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We propose a novel storage scheme for three-nucleon (3N) interaction matrix elements relevant
for the normal-ordered two-body approximation used extensively in ab initio calculations of atomic
nuclei. This scheme reduces the required memory by approximately two orders of magnitude, which
allows the generation of 3N interaction matrix elements with the standard truncation of E3max = 28,
well beyond the previous limit of 18. We demonstrate that this is sufficient to obtain the ground-
state energy of 132Sn converged to within a few MeV with respect to the E3max truncation. In
addition, we study the asymptotic convergence behavior and perform extrapolations to the un-
truncated limit. Finally, we investigate the impact of truncations made when evolving free-space
3N interactions with the similarity renormalization group. We find that the contribution of blocks
with angular momentum Jrel > 9/2 to the ground-state energy is dominated by a basis-truncation
artifact which vanishes in the large-space limit, so these computationally expensive components can
be neglected. For the two sets of nuclear interactions employed in this work, the resulting binding
energy of 132Sn agrees with the experimental value within theoretical uncertainties. This work
enables converged ab initio calculations of heavy nuclei.

I. INTRODUCTION

With recent progress in constructing two- (NN) and
three-nucleon (3N) interactions [1, 2], solving the nuclear
many-body problem [3–9], and rapid increases in com-
putational power, the range of applicability of ab initio
calculations of atomic nuclei has exploded over the past
decade [10]. On the side of nuclear interactions, it has be-
come clear that a consistent treatment of NN scattering
and finite nuclei requires the inclusion of 3N forces [11–
15], where chiral effective field theory [1, 2, 16] provides
a path to a consistent and systematic treatment.

On the many-body side, polynomially scaling meth-
ods, such as coupled-cluster theory [6], self-consistent
Green’s functions [7], and in-medium similarity renor-
malization group (IMSRG) [8] have been used to treat
systems of up to A ∼ 100 particles [17–19]. In all of
these calculations, the wave function is expanded on a set
of basis functions—typically the eigenstates of the har-
monic oscillator—and the NN and 3N matrix elements
in that basis are needed as an input. The number of
single-particle basis states in a calculation is given by
the truncation e = 2n+ ` ≤ emax, with the radial quan-
tum number n and angular momentum l. Achieving con-
vergence in both the infrared (IR) and ultraviolet (UV)
for medium-mass nuclei typically requires emax & 12. At
even emax = 12, however, storing the full set of 3N matrix
elements would require approximately 10 TB of memory
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with single-precision floating point numbers, which con-
siderably exceeds the available RAM per node on a typ-
ical supercomputer. It is therefore necessary to impose
some additional truncation on the 3N matrix elements,
typically taken as e1+e2+e3 ≤ E3max. Ideally, the value
of E3max is increased until convergence is achieved for a
given observable.

The current limit of E3max . 18 is the primary bot-
tleneck preventing ab initio calculations from reaching
much beyond A ∼ 100 [18, 20–22]. Overcoming this limit
would significantly increase the reach of ab initio theory,
e.g. to searches for physics beyond the standard model
using heavy isotopes of xenon, tellurium, cesium, or mer-
cury [23–29]. Furthermore, potential controlled calcu-
lations of 208Pb would provide the best experimentally
accessible link between finite nuclei and nuclear matter,
particularly in light of recently reported parity-violating
electron scattering experiments [30–32]. Ab initio pre-
dictions would even be possible for the astrophysically
relevant, but experimentally challenging, N=126 region
below 208Pb [33–35].

One way to overcome this limitation is to apply an im-
portance truncation and/or tensor factorization [36, 37]
to the 3N matrix elements, which would dramatically
reduce the required RAM while retaining sufficient accu-
racy. Before resorting to these techniques, however, we
observe that the most of today’s practical calculations
are based on the normal-ordered two-body (NO2B) ap-
proximation [38]. This means we do not need the full set
of 3N matrix elements in actual applications, particularly
in the heavy-mass region. In this work, we demonstrate
the efficiency of generating and storing only those combi-
nations of 3N matrix elements involved in the NO2B ap-
proximation and discuss the E3max convergence of heavy
nuclei around 132Sn.
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FIG. 1. File size of the three-body matrix elements with
the single-precision floating point numbers. The horizontal
dashed line indicates 100 GB, which is a typical limit of the
memory per node in usual work stations.

The structure of this paper is as follows. In Sec. II, we
introduce a novel procedure to store the 3N matrix ele-
ments relevant to the NO2B approximation. In Sec. III,
the asymptotic behavior with respect to E3max is dis-
cussed. In Sec. IV, we demonstrate large E3max calcu-
lations around 132Sn, using the well-established NN+3N
1.8/2.0 (EM) interaction [39]. We also discuss the un-
certainty from free-space 3N similarity renormalization
group (SRG) evolution and present results for 132Sn with
the chiral NN+3N(lnl) interaction [40]. Finally, we con-
clude in Sec. V.

II. CALCULATION OF 3N MATRIX ELEMENTS

In Figure 1 we show the estimated file size of the
3N matrix elements as a function of E3max for a fixed
emax = 16. The curve “full” illustrates that the typical
basis-size limit is approximately E3max = 16 − 18 for a
memory limit of about 100 GB. This limit, however, is
typically not sufficient to obtain converged results for nu-
clei beyond A = 100 as discussed in Refs. [18, 20–22, 41],
and which we also demonstrate below. Towards heavier
systems, the contributions of the residual 3N interactions
is expected to be comparable to the truncation error of
the many-body method [42]. Since the memory require-
ment for storing the full set of 3N matrix elements is
prohibitive, we instead aim to exploit the simplifications
offered by the NO approximation. In order to identify
the minimal subset of 3N matrix elements for the NO2B
Hamiltonian, we begin by reviewing the normal-ordering
procedure.

A. NO2B 3N matrix elements

Our starting Hamiltonian in second-quantized form is

H =
∑
p′p

tp′pa
†
p′ap +

1

4

∑
pp′qq′

V NN
p′q′pqa

†
p′a
†
q′aqap

+
1

36

∑
pp′qq′rr′

V 3N
p′q′r′pqra

†
p′a
†
q′a
†
r′araqap, (1)

where tp′p, V NN
p′q′pq, and V 3N

p′q′r′pqr are the one-, two-
, and three-body matrix elements, respectively. The
index p labels the single-particle orbit with quantum
numbers {np, `p, jp,mp, tzp} corresponding to the radial
quantum number, orbital angular momentum, total an-
gular momentum, total angular momentum projection,
and isospin projection, respectively. Performing normal
ordering with respect to a reference state characterized

by a one-body density matrix ρp′p = 〈a†p′ap〉 and discard-
ing the residual 3N part, we obtain the NO2B Hamilto-
nian:

H(NO2B) = E0 +
∑
p′p

fp′p{a†p′ap}

+
1

4

∑
pp′qq′

Γp′q′pq{a†p′a
†
q′aqap} ,

(2)

where the braces {. . .} indicate that the enclosed string
of creation and annihilation operators are normal-ordered
with respect to the used reference state. The Hamilto-
nian is now expressed in terms of a zero-body part

E0 =
∑
p′p

ρp′ptp′p +
1

2

∑
pp′qq′

ρp′pρq′qV
NN
p′q′pq

+
1

6

∑
pp′qq′rr′

ρp′pρq′qρr′rV
3N
p′q′r′pqr,

(3)

a normal-ordered one-body part

fp′p = tp′p +
∑
q′q

ρq′qV
NN
p′q′pq +

1

2

∑
qq′rr′

ρq′qρr′rV
3N
q′r′p′qrp,

(4)
and a normal-ordered two-body part

Γp′q′pq = V NN
p′q′pq +

∑
r′r

ρr′rV
3N
p′q′r′pqr. (5)

The accuracy of the NO2B approximation has been in-
vestigated for ground state energies [38, 42–44], where it
was found that by 16O the error is at the level of 1% of
the binding energy. With increasing mass number, this
error should decrease as a fraction of the total binding
energy1.

1 The approximation also breaks translational invariance [44], but
this is only important for light nuclei (i.e. A . 16), where the
NO2B truncation is not necessary and convergence in E3max can
be obtained by conventional methods.
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If the one-body density matrix ρpp′ is rotationally in-
variant and conserves parity and isospin projection, it
must satisfy (`p′ , jp′ ,mp′ , tzp′ ) = (`p, jp,mp, tzp), and the
number of required 3N matrix elements is drastically
smaller than that of the original full set. This con-
dition is satisfied for single-reference calculations (e.g.
coupled cluster, self-consistent Green’s function, IM-
SRG, HF-MBPT) with a closed-shell reference, as well as
for particle-attached and particle-removed methods [6],
and the ensemble normal ordering reference used in the
valence-space IMSRG [45]. On the other hand, for
broken-symmetry [46, 47] or multi-configurational [48,
49] references necessary to describe e.g. well-deformed
nuclei, this would constitute an additional approxima-
tion.

Furthermore, in the practically used JT -coupled rep-
resentation, we can sum up the 3N total angular momen-
tum dependence. This can be seen in the J-coupled ex-
pression for the normal-ordered matrix element, the full
expressions for which are provided in Appendix A. Here
we show only the contributions from the three-nucleon
interactions V 3N (with the notation [x] ≡ 2x + 1, and
using un-normalized matrix elements):

E0 [3N] =
1

6

∑
p′q′r′
pqr

ρp′pρq′qρr′r
∑
JpqJ

[J ] V
JpqJpqJ
p′q′r′pqr (6a)

fp′p [3N] =
1

2

∑
qq′rr′

ρq′qρr′r
∑
JqrJ

[J ]

[jp]
V
JqrJqrJ
q′r′p′qrp (6b)

Γ
Jpq
p′q′pq [3N] =

∑
rr′

ρr′r
∑
J

[J ]

[Jpq]
V
JpqJpqJ
p′q′r′pqr . (6c)

We can see that in Eq. (6) all terms depend on V 3N

through the quantity

VJpqp′q′r′pqr ≡
∑
J

[J ]V
JpqJpqJ
p′q′r′pqr δ̃r′r , (7)

where the symbol δ̃r′r is shorthand for all the quantum
numbers which are conserved by the one-body density
matrix ρr′r. If, instead of the full V 3N, we only store
the quantity (7), we obtain the curve “NO2B” in Fig. 1,
allowing us to access E3max = 26 (28) using single- (half-)
precision floating point numbers.

Note that for a Hartree-Fock (HF) calculation, we only
need the combination

Vp′q′r′pqr ≡
∑
Jpq

VJpqp′q′r′pqr δ̃p′pδ̃q′q. (8)

The number of matrix elements (8) is sufficiently low
that we can store the full Vp′q′r′pqr without any E3max

truncation. However, we find that the HF part of the
calculation converges at lower E3max than the beyond-
mean-field corrections, which is why we store the quan-

tity VJpqp′q′r′pqr.

A similar idea was employed in Ref. [20]. However,
in that work an iterative procedure was adopted in

which a HF calculation was performed at a manageable
E3max = 14, and then the lab-frame matrix elements
necessary for the NO2B approximation for larger E3max

were computed from the relative-basis matrix elements,
and the procedure was iterated until self consistency was
attained. In our approach, the transformation to the lab
frame is performed once, and the resulting matrix ele-
ments V are written to disk and can be used for future
calculations of any desired nucleus, without the need for
iteration.

B. Transformation to single-particle coordinate

Although we can compress the file size by calculating
only the NO2B relevant matrix elements via Eq. (7), we
still need an efficient way to perform the transformation
from the three-body Jacobi basis to single-particle basis.
Originally, this transformation was derived for the three-
nucleon single-particle m-scheme basis [12, 50]. Memory
requirements for the m-scheme storage limited calcula-
tions to E3max=9. Later, a j-coupled storage scheme
was introduced [51, 52] that allowed calculations with
E3max . 18 as discussed in the introduction with file
size requirements illustrated in Fig. 1. Here, we specify
the angular momentum coupling in detail. The antisym-
metrized three-body states in the lab frame are defined
as

|pqr : JpqTpqJT 〉 =
√

6A
∑
{tz}

CtptqTpq

tzptzqTzpq
CTpqtrT
Tzpq tzrTz

×
∑
{m}

CjpjqJpqmpmqMpq
CJpqjrJMpqmrM

|p〉|q〉|r〉
(9)

with the antisymmetrizer

A =
1

3!
(1 + P13P12 + P12P23 − P12 − P13 − P23), (10)

defined in terms of the permutation operator Pij . In
Eq.(9), the symbol C indicate a Clebsch-Gordan coeffi-
cient. A state in the antisymmetrized Jacobi basis is de-
noted |NiJrel〉, with total oscillator quanta N , total an-
gular momentum Jrel, and an additional quantum num-
ber i to distinguish the states. The transformation from
the Jacobi basis to the lab frame may be expressed as

〈p′q′r′ : Jp′q′Tp′q′JT |V 3N|pqr : JpqTpqJT 〉 =

6
∑

NiN ′i′

NcmLcmJrel

〈p′q′r′ : Jp′q′Tp′q′JT |NcmLcmN
′i′Jrel : JT 〉

× 〈N ′i′Jrel|V 3N|NiJrel〉
× 〈NcmLcmNiJrel : JT |pqr : JpqTpqJT 〉.

(11)

The quantity 〈NcmLcmNiJrel : JT |pqr : JpqTpqJT 〉 de-
notes the transformation coefficient. The quantum num-
bers Ncm and Lcm are the radial nodes and orbital angu-
lar momentum of the center-of-mass (c.m.) motion. The



4

summations over N, i,N ′, i′ can be performed efficiently
by matrix-matrix multiplication, and the remaining sum-
mations over Ncm, Lcm and Jrel can be computed manu-
ally.

The transformation coefficient can be calculated
through the non-antisymmetrized Jacobi state:

〈NcmLcmNiJrel : JT |pqr : JpqTpqJT 〉 =∑
α

〈NiJrel|NαJrel〉

× 〈NcmLcmNαJrel : JT |pqr : JpqTpqJT 〉.

(12)

The index α labels the set of Jacobi quantum numbers
α = {n12, l12, s12, j12, t12, n3, l3, j3}. The quantum num-

bers {n12, l12, s12, j12, t12} are used for the relative mo-
tion of nucleons 1 and 2, i.e., the nodal, orbital angu-
lar momentum, spin, total angular momentum, and total
isospin quantum numbers, respectively. Similarly, the
quantum numbers {n3, l3, j3} correspond to the motion
of nucleon 3 with respect to the c.m. of nucleons 1 and 2.
Since the antisymmetrized state |NiJrel〉 is an eigenstate
of the antisymmetrizer A, the coefficient 〈NiJrel|NαJrel〉
is also known as the coefficient of fractional parent-
age [53, 54]. The coefficient 〈NcmLcmNαJrel : JT |pqr :
JpqTpqJT 〉 is known as the T -coefficient [50, 52], and
is the bottleneck of the calculation. It turns out one
can sum up three of the angular momentum sums in
Eq. (B11) in Ref. [50] (S3, L3,L) and obtain a signifi-
cantly more efficient expression for the T -coefficient:

〈NcmLcmNα : JT |pqr : JpqTpqJT 〉 = δt12Tpq (−1)s12+l12+Lcm+Jpq+j3+3/2
√

[jp][jq][jr][Jpq][s12][j12][j3][Jrel]

×
∑
lpq

[lpq]

 lp sp jp
lq sq jq
lpq s12 Jpq

 ∑
N12L12

(−1)L12

{
L12 l12 lpq
s12 Jpq j12

}
〈N12L12, n12l12 : lpq|nplp, nqlq : lpq〉1

×
∑
λ

(−1)λ[λ]〈NcmLcm, n3l3 : λ|N12L12, nrlr : λ〉2

 j12 L12 λ Lcm

Jpq lr l3 Jrel
J jr sr j3

 .

(13)

Here, as above, we use the notation [x] ≡ 2x+ 1 and the
usual 6-j and 9-j symbols are used. In addition, we use a
12-j symbol of the first kind [55], and 〈. . . | . . .〉d is Talmi-
Moshinsky bracket with mass ratio d [56]. For efficiency,
12-j symbols are calculated on the fly from cached 6-j
symbols [55]. We have also used sp = sq = sr = 1/2.
While (13) is a complicated expression, it involves four
nested summations (including the expansion of the 12-j
symbol; the sum over N12 is trivial by energy conserva-
tion), rather than the six needed for the expression in
Refs. [50, 52].

Our implementation of the above expressions allows us
to generate all the lab-frame three-body matrix elements
(with half-precision floating point numbers) needed for a
calculation employing the NO2B approximation with a
spherical reference state up to E3max = 28 using ∼ 105

CPU hours with 187 GB RAM per node. Importantly,
this step only needs to be done once for a given inter-
action. Subsequent many-body calculations for different
nuclei, or using different methods can be performed using
the same file.

III. CONVERGENCE BEHAVIOR

Before presenting results for heavy nuclei, we consider
the expected convergence behavior of ground-state en-
ergies with increasing E3max. Knowing the asymptotic
behavior enables a controlled extrapolation to E3max →

3emax. Convergence in E3max is distinct from the con-
vergence in emax (or Nmax in the no-core shell model)
discussed in Refs. [57, 58], in that the latter deals with
a truncation of the Hilbert space, while the former is a
truncation on the Hamiltonian. This means we do not
even have an approximate variational principle to rely on.
To simplify the analysis, we assume that for the soft in-
teractions we consider here, the main contribution to the
correlation energy comes from second-order perturbation
theory. Also we assume that E3max is sufficiently large
that the HF wave function is converged. The second-
order energy correction is

E[2] = 1
4

∑
abij

|Γabij |2

εi + εj − εa − εb
, (14)

where Γabij contains both two-body and three-body con-
tributions, c.f. (5). Here i, j and a, b run over hole and
particle states, respectively. We can simplify the evalua-
tion by approximating the single-particle energies by the
harmonic oscillator energy with the proper energy scale:
εp = ep~ω with ep = 2np + lp and ~ω the optimal oscil-
lator frequency. The subscript p indicates either hole or
particle state. We have confirmed that this replacement
does not affect the asymptotic behavior. By increasing
the value of E3max by one unit the second-order energy
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changes by

∆E[2] ≈ 1
2

∑
abijk

V NN
abijV

3N
ijkabk

(ei + ej + ek − E3max)~ω
δE3max,ea+eb+ek ,

(15)
where we have assumed ||V NN|| � ||V 3N|| and retained
only the term linear in V 3N. The interactions we are
interested in are regularized by cutoff functions of the
form exp(−Q2n/Λ2n), where Q is a momentum scale, Λ
the cutoff scale and n some positive power n. Depend-
ing on the nature of the 3N interaction, Q can be the
momentum transfer or the sum of the Jacobi momenta
of the form Q2 = k21 + 3k22/4 + k′21 + 3k′22 /4, where ki/k

′
i

are the Jacobi momenta of the initial/final state (see [15]
for details). Then, it is reasonable to assume that the
off-diagonal matrix elements are suppressed as:

V NN
abij ≈ V̄ NN exp

[
−
(
ea + eb − ei − ej

Λ2
NN/mε0

)nNN
]
, (16)

and

V 3N
abkijk ≈ V̄ 3N exp

[
−
(
ea + eb + ek − ei − ej − ek

Λ2
3N/mε0

)n3N
]
,

(17)
with the cutoff for NN (3N) interaction ΛNN (Λ3N) and
the scale of the NN (3N) interaction V̄ NN (V̄ 3N) 2. For
the sake of simplicity, we also assume nNN = n3N ≡ n
in the following. The above suppression is also found in
SRG-evolved potentials [59]. To further simplify, we take
the most relevant excitations, i.e., excitations from the
Fermi level (with energy eF ) to the unoccupied orbits.
In this case the numerator in both (16) and (17) become,
when combined with the δ in (15), equal to E3max−3eF .
Introducing the new scale factor 1/σn = mnεn0 (1/Λ2n

NN +
1/Λ2n

3N) and taking the summation explicitly, we obtain
the form

∆E[2] ≈ (A1 +A2X +A3X
2) exp

[
−X

n

σn

]
, (18)

withX = (E3max−µ), µ ≈ 3eF. We expect the correction
E[2] to be a smooth function of E3max in the asymptotic
limit, and so we treat the difference ∆E[2] as a derivative
and integrate to obtain the form of E[2]:

E[2] ≈ A1γ 1
n

(x) +A2γ 2
n

(x) +A3γ 3
n

(x) + C, (19)

2 Another possible choice would be

V NN
abij ≈ V̄ NN exp

[
−
(
ea + eb + ei + ej

Λ2
NN/mε0

)nNN
]
,

and

V 3N
abkijk ≈ V̄ 3N exp

[
−
(
ea + eb + ek + ei + ej + ek

Λ2
3N/mε0

)n3N
]
.

Even with these forms, one can obtain Eq. (21) by introducing
X = E3max + µ, µ ≈ 2eF and assuming the condition E3max �
eF.

with x = [(E3max−µ)/σ]n. Here, γs(x) is the incomplete
gamma function:

γs(x) =

∫ x

0

ts−1e−tdt. (20)

It turns out that the functions γ 1
n

(x), γ 2
n

(x), γ 3
n

(x) show

the same asymptotic behavior, and are therefore redun-
dant for our purposes, so we may simply retain one of the
γ functions in (19), and we choose γ 2

n
(x). Assuming that

the HF energy is well converged with respect to E3max,
the formula for the E3max extrapolation is

E ∼ Aγ 2
n

[(
E3max − µ

σ

)n]
+ C. (21)

It remains to select a reasonable value of the power
n entering in (21). An SRG-evolved interaction will
go as exp[−s(k2 − k′2)2] [59] with relative momenta k
and k′, which suggests a value n = 2. For the inter-
action under consideration, 1.8/2.0(EM), the 3N force
is not SRG evolved, but instead comes with a regula-
tor ∼ exp[−(Q2/Λ2)4] [39], suggesting n = 4. We deal
with this ambiguity by checking n = 2, 4, 6 to explore the
sensitivity to the choice.

Furthermore, from the perturbative expansion of one-
body density matrix, we can expect the same E3max

asymptotic behavior for the expectation value of the
mean-squared radius operator 〈r2〉, or any other predom-
inantly one-body operator.

We emphasize that all the discussions are based on
the softness of the employed nuclear interaction enabling
us to derive the expression through the MBPT. For a
harder interaction, where the MBPT breaks down, we
may observe a different convergence pattern with respect
to E3max.

IV. NUMERICAL RESULTS

The many-body calculation methods used in the fol-
lowing are HF basis many-body perturbation theory
(HF-MBPT) and IMSRG. For open-shell systems, we
use the valence-space IMSRG (VS-IMSRG). For all the
many-body methods, we store the usual NN and NO2B
3N matrix elements in RAM, perform the HF calculation
to optimize the single-particle basis, and obtain the nor-
mal ordered matrix elements (A12),(A13) and (A14). For
open-shell systems, we use an ensemble reference for the
normal ordering to capture the 3N interaction effect of
valence nucleons as much as possible within the spherical
basis framework [45, 60]. In addition to the HF calcu-
lation, we evaluate the correlation energy with MBPT.
Based on a soft nuclear interaction, it was shown that the
computationally cheap second- or third-order MBPT can
provide results comparable with those from the coupled-
cluster method [9, 61, 62]. We could confirm these results
in our calculations, and so we use HF-MBPT for the cal-
culations with a large emax space, where the IMSRG is
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FIG. 2. Ground state energy of 132Sn as a function of E3max,
computed in many-body perturbation theory to second and
third order and in IMSRG(2).

considerably more expensive. Our IMSRG calculations
are performed with the Magnus formulation [63], using
the arctangent generator. Details of the method may
be found in recent reviews [8, 60]. The IMSRG and VS-
IMSRG calculations are done with the imsrg++ [64] code,
and the subsequent shell-model diagonalizations are done
with the NuShellX@MSU [65] and KSHELL [66] codes.

A. E3max convergence around 132Sn

Here, we investigate large-E3max calculations around
132Sn using the well-established NN+3N interaction
1.8/2.0 (EM) [39], which accurately reproduces binding
energies to A ∼ 100 [17, 67, 68]. We employ an oscilla-
tor basis with frequency ~ω = 16 MeV, which is near the
optimal value giving the most rapid emax convergence for
the ground-state energies and radii of the medium-mass
nuclei (converged results are independent of ~ω) [67].

One important feature of the 1.8/2.0 (EM) interaction
for our purposes is that, while the NN force is softened
by a free-space similarity renormalization group (SRG)
evolution to a scale λSRG = 1.8 fm−1, the corresponding
3N interactions are not SRG evolved. Instead, the cutoff
is chosen to be Λ3N = 2.0 fm−1 and the short-range low-
energy constants cD and cE are refit to the triton binding
energy and 4He radius. This means that we can avoid
SRG evolution of the 3N interaction, which introduces
additional challenges due to basis truncations (we address
these in section IV B).

In Fig. 2 we show the ground-state energy of 132Sn
calculated with HF-MBPT and IMSRG as a function of
E3max. The non-variational nature mentioned above is
evident, and is present even at the mean-field level. We
see that truncations at E3max = 22 or 24 are sufficient
to obtain convergence within a few MeV. For all points
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FIG. 3. (a) The ground state energy of 132Sn computed in
MBPT(2) and IMSRG(2), as a function of E3max, and the
extrapolated energies for (b) MBPT(2) and (c) IMSRG. The
points used in the fitting procedure are indicated by the solid
symbols in panel (a). The dashed and solid curves are ob-
tained by fitting the functions using n = 2, 4, 6 in Eq. (21)
with the data points of MBPT(2) (emax = 14) and IMSRG
(emax = 14) results, respectively. In panels (b) and (c), the
energies are extrapolated to E3max = 28. The error bars in-
dicate the standard deviation of the distribution, which are
obtained with 104 samples drawn from the covariance matrix
of the fit.

in Fig. 2, the 3N matrix elements are stored and read in
using half-precision floating point numbers to reduce the
memory footprint. Up to E3max = 24, we can use single-
precision numbers to check the impact of this choice.
At emax = 14, E3max = 24, the half-precision calcula-
tion yields HF energies shifted by −2.14 MeV, while the
second- and third-order MBPT corrections are changed
by 0.68 MeV and 0.11 MeV, respectively, yielding a to-
tal difference up to third order of −1.35 MeV. This is
completely negligible compared with uncertainties aris-
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FIG. 4. Excitation spectrum of 127Cd as a function of E3max,
computed in the VS-IMSRG(2) approximation.

ing from many-body truncations (which we expect to be
on the order of 20 MeV here3) and the interaction it-
self. We also show in Fig. 2 the convergence with respect
to emax. At E3max = 28, the third-order energies for
emax = 14, 16, 18, are −1115.85 MeV, −1117.61 MeV,
and −1118.16 MeV, respectively, demonstrating conver-
gence at the 1 MeV level.

Since the second-order correction of ∼ −300 MeV is
much larger than third-order correction of ∼ −20 MeV,
the correlation energy is dominated by second-order cor-
rection. This supports the claim that the extrapolation
formula Eq. (21) based on the second-order energy cor-
rection is applicable in the case of the HF-MBPT(3) and
IMSRG, which includes correlations beyond second or-
der. In panel (a) of Fig. 3, we show n = 2, 4, 6 curves of
Eq. (21) fitted with the HF-MBPT(2) and IMSRG en-
ergy results at emax = 14, indicated by the solid symbols
in the panel. We see that Eq. (21) works for IMSRG en-
ergies as well. Panels (b) and (c) show the extrapolated
energies to E3max = 28, which is the largest value we
can calculate. Since the extrapolated point is finite, the
uncertainty of all the fitting parameters can propagate
to uncertainty of the extrapolated energies. The uncer-
tainty of the energy is estimated as the standard devia-
tion of the 10000 samples generated with the covariance
matrix from the fit. Comparing the extrapolated and
calculated energies, we see that n = 2 (Gaussian) repro-
duces the energies for both HF-MBPT(2) and IMSRG
cases, and n = 2 is the most likely to reproduce the con-
vergence behavior in this case. With n = 2 formula, we

3 This estimate is based on the difference between the MBPT(2),
MBPT(3) and IMSRG(2) energies, and is consistent with
Ref. [61] where the error at MBPT(3) for similarly soft inter-
actions was found to be 0.1-0.2 MeV per particle. We have fur-
ther corroborated this estimate with MBPT(4) calculations in a
smaller emax space.
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FIG. 5. First 2+ excitation energies of the tin isotopes calcu-
lated with the VS-IMSRG(2) approximation. The black bars
indicate the experimental data [69].

observed that the extrapolated energy to E3max = 42 is
−1110.57(2) [−1097.13(2)] MeV using the IMSRG [HF-
MBPT(2)] data 18 ≤ E3max ≤ 23.

As already mentioned in Sec. I, we have observed a
lack of convergence with respect to E3max in some cal-
culations of heavier systems. One particular example
is 127Cd as discussed in Ref. [21]. We revisit the cal-
culations in that work, obtained with the VS-IMSRG,
and extend them to larger E3max. Here, our single-
particle basis truncation is emax = 14, and we take the
valence space as {1p3/2, 1p1/2, 0f5/2, 0g9/2} for protons
and {1d5/2, 2s1/2, 1d3/2, 0g7/2, 0h11/2} for neutrons above
78Ni core. As seen in Fig 4, by E3max = 28 we obtain
convergence in excitation energies at the level of 5 keV.
With the previous limit of E3max = 18 there is no sign of
convergence. This behavior can be understood by not-
ing that the h11/2 orbit with e ≥ 5, is impacted by the
E3max cut differently than the other neutron valence or-
bits which have e ≥ 4, and that the parity of a state
is driven by the occupation of the h11/2. An analogous
argument applies to the proton orbits.

In contrast, when two states have the same number
of oscillator quanta in their naive configurations, we ex-
pect that their convergence with respect to E3max will be
similar and so the energy difference will be less sensitive
to the E3max truncation. To illustrate this, we present
in the top panel of Fig 5 the first 2+ excitation energies
of even-mass tin isotopes, obtained with the VS-IMSRG.
The valence space is {1p3/2, 1p1/2, 0f5/2, 0g9/2} for pro-
tons and {2s1/2, 1d3/2, 0h11/2, 1f7/2} for neutrons above

a 92Ni core, indicated by the open symbols in the figure.
During the IMSRG evolution, the center-of-mass (c.m.)
motions are separated with the Glöckner-Lawson pre-
scription [70] with the coefficient β = 3, and we observe
the stability with respect to β (see [71] for a detailed dis-
cussion). The ground-state energies are converged within
approximately 2 MeV. It is clear from the figure that the
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2+ energies show convergence as E3max is increased and
E3max = 18 is sufficient to see the systematics of the
2+ energies. We note that the 2+ energy of 132Sn at
E3max = 18 and 24 differ by 200 keV. We successfully
reproduce the A-independent excitation energies of the
open-shell nuclei, consistent with the seniority picture.
In fact, the analysis of the calculated wave function of
126−130Sn reveals that our valence-space wave functions
of ground and first 2+ states are dominated more than
70% by the seniority v = 0 and v = 2 states, respec-
tively4. The relatively fast convergence of the excitation
energies with respect to E3max reflects the fact that both
the ground and excited states are dominated by configu-
rations with the same occupancies in the oscillator basis.
On the other hand, the excitation at N = 82 is dom-
inated by a single neutron excitation 0h11/2 → 1f7/2.
As these orbits have the same naive number of oscilla-
tor quanta, dependence on the E3max is still mild. The
predicted excitation energy is about 1.5 MeV above the
experimental value, which is attributed to the IMSRG(2)
approximation, as seen in earlier works [67, 72]. Efforts
to go beyond the IMSRG(2) approximation are under-
way [73].

Finally, we consider the convergence behavior of point-
proton and point-neutron radii through the Hartree-
Fock, second-order HF-MBPT, and IMSRG(2). The dia-
grams taken into account in the second-order HF-MBPT
are listed in Appendix B. The charge radii of several
isotopes including 132Sn were recently computed with
the self-consistent Green’s function method using chiral
forces up to emax = 13 and E3max = 16 [18]. We compute
point-proton and point-neutron root-mean-squared radii
and the neutron skin of 132Sn as a function of E3max,
and plot the result in Fig. 6. We see that convergence is
achieved by E3max ∼ 22. The corresponding converged
charge radii are rch = 4.43 fm and 4.42 fm with IMSRG
and second-order HF-MBPT, respectively, demonstrat-
ing that the effect of the many-body truncation is con-
trollable for radii. Eq. (21) with n = 2 reasonably cap-
tures the asymptotic convergence behavior of radii. Also
we note that the often-used N2LOsat interaction is harder
than the interaction employed here, and thus we would
expect the calculations with N2LOsat will show slower
convergence with respect to E3max. Our converged neu-
tron skin with IMSRG(2) is 0.2202(4)—where the quoted
uncertainty only accounts for the E3max truncation—
consistent with the (model-dependent) extraction [74] of
0.24(4).

4 While such quantitative details about the wave function will in
general depend on the details of the IMSRG transformation, this
is a relatively simple way to understand the convergence behav-
ior.
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FIG. 6. Root-mean-squared point-proton and point-neutron
radii, and neutron skin thickness of 132Sn as a function of
E3max. We use the EM 1.8/2.0 interaction with emax = 14
and compute the radii in the Hartree-Fock, HF-MBPT(2),
or IMSRG(2) approximations. The dotted, dot-dashed, and
dashed lines are obtained by fitting to Eq. (21). The points
indicated by the solid symbols are used in the fitting proce-
dure. The shaded or hatched bands show the extrapolated
radii to E3max = 3emax = 42 and the widths of the bands are
estimated with 104 samples, as in the energy extrapolation.

B. SRG evolved NN+3N interaction

The NN and 3N contributions to the 1.8/2.0 (EM) in-
teraction, used for the calculations discussed in the previ-
ous section, are defined at different cutoff and resolution
scales. For a more systematic convergence study of the
calculations it would be desirable explore the resolution-
scale and cutoff dependence of observables. Using in-
teractions with a higher cutoff, observables in heavy nu-
clei will be impossible to converge in the largest feasible
model spaces, even with the advances discussed in this
work. Therefore, these interactions first need to be soft-
ened via a free-space SRG evolution [75] (or some other
procedure [76–78]). For the following calculations we
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FIG. 7. Ground state energy of 132Sn as a function of N3max

for the SRG evolution, computed in third-order HF basis
many-body perturbation theory HF-MBPT(3) at ~ω = 15
MeV, emax = 16, and E3max = 22. The vertical dashed
lines indicate the partitions of low-J (Jrel ≤ 13/2), middle-J
(15/2 ≤ Jrel ≤ 21/2), and high-J (Jrel ≥ 23/2) regions.

evolve NN and 3N sectors consistently in the harmonic-
oscillator basis space. For the NN sector, the evolution is
done within the space spanned by the principle quantum
number of the relative motion up to 200. Assuming our
typical basis frequency of a few tens MeV, the UV scale
of this space is a few GeV/c—sufficiently larger than the
typical momentum scale of ∼ 500 MeV/c of the bare NN
interaction from the chiral EFT, and we can safely evolve
the NN Hamiltonian.

For the 3N sector, we evolve the 3N Hamiltonian
within the space defined by the three-body principle
quantum number N3max, the sum of the principle quan-
tum numbers of the motions for corresponding Jacobi
variables. Since the 3N evolution is computationally de-
manding compared to the NN evolution, we cannot han-
dle a value ofN3max well beyond the typical nuclear inter-
action scale. We therefore need to investigate the N3max

dependence as we move to heavier systems, as done in
Ref. [20]. In the following, we use the chiral N3LO NN
interaction from Entem and Machleidt [79] and the N2LO
3N interaction with both local and non-local regulators
developed in Ref. [40] denoted as NN+3N(lnl).

In Fig. 7 we show the ground-state energy of 132Sn as
a function of N3max. Because the Hamiltonian is block
diagonal in the relative angular momentum Jrel, we can
apply a differentN3max cut to each Jrel block. We include
all channels up to Jrel ≤ E3max+3/2 = 47/2, which is the
highest value that can contribute. To simplify the anal-
ysis, we divide the Jrel blocks into low-J (Jrel ≤ 13/2),
middle-J (15/2 ≤ Jrel ≤ 21/2), and high-J (Jrel ≥ 23/2)

partitions, and vary N3max for each partition. The SRG
evolution is run to a scale of λSRG = 2.0 fm−1, working
with a basis frequency ~ω = 30 MeV. After the evolution,
the frequency is converted to ~ω = 15 MeV for the many-
body calculations (see Ref. [52] for details). The many-
body calculations are done with third-order HF-MBPT
with lab-frame truncations emax = 16 and E3max = 22.
In Fig. 7 we see that the low-J and high-J partitions are
converged within the level of a few MeV by N3max = 48
and N3max = 42, respectively, while the middle-J region
converges more slowly. To our knowledge, these are the
largest N3max spaces explored in the literature. It ap-
pears that SRG evolution of the Jrel & 15/2 blocks such
that heavy nuclei are converged with respect to N3max

will not be possible in the near term without further tech-
nical developments.

An alternative truncation scheme we can explore is the
maximum value of Jrel. Since the nuclear interaction is
short range, we naively expect that the high Jrel compo-
nents are suppressed by the angular momentum barrier.
In the top panel of Fig. 8, the ground-state energy of
132Sn is shown as a function of the maximum Jrel in-
cluded in the transformation Eq. (11). The points la-
beled “Full” use a uniform N3max for all blocks up to
Jrel = 47/2. Again, energies are computed with HF-
MBPT(3) at ~ω = 15 MeV, emax = 16, and E3max = 22.
We observe that as we increaseN3max, the contribution of
channels with Jrel > 9/2 becomes essentially negligible.

In order to extrapolate to N3max → ∞, we fit the
calculated energies with an exponential function E =
a exp(−bN3max) + E∞ as shown in the middle panel. In
the fitting procedure, we used the energies at N3max =
36, 38, 40, 42, 44, and used the N3max = 48 points to val-
idate the assumed functional form.5 The N3max extrap-
olated energies are shown in the bottom panel. The
agreement of calculated and extrapolated energies at
N3max = 48 validates the fitting formula employed here.
The final energy obtained by extrapolating the ”full” re-
sults to N3max → ∞ is −1105.6(15) MeV, which agrees
within the error bars with the extrapolated energies from
max(Jrel) = 9/2, 11/2, 13/2 results. This reinforces the
observation that the contributions from channels with
Jrel > 9/2 are negligible in the N3max →∞ limit.

This result is somewhat surprising as it suggests that
we can obtain a more accurate result by neglecting the
high-Jrel sector altogether than we can by evolving it in
the largest space we can manage. Evidently, the main
impact of the high-Jrel matrix elements is to introduce an
artifact due to the N3max truncation, which is removed
in the limit N3max → ∞. To investigate the origin of
this artifact, in Fig. 9 we hold fixed N3max = 48 for the
Jrel ≤ 13/2 partition, and plot the expectation values
〈T + V NN〉, 〈V 3N

ind 〉, 〈V 3N
gen〉, and 〈H〉 as a function of the

5 We also tried fitting with the Gaussian function E =
a exp(−bN2

3max) + E∞, and found this does not provide con-
sistent results with the computed N3max = 48 energies.
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FIG. 8. Ground state energy of 132Sn computed in HF-
MBPT(3) at ~ω = 15 MeV, emax = 16, and E3max = 22. In
the top panel, the energies are shown as a function of maxi-
mum Jrel for the transformation to the lab-frame. The middle
panel shows the extrapolation of N3max to the infinity. The
extrapolated energies are shown as a function of maximum
Jrel in the bottom panel.

N3max cut applied to the Jrel ≥ 15/2 partition. Here
T is the relative kinetic energy, V NN is the evolved NN
potential, V 3N

ind is the induced 3N potential, V 3N
gen is the

evolved “genuine” 3N potential, andH is the transformed
Hamiltonian obtained by summing all of the kinetic and
potential terms. The expectation values are taken in a
naive harmonic oscillator ground state of 132Sn.

At N3max = 0, corresponding to the J = 13/2 point
in Fig. 8, we obtain a bound energy. With increasing
N3max the energy shoots up to 15 GeV, driven by the
〈V 3N

ind 〉 component, before converging back towards the

0 4 8 12 16 20 24 28 32 36
N J 15/2

3max

4000

0

4000

8000

12000

16000

En
er

gy
 (M

eV
)

T + VNN

V3N
ind

V3N
gen

H

132Sn 
NN: N3LO (EM500) 
3N: N2LO lnl 

SRG = 2 fm 1

HO basis 
= 15 MeV

N J 13/2
3max = 48

FIG. 9. Harmonic-oscillator basis energy components of
132Sn as a function of the cut N3max applied to the SRG
basis for states with Jrel ≥ 15/2. For details regarding each
component, see main text.

N3max = 0 value. It appears that the impact the high-
Jrel matrix elements are negligible. Similar behavior is
found in 78Ni, where the fully-converged and N3max = 0
HF energies differ by 0.3 MeV.

To further investigate the enormous contributions from
induced 3N interactions, we decompose 〈V 3N

ind 〉 into terms
induced by transforming the one-pion exchange, two-pion
exchange, and contact parts of VNN, as well as the ki-
netic energy. We find that at N3max = 16, all four of
these induced terms contribute several GeV to the en-
ergy in Fig. 9, indicating that this behavior is generic
and not tied to the detailed structure of the NN inter-
action. Further understanding of the mechanism of this
large induced component should be pursued, as it may
point the way to a more efficient treatment.

Through this analysis, we conclude that one can per-
form a more accurate 3N SRG evolution with a trunca-
tion in Jrel, rather than using all possible Jrel channels
without fully achieving the convergence with respect to
N3max. We leave for future work the question of whether
this holds for other operators.

Finally, we demonstrate that the asymptotic conver-
gence in E3max discussed in section III is also observed
for a consistently SRG-evolved NN+3N interaction. In
Fig. 10, we show the 3rd order HF-MBPT ground-state
energy of 132Sn as a function of E3max, at multiple val-
ues of N3max for the case Jrel ≤ 13/2 (similar behavior
is observed for Jrel ≤ 9/2). In contrast to the unevolved
case, we observe an increase in the energy for large E3max.
This bump diminishes with increasing N3max, indicating
that the truncation artifact shows up most significantly in
the large E3max matrix elements, as would be expected.
For each E3max, we extrapolate to N3max → ∞ using
an exponential form, and we obtain the gray squares in
Fig. 10 (the extrapolation uncertainties are smaller than
the markers).

The extrapolated points still display a minimum as a
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function of E3max before converging to the final answer
from below. The decreasing trend below E3max = 20 is
driven by the convergence of the HF energy, while the
increase above E3max = 20 is driven by the second or-
der MBPT correction. The fact that the energy con-
verges from below in this case supports the assumption
in section III that the asymptotic convergence in E3max is
driven by the VNN -V3N cross-term , which can be either
positive or negative. The asymptotic behavior is fit well
with a Gaussian with similar parameters (aside from the
overal sign) to those in the unevolved case.

The extrapolated ground-state energy for 132Sn is then
−1099.502(3) MeV, where this tiny uncertainty only ac-
counts for the fit uncertainty in the E3max and N3max

extrapolations. This uncertainty is clearly negligible
compared with the many-body uncertainty (we only use
third-order MBPT), the emax truncation uncertainty, ef-
fects of induced 4N forces, contributions from higher or-
ders in the EFT expansion, and the fact that we use
a half-precision floating point representation for storing
the 3N matrix elements. We note that the effect of the
SRG induced many-body interactions can be accessed by
checking the λSRG dependence. Our almost-converged
132Sn calculations at emax = 16 and E3max = 22 show
that the ground-state energy changes about 20 MeV
within λSRG = 1.8 − 2.2 fm−1 range, which is at the
2% level of the total ground-state energy. As the other
sources of uncertainty likely contribute at the level of a
few tens of MeV, the NN+3N(lnl) interaction is in excel-
lent agreement with the experimental value of −1102.8
MeV [80], especially considering that it was fit to the
properties of A ≤ 4 nuclei.

V. CONCLUSION

In this work we introduce a framework in which only
3N matrix elements relevant for the NO2B approxima-
tion are stored in memory, which reduces the memory
requirement by approximately two orders of magnitude.
This enables us to generate lab-frame 3N matrix elements
up to E3max = 28, significantly larger than the previous
limit of E3max = 18. We further discussed the asymp-
totic behavior of the ground-state energy with respect
to the E3max truncation, which allows controlled extrap-
olations to E3max = 3emax. To explore the applicabil-
ity of the ab initio calculation, we empolyed the HF-
MBPT(2), HF-MBPT(3), and IMSRG(2) to solve the
many-body Schrödinger equation. Using the established
1.8/2.0 (EM) interaction, we obtained the ground-state
energies converged at the level of 1 MeV (with respect
to the emax and E3max truncations) around 132Sn. As
illustrated in the 127Cd case, convergence in E3max is es-
sential not just for ground states but for spectroscopy
as well. Even with this substantially larger lab-frame
E3max cut, as we move to the heavy-mass region, con-
vergence with respect to truncations made in the free-
space 3N SRG evolution pose an additional challenge.
Using the N3LO NN + N2LO 3N(lnl) [40] interaction,
we have demonstrated that a truncation Jrel . 13/2 is
more accurate (not to mention less costly) for calcula-
tions of ground state energies than including larger Jrel,
if full convergence in those channels cannot be achieved.
A corresponding convergence analysis for excited states
and other observables with respect to Jrel remains future
work.

This work lifts the primary limitation that has thus far
kept ab initio calculations constrained to the A . 100 re-
gion. Among the studies that will be enabled are the
neutron skin of 208Pb [81], neutrinoless double-beta de-
cays and dark matter searches in germanium and sele-
nium [82], as well as xenon [28] and tellurium [83], and
investigations of nuclear matter parameters based on the
response functions of heavy nuclei [84].
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Appendix A: Normal-ordered matrix elements

In an uncoupled basis, the expressions for the normal-
ordered matrix elements are

E0 =
∑
p′p

ρp′ptp′p +
1

4

∑
pp′qq′

ρp′q′pqV
NN
p′q′pq

+
1

36

∑
pp′qq′rr′

ρp′q′r′pqrV
3N
p′q′r′pqr

(A1)

fp′p =tp′p +
∑
q′q

ρq′qV
NN
p′q′pq

+
1

4

∑
qq′rr′

ρq′r′prV
3N
q′r′p′qrp

(A2)

Γp′q′pq = V NN
p′q′pq +

∑
rr′

ρr′rV
3N
p′q′r′pqr. (A3)

In (A1) (A2), (A3), we have used the density matrices

ρp′p ≡ 〈Φ|a†p′ap|Φ〉

ρp′q′pq ≡ 〈Φ|a†p′a
†
q′aqap|Φ〉

ρp′q′r′pqr ≡ 〈Φ|a†p′a
†
q′a
†
r′araqap|Φ〉

(A4)

taken for some general reference state |Φ〉. If the refer-
ence |Φ〉 is spherically symmetric, then the density ma-
trices may be expressed in a J-coupled form defined by

ρp′p = ρp′pδjp′ jpδmp′mp
(A5)

ρp′q′pq =
∑
J

Cjp′ jq′Jmp′mq′M
CjpjqJmpmqM

ρJp′q′pq (A6)

ρp′q′r′pqr =
∑

JpqJp′q′J

Cjp′ jq′Jp′q′mp′mq′Mp′q′
CjpjqJpqmpmqMpq

(A7)

× CJp′q′ jr′JMp′q′mr′M
CJpqjrJMpqmrM

ρ
Jp′q′JpqJ

p′q′r′pqr

where the C are Clebsch-Gordan coefficients. If |Φ〉 does
not mix proton and neutron orbits, then (A5) will contain
an additional δtzp′ ,tzp . If |Φ〉 has good parity, we also
have δlp′ lp . For a spherical reference, the expression for
the normal-ordered matrix elements becomes

E0 =
∑
p′p

ρp′ptp′p +
1

4

∑
pp′qq′

∑
J

[J ]ρJp′q′pqV
J
p′q′pq

+
1

36

∑
pp′qq′rr′

∑
JpqJ

[J ]ρ
JpqJpqJ
p′q′r′pqrV

JpqJpqJ
p′q′r′pqr

(A8)

fp′p = tp′p +
∑
q′q

∑
J

[J ]

[jp]
ρq′qV

J
p′q′pq

+
1

4

∑
qq′rr′

∑
JqrJ

[J ]

[jp]
ρ
Jqr
q′r′qrV

JqrJqrJ
q′r′p′qrp

(A9)

Γ
Jpq
p′q′pq = V

Jpq
p′q′pq +

∑
r′rJ

[J ]

[Jpq]
ρr′rV

JpqJpqJ
p′q′r′pqr. (A10)

Where we have used un-normalized J-coupled matrix el-
ements. Finally, in the case where |Φ〉 is uncorrelated so
that ρp′q′pq and ρp′q′r′pqr are given by antisymmetrized
products of one-body densities (again using the index
permutation operators P )

ρp′q′pq = (1− Ppq)ρp′pρq′q
ρp′q′r′pqr = (1− Pqr)(1− Ppq − Ppr)ρp′pρq′qρr′r,

(A11)

then the normal ordered matrix elements become

E0 =
∑
pp′

ρp′ptp′p +
1

2

∑
pp′qq′

ρp′pρq′q
∑
J

[J ]V Jp′q′pq

+
1

6

∑
pqr
p′q′r′

ρp′pρq′qρr′r
∑
JpqJ

[J ]V
JpqJpqJ
p′q′r′pqr

(A12)

fp′p = tp′p +
∑
qq′

ρq′q
∑
J

[J ]

[jp]
V Jp′q′pq

+
1

2

∑
qq′rr′

ρq′qρr′r
∑
JqrJ

[J ]

[jp]
V
JqrJqrJ
q′r′p′qrp

(A13)

Γ
Jpq
p′q′pq = V

Jpq
p′q′pq +

∑
rr′

ρr′r
∑
J

[J ]

[Jpq]
V
JpqJpqJ
p′q′r′pqr (A14)

where we have omitted the δs implied by A5.

Appendix B: Ground-state expectation value of a
scalar operator in second-order HF-MBPT

For the ground-state expectation value of a scalar op-
erator in the second-order HF-MBPT, the diagrams are
shown in Fig. 11. The expectation value of the scalar
operator S is given as

〈S〉 ≈ 〈HF|S|HF〉+

2∑
i=1

Fi +

15∑
i=1

Si. (B1)

In actual calculations, we use the efficient J-coupled
scheme. Below we provide the explicit expressions corre-
sponding to the diagrams. Let Spq and SJpqrs be the one-
and J-coupled two-body matrix elements of the scalar
operator, and we use the notation:

X̄J
pqrs =

√
(1 + δpq)(1 + δrs)X

J
pqrs,

X̄J,CC
pqrs =

∑
J′

(2J ′ + 1)

{
jp jq J ′

jr js J

}
X̄J′

psrq,

εab...ij... = (fii + fjj + · · · )− (faa + fbb + · · · ).

(B2)
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FIG. 11. Hugenholtz diagrams for the ground-state expecta-
tion value of a scalar operator up to the second order. The
solid and open circles indicate Hamiltonian and scalar oper-
ators, respectively. The Hartree-Fock basis is assumed. The
diagram rules are same as in Ref. [85].

Here, XJ
pqrs is the normalized antisymmetrized two-body

matrix element of either Hamiltonian or scalar operator.
In the following, we show the J-coupled expressions for
the diagrams. As in the main text, we use the convention
that a, b, c, d label particle states and i, j, k, l label hole
states.

F1 =
1

4

∑
abij

∑
J

(2J + 1)
Γ̄JabijS̄

J
abij

εabij
(B3)

F2 = F1 (B4)

S1 = −1

2

∑
abijk

∑
J

(2J + 1)
Γ̄JabijΓ̄

J
kbijSak

εabij ε
a
k

(B5)

S2 =
1

2

∑
abcij

∑
J

(2J + 1)
Γ̄JabijΓ̄

J
abcjSci

εabij ε
c
i

(B6)

S3 =
1

2

∑
abcij

∑
J

(2J + 1)
Γ̄JabijΓ̄

J
acijSbc

εabij ε
ac
ij

(B7)

S4 = −1

2

∑
abijk

∑
J

(2J + 1)
Γ̄JabijΓ̄

J
abikSjk

εabij ε
ab
ik

(B8)

S5 = S1 (B9)

S6 = S2 (B10)

S7 =
1

8

∑
abcdij

∑
J

Γ̄JabijΓ̄
J
abcdS̄

J
cdij

εabij ε
cd
ij

(B11)

S8 =
1

8

∑
abijkl

∑
J

Γ̄JabijΓ̄
J
jiklS̄

J
abkl

εabij ε
ab
kl

(B12)

S9 = −
∑
abcijk

∑
J

(2J + 1)
Γ̄J,CC
ajib Γ̄J,CC

ibkc S̄
J,CC
kcaj

εabij ε
ac
jk

(B13)

S10 =
1

8

∑
abcdij

∑
J

Γ̄JabijS̄
J
abcdΓ̄

J
cdij

εabij ε
cd
ij

(B14)

S11 =
1

8

∑
abijkl

∑
J

Γ̄JabijS̄
J
jiklΓ̄

J
abkl

εabij ε
ab
kl

(B15)

S12 = −
∑
abcijk

∑
J

(2J + 1)
Γ̄J,CC
ajib S̄

J,CC
ibkc Γ̄J,CC

kcaj

εabij ε
ac
jk

(B16)

S13 = S7 (B17)

S14 = S8 (B18)

S15 = S9 (B19)
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P. Navrátil, Phys. Rev. Lett. 107, 072501 (2011).

[52] R. Roth, A. Calci, J. Langhammer, and S. Binder, Phys.
Rev. C 90, 024325 (2014).
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