λ(n+1)
c,a = λ(n)

c,a +
c0(q̃

(n)
a − q(n)

a )

2x0(q
2 (n)
a − (q

(n)
a )2/Nq) + d0

, (15)

where Nq is the number of particles of species q. We
define

δλc,a =
c0(q

(n)
a − qa,0)

2x0(q
2 (n)
a − (q

(n)
a )2/Nq) + d0

. (16)

Finally, the (n + 1)th wavefunctions are formed as

|φ(n+1)
i 〉 = O[(|φ̃(n)

i 〉 − x0(λ
(n+1)
c − λ(n)

c + δλc) · Q̂)|φ̃(n)
i 〉]

from which we finally obtain the updated quantities.
Here, c0 and d0 are parameters adjusted for optimum
convergence of the constraint iteration. This proce-
dure must be performed for the three components of the
quadrupole moment a ∈ {x, y, z}. Note that as we con-
verge to the ground state with the desired quadrupole
moments, the strength of the constraining force tends to
zero.

We apply the constraint only to the neutrons; test sim-
ulations show that the proton density distribution follows
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FIG. 2. The red and blue dashed lines are the bounds of
the total nucleon number in the cell Acell and the average
proton fraction yp from a compressible liquid drop model us-
ing the NRAPR interaction [71] and varying the surface en-
ergy parameters over a reasonable range [72]. Vertical dotted
lines indicate the transition to cylindrical nuclear pasta, slabs,
cylindrical holes and spherical holes with increasing density.
The transitions are accompanied by discontinuities in the cell
size. The blue diamonds are the values of Acell we choose to
perform our 3DHF calculations at. The red points indicate
the beta-equilibrium proton fractions we at each density from
our 3DHF calculations, and the “error bars” through them
indicate the range of proton fractions we performed calcula-
tions at.

the neutron density distribution to a good degree of ac-
curacy [59]. It is important to note that the constraint
itself does not bias us; as we shall see, the constraint
phase space we explore admits all triaxially symmetric
pasta shapes, and by systematically exploring that space
we allow for the appearance of all possible shapes.

F. Numerical parameters and testing

The simulations were conducted with the following pa-
rameter values. The imaginary time step iteration had a
step size of λ = 5× 10−4 and a cutoff in the exponential
at 5th order. The damped gradient iteration has a step
size of x0 = 0.4 and kinetic energy cutoff of 40 MeV. The
quadrupole iteration has parameters c0=0.03, d0=0.9.

Convergence is achieved when the sum of the vari-
ance over all the wavefunctions

∑
i wi,q[〈φi,q|h2

HF|φi,q〉 −
(〈φi,q|hHF|φi,q〉)2] drops below 1 keV2, which generally
corresponds to convergence in the total energy of order 1
part in 108 or better. It takes of order 1,000-10,000 itera-
tions per run to achieve this convergence, corresponding
to run times of 1-10 hours.

The code was comprehensively tested and validated as
outlined in [20]. It was established that the optimal grid
spacing (the compromise between accuracy and compu-

tation time) is 1.2-1.3 fm, which we use here. We es-
tablished that the periodic boundary conditions have a 1
part in 104 effect on the total energy of the cell, and that
the nuclear shapes we obtain are not artifacts of the finite
cell size (the same nuclear shapes are obtained when we
double the cell size in in each direction).

G. Nuclear Interaction Used

The pressure, and hence stability, of the inner crust is
provided by the fluid of dripped neutrons in which the
lattice of nuclei and nuclear pasta is immersed. ab-initio
pure neutron matter (PNM) calculations are therefore an
important guide for neutron star EOSs [73, 74]. In our
investigation, it is important to choose a nuclear model
that predicts a pure neutron matter EoS consistent with
these calculations. We choose the NRAPR parameter-
ization of the Skyrme interaction [71], which is fit to
the APR neutron matter EOS. It gives a slope of the
symmetry energy of L = 60 MeV, which is of interme-
diate stiffness. Figure 1a shows the NRAPR EOS and
the band from recent ab-initio calculations of the PNM
matter EOS [67–69]. The extent of the pasta phases is
sensitive to the EOS, particularly the symmetry energy
parameters of nuclear matter; a follow-up study will ex-
amine the dependence of our results on the EOS. Prelim-
inary results suggest the results are qualitatively similar.

H. Choosing the cell size and proton fraction

It is currently computationally prohibitive to conduct a
full minimization over cell size. The presence of spurious
shell effects make such a minimization unreliable, and in
future a consistent minimization should be done using
methods that minimize spurious shell effects, such as the
use of twist-averaged boundary conditions [26].

Instead, we choose to conduct the calculations at cell
sizes and proton fractions guided by the compressible
liquid-drop model (CLDM) [72]. We have checked the
proton fractions corresponding to beta equilibrium for
both the 3DHF model and CLDM, and they agree well.
In Figure 2 we show the predictions of the proton frac-
tion yp and total nucleon number in the unit cell Acell

from the CLDM varying the surface energy of the CLDM
over a wide range, together with total nucleon numbers
Acell and range of proton fractions we choose to perform
calculations at in this work. The total nucleon number
characterizes the cell size at a given baryon density nb,
since the computational volume we use is calculated as
V = A/nb. Our choice of Acell as a function of density
follows the rough trend predicted by the CLDM.

At each density, we perform calculations at two to
three of values of Acell to assess the Acell dependence
of our results. We find no qualitative dependence of our
results on Acell, so will present our results for a single
representative cell size. We also calculate a number of
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FIG. 3. Energy-deformation surfaces at an average density of nb = 0.06 fm−3 for cells containing Acell=614 nucleons and a
proton fraction of 0.023 (a), 0.026 (b) and 0.029 (c). Many local minima (dark blue troughs) appear in the landscapes; the
pasta configurations appearing in those minima can be seen in Fig. 5.

different proton fractions to make sure we can locate β-
equilibrium within our quantum simulation: the varia-
tions with yp will be explicitly presented. The range of
proton fractions covered are indicated by the bars on the
proton fraction points in Figure 2.

III. RESULTS

We perform around 500,000 CPU hours of 3DHF+BCS
calculations. To give a detailed example of our methods,
we will first present an analysis of the layer of pasta at a
baryon number density of around nb=0.06 fm−3. We will
then move to lower and higher densities to examine the
layers where pasta first emerges and finally transitions
to uniform matter, before summarizing results across the
whole pasta region.

A. A case study: nb ≈ 0.06 fm−3.

We begin our investigation by calculating the minimum
energy configurations at a constant cell size correspond-
ing to a total nucleon number of Acell=614, which is in
the range predicted by the CLDM calculations. We per-
form calculations over a range of deformation parameters:
the full range of γ from prolate configurations γ = 0◦ to
oblate configurations γ = 60◦ with a step of ∆γ = 5◦,
and for a range of magnitudes of deformation β that cover
all unique local minima, which at this density ranges up
to β = 0.24. We use a step size of ∆β = 0.03. We
perform these calculations at a range of different val-
ues of the proton fraction in order to locate the beta-
equilibrium value. The results are shown for the three
values of yp around beta-equilibrium: yp=0.023, 0.026
and 0.029 (corresponding to proton numbers of Z=14,16
and 18).

In Figure 3 we show the resulting energy surfaces as a
function of deformation (β, γ). The energy per baryon is
plotted versus the magnitude β and direction γ of the de-
formation. The most important feature is that there are
multiple local minima in all three energy surfaces, visible

as the darker blue regions. There are minima located in
broadly the same regions of deformation space for each
proton fraction: at small deformations in the interme-
diate to oblate sense (β = 0.03 − 0.06, γ ≈ 30 − 60◦),
at stronger prolate deformations (β = 0.12 − 0.18, γ =
0 − 25◦) and high deformations in the oblate direction
(β = 0.15−0.21, γ = 50−60◦). The lowest energies occur
for the proton fraction of yp = 0.26. However, the energy
separation of local minima is small and there is no obvi-
ously pronounced ground state. This initial calculation
confirms a number of other microscopic studies that have
shown that matter deep in the crust is frustrated, and
might have an amorphous, heterogeneous structure char-
acterized by many local energy minima [16]. The next or-
der deformation consistent with the symmetry of the unit
cell used, hexadecapole, is expected to give energy vari-
ations an order of magnitude smaller than those of the
quadrupole deformation. However, we should be aware
that the particular pasta phase found at a given (β, γ)
point is unlikely to be unique: different pasta phases with
the same (β, γ) but different higher order moments could
exist.

It is worth thinking about how matter with this struc-
ture will behave as the crust of the neutron star cools.
Different local regions of a given layer inside the star
will fall into different local minima, and when the tem-
perature falls below some critical value associated with
the energy barriers between minima they will be trapped
in those minima for some quantum tunneling timescale
(which is likely to be related to the very uncertain pyc-
nonuclear fusion timescale of heavy nuclei just above the
pasta layers). On longer timescales, the crust might be
able to anneal and eventually all the pasta at a given
density could be converted into the ground state con-
figuration. Depending on the temperature scales set by
the energy barriers between local minima, crustal heating
later in the neutron star’s life might repopulate the local
minima. Thus the pasta layers might plausibly transi-
tion between a single pasta configuration and multiple
coexisting pasta configurations at different stages in the
star’s life.

Here we explore the possibility that different phases
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FIG. 4. Gibbs energy-deformation surfaces (a-c) and average baryon density surfaces (d-f) at a constant pressure of 0.291 MeV
fm−3 for cells containing Acell=614 nucleons. Results are shown for proton fraction of 0.023 (a,d), 0.026 (b,e) and 0.029 (c,f).
The local minima differ in baryon density by of order 5%. The pasta configurations appearing in those minima can be seen in
Fig. 5.

corresponding to the local minima coexist in microscopic
domains, at a given depth in the crust. Such domains
would exist in equilibrium at constant pressure; however,
the calculations we perform are at constant density rather
than constant pressure. In order to determine the local
minima that will coexist, we need to calculate the Gibbs
free energy at constant pressure as a function of β and
γ.

In order to do this, we perform calculations of the en-
ergy surfaces over a range of densities in the range nb

= 0.058fm−3 - 0.062fm−3. We pick a reference pressure,
which we choose to be that of the zero-deformation con-
figuration (β, γ) = (0, 0◦), at nb = 0.06fm−3: Pref =
0.291 MeV fm−3. We then use interpolation to find the
density at which the pressure is equal to the reference
pressure for all other deformation values, and the energy
at that density. We then calculate the specific Gibbs free
energy G = E + P/nb. The interpolations assume there
is no discontinuous change in energy with density at a
particular point in deformation space, which would be
associated with a change of shape. This can’t be guar-
anteed, but so long as the interpolation window is small
and we use a sufficiently large number of points in de-
formation space, we can reasonably assume it will occur
infrequently enough that it will not affect the global fea-
tures of the energy surface. Such discontinuities would
show up as artifacts in the energy surfaces, and we see
no such features.

In Figure 4a-c we show the Gibbs free energy surfaces
at constant pressure in deformation space at the three

values of the proton fraction, and in Figure 4d-f we show
the corresponding density variations over each surface.
In all three cases, local minima appear at broadly the
same locations as we found in the internal energy surface
at constant density nb. The range of average baryon den-
sity is smaller than the range over which we performed
the interpolations, indicating the interpolations are ro-
bust. Domains in different regions of deformation space
will have different average baryon densities, so if they
coexist at a given density in the crust, there will be fluc-
tuations in density of order 10−3 fm−3, or ∆nb/nb ∼ 1%
of the total density. These fluctuations will have length
scales corresponding to the size of the domains, which
we will estimate shortly. The three regions where min-
ima occur are large oblate deformations (higher density),
small intermediate deformations (intermediate density)
and intermediate prolate deformations (lower density).

Local minima in the Gibbs energy surfaces are sepa-
rated by energy barriers. In order to more clearly see
the relative height of the barriers and the difference in
energy between local minima, we now plot the energy
along one-dimensional paths across the deformation land-
scapes. We choose plots that link local minima by contin-
uous deformation and require traversing the smallest en-
ergy barriers possible. The top of Fig. 5 shows the Gibbs
energy surfaces from Figure 4 with the paths marked.
The central plot on Fig. 5 shows the Gibbs energy along
those paths. In order to orient the reader, the direc-
tions marked by the arrows on the surface plots show
the direction moving left to right in the main plot of the
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one-dimensional trajectories. We also show selected val-
ues of the deformation coordinates (β, γ) along the one
dimensional trajectories.

The plot of the energy along the trajectories shows
that indeed the Gibbs energy is on average lowest for
the proton fraction of yp=0.026. However, two minima
at a proton fraction yp=0.029 have smaller Gibbs ener-
gies than some local minima at yp=0.026. There may be
a local variation of average proton fraction (and hence
electron density) from domain to domain.

We have circled the 6 lowest local minima. All other
local minima can access these six local minima by con-
tinuous deformation and adjusting their proton fraction
through beta decay and electron capture without hav-
ing to pass over an energy barrier. For example, matter
at the local minimum at yp=0.29, (β, γ) ≈ (0.06, 60◦)
can reach the minimum at yp=0.26, (β, γ) ≈ (0.06, 60◦)
through electron capture.

The pasta configurations corresponding to each of the
6 minima are revealed by plotting surfaces of constant
neutron density in our unit cell. These are shown in the
six plots under the one dimensional energy plot. The
neutron density at which to plot these surfaces is cho-
sen to be the average neutron density nb(1 − yp). The
following pasta configurations are found:

• yp = 0.026, (β, γ) = (0.18, 60◦) - the nuclear waffle
phase (the “hole” of the waffle is centered on the
edge of each cell).

• yp = 0.026, (β, γ) = (0.15, 25◦) - the nuclear
spaghetti phase.

• yp = 0.026, (β, γ) = (0.18, 15◦) - another form of
nuclear waffle; large spherical nuclei with bridges
connecting to adjacent cells in two different direc-
tions. The nucleus is centered on the y-boundary
of the computational volume.

• yp = 0.026, (β, γ) = (0.06, 15◦) - Similar to the
previous configuration, a deformed nucleus with
bridges to adjacent cells. The nucleus is now cen-
tered in the computational volume.

• yp = 0.029, (β, γ) = (0.18, 45◦) - the nuclear waffle
phase.

• yp = 0.029, (β, γ) = (0.18, 45◦) - nuclear waffle
phase (like the waffle configuration at yp = 0.026,
the “hole” of the waffle is centered on the edge of
each cell).

The detailed structure of the minima is dependent on
the nuclear interaction used and the total cell size. How-
ever, a precise extraction of the relative energy differences
of minima and the barrier heights is not merited, as it
is extremely unlikely that those details will ever be ac-
cessible through observational data. Hence, instead of
using the exact values of the energies of all six minima
and the barriers between them, we create a slightly sim-
pler model based on these results. The model is depicted

schematically in Fig. 6. We first reduce the number of
minima from six to four, representing the four distinct
configurations present. The two forms of nuclear waffle
are distinct enough that we include them as separate con-
figurations, though they may not give rise to any observ-
able differences). The yp = 0.026, (β, γ) = (0.06, 15◦)
and (0.18, 15◦) minima are essentially the same, so we
take the lowest of those two minima and ignore the other
one (which, being the highest lying of the minima, will be
least populated). Also, we treat the two waffle phases at
yp = 0.029 as a single minimum. Although these are sim-
ilar to the waffle phase at yp = 0.026, the different pro-
ton fractions makes them physically distinct. Finally, we
make the simplification that there is just one single char-
acteristic barrier height between phases, Gbarrier, taken
to be the average of all the barriers between minima.

The four minima are represented schematically in
Fig. 6. Under each minima we plot the neutron surfaces
again for stacks of 4x4 unit cells of matter, in order to
better see the structure of matter at larger scales (but
note that the computation is done only in one unit cell).
We have four distinct phases: the ground state is the waf-
fle phase consisting of large nuclei connected to adjacent
cells in two directions. The next lowest lying minimum is
the spaghetti phase. Then the next two are nuclear waf-
fle phases - intermediate phases between spaghetti and
lasagna - at two different proton fractions.

In order to characterize the properties of these possi-
bly amorphous phases of matter, we borrow a concept
from the study of terrestrial amorphous materials. An
effective or “fictive” temperature, Tf [75] is defined as
the temperature from which, if the material was instan-
taneously quenched to zero temperature, or any other
temperature T < Tf , its state would be that of the ma-
terial at a temperature Tf (no reconfiguration of its mi-
croscopic degrees of freedom would occur). In our con-
text, the fictive temperature is the temperature equiva-
lent to the energy barrier height between minima. As the
temperature falls below Tf , thermal fluctuations can no
longer rearrange matter, and so in the absence of quan-
tum tunneling between the barriers the matter is frozen
into the state at Tf . Of course, quantum tunneling will
occur, but the timescales over which that would occur
and rearrange potentially large regions of nuclear pasta
are not well known (the closest timescales from the litera-
ture would be pycno-nuclear fusion timescales, but as we
shall see whole domains of nuclei need to be rearranged
for matter to substantially change its structure at the
mesoscopic level.

In this work, as illustration of the concept and derive
some order-of-magnitude implications, we choose the fic-
tive temperature to be the height of the highest energy
barrier relative to the lowest lying minimum, indicated
as Tf in Figure 6.

The ratio of the abundance of the pasta in the ith
minimum to the jth minimum is given by
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Ni(Tf)

Nj(Tf)
= e∆Gij/kTf , (17)

where ∆Gij = Gi −Gj. Given that the occupation prob-
ability for minimum i is given by pi = Ni/

∑
j Nj and∑

i pi = 1, then the occupation probability of a particu-
lar minimum j can be written

pi(Tf) =
e∆Gi0/kTf

1 +
∑
j 6=0 e

∆Gj0/kTf
. (18)

Based on 18, the abundances of pasta in each of the four
phases in our simplified model in Figure 6 are shown as
the percentages under the visualizations of the pasta.

Let us assume, to obtain a lower limit on the fictive
temperature below which the pasta becomes frozen-in to
the local minima, that the nucleons behave as free quasi-
particles, Then differences in the energy per particle be-
tween local minima and the energy barriers that sepa-
rate them set the temperature scale required to transi-
tion from one pasta structure to another through thermal
fluctuations. Realistically, this temperature scale will be
modified upwards by a factor taking into account the ex-
tent to which the nucleons in the pasta and free neutron
gas behave collectively during the rearrangement from
one phase to another. A more accurate picture might
suppose that a number of nucleons in the unit cell of or-
der the proton number act collectively in the transition
between phases, since the main driver of the shape for-
mation is the electrostatic lattice energy. This number
may also be modified by the number of unbound neutrons
entrained by the cluster [76]. Typically, this accounts for
∼ 10% of the nucleons and so our lower limit could un-
derestimate the fictive temperature by a factor of ∼10.
To account for this factor, we can multiply the tempera-
ture by a factor Acollective which accounts for the number
of nucleons in the unit cell that act collectively, and then
kTf = AcollectiveGbarrier. Note that the number of nu-
cleons per unit cell that behave collectively upon shape
rearrangement does not affect the equilibrium distribu-
tion, since both the energy difference between minima
and the fictive temperature scale by Acollective.

For pasta geometries continuous in one or more dimen-
sions like spaghetti and lasagna, the unit cell does not
have a physical meaning in that direction, but, for ex-
ample, a transition between spaghetti and waffle phases
requires the creation of connecting arms perpendicular
to the spaghetti axis which are periodic according the
unit cell size. Therefore the unit cell is still the relevant
unit of matter when we think about rearranging nuclear
pasta.

In our simplified model, the fictive temperature is
taken to be the average height of the barriers relative
to the lowest minimum along the one-dimensional tra-
jectories at yp = 0.026 and yp = 0.029 in Fig. 5: kTf

= 7.7 keV → Tf = 8.9 × 107 K (T8=0.89 where T8 =

Tf/108 K). Minima 1 and 2 are separated by energies
∆G21 = 1.6 keV/particle, minima 1 and 3 by ∆G31 =
2.0 keV/particle and minima 1 and 4 by ∆G31 = 2.4
keV/particle.

At temperatures below 8.9 × 107 K the composition
of the domains will be frozen with respect to thermal
fluctuations for a timescale that depends on the poorly
known tunneling timescale (but which could be short
compared to the cooling timescale). The relative abun-
dance of the pasta phases corresponding to the four
minima is 0.30:0.25:0.23:0.22 respectively (see Figure 6).
Thus about 70% of the composition of this layer is at
a proton fraction 0.026 and 30% is at a proton fraction
0.029. We can thus expect fluctuations in average pro-
ton (and, correspondingly, electron) fraction at the mi-
croscopic level at the level of around 10%. Also around
75% of matter is in waffle-like configurations, and 25% in
the spaghetti configuration.

1. The size of domains

The scale on which the pasta phases are ordered can
be found by estimating the length L over which thermal
fluctuations disrupt the long-range order of spaghetti-like
and lasagna-like configurations. Since the waffle phases
are planar, they can be approximated here as lasagna
phases. We follow the formalism laid out in [52]. Relative
to the cell spacing d = 2rc where rc is the cell radius, it
is given as follows:

For the spaghetti-like structures,

(
L

d

)
spaghetti

≈
[

(B2d + 2C2d)(πλa)1/2

kBT

]1/2

(19)

where

B2d = 1.5wC+L C2d ≈ 102.1(u−0.3)wC+L (20)

K3 ≈ 0.0655wC+Lr
2
c a ≈ 2rc (21)

For 1D lasagna-like structures,

(
L

d

)
lasagna

≈
[

4π(BK1)1/2

kBT ln( R
2rc

)

]1/2

(22)

where

B1d = 6wC+L K1 ≈
2

15
wC+L(1 + 2u− 2u2)r2

c (23)

and R is the typical length of the structure, u the vol-
ume fraction of the pasta. wC+L is the total electrostatic
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energy density, including the all important lattice contri-
bution which, in addition to quantum shell effects, drives
the stability of the phases. The electrostatic energy den-
sity wC+L is extracted from the simulation. The factors
involving u change only by a factor of at most 2 over a
reasonable range of u (as they enter as powers of 1/4),
so for simplicity and since we are interested only in a
rough estimate of length scales, we take the average of
that range and fold it into the numerical prefactor.

At low temperatures < 107K, this overestimates the
order, because quantum fluctuations become important,
but our lower limits on the fictive temperature are all
significantly above 107K.

The electrostatic energy per nucleon is WC+L =
V wC+L/A where V is the volume of the cell and Acell

the number of nucleons in the cell. V = r3
c , and us-

ing kTf = AcollectiveGbarrier and evaluating the numerical
factors,

(
L

d

)
spaghetti

≈
(
rc − rN

rc

)(
Acell

Acollective

)1/2(
WC+L

Gbarrier

)1/2

(24)
and

(
L

d

)
lasagna

≈
(
L

d

)
spaghetti

1

[3.5 ln (R/rc)]1/2
(25)

Varying R between scales of 1 m to 10−12m varies the
logarithmic factor between around 2 to 7, and

(L/d)spaghetti

(L/d)lasagna
≈ 7− 25 (26)

i.e. the order of the spaghetti-type phases will be an order
of magnitude larger than the order of the lasagna-type
phases.

The configurations corresponding to the local minima
in Figure 6 have WC+L = 13-19 keV, (rc − rN)/rc =
0.21 for spaghetti, and 0.5 for lasagna (taking the RMS
radius of the cluster in our simulations). Assuming no
collectivity, Acell/Acollective=614 and

(L/d)spaghetti ≈ 40 (27)

Assuming complete collectivity, Acell/Acollective = 1,

(L/d)spaghetti . 2 (28)

and matter is completely disordered.
From this, the domains containing the spaghetti phase

have a length scale of forty lattice spacings, and the two
waffle phases which are similar to lasagna phases (with
holes in), are ordered on the length scale L/dlasagna ∼
two lattice spacings (and are therefore very disordered)
at the fictive temperature.

The more nucleons behave collectively, the tempera-
ture at which matter becomes frozen into local minima
will increase, and the scale on which the matter is ordered
decreases. Therefore our estimates above give upper lim-
its on the distance scales over which pasta is ordered.

We can also conclude that fluctuations in the aver-
age density and electron fraction, of order 5-10% occur
on microscopic scales of no more than around 10 lattice
spacings at this depth.

In the next section, we now go through the crust from
the lowest to highest densities we performed calculations
at, spanning the pasta phases. We will present the Gibbs
free energy surfaces calculated in the same way as pre-
sented in this section, the resulting equilibrium fractions
of the different phases, and the upper limit to the length
scale of their domains derived from the fictive tempera-
ture.

B. The onset of pasta: nb ≈ 0.035 fm−3 - 0.045
fm−3.

In Figures 7-9, we show the Gibbs free energy surfaces
at proton fractions of yp=0.018, 0.022 and 0.026 in a
cell with 454 nucleons in total for calculations performed
around nb=0.035 fm−3, nb=0.04 fm−3 and nb=0.045
fm−3 respectively. The Gibbs energy surfaces are cal-
culated at constant pressures of P=0.094, 0.12 and 0.15
MeV fm−3 respectively (corresponding to the pressure of
the spherical configuration at yp=0.022 and a density of
nb=0.035 fm−3, nb=0.04 fm−3 and nb=0.045 fm−3).

At P=0.094 MeV fm−3, nb ≈ 0.035 fm−3, there is a
single global minimum at each proton fraction at (β, γ) =
(0, 0◦) corresponding to a spherical nucleus. No other
local minima are present. We have not yet entered the
pasta phases.

At both P=0.12 MeV fm−3, nb ≈ 0.04 fm−3 and
P=0.15 MeV fm−3, nb ≈ 0.045 fm−3, more structure
starts to appear in the energy surface. Some of these
structures are local minima corresponding to the first ap-
pearance of the nuclear pasta configuration. The varia-
tion in Gibbs free energy along trajectories in the energy
surface at P=0.12 MeV fm−3 and 0.15 MeV fm−3 are
shown in Figures 8 and 9.

At P=0.12 MeV fm−3 the fictive temperature is
kTf=73 keV→ T8=8.5 (where T8 = T/108K), and we
see the minimum is still a spherical nuclear phase. A
local minima 41 keV above the global minimum cor-
responding to a spaghetti phase appears at yp=0.022.
Two local minima corresponding to elongated isolated
nuclei in a 2D lattice, analogous to the smectic-B phases
of liquid crystals, appear at yp=0.022 and yp=0.026,
at heights 50 and 64 keV above the global mini-
mum. Using these numbers, the relative abundances of
the spherical:spaghetti:deformed nucleus(yp=0.022): de-
formed nucleus(yp=0.026) phases are 0.40:0.23:0.20:0.17.

At P=0.15 MeV fm−3 the fictive temperature is kTf

= 34 keV → T8=4.0, we see the same three phases, with
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the elongated nuclear phase appearing 21 keV and the
spaghetti phase 25 keV above the global minimum of
spherical nuclei. Note the fictive temperature and energy
separation of minima is decreasing with density. The
ratios of spherical nuclei:elongated nuclei:spaghetti are
0.50:0.27:0.24.

In Figure 10 we show a representative set of baryon
density surfaces, for calculations performed around
nb=0.045 fm−3. The fluctuations in baryon density be-
tween local minima are small at these depths, of order
1% of the average density.

The lattice energy of the spaghetti phases from the
quantum calculations is 18keV per nucleon and 13keV per
nucleon for pressures of P=0.12 MeV fm−3 and 0.15 MeV
fm−3 respectively, and the corresponding length scale of
the spaghetti domains is ≈ 7 times the lattice spacing in
both cases (≈ 150fm). In the case of P=0.12 MeV fm−3

10% of the composition is at a proton fraction of 0.026,
so fluctuations in average proton fraction occur of order
20% on length scales of ∼ 150fm.

This region in which pasta first appears as local min-
ima above a ground state is the first of four distinct
pasta regimes we will encounter, and ranges from nb ≈
0.04 fm−3 up to nb ≈ 0.05 fm−3. It is characterized
by spherical nuclei being the absolute ground state, but
spaghetti phases and highly deformed nuclei appearing
as closely separated local minima, accounting for about
over half of the material in the crust at the fictive tem-
perature. Spaghetti phases constitute ≈25% of the ma-
terial at these densities at the fictive temperatures of
4 − 8 × 108K. If annealing takes place over sufficiently
long timescales, in this regime all matter will eventually
be converted to spherical nuclei.

C. Pasta is established, but spherical nuclei still
exist: nb ≈ 0.05 fm−3 and 0.054fm−3.

In Figure 11 we show the Gibbs free energy surfaces
at proton fractions of yp=0.021, 0.023 and 0.025 at a
constant pressure P=0.184 MeV fm−3 (densities around
nb=0.05 fm−3) in a cell containing 956 nucleons. In Fig-
ure 12 we show the Gibbs free energy surfaces at pro-
ton fractions of yp=0.022, 0.024 and 0.026 at a constant
pressure P=0.234 MeV fm−3 (densities around nb=0.054
fm−3) in a cell containing 1166 nucleons. In both cases,
one can see that the energy surfaces are becoming much
richer in structure, with numerous local minima. In each
case we identify three minima accessible to all others by
continuous deformation and adjustment of proton frac-
tion without increasing energy.

We see that at both densities isolated nuclei are still
present, but they are no longer always the absolute min-
imum. At P=0.184 MeV fm−3 the absolute minimum
is the nuclear ‘waffle’ phase, with a corrugated spaghetti
phase also appearing as a local minimum. The minima
occur at two different proton fractions, pointing to possi-
ble fluctuations in average proton fraction of order 10%.

At P=0.234 MeV fm−3 the isolated nuclear phase is -
just - the absolute minimum, almost equal in energy to
the spaghetti phase. Again, a waffle phase appears as a
local minimum.

At P=0.184 MeV fm−3 the fictive temperature
kTf is 21keV → T8=2.4, and ∆G21 =14keV and
∆G31 =26keV. The relative abundances at Tf are waf-
fle:spherical:spaghetti are 0.55:0.29:0.16.

At P=0.234 MeV fm−3 the fictive temperature kTf is
11keV → T8=1.3 and ∆G21 =4keV and ∆G31 =6keV.
The ratios of minima 1(spherical):2 (spaghetti):3(waffle)
are 0.44:0.31:0.25.

The lattice energy of the spaghetti and waffle phases
from the quantum calculations are 23keV per nucleon and
17keV per nucleon respectively for P=0.184 MeV fm−3

and 24keV per nucleon and 20keV per nucleon respec-
tively for P=0.234 MeV fm−3.

Waffles are really a form of lasagna with a density mod-
ulation along its surface, and we can estimate its long
range order as that of lasagna. It is of order 2-3 lat-
tice spacings for P=0.184 MeV fm−3 and P=0.234 MeV
fm−3 - indicating these phases are almost completely dis-
ordered. The corresponding length scale of the spaghetti
domains from is 19 and 25 times the lattice spacing (500-
600fm) for P=0.184 MeV fm−3 and P=0.234 MeV fm−3

respectively. Fluctuations of proton fraction of order 10%
occur on these length scales.

In this regime of pasta, the pasta shapes have for the
most part become the ground state, but spherical nuclei
still appear as local minima (and can occasionally ap-
pear as the global minimum.) If annealing takes place,
on sufficiently long timescales, all matter in this regime
will be converted to pasta. The fictive temperature has
dropped to a 1-3×108K. At each density in this regime,
isolated nuclei, spaghetti and waffles coexist at the fictive
temperature.

D. Exclusively pasta, but protons are still localized
to the pasta structures:

In the density region between around 0.055 fm−3 to
0.065 fm−3, isolated nuclei cease to be local minima at
all, so we have entered the regime of pure pasta. We
have already detailed a representative set of configura-
tions at 0.06 fm−3. Waffles and spaghetti are the coex-
isting phases in this density window. Protons are still
localized in at least one dimension.

E. Protons are delocalized

In Figures 13-15, we show the Gibbs free energy sur-
faces at pressures of P=0.30 MeV fm−3,0.32 MeV fm−3

and 0.34 MeV fm−3 corresponding to densities around
nb=0.066 fm−3, 0.07 fm−3 and nb=0.076 fm−3. The cells
contain 784, 532 and 532 nucleons respectively.
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At P=0.30 MeV fm−3, nb=0.066 fm−3, we perform
calculations at proton fractions of yp=0.022, 0.025 and
0.028. The minimum energy configuration is the bi-
continuous cubic-P (BCP) phase - essentially a nucleus
joined in all three directions to adjacent nuclei, allow-
ing the protons to be entirely delocalized. Both clus-
ter and external neutron fluid form two interlaced, con-
tinuous domains through space. Lasagna and spaghetti
phases make up the two remaining unique local minima.
At P=0.32 MeV fm−3 and P=0.34 MeV fm−3 fm−3,
(nb=0.07 fm−3 and nb=0.076 fm−3) we perform calcu-
lations at proton fractions of yp=0.030, 0.034, 0.038 and
0.42. At the lower of those two densities, the absolute
minimum corresponds to the lasagna phase, with waffle
and BCP phases making up the remaining unique local
minima. At the higher density, all minima correspond to
variations of the BCP phases at two different proton frac-
tions yp=0.034, 0.038. Therefore the three main phases
that coexist in this range of densities are spaghetti, waf-
fles, lasagne and the BCP phase.

At P=0.30 MeV fm−3, nb=0.066 fm−3, the fictive tem-
perature kTf is 7.4keV→ T8=0.85, and ∆G21 =1keV and
∆G31 =5keV. The ratios of BCP:lasagna:spaghetti are
0.42:0.37:0.21. The lattice energy of the lasagna phase
from the quantum calculations is 7keV per nucleon and
for the spaghetti phase it is 11keV per nucleon. For
the spaghetti phases, our estimated domain sizes at the
fictive temperature is 22 lattice spacings, and for the
lasagna is about 3 lattice spacings.

At P=0.32 MeV fm−3, nb=0.07 fm−3, the fictive tem-
perature kTf is 14keV → T8=1.7, and ∆G21 =10keV
and ∆G31 =10keV. The ratios of lasagna:waffle:BCP are
0.49:0.26:0.25. The lattice energy of both lasagna and
waffle phases is 6keV per nucleon, and their estimated
domain size is approximately one lattice spacing.

At P=0.34 MeV fm−3, nb=0.076 fm−3 the fictive tem-
perature kTf is 16keV→ T8=2.0, and ∆G21 =0.3keV and
∆G31 =3keV. The ratios of the abundances of all three
BCP phases are 0.36:0.35:0.29. The BCP phase is stabi-
lized with respect to thermodynamic fluctuations of the
type explored in this paper, so in this density region it
is possible that the order of matter is much longer than
density regions where the BCP phase is not the only nu-
clear geometry.

In 16 we show the baryon density surfaces at a pressure
of P=0.34 MeV fm−3. Variations from local minimum to
local minimum are around 5% that of the average baryon
density.

Moving up in density, in Figures 17-18, we show the
Gibbs free energy surfaces at pressures of P=0.45 MeV
fm−3 and 0.53 MeV fm−3 corresponding to densities
around nb=0.082 fm−3 and 0.088 fm−3. In each case
the cells contain 332 nucleons, and we calculate energy
surfaces at proton fractions of yp=0.24, 0.3 and 0.36. We
see that as we get close to the crust-core transition, the
energy surfaces are becoming simpler in their structure.
In both cases, two minima appear.

At P=0.45 MeV fm−3, the two minima are at a pro-

ton fraction of 0.03. The higher-lying one is a spaghetti
like configuration; the absolute minimum is a more com-
plex configuration, consisting of cylindrical holes (anti-
spaghetti) and spaghetti. To reveal the structure requires
plotting the two isosurfaces at low and high density, as
shown in Figure 17; the low density isosurface (about half
the average neutron density) is shown on the left and re-
veals the cylindrical hole; on the right, at high density
(about three-quarters the average neutron density in the
cell) the spaghetti structure is revealed. In the bulk, pro-
tons as well as neutrons are delocalized.

At P=0.53 MeV fm−3, the absolute minimum is at
a proton fraction of 0.036 and corresponds to a lasagna
structure. A local minimum appears at a proton frac-
tion of 0.3 and corresponds to the same spaghetti-anti-
spaghetti configuration seen at the previous density.

At P=0.45 MeV fm−3, the fictive temperature kTf is
16keV → T8=1.9, and ∆G21 =3.5 keV. The ratios of
spaghetti hole:spaghetti are 0.55:0.45. The lattice energy
of the spaghetti phase is 3.7keV per nucleon, and their
estimated domain size is approximately 4 lattice spac-
ings. The lattice energy of the spaghetti hole is 2.9 keV
per nucleon, with a domain size similar order.

At P=53 MeV fm−3, the fictive temperature kTf is
4.6keV → T8=0.53, and ∆G21 =2 keV. The ratios of
lasagna:spaghetti hole are 0.6:0.4. The lattice energy of
the lasagna phase is 1.8 keV per nucleon, and the lattice
energy of the spaghetti hole is 1.6keV per nucleon. The
estimated domain size is approximately 2 lattice spac-
ings for the lasagna and significantly less than 1 lattice
spacing for the spaghetti hole.

The spaghetti phases, the first pasta to appear as one
descends through the crust, can persist to relatively deep
layers, making them the most robust of the pasta phases.

IV. SUMMARY AND DISCUSSION

In Figure 19 we show a visual summary of the pasta
phases found to coexist at increasing depth in the crust.
Laterally, they are arranged with the minimum energy
configuration on the left. In order to give a visualization
of how the phases appear over longer length scales than
a single cell, we have stacked 4 cells in each direction,
but it’s important to remember we only every calculate
one unit cell. We have not included every single density
and configuration detailed in the previous section, but
instead selected those that best represent that region of
density. Horizontal lines demarcate the four distinct re-
gions we have identified, which we label P1-P4 in what
follows. With increasing density, (P1) the region where
pasta first appears as a local minimum, but isolated nu-
clei occupy the absolute minimum (P2) pasta phases have
become consistently the absolute minimum but isolated
nuclei still occupy local minima, (P3) all local minima
correspond to pasta phases, while the protons are local-
ized to the clusters in at least one dimension, (P4) all
local minima correspond to pasta phases and protons are
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delocalized in all three dimensions.

One can trace the appearance and fate of one’s fa-
vorite pasta shape with density. Isolated nuclei persist
up to around 0.06 fm−3, but are demoted to local min-
imum at around 0.05 fm−3. Isolated nuclei themselves
may have exotic properties at high densities, with highly
deformed nuclei aligning like liquid crystals. Spaghetti
appears at low densities ≈0.04 fm−3 as a local minimum,
and is the most robust pasta shape, making appearances
right up to densities of ≈0.088 fm−3. It is most likely
to be the absolute minimum at densities 0.05-0.06 fm−3,
appearing at local minima at most densities thereafter.
Next, nuclear waffles appear as a local minimum 0.05-
0.06 fm−3, and persist over a wide density region up to
close to 0.08 fm−3. In our calculations, they appear as
the global minimum at densities around 0.06 fm−3. Nu-
clear waffles are a lasagna like phase - essentially lasagna
modulated by density fluctuations along the plane of the
shape. Lasagna appear at around 0.066 fm−3 and persist
to the highest densities as local minima. Interestingly,
lasagna never appear as the minimum energy configura-
tion in our calculations; at the same density region they
appear, so does the bicontinuous cubic-P phase, which
appears to be energetically more stable and is the abso-
lute minimum in the region 0.07-0.08 fm−3, until being
usurped by the phase that contains cylindrical holes. As
discussed, the cylindrical hole phase we discover is actu-
ally a phases consisting of alternating cylindrical under
- and over-densities, with neutrons and protons delocal-
ized in the bulk. This is the absolute minimum up to the
highest density we consider.

The exact phases that appear at each density are
driven by the proton fraction and modulated by shell
effects. In order to evolve through the pasta phases, one
can either increase the density or the proton fraction,
since protons promote clustering.

In Figure 20 we plot the pressure (Figure 20a) and
chemical potential (Figure 20b) at which we perform each
of our calculations as a function of the densities of each
local minimum as blue diamonds. We compare this with
the pressure and neutron chemical potential as calculated
with the compressible liquid drop model (CLDM) us-
ing the surface parameters that give closest agreement
to 3DHF results (as described in [54]). First, we note
that spurious shell effects caused by the discretization of
the neutron energy spectrum and corresponding change
in the density of states means we don’t expect the pres-
sure and neutron chemical potential to match exactly the
CLDM results. Also, due to real shell effects, the equilib-
rium proton fraction differs from the CLDM result, and
the pressure and neutron chemical potential depends on
the proton fraction. Having said that, for most densities
the pressures and neutron chemical potentials obtained
in the 3DHF calculations well match the CLDM result,
with the major differences being at intermediate densi-
ties.

The pressure can be translated approximately into a
mass coordinate for the crust y, which is also approxi-

mately the column depth in the crust - the fraction of
the mass of the crust above a given layer at a given pres-
sure. It is given by

y[P (ρ)] ≡ M? −M(P )

M?
≈ P (ρ)

Pcc
(29)

Similarly the neutron chemical potential at a particular
density approximately determines the depth of the layer,
and we define the radial coordinate

r[µ(ρ)] ≡ R? −R(µ)

R?
≈ µ(ρ) + µ0

µcc + µ0
(30)

where the subscript ‘cc’ denotes the quantity at the crust-
core transition, M?, R? is the stellar radius and mass and
M(P ) and R(µ) the radius and mass out to the layer of
the star characterized by the pressure P and chemical
potential µ respectively, and µ0 the chemical potential
at the surface of the star ≈ 9MeV.

Our 3DHF calculations suggest that the crust-core
transition density is ≈ 0.09fm−3. The CLDM results
presented in Figure 20 also give a transition density of
0.09fm−3. The CLDM crust-core transition pressure Pcc

and chemical potential µcc are 0.54MeV fm−3 and 13.6
MeV respectively. The mass and radial coordinates y and
m we display from now on are obtained from the CLDM
results. The mass and radius coordinates are a better
measure of location in the crust, since density isn’t di-
rectly related to the depth in the crust (different EOSs
will give different densities at a given depth or mass co-
ordinate in the crust). In what follows, we plot various
quantities versus y.

The plot of pressure versus density illustrates the size
of the local average density fluctuations (the variation
over the scale of the domain sizes). At P=0.33 MeV
fm−3, for example, the density of the coexisting phases
have a spread of 0.003 fm−3, about 5% of the average
density. Typically the density fluctuations are between
2% and 5%.

In Figure 20, the dotted vertical lines delineate the 4
distinct regions of pasta we identify: (P1) (pasta is a local
minimum, spherical nuclei the ground state) accounts for
about 10% of the crustal mass and 5% of the thickness,
and spans a region between ≈ 20% and 30% of the way
into the crust by mass and ≈ 70% and 75% by depth;
(P2) (pasta is the ground state, spherical nuclei are local
minima) accounts for about 15% of the crustal mass and
5% the crustal thickness, and spans a region between ≈
30% and 45% of the way into the crust by mass and
≈ 75% and 80% by depth; (P3) (all local minima are
pasta, protons are localized) accounts for about 5% of the
crustal mass and thickness, and spans a region between
≈ 45% and 50% of the way into the crust by mass and ≈
80% and 85% by depth; and (P4) (all local minima are
pasta, protons are delocalized) accounts for about 50%
of the crustal mass and 15% the crustal thickness, and
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spans a region between ≈ 55% and 100% of the way into
the crust by mass and ≈83% and 100% by depth).

In Figure 21, we plot the fictive temperature as a func-
tion of column depth y. The lower red points show
the temperatures assuming the nucleons behave indepen-
dently, and the upper blue diamonds assume that of or-
der the proton number in the unit cell behave collectively
when matter is rearranged from one pasta shape to an-
other. There are a two main contributors to the energy
barriers: the lattice energy caused by the Coulomb re-
pulsion of the protons in adjacent pasta structures, and
the shell energy. Rearranging the pasta configuration re-
quires a rearrangement of nucleons in the vicinity of the
Fermi surface of order the proton number.

The fictive temperature is calculated based on the av-
erage barrier heights between local minima in our cal-
culations; the bars on each points indicate the range of
barrier heights at each depth.

The lower limit to the barrier heights given by the red
points start around 109 K and drop to ∼ 108K through-
out most of the pasta region, dropping down below 108K
at in the final 20% of the crust by mass. The estimates
assuming a realistic number of nucleons behaving collec-
tively are an order of magnitude higher.

When the crust temperature drops below this temper-
ature, the coexisting pasta domains are frozen in with re-
spect to thermal fluctuations, at their equilibrium abun-
dances and characteristic lengths at the fictive tempera-
ture. Quantum tunneling could then anneal the crust on
a timescale that is yet to be determined, the end result
being a single phase of pasta at each depth. Future heat-
ing could then repopulate the local minima. It is inter-
esting to note that direct Urca and neutrino-antineutrino
pair emission processes in pasta phases become competi-
tive with modified Urca processes in bulk matter at tem-
peratures below 109K [77], and so may quickly drive the
temperature of the pasta phases below the fictive tem-
perature and into the frozen/annealing phase.

The length scales of the domains at the fictive tem-
perature are plotted in Figure 22. Here we take the low
end of the bound on the fictive temperature from the
red points in Figure 21: this gives an upper limit to the
domain sizes at the time the domains freeze. We plot
the size of the domains as a function of mass coordi-
nate in absolute terms (Fig. 22a) and in units of lattice
spacings d (Fig. 22b). Dashed horizontal lines indicate
where the order falls below 10fm (Fig. 22a) - a typical
width of pasta structures - and below one lattice spacing
(Fig. 22b). These lines indicate the scale below which
the phases become completely disordered - essentially liq-
uid. The temperature at which the order corresponds to
these lines is the melting temperature of the glassy pasta.
Spaghetti-like configurations are shown as red points and
lasagna-like configurations as blue diamonds. Spaghetti
phases generally have long range order of at most between
100 and 1000fm (10-50 lattice spacings), with the longest
range order occurring in regions P2 and P3. Lasagna-like
phases are an order of magnitude less ordered, peaking

at 80fm (≈ 3 lattice spacings) and dipping down to below
the melting point in the deepest layers.

Given these are upper limits, we can conclude that
the pasta phases are highly disordered at the fictive tem-
perature, which supports the hypothesis that they have
very high thermal and electrical resistivity. Additionally,
given the domains are only ordered over a short range,
electron scattering from domain boundaries could con-
tribute significantly to the thermal and electrical resis-
tivity of the deep layers of the crust.

As the temperature drops below the fictive temper-
ature, the domains are frozen and cannot immediately
grow in size, being bounded by adjacent domains. If
annealing occurs, the domains containing lower energy
phases will gradually grow as they convert surrounding
higher energy phases.

If the crust gets heated above the fictive temperature,
thermal fluctuations can once again repopulate the local
minima. The base of the crust is expected to be heated up
to temperatures of order 108K during accretion, enough
to enter the regime where different phases could be re-
populated and coexist. If a stage is reached where an
entire layer has been completely annealed, increases in
temperature even below the fictive temperature will de-
crease the long-range order. In either case, the thermal
conductivity could be temperature dependent, something
that might be explored in crust cooling simulations.

One of the crucial quantities in determining the stabil-
ity of phases is the lattice Coulomb energy per particle
WCL/A, which we plot in Figure 23 as a function of col-
umn density y for all local minima. The lattice energy
rises to a peak at a mass fraction of around 0.4 (a density
of around 0.06fm−3), corresponding to the region where
isolated nuclei have vanished from the energy landscape,
and the energy surfaces have their most structure. From
then on, the lattice energy decreases roughly exponen-
tially up to the crust-core transition. It should vanish
completely at the crust-core transition, but density fluc-
tuations due to the spurious shell effects mean that it
remains finite in our calculations.

V. CONCLUSIONS

We have conducted a large set of quantum calculations
of nuclear pasta using the three-dimensional Hartree-
Fock method with the NRAPR Skyrme interaction and
BCS pairing. A quadrupole constraining potential al-
lowed us to control the shape of the nuclear deformation,
and therefore systematically probe the energy landscape
of nuclear pasta. Although the constraint determines the
shape we get, by ranging over the whole parameter space
of the quadrupole deformation, we were able to reproduce
and compare all pasta shapes in an unbiased way.

We selected 11 different density regimes to perform cal-
culations at, ranging from 0.035fm−3 to 0.088fm−3. At
each density we selected a single cell size, chosen based on
the range of cell sizes predicted by calculations using the
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compressible liquid drop model (CLDM). In each density
regime we performed calculations at five different, closely
spaced densities and used the results to interpolate the
energy at a given reference pressure, chosen to be the
pressure for a zero-deformation configuration at the cen-
tral density in the range. We thus calculated the Gibbs
free energy, and were able to compare configurations in
equilibrium at constant pressure (and therefore at the
same depth in the crust). In each density regime we also
performed calculations over a range of proton fractions
to locate the β-equilibrium proton fraction. In total, the
results we show are obtained from approximately 30,000
calculations and 300,000 CPU hours.

We show that the energy landscape consists of multiple
local minima corresponding to different nuclear geome-
tries with very similar energies, separated by barriers of
1-100keV which generally decrease with depth. These
findings are consistent with earlier, more limited explo-
rations of the energy landscape of nuclear pasta [47]. The
various minima at a given depth can be at different pro-
ton fractions and densities. Therefore, at a given depth
in the star, multiple nuclear pasta shapes may coexist,
and there may be local variations of the average elec-
tron fraction and baryon density of order 10% and 1-5%
respectively.

The following nuclear geometries were found: spherical
and deformed nuclei appear up to nb=0.06fm−3 as either
the minimum energy configuration (up to nb ≈0.05fm−3)
or a local minimum. Spaghetti appears over the range
0.04-0.088fm−3, the waffle phase (perforated planes) ap-
pear over the range 0.05-0.08fm−3, lasagna over 0.065-
0.088fm−3, the bi-continuous cubic-P (BCP) phase over
the range 0.066-0.08fm−3 and cylindrical holes appear at
0.08-0.088 fm−3. The BCP phase consists of both contin-
uous neutron matter and nuclear matter interlaced; the
protons are therefore delocalized in all directions. The
cylindrical holes coexist with spaghetti phases, with pro-
tons delocalized in the bulk. At each depth in the crust
we identify the phases that coexist and estimate their
relative abundances. Spaghetti appears over the widest
range of densities.

Four distinct regions can be identified, which we de-
note P1-4: (P1) roughly spherical nuclei are the min-
imum energy configuration, but pasta appears as local
minima; (P2) pasta phases become the minimum energy
configuration, but spherical nuclei still occupy some lo-
cal minima; (P3) all local minima correspond to pasta
configurations, and protons are localized in at least one
dimension, and (P4) all local minima correspond to pasta
configurations, and the appearance of the BCP phase in-
dicates protons are delocalized in all dimensions. We find
the BCP phase is particularly stable and the delocalized
proton region accounts for at least half of the pasta lay-
ers by mass and 15% by depth. The regions P2-P4 -
where pasta is the ground state - occupy about 70% of
the whole crust by mass and 25% by depth. In total, P1-
P4 accounts for almost 80% of the mass of the crust and
30% of its thickness. When protons become delocalized

they are free to carry currents and maybe form a type-II
superconductor [79].

The nature of the energy landscape suggests the pasta
phases are glassy: they undergo a transition to an amor-
phous solid at a certain temperature below their melting
temperature. We take the barrier heights between local
minima to set the temperature scale - the so-called fic-
tive temperature, to borrow a term from condensed mat-
ter physics, above which matter is an amorphous solid.
As matter cools below the fictive temperature, we posit
that it becomes frozen into domains with a length scale
set by stability against thermal fluctuations at the fictive
temperature. These length scales are of order 10 times
the cell size at lower depths, falling to below the cell
size at higher depths, depending on whether the nuclear
geometry is spaghetti-like or lasagna-like. If the length
scale is below the cell size, the matter remains a liquid
(no long-range order at all) until the temperature cools
significantly below the fictive temperature.

Once matter is frozen into domains, it is possible an-
nealing will begin to homogenize the matter at a given
depth, with domains corresponding to the marginally en-
ergetically preferred configuration expanding their vol-
ume, converting the other phases. The conversion pro-
cess could be similar to pycnonuclear fusion [78, 80],
whose timescale uncertainty is many orders of magnitude
(see for example the table 2 in [81]). Additionally, do-
mains many times the size of a single unit cell will need
to be converted. An analysis of the uncertainty this leads
to on the annealing timescale would be an important fu-
ture study to undertake. Annealing would release heat
in the deep layers of the crust of order 1-50keV/nucleon -
the typical energy differences between local minima and
the ground state.

Although we perform a very large number of calcu-
lations, we still do not sample widely the unit cell size
at any given depth, and although it is reasonable to ex-
pect that our results do not qualitatively depend on cell
size, it is likely that some phases we don’t see (notably
bubble) are missed due to this restriction. Phases that
never appear as the minimum energy configuration in
our calculations - like spaghetti - likely would in a larger
set of calculations. In a recent set of calculations using
the same method at fixed proton fractions, and generally
larger cell sizes, a similar set of pasta geometries were
found [9]. Our results should be taken as an illuminating
snapshot of the pasta landscape. As noted in the meth-
ods section, we have tested that the same pasta phases
are obtained when we double the length of the cell in a
single direction, and calculations in cells of 8 times the
volume and more are ongoing, in part to test the cell size
dependence of the pasta shapes further.

The phases of pasta present depend on the proton frac-
tion, which in turn depends on the symmetry energy at
pasta densities. An examination of the dependence of
our results on the EOS - particularly, the extent of the
four distinct regions of pasta - will be presented in an
upcoming work.
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As we explore the nuclear pasta phases in more detail,
their structure at both micro- and meso-scales becomes
richer and more complex, presenting a serious challenge
to modeling the material and transport properties near
the crust-core boundary. However, the fact they likely
occupy a large mass fraction and thickness of the crust,
and that they mediate the transition from solid crust to
liquid core, means they remain an essential ingredient in
the modeling of many macroscopic, observable neutron
star phenomena.
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[18] P. Gögelein, E. N. E. van Dalen, C. Fuchs, and
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FIG. 5. The top row a-c shows the Gibbs free energy surfaces from Figure 4 at a constant pressure of 0.291 MeV fm−3

(densities around 0.06 fm−3) with red arrows indicating paths between local minima that pass over the smallest energy barriers.
Underneath is the corresponding one-dimensional plot of the Gibbs energy along those paths (d). Selected (β, γ) coordinates
are shown along the one-dimensional plots. 3D surfaces at constant neutron density in the cell show the shape of the nuclear
cluster in the cell at the local minima indicated. The other apparent local minima can transition exothermically to one of the
highlighted minima by beta decay or electron capture.
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FIG. 6. Illustration of our schematic model for pasta domains in local Gibbs energy minima at densities around 0.06fm−3

where calculations present four physically distinct local minima. In order to visualize the phases better we have plotted a
region of four by four unit cells, but it is important to remember we only simulate one single unit cell. The proton fractions
corresponding to the minima we found are shown above each minima.The fictive temperature Tf is given by the height of the
energy barriers, and the energy differences between he local minima are indicated as ∆G The relative abundances of the phases
at a temperature equal to the fictive temperature is shown below the visualizations of the phases. In the simplified model
we take a single barrier height to be the fictive temperature. This is determined as the average of the various barriers in our
calculation. These abundances will be frozen in as the temperature drops further unless processes such as quantum tunneling
anneal the matter.
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FIG. 7. Top row: Gibbs free energy surfaces at a pressure of 0.094 MeV fm−3 corresponding to a baryon density of ≈ 0.035fm−3

at proton fractions of 0.018 (a), 0.022 (b) and 0.026 (c), for cells containing Acell=454 nucleons. Below is the Gibbs free energy
variation along one dimensional paths passing through the energy minimum (d). Selected (β, γ) coordinates are shown along
the one-dimensional plots. Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface
of constant neutron density corresponding to the average neutron density in the cell. In all cases the minimum is a spherical
nucleus.
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FIG. 8. Top row: Gibbs free energy surfaces at a pressure of 0.120 MeV fm−3, corresponding to a baryon density of ≈ 0.04fm−3,
at proton fractions of 0.018 (a), 0.022 (b) and 0.026 (c), for cells containing Acell=454 nucleons. Below is the Gibbs free energy
variation along one dimensional paths passing through the energy minimum (d). Selected (β, γ) coordinates are shown along
the one-dimensional plots. Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface
of constant neutron density corresponding to the average neutron density in the cell. The minimum energy nuclear shape is
roughly spherical, but deformed nuclear and cylindrical nuclear shapes appear as local minima. The relative abundances of the
phases at a temperature equal to the fictive temperature is shown next to the visualizations of the phases.
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FIG. 9. Top row: Gibbs free energy surfaces at a pressure of 0.150 MeV fm−3, corresponding to a baryon density of ≈ 0.045fm−3,
at proton fractions of 0.018 (a), 0.022 (b) and 0.026 (c), for cells containing Acell=454 nucleons. Below is the Gibbs free energy
variation along one dimensional paths passing through the energy minimum (d). Selected (β, γ) coordinates are shown along
the one-dimensional plots. Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface
of constant neutron density corresponding to the average neutron density in the cell. The minimum energy nuclear shape is
roughly spherical, but deformed nuclear and cylindrical nuclear shapes appear as local minima. The relative abundances of the
phases at a temperature equal to the fictive temperature is shown below the visualizations of the phases.
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FIG. 10. Average baryon density surfaces (bottom) at a constant pressure of 0.15 MeV fm−3, corresponding to a baryon density
of ≈ 0.045fm−3, for cells containing Acell=454 nucleons. Results are shown for proton fraction of 0.018 (a), 0.022 (b) and 0.026
(c). The local minima differ in baron density by of order 5%.



25

0
5

10
15

20
25

30
35

40

45
50

55
60

(deg)

0.00 0.08 0.16 0.24 0.32
9.54

9.56

9.58

9.60

9.62

9.64

G
/N

 (M
eV

)

(a)

0
5

10
15

20
25

30
35

40

45
50

55
60

(deg)

0.00 0.08 0.16 0.24 0.32

9.54

9.56

9.58

9.60

9.62

9.64

G
/N

 (M
eV

)

(b)

0
5

10
15

20
25

30
35

40

45
50

55
60

(deg)

0.00 0.08 0.16 0.24 0.32

9.54

9.56

9.58

9.60

9.62

9.64

9.66

G
/N

 (M
eV

)

(c)

55%!29%! 16%!

(d)!

FIG. 11. Top row: Gibbs free energy surfaces at a pressure of 0.184 MeV fm−3, corresponding to a baryon density of ≈ 0.05fm−3,
at proton fractions of 0.021 (a), 0.023 (b) and 0.025 (c), for cells containing Acell=956 nucleons. Below is the Gibbs free energy
variation along one dimensional paths passing through the energy minimum (d). Selected (β, γ) coordinates are shown along
the one-dimensional plots. Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of
constant neutron density corresponding to the average neutron density in the cell. The minimum energy nuclear shape is a
nuclear ‘waffle’, with an isolated nuclear phase and spaghetti phase as local minima at a different proton fraction. The relative
abundances of the phases at a temperature equal to the fictive temperature is shown below the visualizations of the phases.
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FIG. 12. Top row: Gibbs free energy surfaces at a pressure of 0.234 MeV fm−3, corresponding to a baryon density of
≈ 0.054fm−3, at proton fractions of 0.022 (a), 0.024 (b) and 0.026 (c), for cells containing Acell=1166 nucleons. Below is the
Gibbs free energy variation along one dimensional paths passing through the energy minimum (d). Selected (β, γ) coordinates
are shown along the one-dimensional plots. Visualizations of the minimum energy nuclear shapes are shown, obtained by
plotting a surface of constant neutron density corresponding to the average neutron density in the cell. The minimum energy
nuclear shape is roughly spherical, followed by cylindrical and waffle shapes. The relative abundances of the phases at a
temperature equal to the fictive temperature is shown below the visualizations of the phases.
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FIG. 13. Top row: Gibbs free energy surfaces at a pressure of 0.30 MeV fm−3, corresponding to a baryon density of ≈ 0.066fm−3,
at proton fractions of 0.022 (a), 0.025 (b) and 0.028 (c), for cells containing Acell=784 nucleons. Below is the Gibbs free energy
variation along one dimensional paths passing through the energy minimum (d). Selected (β, γ) coordinates are shown along
the one-dimensional plots. Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of
constant neutron density corresponding to the average neutron density in the cell. The minimum energy nuclear configuration
is the bi-continuous cubic-P phase, followed by planar and cylindrical geometries. The relative abundances of the phases at a
temperature equal to the fictive temperature is shown below the visualizations of the phases.
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FIG. 14. Top row: Gibbs free energy surfaces at a pressure of 0.32 MeV fm−3, corresponding to a baryon density of ≈ 0.07fm−3,
at proton fractions of 0.03 (a), 0.034 (b) and 0.038 (c), for cells containing Acell=532 nucleons. Below is the Gibbs free energy
variation along one dimensional paths passing through the energy minimum. Selected (β, γ) coordinates are shown along the
one-dimensional plots. Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of
constant neutron density corresponding to the average neutron density in the cell. The minimum energy nuclear configuration
is planar, followed by waffle and bi-continuous cubic-P phases. The relative abundances of the phases at a temperature equal
to the fictive temperature is shown below the visualizations of the phases.
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FIG. 15. Top row: Gibbs free energy surfaces at a pressure of 0.34 MeV fm−3, corresponding to a baryon density of ≈ 0.076fm−3,
at proton fractions of 0.034 (a), 0.038 (b) and 0.042 (c), for cells containing Acell=532 nucleons. Below is the Gibbs free energy
variation along one dimensional paths passing through the energy minimum (d). Selected (β, γ) coordinates are shown along
the one-dimensional plots. Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface
of constant neutron density corresponding to the average neutron density in the cell. All three minima are variations of the
bi-continuous cubic-P phase, albeit at different proton fractions. The relative abundances of the phases at a temperature equal
to the fictive temperature is shown below the visualizations of the phases.
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FIG. 16. Average baryon density surfaces (bottom) at a constant pressure of 0.524 MeV fm−3, corresponding to a baryon
density of ≈ 0.076fm−3, for cells containing Acell=532 nucleons. Results are shown for proton fraction of 0.034 (a), 0.038 (b)
and 0.042 (c). The local minima differ in baron density by of order 5%.



31

0
5

10
15

20
25

30
35

40

45
50

55
60

(deg)

0.00 0.08

16.460
16.465
16.470
16.475
16.480
16.485
16.490
16.495
16.500

G
/N

 (M
eV

)

(a)

0
5

10
15

20
25

30
35

40

45
50

55
60

(deg)

0.00 0.08

16.440

16.450

16.460

16.470

16.480

16.490

G
/N

 (M
eV

)

(b)

0
5

10
15

20
25

30
35

40

45
50

55
60

(deg)

0.00 0.08
16.440

16.450

16.460

16.470

16.480

16.490

G
/N

 (M
eV

)

(c)

45%! 55%!

(d)!

FIG. 17. Top row: Gibbs free energy surfaces at a pressure of 0.45 MeV fm−3, corresponding to a baryon density of ≈ 0.082fm−3,
at proton fractions of 0.024 (a), 0.030 (b) and 0.036 (c), for cells containing Acell=332 nucleons. Below is the Gibbs free energy
variation along one dimensional paths passing through the energy minimum (d). Selected (β, γ) coordinates are shown along
the one-dimensional plots. Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of
constant neutron density corresponding to the average neutron density in the cell. The first minimum is a combination of both
a cylindrical high density and low density region (spaghetti and anti-spaghetti), whereas the second minimum is cylindrical.
The relative abundances of the phases at a temperature equal to the fictive temperature is shown below the visualizations of
the phases. In the simplified model we take a single barrier height to be the fictive temperature. These abundances will be
frozen in as the temperature drops further unless quantum tunneling processes anneal the matter.
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FIG. 18. Top row: Gibbs free energy surfaces at a pressure of 0.53 MeV fm−3, corresponding to a baryon density of ≈ 0.088fm−3,
at proton fractions of 0.024 (a), 0.030 (b) and 0.036 (c), for cells containing Acell=332 nucleons. Below is the Gibbs free energy
variation along one dimensional paths passing through the energy minimum (d). Selected (β, γ) coordinates are shown along
the one-dimensional plots. Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of
constant neutron density corresponding to the average neutron density in the cell. The first minimum is planar, and the second
minimum is a combination of both a cylindrical high density and low density region (spaghetti and anti-spaghetti). The relative
abundances of the phases at a temperature equal to the fictive temperature is shown below the visualizations of the phases.
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FIG. 19. Overview of all nuclear geometries that emerge from our calculations. In order to visualize the phases better we have
plotted a region of 4 unit cells squared, but it is important to remember we only calculate one single unit cell. The colors
are just for clarity of visualization and have no physical meaning. The left column gives the approximate baryon densities the
configurations to the right cover. The minimum energy configurations are the leftmost pictures in each row, with the energy
of the minimum increasing rightwards. We display only a representative selection of configurations. Horizontal lines divide
the graphic into the four distinct regions of pasta: from low to high density, the region where pasta first appears as a local
minimum at higher energy than the isolated nuclear phase; the region where pasta shapes become the absolute minimum, but
isolated nuclei remain as higher energy local minima; the region where only pasta shapes exist, and the region where only pasta
shapes exists, and protons have become delocalized in all dimensions.
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FIG. 20. (a) The pressure of matter in the crust as calculated by the compressible liquid drop model (dashed line), and the
pressure of each of the configurations examined in our 3DHF calculations (blue diamonds). (b) The chemical potential from
the CLDM and our 3DHF calculations. Vertical dotted lines divide the four regions of pasta P1-P4 as described in the text.
The mass coordinate y calculated from the CLDM pressure is given in the right vertical scale in (a), and the radial coordinate
r calculated from the CLDM chemical potential is given in the right vertical scale in (b).
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FIG. 21. The fictive temperature Tf as a function of mass co-
ordinate in the crust y (the fraction of the mass of the crust
above a given point) assuming that the relevant degrees of
freedom are individual nucleons (red points), or a collection of
nucleons of order the proton number ypAcell (blue diamonds).
The bars span the range of of barrier heights from our calcu-
lations. Vertical dotted lines divide the four regions of pasta
P1-P4 as described in the text.
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FIG. 22. The long range order of the pasta phases ∆L calculated at the fictive temperature, assuming individual nucleons
are the relevant degrees of freedom, as a function of mass parameter. We give the length scale in absolute terms (a) and in
units of cell size (b). The horizontal dashed lines indicate the point where the order drops below 10fm - approximately the
characteristic width of nuclear clusters (a) - and below one cell size (b). Spaghetti-like configurations are shown as red pints,
and lasagna-like configurations are shown by blue diamonds. At high y the Lasagna order becomes much less than the cell
size, too low to appear on the plots; at that point the formalism used to calculate the disorder breaks down. Below the dashed
lines, matter is completely disordered. These are upper limits on the long range order: if we assume that clusters of nucleons
are the relevant degrees of freedom, the fictive temperature increases (see Figure 21) and the long range order drops. Vertical
dotted lines divide the four regions of pasta P1-P4 as described in the text.
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FIG. 23. The lattice energy per nucleon in the unit cell for
minimum energy configurations as a function of mass coordi-
nate y. The lattice energy drives the stability of the phases;
it peaks at around y = 0.4 (a baryon density of ≈ 0.06fm−3),
where isolated nuclei disappear from the minima in the energy
landscape, and then decreases roughly exponentially with
density thereafter.


