
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Elastic proton scattering off nonzero spin nuclei
Matteo Vorabbi, Michael Gennari, Paolo Finelli, Carlotta Giusti, Petr Navrátil, and Ruprecht

Machleidt
Phys. Rev. C 105, 014621 — Published 21 January 2022

DOI: 10.1103/PhysRevC.105.014621

https://dx.doi.org/10.1103/PhysRevC.105.014621


Elastic proton scattering off non-zero spin nuclei

Matteo Vorabbi1, Michael Gennari2,3, Paolo Finelli4, Carlotta Giusti5, Petr Navrátil2,3, and Ruprecht Machleidt6
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Background: In recent years, we constructed a microscopic optical potential (OP) for elastic
nucleon-nucleus (NA) scattering using modern approaches based on chiral theories for the nucleon-
nucleon (NN) interaction. The OP was derived at first order of the spectator expansion in Watson
multiple scattering theory and its final expression was a folding integral between the NN t matrix
and the nuclear density of the target. Two- and three-body forces are consistently included both in
the target and in the projectile description.
Purpose: The purpose of this work is to apply our microscopic OP to nuclei characterized by a
ground state of spin-parity quantum numbers Jπ 6= 0+.
Methods: We extended our formalism to include the spin of the target nucleus. The full amplitudes
of the NN reaction matrix are retained in the calculations starting from two- and three-body chiral
forces.
Results: The microscopic OP can be applied in the energy range 100 ≤ E ≤ 350 MeV. We show
a remarkable agreement with experimental data for the available observables and, simultaneously,
provide reliable estimates for the theoretical uncertainties.
Conclusions: This work paves the way toward a full microscopic approach to inelastic NA scat-
tering, showing that the derivation of optical potentials between states with Jπ 6= 0+ is completely
under control.

PACS numbers: 24.10.Ht;24.70.+s;25.40.Cm;11.10.Ef

I. INTRODUCTION

The optical potential (OP) is a fundamental ingredient
not only in the description of elastic diffusion but also
in the analysis of more complicated reactions, where it
acts as input for theoretical calculations based on the
distorted wave Born approximation and coupled channel
methods [1–3].

The study of the OP within the framework of micro-
scopic approaches [4, 5] provides, in our opinion, multiple
sources of scientific interests. Even if it is true that a phe-
nomenological approach is generally preferred to achieve
a more accurate description of the available experimen-
tal data, nowadays, with the upcoming facilities for ex-
otic nuclei (FAIR at GSI [6], SPIRAL2 at GANIL [7] or
SPES at LNL [8], just to mention some of the most im-
portant projects), we strongly believe that a microscopic
approach to the OP would be the preferred way to make
reliable predictions and to assess the impact of unavoid-
able approximations.

Interest in OPs has been renewed in the scientific com-
munity over the last few years and several works have
been devoted to this topic. We mention the most rele-
vant developments in our opinion: microscopic dispersive
OPs [9, 10], OPs within a self-consistent Green’s function
approach [11, 12], OPs from Coupled-Cluster calculations

[13–15], chiral symmetry inspired OPs [16–19], nonlocal
OPs [20–22], g-matrix calculations [23–27], global OPs
[28, 29], and OPs based on No-Core Shell Model (NCSM)
calculations [30, 31].

A microscopic OP was derived from chiral nuclear po-
tentials in a series of manuscripts we produced over the
last few years, starting from the first work [32], where a
microscopic OP was introduced following the well known
procedure of Watson [33], then followed by Refs. [34, 35],
where the agreement with experimental data and phe-
nomenological approaches was successfully tested. As
main achievements of our latest work, it is worth men-
tioning the inclusion of three-body (3B) forces [36], the
application to translationally invariant nonlocal densities
derived within the NCSM framework [37], and the exten-
sion of our OP to antiproton-nucleus elastic scattering
[38]. We note that in all these works we never investi-
gated nuclei with spin different from zero. This is the
case we want to study with this manuscript, that can be
seen as a natural follow-up of our previous work. To our
knowledge, this is the first time that a microscopic OP
derived within the Watson multiple scattering theory us-
ing NCSM nonlocal densities is applied to non-zero spin
nuclei.

In regard to our latest work, the present investigation
is connected to the importance of 3B contributions in
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nuclear observables. We recently studied the effects of
such contributions in nucleon-nucleus (NA) elastic scat-
tering observables [36], demonstrating that 3B effects are
relevant for quantities that depend on the spin of the nu-
cleons. In this context, it is important to verify whether
these conclusions also hold for nuclei whose ground state
quantum numbers are different from 0+.

In recent years, experimental efforts have multiplied
to develop the technologies necessary to study the elastic
scattering of protons (and ions) by using inverse kinemat-
ics [39–46]. This configuration is necessary to study ex-
otic nuclei that have very short average life times. Some
recent studies have tried to use such experiments with the
purpose of determining the density of matter of nuclear
systems [39, 41, 44, 45]. However, these measurements
are subject to some criticisms and are not free from siz-
able uncertainties. It is hence important to establish a
microscopic perspective for understanding the relation of
proton elastic scattering to the density of nuclear mat-
ter. In the analysis of these experiments an essential
step is the subtraction of contributions from the inelastic
channel. In this perspective, if we wish to establish a
consistent microscopic approach for inelastic NA scatter-
ing, which is our long-term goal, it is mandatory to test
the microscopic OP on states with spin-parity quantum
numbers Jπ 6= 0+, which is the goal of the present work.

For example, at the GSI using the IKAR chamber,
the elastic diffusion of 6,8He [47] and of 12,14−17C [45]
were measured on a hydrogen target at energies near 700
MeV/nucleon. Another very interesting experiment per-
formed at the GSI was the study of the scattering of
56,58Ni nuclei on hydrogen targets at energies near 400
MeV/nucleon in inverse kinematics for the determination
of the distribution of nuclear matter [48]. The only the-
oretical approach used to analyze the experimental data
is the Glauber model which contains some phenomeno-
logical input, limiting its predictive power.

In the near future many interesting experiments will be
carried out at the GSI which will allow for the exploration
of unknown areas of the nuclide table, of great interest
to the nuclear and astrophysics communities. Among the
many experiments it is worth mentioning the EXL exper-
iment, which will investigate direct reactions of light ions
in inverse kinematics [40, 46].

Other facilities are in operation, for example, the CSRe
storage ring of HIRFL-CSR [49] and also the RI Beam
Factory (RIBF) at RIKEN [50], which has recently pro-
posed inverse kinematics measurements at high momen-
tum transfer [42]. This is a very interesting aspect be-
cause in general the diffusion at low momentum is sen-
sitive to the surface density while the internal region re-
quires high momentum transfer. Such processes are char-
acterized by many-body effects that make their theoret-
ical description an extremely hard task.

In this work we extend our previous analyses of elastic
proton scattering off finite nuclei, focussing our efforts
towards non-zero spin targets. In particular, we are in-
terested in the following set of nuclei: 13C (with quantum

numbers Jπ = 1/2
−

), 6Li (Jπ = 1+), 7Li (Jπ = 3/2
−

),
and 10B (Jπ = 3+), for which experimental data in
the energy range 100 MeV ≤ E ≤ 300 MeV are avail-
able. In addition, we also performed calculations on 9C
(Jπ = 3/2

−
) which has been measured in inverse kine-

matics configuration. This set of nuclei allows us to test
the validity of our microscopic OP [32, 34, 35, 38] when
extended to spin-unsaturated nuclei with different values
of the spin.

The main difference with respect to previous calcula-
tions on spin-zero nuclei [32, 34, 35, 38] is that the polar-
ization of the target nucleus has to be taken into account.
In fact, for a fixed value of the target spin, the nonlocal
density obtained from the NCSM method displays a de-
pendence on the initial and final third component of the
target spin. This difference requires some changes in the
formalism and in the derivation of the OP, making the
calculations, in particular for targets with high values of
the spin, more involved.

The paper is organized as follows: In Sec. II we de-
rive our microscopic OP for non-zero spin nuclei. In Sec.
III we discuss relevant details about the nucleon-nucleon
(NN) chiral potentials employed in the calculations. In
Sec. IV we present the results obtained for the differential
cross section and the analyzing power of elastic proton-
nucleus scattering obtained with our OP and compare
them with the available experimental data. Finally, in
Sec. V we summarize our results and draw our conclu-
sions.

II. OPTICAL POTENTIAL FOR NON-ZERO
SPIN NUCLEI

As we showed in Ref. [32], the explicit expression of
the optical potential in the impulse approximation can be
derived from the following relation for the elastic (A+1)-
body transition operator [51–53]

Tel = PUP + PUPG0(E)Tel , (1)

where P is conventionally taken as the elastic channel
projector, U is the optical potential operator and G0(E)
is the free propagator for the projectile plus target nu-
cleus system. The elastic OP operator is defined as
Uel ≡ PUP and in the impulse approximation it becomes

U
p

el =

Z∑
i=1

tpi +

N∑
i=1

tpi , (2)

where we explicitly introduced the label p to denote the
projectile and we used tpi to represent the free two-body
scattering matrix of the projectile and the ith nucleon in
the target nucleus. It was shown in our previous works
that Eq. (2) is valid for either protons (p) or neutrons
(n), or even antiprotons (p̄). Even if in this work we will
only show results for proton scattering, it is our purpose
to extend the formalism to targets with spin different
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form zero and we will keep this label in our formalism
with the meaning of p = (p, n, p̄). We denote with k
and k′ the initial and final momenta of the projectile
in the NA frame and we introduce the additional vari-
ables q ≡ k′ − k (the momentum transfer located along
the ẑ direction), K ≡ 1

2 (k′ + k) (the average momen-
tum), P as the remainder integration variable [54], and
n̂ ≡ (K×q)/|K×q| (the normal unit vector to the scat-
tering plane). Working in the momentum representation
is a natural choice since the off-shell NN (or p̄N) t ma-

trix is conveniently defined as a function of the relevant
momenta. We also denote with s the spin of the target
(here we only treat the elastic scattering so s does not
change during the scattering process) and with σ and σ′

the initial and final third component of s. To shorten
the notation we also define the multi-index α ≡ (s, σ′, σ)
which contains the target spin quantum numbers.

Using these new variables we can evaluate the operator
of Eq. (2) in a convenient basis and, after some manipu-
lations, we obtain for the general matrix element of the
OP [32]

Up

el(q,K;α,E) =
∑
N=p,n

∫
dP η(q,K,P ) tc

pN

[
q,

1

2

(
A+ 1

A
K +

√
A− 1

A
P

)
;E

]

× ρ(N)
α

(
P +

1

2

√
A− 1

A
q,P − 1

2

√
A− 1

A
q

)

+ i(σ · n̂)
∑
N=p,n

∫
dP η(q,K,P ) tls

pN

[
q,

1

2

(
A+ 1

A
K +

√
A− 1

A
P

)
;E

]

× ρ(N)
α

(
P +

1

2

√
A− 1

A
q,P − 1

2

√
A− 1

A
q

)
,

(3)

where the first term of the right-hand side is the central
part of the OP and the second term is the spin-orbit
part, with i(σ · n̂) representing the spin-orbit operator
in momentum space. Here tc

pN and tls
pN are the central

and the spin-orbit part of the scattering matrix tpN and
η(q,K,P ) is the Moeller operator included to maintain
Lorentz invariance in the transformation from the NA to
the NN systems. The OP is also energy dependent and
the energy E is fixed at half the kinetic energy of the
projectile in the laboratory frame.

An important ingredient of the calculation is the non-

local density ρ
(N)
α in momentum space, for which we em-

ploy the NCSM approach [55, 56]. The NCSM approach
is based on the expansion of the nuclear wave functions
in a harmonic oscillator basis and it is thus characterized
by the harmonic oscillator frequency ~ω and the param-
eter Nmax, which specifies the number of nucleon exci-
tations above the lowest energy configuration allowed by
the Pauli principle. For all the nuclei considered in this
work we used ~ω = 20 MeV and a λSRG = 2.0 fm−1 cut-
off for the Similarity Renormalization Group [57–60] pro-
cedure, including the SRG induced three-nucleon (3N)
force in all the calculations. For the Nmax parameter we
performed calculations with 8 excitations for 9,13C and
10B, 10 for 7Li and 12 for 6Li.

The NCSM method is fully self-consistent since center-
of-mass contributions have been consistently removed. In
the NCSM approach the one-body nonlocal density is
computed in coordinate space and thus it must be trans-
formed to momentum space: this is done through the

Fourier transform and we refer the reader to the Ap-
pendix A for more details. In momentum space, the gen-
eral form of the nonlocal density is given in terms of the
Jacobi momenta ζ and ζ′ (see Appendix A for the defi-
nition)

ρ
(N)
s′σ′s σ(ζ′, ζ) =

1

ŝ′

∑
Kl′l

(s σK, σ′−σ|s′σ′) il−l
′

× ρ(N,K)
l′l (ζ ′, ζ)

[
Y ∗l′ (ζ̂′)Y ∗l (ζ̂)

](K)

σ′−σ
,

(4)

with the coupled angular functions defined as

[
Y ∗l′ (ζ̂′)Y ∗l (ζ̂)

](K)

k
=
∑
m′m

(l′m′lm|Kk)Y ∗l′m′(ζ̂′)Y ∗lm(ζ̂) ,

(5)

and with ρ
(N,K)
l′l (ζ ′, ζ) being the radial part of the density.

Since in this work we only consider elastic scattering, the
spin of the target does not change during the interaction
with the projectile and thus we can set s = s′ in Eq. (4)
and drop the dependence on s′. In this way we recover

the expression for ρ
(N)
α used in Eq. (3).

To compute the OP of Eq. (3) we need to interpolate
the density and this is done using the relations that con-
nect the Jacobi variables to the momentum transfer

q =

√
A

A− 1

(
ζ′ − ζ

)
, (6)
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and the integration variable

P =
1

2

(
ζ′ + ζ

)
. (7)

We refer the reader to the Appendix B for more details.
After the calculation of Eq. (3), the OP is then inter-
polated and stored in terms of the variables k and k′

(for example see Section II C of Ref. [32]). Under very
general assumptions (i.e. conservation of total angular
momentum and parity), the OP is expanded in partial
waves as

Up

el(k
′,k;α,E) =

2

π

∑
ljm

Y l
1
2
jm(k̂′)Up

lj(k
′, k;α,E)Y l

1
2 †
jm (k̂) ,

(8)

where Y l
1
2
jm are the usual spin-angular functions defined

as

Y l
1
2
jm(k̂) =

∑
mlms

(l ml 12 ms|jm)Y ml

l (k̂)χ 1
2
ms

. (9)

We immediately see from Eq. (8) that, for a given value of
s, the partial wave components of our OP depend on the
initial and final third component of s. This is a direct
consequence of Eq. (4), that enters Eq. (3), and thus
introduces the dependence on σ and σ′ in the OP. We
also notice that the OP of Eq. (3) is an operator in the
spin space of the projectile only, explaining the partial
wave expansion of Eq. (8).

Using the same decomposition for the elastic transition
operator T

T p

el(k
′,k;α,E) =

2

π

∑
ljm

Y l
1
2
jm(k̂′)T p

lj(k
′, k;α,E)Y l

1
2 †
jm (k̂) ,

(10)
the partial wave components of the resulting transition
operator are given by

T p

lj(k
′, k;α,E) = Up

lj(k
′, k;α,E) +

2

π

∫ ∞
0

dp p2
Up

lj(k
′, p;α,E)T p

lj(p, k;α,E)

E − E(p) + iε
. (11)

The scattering amplitude for the elastic scattering of spin
1/2 projectiles from a target with arbitrary spin s is given
by

fν′σ′ν σ(θ) = δν′ν δσ′σ fC(θ)

+
2

π

∑
ljJ

(l0 1
2ν|jν) (jνsσ|J, ν + σ)

× (l, ν + σ − ν′ − σ′, 1
2ν
′|j, ν + σ − σ′)

× (j, ν + σ − σ′, sσ′|J, ν + σ)

×
√

2l + 1

4π
ei2σl(η)M

p

lj(α,E)

× Y ν+σ−ν
′−σ′

l (θ, 0) ,

(12)

where the partial wave components of the scattering am-
plitudes are obtained from the on-shell values of the T
matrix as

Mp

lj(α,E) = −4π2µT p

lj(k0, k0;α,E) , (13)

with k0 the on-shell momentum in the NA frame and µ
the reduced mass. In Eq. (12) ν and ν′ represent the ini-
tial and final third component of the spin for the spin-1/2
projectile, fC(θ) is the Coulomb scattering amplitude, η
is the Sommerfeld parameter, and σl are the Coulomb
phase shifts.

Despite its familiar form, we notice that Eq. (12) dif-
fers from the expression that can be found in standard
textbooks for two aspects: first, the partial wave com-
ponents Mp

lj(α,E) do not depend on the total angular

momentum J (where |j − s| ≤ J ≤ j + s) and, second,
they depend on the initial and final third component of
the target spin. The first difference derives from how the
optical potential is expanded in partial waves (for exam-
ple see Section II C of Ref. [32]), while the second one,
as explained above, is the direct consequence of the de-
pendence of the target density on σ and σ′, and makes
the calculations for targets with high values of spin more
involved. For example, for a spin-3 target we have to
calculate Eq. (3) 49 times, one for each combination of
σ and σ′, obtaining 49 different OPs that are then ex-
panded in partial waves and used to solve Eq. (11) to
obtain all the T p

lj(k0, k0;α,E) matrix elements entering

Eq. (13).
To reduce the computational effort, we also mention

that we investigated the dependence of our results on the
target polarizations. In particular, since our OP does not
contain any spin-orbit term for the target, we can argue
that the initial polarization σ of the target spin does not
change during the scattering process and, thus, it will be
equal to the final one σ′. We explicitly tested this idea
performing the calculations for all the nuclei using only
the density components with σ = σ′ and setting all the
other ones to zero. The results obtained in this way were
all matching the full calculations presented in Sec. IV.
This result is very helpful to reduce the computational
cost for high values of the target spin: for example, for a
spin-3 target we mentioned that we need 49 different OPs
to perform the full calculation, while, if we only consider
the components of the density with σ = σ′, we only need
7 OPs.
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From the scattering amplitude we can calculate the dif-
ferential cross section for an unpolarized beam summing
over the final polarizations and averaging over the initial
ones (for example see Ref. [61])

dσ

dΩ
(θ) =

1

2(2s+ 1)

∑
ν′σ′ν σ

∣∣∣fν′σ′ν σ(θ)
∣∣∣2 . (14)

In a similar way the analyzing power is obtained as

Ay(θ) = −

∑
σ′σ 2 Im

[
f+ 1

2σ
′+ 1

2σ
(θ) f∗− 1

2σ
′+ 1

2σ
(θ)
]

1
2

∑
ν′σ′ν σ

∣∣∣fν′σ′ν σ(θ)
∣∣∣2 .

(15)
The last thing to address is how to include the

Coulomb interaction when the projectile is a charged
particle. This is done following the path outlined in
Refs. [62, 63], which consists in defining a short-range
potential

Ūp

el(k
′,k;α,E) = V Cs (q) + Up

el(k
′,k;α,E) , (16)

obtained from the sum of the Fourier transform of the
short-range part of the Coulomb potential in coordi-
nate space V Cs (q) and the nuclear OP. The resulting
Ū

p

el(k
′,k;α,E) is then expanded in partial waves and it

is transformed to coordinate space through

Ūp

lj(r
′, r;α,E) =

4

π2

∫ ∞
0

dk′ k′ 2
∫ ∞
0

dk k2jl(k
′r′)

× Ūp

lj(k
′, k;α,E) jl(kr) ,

(17)

using the spherical Bessel functions jl, and then it is
transformed back to momentum space through

Ûp

lj(k
′, k;α,E) =

1

k′k

∫ ∞
0

dr′ r′
∫ ∞
0

dr r Fl(η, k
′r′)

× Ūp

lj(r
′, r;α,E)Fl(η, kr) ,

(18)

using the regular Coulomb functions Fl. The partial
wave components Ûp

lj(k
′, k;α,E) are then used to solve

Eq. (11) to obtain the T
p

lj(k
′, k;α,E) matrix elements.

Finally, we briefly discuss the energy range of appli-
cability of our OP and we try to identify its low- and
high-energy limits.

The low-energy limit of the model is dictated by the
impulse approximation, introduced to derive Eq. (3).
This approximation consists in neglecting the interaction
between the struck target nucleon in the target and the
residual nucleus. These effects are very small at 200 MeV
and they are negligible at higher energies, however, they
become important at energies below 100 MeV, that can
be assumed as the low-energy limit of our model.

The high-energy limit of the model is instead dictated
by the applicability of the NN interaction. The chi-
ral potentials that we are applying (see next section for
more details) have a cutoff of 500 MeV/c in terms of the
relative momentum. The equivalent laboratory energy,

Tlab = 2p2/M , is about 500 MeV. Since the cutoff func-
tion in the NN interaction is a Gaussian, it starts acting
earlier than 500 MeV/c, at an energy of ∼ 400 MeV/c,
which is equivalent to Tlab of about 340 MeV. In fact, the
phase shifts of NN scattering are perfectly reproduced
up to 350 MeV, that can be taken as the high-energy
limit of the model. Concerning the SRG, we notice that
our choice, λSRG = 2.0 fm−1, is equivalent to about 400
MeV/c, which then comes down to the same as discussed
above.

III. CHIRAL NUCLEAR POTENTIALS

Before presenting our theoretical predictions we will
shortly discuss the relevant details about the NN poten-
tials employed for our calculations. In this manuscript
we make exclusive use of the most recent generation of
NN chiral potentials derived within the formalism of Chi-
ral Perturbation Theory (ChPT). Within this framework,
the NN interaction is governed by the (approximate) chi-
ral symmetry of the low-energy realization of QCD. As
Weinberg suggested a long time ago [64], chiral symme-
try greatly constrains construction of the NN Lagrangian.
In practice, ChPT provides a description of nuclear sys-
tems in terms of single and multiple pion exchanges (long-
and medium-range components) and contact interactions
between the nucleons in order to parametrize the short-
range behavior. For all the details we refer the reader to
Refs. [65, 66] and to Refs [67–70] for more recent devel-
opments and interpretations. The free parameters of the
theory are determined by reproducing data in the NN
and 3N sector.

In our previous works [32, 34, 35, 37, 38] we applied
chiral NN potentials at N3LO (next-to-next-to-next-to-
leading order) [71] and N4LO (next-to-next-to-next-to-
next-to-leading order) [72] and for the 3N sector at N2LO
(next-to-next-to-leading order). At the moment, because
of the highly computational resources needed, it is im-
possible to achieve a full consistency between the NN
potentials employed for the target description and the
elastic reaction process, in particular concerning the in-
clusion of 3N forces. For our calculations we decided to
employ the NN potentials at N3LO order [71] for two rea-
sons. On one hand, we have shown in our previous work
[34, 35] that including NN potentials at N4LO order does
not substantially improve the agreement since the addi-
tional contributions are very small. On the other hand,
as shown in Ref. [73], nuclear structure calculations for
light nuclei show that the best agreement with the ex-
perimental data is obtained using the NN potential at
N3LO along with 3N forces with simultaneous local and
nonlocal (3Nlnl) regularization [74, 75].

For all the calculations presented in the next Section
we used NN potentials at N3LO [71] with a 500 MeV
energy cutoff plus chiral 3N forces with low-energy con-
stants cD = 0.7, cE = −0.06, and ci, taken from Ref.
[71]. With the purpose of checking the convergence of our
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Figure 1. (Color online) Differential cross section (upper
panel) and analyzing power (lower panel), as functions of the
center-of-mass scattering angle, for 200 MeV protons elas-
tically scattered from 13C (Jπ = 1/2−). The results were
obtained using Eq. (3), where the NN t matrix is computed
with the NN chiral interaction at N3LO order of Ref. [71],
supplemented by a density dependent NN interaction (where
the baryon density is varied in the range between 0.08 fm−3

and 0.13 fm−3) and the one-body nonlocal density matrices
computed with the NCSM method using NN [71] and 3Nlnl
[74, 75] chiral interactions. Experimental data from Ref. [79].

predictions, we also performed a single calculation with
NN potentials at N4LO order [72], including 3N forces
with cD = −1.8, cE = −0.31, and ci taken from Tab. 9
of Ref. [72]. Since 3N forces included in the scattering
process must contain medium corrections, i.e. the pres-
ence of a filled Fermi sea [23–27], we follow here the same
procedure outlined in Refs. [38, 76], where we varied the
density parameter between 0.08 fm−3 and 0.13 fm−3. As
a consequence, our results will be drawn as bands and not
as single lines, in order to show how much the 3N con-
tributions affect the scattering observables varying the
matter density.

IV. RESULTS

In this section we show the theoretical predictions of
our OP for the scattering observables of elastic proton
scattering off a set of non-zero spin nuclei, with different
values of the spin, and compare them to the available
experimental data. We have chosen for our investigation
a proton energy of about 200 MeV, a value for which the
results of our previous work on spin-zero nuclei clearly
demonstrated the validity of our microscopic OP. The
experimental data were taken from the experimental nu-
clear reaction data (EXFOR) [77, 78] web utility.

As a first case we consider elastic proton scattering
on 13C target. The ground state of 13C has spin and
parity quantum number Jπ = 1/2− and it is therefore
well suited to test our theoretical approach.

Measurements were carried out using the polarized
proton beam from the Indiana University Cyclotron Fa-
cility with 200 MeV of mean energy (the mean scattering
energy was varied between 199.8 and 200.1 MeV) [79].
Differential cross sections and analyzing powers were
measured for two isotopes of carbon: 12C and 13C. The
comparison of our previous results with 12C (Jπ = 0+)
data can be found in Figs. 5 and 6 of Ref. [36]. The
comparison with the empirical data for 13C [79] is shown
in Fig. 1, where the calculated differential cross section
dσ/dΩ and analyzing power Ay are displayed as functions
of the center-of-mass scattering angle θc.m.. As previ-
ously mentioned, in order to check the effects of 3N con-
tributions, we let the density parameter of the effective
3N forces vary in a reasonable range for the matter den-
sity: 0.08 fm−3 ≤ ρ ≤ 0.13 fm−3. The effects of genuine
3N forces turn out to be rather small for the differential
cross section, where the thin thickness of the band in-
dicates that the results obtained with different values of
the density parameter are basically on top of each other,
and just a little bit larger for the polarization observ-
able Ay. The fact that the effects are not larger than
those obtained in our previous work on spin-zero nuclei
[38] could be due to the fact that the two-body approx-
imation of the 3N forces at N2LO order is performed in
the approximation of symmetric spin-saturated nuclear
matter.

Generally speaking, the agreement with the empirical
data shown in Fig. 1 is quite satisfactory, especially if we
consider that no adjustments of the OP have been made,
since our OP derivation is fully microscopic. We see rea-
sonable agreement with the data for scattering angles up
to ∼ 70o for the cross section and ∼ 55o for the analyzing
power, after which, with increasing scattering angle, the
agreement worsens. The overall agreement between the
results of our microscopic OP and the empirical data is
of about the same quality as that obtained in Ref. [38]
for 12C.

The calculated differential cross section and the ana-
lyzing power for elastic proton scattering on 6Li target
(Jπ = 1+) are displayed in Fig. 2 as functions of the
center-of-mass scattering angle θc.m.. The experimental
data were measured at the Indiana University Cyclotron
Facility using a polarized proton beam at a laboratory
bombarding energy of 200.4 MeV [80]. With the purpose
of checking the convergence of the theoretical predictions
we compare in the figure the results obtained with NN
potentials at N3LO (red bands) and N4LO order (green
bands). We can see from the figure that the differences
between the two results are small, practically negligible
for the cross section and somewhat larger for Ay, where,
as expected, the results at N3LO give a better agreement
with the experimental data. Also in the case of 6Li the
agreement of the results with the empirical data is sat-
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Figure 2. (Color online) The red band is the same as in Fig. 1
but for 6Li (Jπ = 1+) at 200 MeV. The green band is the cor-
responding result at N4LO order [72] of the chiral expansion.
Experimental data from Ref. [80].
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Figure 3. (Color online) The same as in Fig. 1 but for
7Li(Jπ = 3/2−) at 200 MeV. Experimental data from Ref.
[81].

isfactory and the effects of genuine 3N forces turn out
to be rather small for the differential cross section and a
little bit larger for the analyzing power.

The results for 7Li (3/2−) are presented in Fig. 3. The
differential cross section and analyzing power were mea-
sured at the Indiana University Cyclotron Facility using
a polarized proton beam at a laboratory bombarding en-
ergy of 200.4 MeV [81]. Also in this case the agreement
between the theoretical prediction and the empirical data
is good for the differential cross section, over all the an-
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Figure 4. (Color online) The same as in Fig. 1 but for 10B
(Jπ = 3+) at 197 MeV. Empirical data from Ref. [82].

gular distribution shown in the figure, and satisfactory
for the analyzing power for values of the scattering angle
up to ∼ 45o. The effects of genuine 3N forces turn out
to be generally rather small.

In Fig. 4 we show our results for 10B, a nucleus with
a high value of the ground-state spin Jπ = 3+. With
increasing spin value, our calculations become more in-
volved. The differential cross section and analyzing
power were measured for 197 MeV proton scattering at
the Indiana University Cyclotron Facility [82]. Consid-
ering the high value of the spin, the agreement between
our theoretical predictions and the empirical data is sat-
isfactory. This is in contradiction to what is often stated
in the literature, for instance, in Ref. [82], that address-
ing the elastic scattering data with only optical model
techniques would lead to significant problems with the
quality of the agreement to any particular portion of the
data. In Fig. 4 the experimental cross section is over-
all well described, although somewhat underpredicted for
the highest values of the scattering angle. The agreement
is worse for the analyzing power, where our results are
able to describe the data only for the lowest values of the
scattering angle, up to ∼ 20o − 30o.

The agreement of our results with the experimental
data is always worse for the analyzing power than for the
cross section. This is in general true also for the spin-zero
targets treated in our previous works, and it is not sur-
prising, since the analyzing power is more sensitive and
thus more difficult to reproduce. In general, from our
previous works, all performed for targets with spin equal
to zero, we saw that the model is able to provide a result
for the Ay that describes the general shape of the data
but the minima are never deep enough to provide a good
description of the data. The cases treated in this work are
even more complicated, because the final result for the
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scattering angle. The ground state of 9C has spin and parity
quantum number Jπ = 3/2−. The results were obtained us-
ing the same conditions reported in Fig. 1. Empirical data
from Ref. [84].

Ay is an average between the analyzing powers obtained
for all the specific combinations of σ and σ′, as shown in
Eq. (15). At the current stage, it is not clear how to im-
prove the results for this observable. One possibility is to
include in the model the second-order term of the spec-
tator expansion, which is feasible in principle, but it is
complicated and represents a future challenge. Another
possibility is to change the NN interaction, following for
example Refs. [30, 31], where the N2LOopt potential [83]
was used to construct an OP for spin-zero targets which
provided a very good agreement between the theoretical
calculations and the experimental data of the Ay.

A last example is presented in Fig. 5, where the re-
sults of calculations performed for elastic proton scatter-
ing from 9C (Jπ = 3/2

−
) with a 290 MeV/nucleon 9C, in

inverse kinematics configuration, are displayed and com-
pared with the available empirical data. The experiment
was performed at a secondary beam course in the Heavy
Ion Medical Accelerator in Chiba (HIMAC) of the Na-
tional Institute of Radiological Science (NIRS), where the
angular distribution of the differential cross section of the
H(9C,p) reaction at 277-300 MeV/nucleon was measured
with a newly designed recoil proton spectrometer [84]. In
this case empirical data are available only for the cross
section, which is reasonably well described by our theo-
retical predictions. The effects of genuine 3N forces are
small for the differential cross section and just a little bit
larger for Ay.

V. SUMMARY AND CONCLUSIONS

In a series of papers, over the last few years, we
constructed a microscopic optical potential for elastic
(anti)nucleon-nucleus scattering from chiral potentials.
The OP was derived at first order of the spectator ex-
pansion in Watson multiple scattering theory and its fi-
nal expression is a folding integral between the NN t
matrix and the nuclear density of the target. In the cal-
culations, NN and 3N chiral interactions are used for
the target density, while for the t matrix the effect of
the 3N interaction is approximated with a density de-
pendent NN interaction obtained from averaging over
the Fermi sphere. Our OP was successfully tested in
comparison with experimental data, where it is able to
provide a reasonably good description of the experimen-
tal cross section and polarization observables of different
nuclei. However, till now, it was applied only to spin-zero
nuclei.

In the present work we have extended our microscopic
OP to non-zero spin target nuclei. The extension re-
quires some changes in the derivation of the OP and in
the formalism. The main difference with respect to the
zero-spin case is that now the target density displays an
additional dependence on the initial and final third com-
ponent of the target spin, which is then propagated to
the OP. This difference makes the calculations more and
more involved and time consuming with the increasing
value of the target spin.

Theoretical predictions for the cross section and the
analyzing power of elastic proton scattering off a set of
nuclei with different values of the spin in their ground
state (between J = 1/2 and 3) have been presented and
discussed in comparison with the available data, for a
proton energy of about 200 MeV.

We checked the convergence of the theoretical predic-
tions with a single example for elastic proton scatter-
ing off 6Li, comparing the results obtained with NN po-
tentials at N3LO and N4LO order. The differences be-
tween the two results are small, practically negligible for
the cross section and somewhat larger for the analyzing
power, where the results at N3LO give a better agree-
ment with the experimental data. A better agreement of
the result with the potential at N3LO could be expected,
since from nuclear structure calculations for light nuclei
[73] it was shown that the best agreement with the ex-
perimental data is obtained using the NN potential at
N3LO. Therefore we decided to use the NN potential at
N3LO as a basis for our calculations.

In order to test the validity of our microscopic OP
when extended to non-zero spin nuclei, we have com-
pared results obtained for a set of targets with different
values of the spin. As the target’s spin value increases,
the calculations become more and more involved, but
our results generally give remarkably equivalent agree-
ment for all considered values of the spin. The quality
of the agreement is comparable to the one obtained in
our previous work for spin-zero nuclei at the same en-
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ergy around 200 MeV. The experimental differential cross
sections are in general well described by our theoretical
predictions, while the description of the analyzing power
is less satisfactory. The agreement between the results
of the calculations and the empirical data gets worse as
the scattering angle increases, as it was also found in our
previous work for spin-zero nuclei.

The effects of genuine 3N forces turn out to be rather
small for the differential cross section and just a little
bit larger for the analyzing power. The fact that these
effects are not larger than those obtained for spin-zero
nuclei could be due to the fact that the two-body ap-
proximation of the 3N forces at N2LO is performed in
the approximation of symmetric spin-saturated nuclear
matter.

We also performed calculations of elastic proton scat-
tering off 9C, which was measured in an inverse kinemat-
ics configuration. Our theoretical predictions are able
to give an overall good description of the experimen-
tal differential cross section of the H(9C,p) reaction at
290 MeV/nucleon. The inverse kinematics configuration
is necessary to study exotic nuclei that have very short
average life times. We note that just for the study of
exotic nuclei a microscopic approach to the OP should
be preferable to a phenomenological one, since in situa-
tions for which empirical data are not yet available or are
still scarce an OP better founded on theoretical grounds
should be able to give more reliable predictions and to
assess the impact of the adopted approximations.

Our results show that our microscopic OP is able to
give a remarkable agreement with the experimental data
also on nuclear targets with spin different from zero: the
extension of the OP to nuclei with Jπ 6= 0+ is well under
control. This is an important achievement in itself, which
allows us to apply our OP to a wider range of cases. This
is, however, also an important step forward towards the
extension of the OP to inelastic NA scattering, which will
be our next goal. Recent studies have tried to use exper-
iments in inverse kinematics with the purpose to deter-
mine the density of matter of nuclear systems. However,
these measurements are not free from sizable uncertain-
ties and it becomes important to establish how effectively
the elastic scattering of protons is related to the density of
nuclear matter. In the data analysis of these experiments
an essential step of the procedure is the subtraction of the
inelastic contributions. In this perspective, if we want to
establish a consistent microscopic approach for inelastic
NA scattering, it is mandatory to test the microscopic
OP potential even on states with spin-parity quantum
numbers Jπ 6= 0+. With the present work, showing that
the derivation of optical potentials between states with
Jπ 6= 0+ is completely under control, we paved the way
toward a full microscopic approach to inelastic NA scat-
tering.
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Appendix A: Nonlocal density in momentum space

In our approach, the one-body nonlocal density is com-
puted in coordinate space using the Jacobi coordinates ξ
and ξ′, and its general form is given by (N = n, p)

ρ
(N)
s′σ′s σ(ξ′, ξ) =

1

ŝ′

∑
Kl′l

(s σK, σ′−σ|s′σ′) ρ(N,K)
l′l (ξ′, ξ)

×
[
Y ∗l′ (ξ̂′)Y ∗l (ξ̂)

](K)

σ′−σ
,

(A1)

where[
Y ∗l′ (ξ̂′)Y ∗l (ξ̂)

](K)

k
=
∑
m′m

(l′m′lm|Kk)Y ∗l′m′(ξ̂′)Y ∗lm(ξ̂) ,

(A2)

and ρ
(N,K)
l′l (ξ′, ξ) is the radial part of the non local den-

sity. In our convention, the Jacobi variables ξ and ξ′ are
both defined as

ξ =

√
A− 1

A

[
1

A− 1

A−1∑
i=1

ri − rA

]
, (A3)

where ri is the coordinate of the ith nucleon in the target
nucleus. The double Fourier transform to momentum
space is given by the following relation

ρ(ζ′, ζ) =

∫
d3ξ′

∫
d3ξ 〈ζ′|ξ′〉 ρ(ξ′, ξ) 〈ξ|ζ〉 , (A4)

where

〈ζ′|ξ′〉 =

√
2

π

∑
lm

(−i)ljl(ζ ′ξ′)Y ∗lm(ζ̂′)Ylm(ξ̂′) , (A5)

〈ξ|ζ〉 =

√
2

π

∑
lm

iljl(ζξ)Ylm(ξ̂)Y ∗lm(ζ̂) . (A6)
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In the previous expressions we introduced the Jacobi mo-
menta ζ and ζ′, that in our convention are both defined
as

ζ =

√
A− 1

A

[
1

A− 1

A−1∑
i=1

ki − kA

]
, (A7)

where ki is the momentum of the ith nucleon in the target
nucleus. Inserting Eqs. (A5) and (A6) into Eq. (A4), the
nonlocal density in momentum space is expressed as

ρ
(N)
s′σ′s σ(ζ′, ζ) =

1

ŝ′

∑
Kl′l

(s σK, σ′−σ|s′σ′) il−l
′

× ρ(N,K)
l′l (ζ ′, ζ)

[
Y ∗l′ (ζ̂′)Y ∗l (ζ̂)

](K)

σ′−σ
,

(A8)

with the angular part given by[
Y ∗l′ (ζ̂′)Y ∗l (ζ̂)

](K)

k
=
∑
m′m

(l′m′lm|Kk)Y ∗l′m′(ζ̂′)Y ∗lm(ζ̂) ,

(A9)
and the radial component defined as

ρ
(N,K)
l′l (ζ ′, ζ) ≡ 2

π

∫ ∞
0

dξ′ξ′ 2
∫ ∞
0

dξξ2 jl′(ζ
′ξ′)

× ρ(N,K)
l′l (ξ′, ξ) jl(ζξ) .

(A10)

Appendix B: Interpolation of the nonlocal density in
momentum space

We see from Eq. (A8) that the nonlocal density is ex-
pressed in momentum space using the variables ζ′ and ζ,
but the calculation of Eq. (3) requires the knowledge of
the density in terms of the variables q and P . In general,
the density is first computed in momentum space using
the variables ζ ′, ζ, and cos γ, and then it is interpolated
and stored in terms of q, P , and cos θP . Here we use γ to
represent the angle between ζ′ and ζ, and θP to represent
the angle between q and P . This procedure was used in
all our previous works on zero-spin nuclei, where K can
only assume the value zero. However, when the nucleus
spin is different from zero, we have that 0 ≤ K ≤ 2s
(s is the target spin) and this procedure does not work
anymore. In fact, from Eq. (A9) we see that, except for
K = 0, it is not possible to use the addition theorem of
the spherical harmonics and thus reduce the angular part
evaluation to a function of l and cos γ. Thus, we need to
develop a different method to perform the interpolation.

Our goal is to express the density as a function of
the variables q and P , more precisely, as ρ(q, P, cos θP ).
Keeping in mind that q is located along the ẑ axis, we
can start writing the Cartesian components of q and P
as

q = (0, 0, q)T , (B1)

P = (P sin θP cosφP , P sin θP sinφP , P cos θP )T , (B2)

and from Eqs. (6) and (7), which relate the set of vari-
ables (q,P ) to (ζ′, ζ), we can calculate the Cartesian
components of the last set of variables, obtaining

ζ′ =

 P sin θP cosφP
P sin θP sinφP

P cos θP + 1
2

√
A−1
A q

 , (B3)

and

ζ =

 P sin θP cosφP
P sin θP sinφP

P cos θP − 1
2

√
A−1
A q

 . (B4)

The spherical components of ζ′ = (ζ ′, θ′, φ′) are then
obtained as

ζ ′ =

√
P 2 +

A− 1

4A
q2 +

√
A− 1

A
qP cos θP , (B5)

cos θ′ =
P cos θP + 1

2

√
A−1
A q

ζ ′
, (B6)

φ′ = φP , (B7)

while for ζ = (ζ, θ, φ) we have

ζ =

√
P 2 +

A− 1

4A
q2 −

√
A− 1

A
qP cos θP , (B8)

cos θ =
P cos θP − 1

2

√
A−1
A q

ζ
, (B9)

φ = φP . (B10)

From these results we see that the interpolation does
not depend on φP , thus, the desired density can be ob-
tained evaluating Eq. (A8) using the set of variables
(ζ ′, ζ, cos θ′, cos θ) with φ′ = φ = 0. Then, we use Eqs.
(B5), (B6), (B8), and (B9) to interpolate and store the
density in terms of q, P , and cos θP .
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[74] P. Navrátil, Few-Body Syst. 41, 117 (2007).
[75] P. Gysbers, G. Hagen, J. D. Holt, G. R. Jansen,
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