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In heavy ion collisions, elliptic flow v2 and radial flow, characterized by event-wise average trans-
verse momentum [pT], are related to the shape and size of the overlap region, which are sensitive
to the shape of colliding atomic nuclei. The Pearson correlation coefficient between v2 and [pT],
ρ2, was found to be particularly sensitive to the quadrupole deformation parameter β that is tradi-
tionally measured in low energy experiments. Built on earlier insight that the prolate deformation
β > 0 reduces the ρ2 in ultra-central collisions (UCC), we show that the prolate deformation β < 0
enhances the value of ρ2. As β > 0 and β < 0 are the two extremes of triaxiality, the strength and
sign of v22 − [pT] correlation can be used to provide valuable information on the triaxiality of the
nucleus. Our study provide further arguments for using the hydrodynamic flow as a precision tool
to directly image the deformation of the atomic nuclei at extremely short time scale (< 10−24s).

PACS numbers: 25.75.Gz, 25.75.Ld, 25.75.-1

I. INTRODUCTION

Heavy-ion collisions at RHIC and the LHC produce a Quark-Gluon Plasma (QGP) whose space-time evolution is well
described by relativistic viscous hydrodynamics [1–4]. Driven by large pressure gradients, the QGP undergoes collec-
tive, Hubble-like expansion in the transverse plane, converting spatial non-uniformities in the initial state into the col-
lective radial and azimuthally anisotropic flow in the final state. We quantify such collectivity via a Fourier expansion

of particle distribution in azimuth φ and transverse momentum pT: d2N
pTdpTdφ

= N(pT) [1 + 2∑∞i=1 vn(pT) cosn(φ −Ψn)],
where vn and Ψn represent the amplitude and phase of the nth-order anisotropic flow, and the slope of the particle
spectrum N(pT) characterizes the magnitude of the radial flow. The strength of radial and anisotropic flow depends
on the initial state: a compact source generates a stronger radial flow reflected by a flatter spectrum, and a more
eccentric shape of the source leads to larger anisotropic flow. They are also sensitive to the transport properties of
the QGP such as shear and bulk viscosity. Recent state-of-the-art comparisons between hydrodynamics and precision
vn and pT spectra data provided quantitative constraint on both the properties of the medium, as well as the density
fluctuations in the initial state [5–7].

It is a well established fact that the vn are driven by hydrodynamic response to the initial eccentricity εn of QGP
medium, which can be estimated from the position (r, φ) of participating nucleons, εn = ∣ ∫ rne−inφdrdφ/ ∫ rndr∣ [8].
Model calculations show that the vn are approximately proportional to εn for n = 2 and 3 [9]. The radial flow,
characterized by the average transverse momentum in each event [pT], reflects the hydrodynamic response to the
fluctuation in the overall size of the overlap region R. In particular, events with similar total energy, but smaller
transverse size in the initial state is expected to have stronger radial expansion and larger [pT] [10, 11]. Therefore,
the event-by-event fluctuation in the shape and size of the QGP can be inferred from the fluctuations of the vn and
[pT] in the final state.

In collisions of spherical nuclei, the shape and size of the QGP are controlled by the impact parameter. For deformed
nuclei, however, they depend also on the quadrupole deformation parameters β and γ as part of the Woods-Saxon
density function:

ρ(r, θ, φ) = ρ0
1 + e(r−R(θ,φ)/a) , R(θ, φ) = R0 (1 + β[cosγY2,0 + sinγY2,2]) . (1)

where ρ0 is the density at the center of the nucleus, and nuclear radius R0 are nuclear radius and a is the skin depth.
The quadrupole-shaped nuclear surface R(θ, φ) is expanded in terms of spherical harmonics in real form. The three
components Y2,−1, Y2,1 and Y2,−2 are customarily used to defined the body-fixed x-y-z frame, leaving Y2,0 and Y2,2 as
the only relevant degrees of freedom. The mixing angle 0 ≤ γ ≤ π/3 controls the triaxiality or the three radii Ra,Rb,Rc
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of the nucleus in the body-fixed frame, with γ = 0, γ = π/3, and γ = π/6 corresponding to prolate (Ra = Rb < Rc),
oblate (Ra < Rb = Rc) or maximum triaxiality (Ra < Rb < Rc forming an arithmetic sequence). Note that the oblate
shape can be specified either as β, γ = π/3 or equivalently as −β and γ = 0. In this present study we only consider
prolate and oblate configuration for which we can keep γ = 0 and let β change sign. Nevertheless, the comparison of
results between prolate and oblate deformation still provides critical information on the influence of triaxiality.

Most stable nuclei in their ground states are quadrupole-deformed and has a non-zero β. The values of β are obtained
from measurement of rotational spectra of nuclear excited state or the electric quadrupole moments from hyperfine
splitting of atomic spectral line [12]. Due to the random orientation of the colliding nuclei, quadrupole deformation
enhances the event-by-event fluctuations of the ε2 and v2. This point was investigated extensively and could explain
the ordering of the v2 data in ultra central collisions (UCC) of different collision systems [13–15]. Model studies show
that the mean square fluctuation of ε2 and vn depends quadratically on β, ε2{2}2 ≡ ⟨ε22⟩ = a′+b′β2 and v2{2}2 ≡ ⟨v22⟩ =
a+ bβ2 [16, 17]. Interestingly, the response coefficients for the β-independent and β-dependent components of v2 and
ε2 are not the same, i.e. a/a′ ≠ b/b′ [16]. This opens up the possibility to test hydrodynamics using β as a new control
variable, i.e. by comparing nucleus with similar mass number but different β. Recently, quadrupole deformation
was also predicted to have strong influence on correlated fluctuation between v2 and [pT] [18, 19], quantified by a
three-particle correlator [20]:

ρ(v2n, [pT]) =
⟨v2nδpT⟩

√
⟨(δv2n)

2⟩ ⟨δpTδpT⟩
(2)

where δpT = pT − [pT] and the “⟨⟩” denotes averaging over all pairs or triplets for events with similar particle
multiplicity. This observable can be approximated by an analogous quantity calculated from the initial state [21]:

ρ(ε2n, S/A) =
⟨δε2nδ( SA)⟩

√
⟨(δε2n)

2⟩ ⟨(δ( S
A
))2⟩

(3)

where the S/A is the initial entropy density in the transverse plane. The ρ(v22 , [pT]) is positive for spherical systems,
but for nuclei with large prolate deformation, the ρ(v22 , [pT]) values in UCC is predicted to be negative. This is because
selection of central events in U+U collisions enhances body-body events, which have large ε2 and R, therefore large v2
and smaller [pT] [18]. Preliminary results from the STAR Collaboration support this interpretation [22]. Therefore
using the well-tuned hydrodynamics model as a precision tool and together with the experimental measurements of
v2 and v2 − [pT], we could provide quantitative constraint on the shape of the nuclei at a time scale of 10−24s, which
is much shorter than that involved in the low energy nuclear structure measurements.

In this paper, we study the influence of quadrupole deformation to correlations between v2 and [pT]. In particular,
we clarify the relation between the initial-state estimator Eq. 3 and final-state experimental observable Eq. 2. We
perform this study using the “a multi-phase transport model” (AMPT), which is a realistic yet computationally
efficient way to implement hydrodynamic response [23]. We carry out simulation of Au+Au and U+U collisions
at top RHIC energy with different β values, ranging from prolate to oblate configurations. We found that large
oblate deformation gives rise to an enhanced positive ρ(v22 , [pT]) value in UCC region. This is because the body-body
collisions of oblate nuclei have large ε2 and but smaller R, therefore large v2 and [pT], exactly opposite to the influence
of prolate deformation. We also quantified the effects of volume fluctuations based on realistic centrality definition
matching to experimental acceptance, and they are found to be minimized in the UCC collisions. Future detailed
model-data comparison will firm up the relation between initial and final state and provide some useful constrains
on the shape of deformed nuclei. Just before the submission of this work, a study of ρ(v22 , [pT]) in Au+Au based on
AMPT model appeared, whose focus however was not on the influence of deformation [24].

II. ANALYSIS

We calculate Pearson correlation coefficient ρ(v2n, [pT]) within the usual multi-particle cumulant framework em-
ployed by the experimental data analysis as detailed in [25], which we just briefly summarize here. The numerator of
ρ(v2n, [pT]) is obtained by averaging over unique triplets in each event, and then over all events in an event class [20, 26]:

⟨v2nδpT⟩ = ⟨∑i,j,k,i≠j≠k
ein(φi−φj)(pT,k − ⟨[pT]⟩)
∑i,j,k,i≠j≠k

⟩ (4)
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where the indices i, j and k loop over distinct particles to account for all unique triplets, and the ⟨⟩ denotes average
over events. In this analysis, we use all particles within ∣η∣ < 2 and 0.2 < pT < 2 GeV for best statistical precision.
However, we also checked the influence of short-range “non-flow” correlations in the context of the so-called two-
subevent and three-subevent methods [27] by introducing pseudorapidity gaps between the particles in each triplet.
We conclude that non-flow effects are negligible (see Appendix A).

The [pT] variance in the denominator of ρn is obtained using usual two-particle pT correlations [28],

var([pT]) ≡ ⟨δpTδpT⟩ = ⟨∑i,j,i≠j
(pT,i − ⟨[pT]⟩)(pT,j − ⟨[pT]⟩)

∑i,j,i≠j
⟩ . (5)

The flow variance is calculated in terms of two-particle cumulants cn{2} and four-particle cumulants cn{4} following

Ref. [29]: var(v2n) ≡ ⟨(δv2n)
2⟩ = ⟨v4n⟩ − ⟨v2n⟩

2 = cn{4} + cn{2}2.

We calculate the initial-state estimator in Eq. 3 from the transverse distribution of participating nucleons. Here
we substitute the total entropy S with Npart with the assumption that S ∝ Npart. Following the recommendation of
Ref. [21], we define the overlap area A as

A = 2π
√
σ2
xσ

2
y (6)

where the σx and σy are the RMS width of participant distribution along the short and long principal axes of the
event-by-event ellipse. This definition was shown to give very good correlation with the event-by-event [pT].

We perform the calculation of all these observables within the AMPT transport model [23]. The model starts with
Monte Carlo Glauber initial conditions. The system evolution is modeled with strings that first melt into partons,
followed by elastic partonic scatterings, parton coalescence, and hadronic scatterings. The collectivity is generated
mainly through elastic scatterings of partons, which leads to an emission of partons preferable along the gradient of
the initial-state energy density distribution, in a manner that is similar to hydrodynamic flow. Following Refs [30–
32], we use the AMPT model v2.26t5 with string-melting mode and partonic cross section of 3.0 mb, which we
check reasonably reproduce Au+Au v2 data at RHIC. The Woods-Saxon parameters in the AMPT are chosen to be
R0 = 6.81 fm and a = 0.535 fm for U+U similar to [33] and R0 = 6.37 fm and a = 0.54 fm for Au+Au [34]. For the
study on the β dependence, we simulate collisions at

√
sNN = 200 GeV for U+U with β=0,-0.15,0.22,±0.28,0.34 and

0.4 and for Au+Au with β=0 and -0.13, which will allow us to obtain the parametric dependence of various flow
observables on β. This list includes the default β value of 0.28 for U+U and -0.13 for Au+Au from the most recent
table of nuclear deformations [12].

Our main analysis is performed using all hadrons with 0.2 < pT < 2 GeV and ∣η∣ < 2, and the event centrality is defined
using either Npart or inclusive hadron multiplicity in ∣η∣ < 1, Nhadron. The value of Nhadron, which include both charged
and neutral particles, is about three times of the charged hadron multiplicity density, i.e. Nhadron ≈ 3dNch/dη. It is
known that the multi-particle correlations are sensitive to centrality/volume fluctuations, i.e. the centrality measured
based on the final-state particle multiplicity in a η range is subject to smearing due to fluctuations in the particle
production process [35, 36]. Since the vn and [pT] values vary with centrality, the smearing in centrality can lead
to additional fluctuations of shape and size of the overlap region. Indeed, significant differences in ρ(v2n, [pT]) were
observed in the ATLAS measurement, when the results are compared between centrality defined in mid-rapidity and
centrality defined in the forward rapidity [29]. To quantify the volume fluctuation effects, we perform a separate
analysis with alternative selection on particle of interest and particles used to define centrality. Details of this study
can be found in the Appendix A.

III. RESULTS

In collisions of spherical nuclei, the multiplicity distributions p(Nhadron) or p(Npart) are controlled by the impact
parameter. In the presence of deformation, these distributions are expected to be smeared and broadened. The insert
small panels in Fig. 1 show the multiplicity distribution in U+U collisions with different β values. These distributions
are divided by those for β = 0 and the results are shown in the corresponding main panels. We see a clear reduction
of the ratio for large Nhadron or large Npart values, and an increase in other regions, confirming the broadening of
multiplicity distribution for non-zero β. We also observe that the ratios are very similar between β = 0.28 and -0.28.
The influence of quadrupole deformation is clearly visible only in the most central 0–5% region. To quantify the
influence of quadrupole deformation on the multiplicity distributions, we calculate ⟨Nhadron⟩ and ⟨Npart⟩ in the top
0–5%, normalized by the values for β = 0, and plot the results in the right panel of Fig. 1. We observe a linear
decrease of the ⟨Nhadron⟩ or ⟨Npart⟩ as a function of β2, implying that the multiplicity smearing is same for prolate
and oblate deformation with same ∣β∣. The decrease in the average multiplicity is only around 1% for the realistic
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FIG. 1: The distributions and ratios of hadron multiplicity Nhadron in ∣η∣ < 1 scaled by 1/3 (left) and Npart (middle) in U+U
collisions with different quadrupole deformation parameter β. The vertical lines indicate locations of 1% and 5% for β = 0
case. The right panel shows the average Nhadron or Npart in the top 0–5% of events selected according to Nhadron or Npart as
a function β2, they are normalized the corresponding values in β = 0. Also in the right panel, the data point for β = −0.28 is
shifted slightly to the right to distinguish from the data point for β = 0.28.

deformation value of β = 0.28, so it is a modest effect but should be visible for Ru+Ru and Zr+Zr isobar collision
systems at RHIC [37]. Parameterizing this dependence by ⟨Npart⟩ = a0 + b0β2, one can see that the coefficients a0
and b0 can be determined from two isobar systems with known β2, which can then be used to gauge the β value of
other systems with same mass number. We also notices that the extent of decrease also depends on the definition
of multiplicity variable. In general, the effect is smallest when Npart is used, and is largest when Nhadron is defined
around mid-rapidity. The latter is consistent with the finding by the ATLAS Collaboration that centrality resolution
is worse at mid-rapidity than the forward rapidity [38].

We would like to point out that in the presence of large deformation, the total volume of the nucleus increases

slightly. For the largest value considered, β = 0.4, the ratio to the original volume is 1 + 3
4π
β2 +

√
5

28π3/2 cos(3γ)β3 =
1.029 + 0.0006 cos(3γ). In order to keep the overall volume fixed, it would require about 1% decrease of the R0. We
have performed a separate Glauber model investigation on the impact of this change of R0, which is found to have
negligible influence on the slopes shown in the right panel of Fig. 1.

Having established the fact that the impact of β on multiplicity and centrality distributions is small, we are ready to
discuss the vn− [pT] correlations. In order to have a clear connection between initial-state deformation and final-state
correlations, we always compare the results calculated using final-state particles via Eq. 2 with the estimators based
on the initial-state Glauber geometry via Eq. 3.

The top panels of Fig. 2 show the components of the Pearson correlation coefficient ρ(v22 , [pT]): the
√

var(v22),√
var([pT]), ⟨v22δpT⟩ and ρ(v22 , [pT]) calculated using final-state hadrons in Au+Au and U+U collisions with different

β. The corresponding quantities from the initial state are shown in the bottom panels. The
√

var(v22) show very strong

dependence on β, as argued in Ref. [16], reflecting mainly a linear response to the eccentricity fluctuations
√

var(ε22)
in the initial state. The var([pT]) only show a very modest dependence on quadrupole deformation, it increases by
about 10% in U+U collisions from β = 0 to β = 0.4. In contrast, the initial-state estimator var(S/A) shows a much
stronger increase in the presence of deformation. The reason is that the AMPT model fails to describe the radial flow

and its fluctuations [39]. In fact we found AMPT underestimates the
√

var([pT]) data [40] for Au+Au at RHIC by
more than factor of two, and this problem is there for all recent versions of AMPT. This failure implies that radial
flow response to the size of the system is too weak in AMPT and might preclude a quantitative comparison with the

experimental measurement of ρ(v22 , [pT]). We also note that the both
√

var(ε22) and
√

var(S/A) are similar between

β = −0.28 and β = 0.28, implying they are mostly even functions of β 1. Both ⟨v22δpT⟩ and its initial-state counterpart

1 However in the UCC region (the last couple of points), we see that the values of
√

var(ε22) are slightly larger while the values of
√

var(S/A) are smaller for β = −0.28 than for β = 0.28. This reverse ordering is a bit more clear when events are binned based on
Nhadron (see Fig. 7)
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⟨ε22δ SA⟩ show strong yet non-trivial dependence on β. For prolate deformation β > 0, the covariance decreases with
increasing β values. However, for oblate deformation β < 0, the covariance increases for more negative β value in
central collisions but decrease in mid-central and peripheral collisions. We come back to this important observation
later.
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FIG. 2: The Npart dependence of v22 variance (top-left), [pT] variance (2nd from top-left), flow-[pT] covariance ⟨v22δpT⟩

(3rd from top-left) and Pearson coefficients ρ(v22 , [pT]) (top-right) in Au+Au and U+U collisions with different deformation
parameter β. The bottom panels show the corresponding initial-state estimators in the Glauber model. The event class used
for averaging is based on Npart.

The panels in the right column of Fig. 2 show the results of the ρ(v22 , [pT]) and ρ(ε22, S/A). The β dependence is
more clearly revealed for these normalized quantities. In particular, we observe the strongest sensitivity in the UCC
region, where a large positive β leads to a negative ρ(v22 , [pT]) and ρ(ε22, S/A), while a large negative β increase them
toward more positive direction. In the mid-central and peripheral regions, the values of ρ(v22 , [pT]) and ρ(ε22, S/A)
always decrease with increasing magnitude of β, independent of its sign.

The reason for the negative ρ(v22 , [pT]) in central U+U collisions in the presence of large prolate deformation was
clearly explained in Ref. [18]. Denoting the radii for an ellipsoid as Ra, Rb and Rc, then prolate deformation implies
Ra = Rb < Rc. The ultra-central collisions correspond to events whose configurations are somewhere in between
“body-body” collisions with long-axis parallel to each other in the transverse plane and “tip-tip” collisions with the
long-axis parallel to the beam direction. Therefore, body-body collisions have large ε2 and large overlap area A, while
the tip-tip collisions have small ε2 and small A. Such apparent anti-correlation between ε2 and 1/A naturally gives a
strong anti-correlation between v2 and [pT] and therefore negative ρ(v22 , [pT]). The results in Fig. 2 shows that the
opposite is true in the presence of large oblate deformation for which Ra = Rb > Rc. In this case, body-body collisions
have short-axis parallel to each other in the transverse plane, which are expected to give large ε2 and small overlap
area A. Similarly, tip-tip collisions for oblate deformation have small ε2 but large A. Therefore, we expect an enhanced
“positive” correlation between ε2 and 1/A, leading to a stronger positive correlation between v2 and [pT] observed in
Fig. 2. This is quite interesting because the variance of vn and [pT] fluctuations do not distinguish between β > 0 and
β < 0, while the ρ(v22 , [pT]), being a three-particle correlator, can. Note that for maximum triaxiality deformation, for
which γ = π/6 and Ra < Rb < Rc forming an arithmetic sequence, there are no real distinction between “body-body”
and “tip-tip” collisions, the deformation contribution is expected to reduce ρ(v22 , [pT]) to zero. For general triaxiality
0 < γ < π/3, the signal is expected to interpolate between that for the oblate deformations and prolate deformation.
We have checked this is indeed the case using a Glauber simulation of the initial-state estimator Eq. 3.

Next we would like to quantify the β dependence observed in Figs. 2. We focus on the UCC region where the
dependence on β is strongest. We integrate the values for each observable in 0–1% most central events, and plot them

as a function either β2 or β in Fig. 3. Both
√

var(v22) and
√

var([pT]) follow a nice linear increase with β2. But
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the slopes of the increase are smaller than those for
√

var(ε22) and
√

var(S/A), respectively. In contrast, the ⟨v22δpT⟩
and ⟨ε22δ SA⟩ show monotonic but non-linear decreases as a function of β. Interestingly, the normalized quantities

ρ(v22 , [pT]) and ρ(ε22, S/A) both approximately follow linear decrease as a function of β. Based on this, we obtain the
following empirical approximation (more details see [41]).

⟨v22δpT⟩ ≈ a1 + (a1 + a2Sign(β))β3 , ρ(v22 , [pT]) ≈ b1 + b2β (7)

Sign(β) ensure the increase of ⟨v22δpT⟩ with ∣β∣ when β < 0. For the range of β value considered here, the cubic term

is largely reduced by
√

var(v22) and
√

var([pT]) an approximately linear dependence in β for ρ(v22 , [pT]). Very similar

parameterization and observation can also be made about the initial-state quantities. The functional form for ⟨v22δpT⟩
and ⟨ε22δ SA⟩ can be thought as a event-by-event average of the product of a quadratic function c1 + c2β2 for

√
var(v22)

or
√

var(ε22) and a linear function d1 + d2β for [pT] or S/A (but with ⟨c2d1⟩ = 0 and ⟨c1d2⟩ = 0), and is generally
expected for three-particle correlator if the signal for each particle has a linear dependence on β.
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FIG. 3: The β2 dependence of various quantities involved in v2 − [pT] correlation (solid circles) and ε2 −S/A correlation (open
circles) in top 0–1% centrality based on the Npart event class. The data points for β = −0.28 are shifted slightly to the right of
the data points for β = 0.28.

Next, we perform the same analysis for mid-central 28–33% collisions and results are shown in Fig. 4. Compared to
central results, the ⟨v22δpT⟩ in the 28–33% centrality shows a non-monotonic dependence on β, i.e it is largest for β = 0

and decreases on both sides. Very similar qualitative dependence is also observed for the initial-state estimator ⟨ε22δ SA⟩.
These trends are preserved for ρ(v22 , [pT]) as shown in the right panel. We conclude that the v2 − [pT] correlation
in mid-central collisions has rather complex dependence on β, which is driven entirely by ε2 − S

A
. Besides, this is

the region where the centrality resolution effects plays an important role (see Fig. 6), which need to be understood
before we can draw strong physics conclusion by comparing with the experimental data. On the other hand, the
results in 0–1% have a more straightforward connection with collision geometry and they are insensitive to centrality
resolution effects. Therefore, the UCC region is a sweet spot for experimental comparison to constrain the β value and
distinguish between prolate and oblate deformations. We expected this is true for hydrodynamic model in general.
It would be interesting to also consider quadrupole deformation that exhibit triaxiality for which the three radii are
different Ra ≠ Rb ≠ Rc. As discussed in Eq. 1, the general triaxiality is described by the triaxiality angle γ, which
ranges from 0 for prolate shape to π/3 for oblate shape. It is natural to expect that the collisions of such system
should have a v2 − [pT] signal in between the signal for prolate shape and oblate shape. Specifically, ρ(v22 , [pT]) for
highly deformed nuclei is expected to change sign from negative to positive, when γ is varied from 0 to π/3. But the
v2 signal should be relatively insensitive to γ. A comparison of v2 and v2 − [pT] for nuclei with similar mass number
but different β and triaxiality parameter values, say Lu and Hf region [42], would be useful.

Before closing the paper, we would like to discuss briefly two technical but important issues, which are presented
in more details in Appendix A. Namely the influences of non-flow correlation and volume fluctuations. The influence
of non-flow correlation were quantified by comparing results with those obtained from the subevents methods with
η gaps. We found that the non-flow correlations has no visible impact except in the very low Nhadron region. To
study the influence of volume fluctuations, the particles used to define event class (particles of centrality, POC) are
chosen to be either similar or different from the particle used to calculate the ρ(v22 , [pT]) (particles of interest, POI).
When POC are chosen to have different pT or η range from POI, the ρ(v22 , [pT]) obtained for the same POI may differ
significantly in mid-central and near-central collisions. However, the difference decreases for large ∣β∣ value, indicating
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FIG. 4: The β2 dependence of various quantities in v2 − [pT] correlation (solid circles) and ε2 −S/A correlation (open circles)
in 28-33% centrality based on the Npart event class. The data points for β = −0.28 are shifted slightly to the right of the data
points for β = 0.28.

that the deformation induced contribution to ρ(v22 , [pT]) is not affected by volume fluctuations. Most importantly,
the ρ(v22 , [pT]) in the UCC region, e.g. 0–1%, is quite insensitive to the choice of POC. Therefore, the UCC region
is clearly a sweet spot to isolate and constraint the influence of nuclear deformation to the ρ(v22 , [pT]) (also the v2
fluctuations as pointed out previously [16].).

IV. SUMMARY

We studied the influence of the nuclear quadrupole deformation on the fluctuations of harmonic flow vn and event-
by-event mean transverse momentum [pT], and correlated fluctuations between vn and [pT] in Au+Au and U+U

collisions at RHIC energy using the AMPT transport model. The variances of the v22 and [pT] fluctuations,
√

var(v22)
and

√
var([pT]), covariance ⟨v22δpT⟩ and Pearson correlation coefficient ρ(v22 , [pT]) are calculated as a function of

quadrupole deformation parameter β. The
√

var(v22) show a clear quadratic dependence on β over a broad centrality

range, driven by a similar quadratic β dependence in the initial-state eccentricity ε2. The
√

var([pT]) shows a very
weak quadratic β dependence, much weaker than the dependence observed for the variance of the size R fluctuation
in the initial state. This implies that AMPT model lacks a clear radial flow response to the overall system size
fluctuations.

The correlation between v2 and [pT] shows a strong dependence on β. In the ultra-central collisions, ρ(v22 , [pT])
shows a linear dependence β, i.e. it decreases for larger prolate deformation (more positive β) and increases for larger
oblate deformation (more negative β). This is consistent with the expected correlation between ε2 and radius of the
system R in the initial state for prolate and oblate nuclei in a simple geometrical picture. This finding shows great
promise in using the strength and sign of v22 − [pT] correlation to constrain the triaxiality of the nucleus. In mid-
central and peripheral region, the ρ(v22 , [pT]) is largest for spherical nuclei and decrease for both prolate and oblate
deformation. This behavior again follows qualitatively similar β dependence for the expected correlation between ε2
and R. The values of ρ(v22 , [pT]) are not influenced by non-flow correlation, however they are sensitive to the choices
of variable used to define event multiplicity in mid-central collisions due to centrality resolution and auto-correlation
bias. Such dependence are found to be minimized in the ultra-central collisions where the results are found to be
independent of event multiplicity definition. Therefore, v2 − [pT] correlation in UCC region can be used to provide
direct connection to the initial collisions geometry and connect back to the shape of the colliding nuclei. Detailed
comparison of the model prediction with the v2 − [pT] correlation data in Au+Au and U+U collisions should allow
us to constrain the β value of highly deformed U nucleus.

We thank Giuliano Giacalone for discussions and comments on the paper. This work is supported by DOE
DEFG0287ER40331.



8

Appendix A: Influence of Non-flow correlations and volume fluctuations

The vn − [pT] could have contributions that are unrelated to the initial-state geometry but arise from correlated
particle production in the momentum space such as jet fragmentation and resonance decays, known as “non-flow”.
The non-flow correlations can be suppressed by requiring pseudorapidity gaps between the particles in each triplet in
the context of so-called standard, two-subevent and three-subevent methods [27]. The influence of non-flow to vn−[pT]
correlation has been investigated in detail in Ref. [25] and was shown to be important only in the low multiplicity
events. Here we repeat the same study also in the AMPT model. In the standard method used for the main results,
all particles within ∣η∣ < 2 are included. In the two-subevent method, triplets are constructed by combining particles
from two subevents labeled as a and c with a gap in between to reduce non-flow effects: −2 < ηa < −0.6 , 0.6 < ηc < 2.
The two particles contributing to the flow vector are chosen as one particle each from a and c, while the third particle
providing the pT weight is taken from either a or c. In the three-subevent method, three non-overlapping subevents
a, b and c are chosen: −2 < ηa < −0.6 , ∣ηb∣ < 0.6 , 0.6 < ηc < 2. The particles contributing to flow are chosen from
subevents a and c while the third particle is taken from subevent b.

The comparison between these methods are shown in Fig. 5 for U+U collisions with several β values. The two-
subevent method agrees nearly perfectly with the standard method over broad Npart range, while the results from
the three-subevent method are systematically higher but the difference depends weakly on Npart. This difference
suggests possible longitudinal decorrelation, which affects the strength of the correlation for particles separated in
pseudorapidity [43, 44]. The decorrelation effects were observed between the vn measured in two η ranges [45–47], but
in the present case the decorrelation between vn and [pT] might also play a role. We leave this topic to a dedicated
study in the future.

/2ApartN
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T
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=0βU+U 
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=0.4βU+U 

FIG. 5: The Npart dependence of ρ(v22 , [pT]) obtained from the standard, two-subevent and three-subevent methods for U+U
collisions for different β values in each panel. From left to right they are β = −0.28, 0, 0.28 and 0.4. The event class used for
averaging is based on Npart.

Our main analysis is performed using all hadrons with 0.2 < pT < 2 GeV and ∣η∣ < 2, and the event centrality is
defined using either Npart or inclusive hadron multiplicity Nhadron in ∣η∣ < 1. In the calculation of various observables,
the values obtained in each event are averaged over events with comparable multiplicity in Nhadron. They are then
combined in broader multiplicity ranges of the event ensemble to obtain statistically more precise results. The event
averaging procedure (also sometime referred to as centrality bin width correction) is necessary to reduce the effects
of volume fluctuation within each event class definition [21, 26, 36], but not completely eliminate it. This is because
centrality for fixed value of Nhadron is still smeared due to fluctuations in the particle production process. Since the vn
and [pT] values vary with centrality, the smearing in centrality can lead to additional fluctuations of shape and size
of the overlap region. Indeed, significant differences in ρ(v2n, [pT]) were observed between centrality defined in mid-
rapidity and centrality defined in the forward rapidity [29]. To quantify the volume fluctuation effects, we performance
a separate analysis. We calculate the ρ(v2n, [pT]) using all hadrons with 0.2 < pT < 2 GeV and ∣η∣ < 1 (Particles of
Interest, POI), but using four different η and pT choices for particles used to define event class (Particles of Centrality,
POC): Nhadron(1.5 < ∣η∣ < 2),Nhadron(∣η∣ < 1),Nhadron(1.5 < ∣η∣ < 2, pT > 0.5 GeV), Nhadron(∣η∣ < 1, pT > 0.5 GeV). Note
that particles used to define Nhadron(1.5 < ∣η∣ < 2) have no overlap with particle used to calculate ρ(v2n, [pT]), which
could reduce the auto-correlation effects associated with non-flow.

In Fig. 6, we demonstrates the sensitivity to volume fluctuation by comparing the results of ρ(v22 , [pT]) for four
different POC. They are mapped to Npart and compared with the results obtained directly by binning events according
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FIG. 6: The Npart dependence of ρ(v22 , [pT]) calculated for hadrons in 0.2 < pT < 2 GeV and ∣η∣ < 1 but compared between
five different event class definitions after mapping to the common Npart x-axis. They are shown separately for Au+Au or U+U
collisions with various β values as indicated in each panel. The vertical dashed lines indicate the locations for the 1% and 5%
highest Npart values.

to Npart. Each panel shows the results obtained for Au+Au or U+U collisions with a particular β value. The
results for event class based on Npart always has the smallest ρ(v22 , [pT]) values, except in the very peripheral region.
Results obtained for different Nhadron event classes show large spread in mid-central collisions, but they converge to a
common results in the most central region and cross each other at Npart ∼ 80−120 depending on β, which corresponds
approximately to the average Npart for minimum-bias Au+Au or U+U collisions. The spreads between different
Nhadron are largest for β = 0 and reduce significantly for large ∣β∣ values, implying that the deformation contribution is
not affected by centrality resolution. Looking in each panel in more detail, we find that the results based on Nhadron

without pT cut are very close to each other, albeit still a bit higher than Npart case. On the other hand, the results
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based on Nhadron that include only high pT hadrons, i.e. pT > 0.5 GeV are much larger.
The largest enhancement is observed for Nhadron(∣η∣ < 1, pT > 0.5 GeV), but only a slight increase is observed for

Nhadron(∣η∣ > 1.5, pT > 0.5 GeV). We conclude that the when only high pT hadrons are counted for Nhadron, there
is a large auto-correlation between the Nhadron and ρ(v22 , [pT]) if the η ranges for these two quantities have overlap.
Such auto-correlation is minimal, however, if Nhadron definition also include low pT particles. The results from STAR
Collaboration are based on number of charged particles with ∣η∣ < 0.5 and pT > 0.2 GeV for event class and ∣η∣ < 1 and
pT > 0.2 GeV for calculation of ρ(v22 , [pT]) [22]. In this case, we expect the auto-correlation effects are rather modest.
The results from ATLAS Collaboration were based on ∣η∣ < 0.5 and pT > 0.5 GeV for both ρ(v22 , [pT]) and event class
definition. The auto-correlation bias could be less severe since the ⟨pT⟩ is larger at LHC and pT > 0.5 GeV selection
should already included most of the hadrons. This point certainly deserves a dedicated study. But independent of the
finding, we would like to emphasize that the results in the most central collisions, e.g. 0–1% centrality as indicated by
the vertical dashed line each panel, are rather stable against auto-correlation and/or the volume fluctuation effects. In
the presence of large deformation, the stable region increases further and may extend to top 0–5% centrality. Therefore,
the sign-change region of ρ(v22 , [pT]) in the U+U collisions observed by the STAR Collaboration [22], covering the
top 0–8% most central events, should be rather robust and independent of the particular choice centrality used.
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Appendix B: Results calculated with Nhadron event class and plotted as a function of Nhadron
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FIG. 7: The Nhadron(∣η∣ < 1) dependence of v22 variance (top-left), [pT] variance (2nd from top-left), flow-[pT] covariance
⟨v22δpT⟩ (3rd from top-left) and Pearson coefficients ρ(v22 , [pT]) (top-right) in Au+Au and U+U collisions with different defor-
mation parameter β. The bottom panels show the corresponding initial-state estimators in the Glauber model. The event class
used for averaging is based on Nhadron(∣η∣ < 1).

So far, the results are either calculated with Npart or Nhadron as POC, but are always presented as a function of
Npart. Note that, in the second case, the Npart is defined as the average Npart for events with given Nhadron. Due
to relative smearing, events in top 0–1% of Nhadron are different from events in top 0–1% of Npart, in particular the
⟨Npart⟩ for events in top 0–1% of Nhadron is generally smaller than the ⟨Npart⟩ for events in top 0–1% of Npart. This
simply means that the influence of volume fluctuations for events in top 0–1% of Nhadron is generally larger for events
in top 0–1% of Npart (see Fig. 6).

Figure 7 shows the components of Pearson correlation coefficients calculated with final-state hadrons (top row) and
the initial-state participating nucleons (bottom row). They are calculated using Nhadron as POC for event averaging
and plotted as a function of Nhadron. They should be contrasted to Fig. 2. The main features are similar, except
that the distributions are much more smeared in the UCC region. Figure 8 shows the influence of volume fluctuation
with the POC defined in the same way as in Fig. 6. In fact, they are exactly the same data points, and the only
difference is they are mapped to Nhadron. One noticeable difference from Fig. 6, however, is that the influence of
volume fluctuations is still visible in the top 0–1% centrality based on Nhadron. One need to use even more extreme
selection, such as top 0–0.2% range for Nhadron in order to minimize the volume fluctuation effects.

Finally, Fig. 9 shows the β dependence of the components for v2 − [pT] in the 0–1% (top row) and the 28–33%
(bottom row) centrality based on Nhadron. There are some quantitively differences when comparing to Figs. 3 and 4.
but the qualitative behaviors are similar. The differences are particularly noticeable for initial-state quantities since
these quantities are more directly connected to Npart than to Nhadron. But the differences for the final-state quantities
are much smaller.

Appendix C: Results for higher order harmonics

Figure 10 show the results of Pearson correlation coefficients for higher-order flow harmonics n = 3 and n = 4.
Within the present statistics precision, we conclude that ρ(v23 , [pT]) and ρ(v24 , [pT]) are relatively insensitive to the
quadrupole deformation effects. We observe, however, that the corresponding initial-state quantities ρ(ε23, S/A) and
ρ(ε24, S/A) show qualitatively very different Npart dependence shape. This behavior implies that either they are not
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FIG. 8: The centrality dependence of ρ(v22 , [pT]) calculated for hadrons in 0.2 < pT < 2 GeV and ∣η∣ < 1 and compared
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shown separately for Au+Au or U+U collisions with various β values as indicated in each panel. The vertical dashed lines
indicate the locations for the top 1% and 5% highest Nhadron values.

good initial-state estimators for v3− [pT] and v4− [pT] correlations, or correlation between higher-order flow and [pT]
are dominated by the dynamical effects in the final state. An alternative estimator based on ratio of total energy and
total entropy was found to reproduce qualitatively the ρ(v23 , [pT]) data from ATLAS [19].
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/2ApartN
0 0.5 1

])
T

,[p2 3
(vρ

0

0.1

0.2

0.3

AMPT

=0βAu+Au 
=-0.13βAu+Au 

=0βU+U 
=0.22βU+U 
=0.28βU+U 
=0.34βU+U 
=0.4βU+U 
=-0.15βU+U 
=-0.28βU+U 

/2ApartN
0 0.5 1

])
T

,[p2 4
(vρ

0

0.2

0.4 AMPT
|<2η<2 GeV,|

T
0.2<p

/2ApartN
0 0.5 1

])
S

/A
,[2 3∈(ρ

-0.3

-0.2

-0.1

0

0.1

/2ApartN
0 0.5 1

])
S

/A
,[2 4∈(ρ

-0.2

-0.1

0

0.1

FIG. 10: The Npart dependence of ρ(v23 , [pT]) (top-left) and ρ(v24 , [pT]) (top-right) in Au+Au and U+U collisions with
different deformation parameter β. The bottom panels show the corresponding initial-state estimators in the Glauber model.
The event class used for averaging is based on the Npart.



14

[1] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A28, 1340011 (2013), arXiv:1301.5893 [nucl-th] .
[2] U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013), arXiv:1301.2826 [nucl-th] .
[3] W. Florkowski, M. P. Heller, and M. Spalinski, Rept. Prog. Phys. 81, 046001 (2018), arXiv:1707.02282 [hep-ph] .
[4] W. Busza, K. Rajagopal, and W. van der Schee, Ann. Rev. Nucl. Part. Sci. 68, 339 (2018), arXiv:1802.04801 [hep-ph] .
[5] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz, Phys. Rev. C 94, 024907 (2016), arXiv:1605.03954

[nucl-th] .
[6] D. Everett et al. (JETSCAPE), (2020), arXiv:2011.01430 [hep-ph] .
[7] G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings, (2020), arXiv:2010.15130 [nucl-th] .
[8] D. Teaney and L. Yan, Phys. Rev. C 83, 064904 (2011), arXiv:1010.1876 [nucl-th] .
[9] H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, Phys. Rev. C 87, 054901 (2013), arXiv:1212.1008 [nucl-th] .
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