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It is often stated that heavy-ion nucleon knockout reactions are mostly sensitive to the tails of the
bound-state wavefunctions. In contrast, (p,2p) and (p,pn) reactions are known to access information
on the full overlap functions within the nucleus. We analyze the oxygen isotopic chain and explore
the differences between single-particle wave functions generated with potential models, used in
the experimental analysis of knockout reactions, and ab initio computations from self-consistent
Green’s function theory. Contrary to the common belief, we find that not only the tail of the
overlap functions, but also their internal part are assessed in both reaction mechanisms, which are
crucial to yield accurately determined spectroscopic information.

Introduction. High energy (>∼ 100 MeV/nucleon)
neutron and proton removal (knockout) reactions with,
e.g., 9Be and 12C targets are one of the most suc-
cessful tools to investigate the single-particle structure
of the many-body wavefunction of nuclei far from the
stability. A large number of experiments yielded an
enormous amount of knowledge collected on magicity,
shell-evolution, two– and three–body halo configurations,
spectroscopy of deep lying states, etc. The magnitude of
the knockout cross sections, as well as the momentum
distribution of the fragments, have been the main source
of information since the very beginning of this experi-
mental campaign [1–3]. Theories have been developed
for a credible description of the experimental data [4–8].

It is widely considered that knockout reactions are pe-
ripheral and probe the tail of the nucleon removal wave-
function, due to absorption at low impact parameters
(see, e.g., Refs. [9–12]). The removal wavefunction is

given by the overlap integral I(r) =
〈
ΨA−1
i |ψ(r)|ΨA

g.s.

〉
,

where
∣∣ΨA

g.s.

〉
and

∣∣ΨA−1
i

〉
respectively denote the (many-

body) wavefunctions for the projectile and the residual
fragment in its i-th excited state [13, 14]. The operator
ψ(r) removes a nucleon at position r. The tail of I(r) is
proportional to the Whittaker function,

I(r) =
〈
ΨA−1
i |ψ(r)|ΨA

g.s.

〉
−−−−→
r→∞

C
1

r
W−η,l+1/2(2κr) ,

(1)
where κ =

√
2µEB/h̄ is the wavenumber, µ the reduced

mass between the outgoing nucleon and the (A − 1)
residual, EB the removed nucleon separation energy,
η = µZNZ(A−1)e

2/h̄κ is the Coulomb parameter, with
ZA and ZN the target and projectile charges, and l the
angular momentum of the removed nucleon.

Eikonal models for knockout reactions [4–12, 15] imply

that the total knockout cross section is proportional to
the integral of the square I2(r) and, as long as the reac-
tion is truly peripheral, to the squared asymptotic nor-
malization coefficient (ANC): C2. In this case the ANC is
the only messenger carrying information about the com-
plex many-body wavefunctions

∣∣ΨA
g.s.

〉
and

∣∣ΨA−1
k

〉
en-

tering Eq. (1). Ab initio methods compute the shape
of overlap functions microscopically, even where these
are not well represented by mean-field orbits. More-
over, they can handle the large model spaces necessary
to resolve the full quenching of spectroscopic factors due
to correlations [16]. In contrast, phenomenological as-
sumptions on radial shapes cannot be avoided even for
long-used approaches such as the shell model [17, 18]. In
practice, most applications in the literature still assume
that the tail of I(r) does not differ from an independent-
particle approximation (IPA) wavefunction, for example
a Woods-Saxon plus spin-orbit tuned to the correspond-
ing separation energy. When compared to the experi-
mental data of nucleon knockout reactions, the square
of C can be extracted and compared to predictions of
many-body models (e.g., shell model calculations). This
procedure is used to determine the spectroscopic factors
S according to [15, 19],

C2
exp = S · C2

IPA , (2)

where CIPA is computed assuming that its IPA wave-
function is properly normalised to unity1. Nuclear cor-
relations have the effect of quenching the spectroscopic

1 Spectroscopic factors are often labelled as C2S̃ in shell-model
and reaction theory. The S̃ represents the quenching of strength
due to inter-nucleon correlations while C2 are Clebsh-Gordan
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Figure 1. Overlap functions for selected states from Table I.
All cases are for protons except the bottom-right panel for a
neutron single-particle state. Solid lines are calculations with
the ab initio self-consistent Green’s function method (GF),
while the dashed lines are for Woods-Saxon (WS) potentials
reproducing the same separation energies.

factor, S ≡
∫
I2(r) d3r, and so the experimental value of

Cexp is smaller than its IPA. The many-body ANC, CMB,
computed through Eq. (1) should be compared directly
to Cexp. The primary goal of nucleon knockout exper-
iments with heavy ion targets is to extract information
on the spectroscopic factors and the CMB.

New experiments have been carried out or are planned
using (p, pN), with N = p, n, reactions in inverse kine-
matics [20–23]. New reaction models have been devel-
oped differing from those appropriate for knockout reac-
tions with heavy targets [24, 25]. The proton probes are
more sensitive to the inner parts of the nuclear wavefunc-
tion, especially for light nuclear projectiles [21]. Since
both knockout as well as (p, pN) reactions are notable
spectroscopic tools of unstable nuclei, it is imperative to
understand to what extent experimental conclusions can
be affected by assumptions in modeling I(r).
Overlaps with ab initio methods. The ab initio

overlaps have been calculated from the Hamiltonian

H(A) = T − T [A−1]
c.m. + V +W , (3)

where T
[A−1]
c.m. is the intrinsic kinetic energy for the re-

coiling system of mass A − 1 nucleons, while V and W
are the two- and three-body interactions. This formu-
lation is conveniently suited for the calculation of over-
lap functions and the corresponding nucleon separation
energies, Eh [26]. The three-body term W is reduced
to an effective two-body operator as outlined in [27].
We used self-consistent Green’s function (SCGF) theory
within the third order algebraic diagrammatic construc-
tion [ADC(3)] truncation scheme that accounts for all

coefficients that account for partial occupation of orbits. Here,
we follow the convention from the ab initio community using S ≡
C2S̃—to avoid confusions between ANCs and Clebsh-Gordans.

2p1h, 2h1p intermediate state configurations [28, 29].
The SCGF self-energy was obtained in an harmonic os-
cillator basis including 14 major shells (Nmax = 13) and
frequency h̄Ω = 20 MeV. The correct asymptotic tail of

our ab initio overlap I ljGF (r) is ensured by a final Dyson
diagonalization in the full (non truncated) momentum
space [30],[
Eh −

k2

2µ

]
Ĩ ljGF (k) =

∫
dq q2 Σ? lj(k, q;Eh) Ĩ ljGF (q), (4)

where Σ? is the ADC(3) self-energy, µ is the reduced mass
of the (A-1)-body system plus the ejected nucleon, and

Ĩ(k) represents the Fourier-Hankel transform of Eq. (1).
We perform computations using the NNLOsat interaction
because of its good saturation properties [31]. Both radii
and binding energies are known to be well reproduced for
the oxygen chain nuclei used in this analysis [32], allowing
for a meaningful comparison with reactions from Wood–
Saxon–based calculations.

We show the results for (p, pN) quasi-free cross sections
using overlap functions obtained with: (a) SCGF for-
malism with the chiral NNLOsat interaction, denoted by
IGF (r); (b) Single particle wavefunctions, uWS(r) gen-
erated in a potential model, herewith denoted by WS.
The WS radii and diffuseness parameters were taken as
R = 1.2A1/3 fm and a = 0.65 fm, respectively. A ho-
mogeneously charged sphere with radius R was used to
generate the Coulomb potential. For case (a) the spectro-
scopic factors given by SGF =

∫
drI2GF (r) are computed

directly from the associated SCGF propagators. For case
(b) the WS model cannot predict the normalization of the
overlap functions, hence only empirical spectroscopic fac-
tors (SempWS ) can be obtained by calculating the quasifree
cross sections and comparing to the experimental data.
Our comparison of the cross section calculations will fol-
low the reaction theory developed in Ref. [21] keeping
all other input parameters the same, such as separation
energies, nuclear densities, etc.

In Table I we list a series of properties of pro-
ton(neutron) knockout reactions for 350 MeV protons in
inverse kinematics, and for oxygen isotopes incident on
9Be targets at 350 MeV/nucleon. A selected set of neu-
tron and proton states in oxygen isotopes were chosen.
For some cases, we included more than one final state for
the same nucleus and partial wave removal, correspond-
ing to different excitations of the residual nucleus (hence,
different EB). These are computed as distinct correlated
(A-1)-nucleon states by SCGF, while we can only assume
the same mean-field orbit for all of them if using WS. The
shell model explains this fragmentation of the spectrum
very well but it falls short of providing microscopic infor-
mation on the differences between their radial overlaps,
similarly to WS. The last column in this table lists the
spectroscopic factors, as computed from ab initio SCGF.
To simplify the comparison and focus on the ANC con-
tribution, in this study we keep all GF overlap and WS
functions normalised to one, i.e., the cross sections have
not been multiplied by the spectroscopic factors Slj . In
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Table I. Separation energies, EB , root mean square radii of the overlap wavefunction,
〈
r2
〉1/2

, asymptotic normalization

coefficients (ANC), (p, pN) quasi-free cross sections, σqf and nucleon knockout cross sections, σko, with 9Be targets, for 350
MeV/nucleon oxygen projectiles. WS denotes wavefunctions calculated with a potential model (Woods-Saxon) and GF denotes
many-body ab initio overlap functions from self-consistent Green’s function method. For a few cases we generated two different
WS orbits, with the second choice constrained to reproduce the same radii as GF. Different final states are distinguished by their
separation energy, EB . The first columns indicates the target isotope and the mean-field WS orbit that could be tentatively
associated to the transferred nucleon. SGF are theoretical spectroscopic factors predicted by SCGF, all other results employ
overlap functions normalised to unity.

Nucleus EB

〈
r2
〉1/2
WS

〈
r2
〉1/2
GF

CWS CGF σWS
qf σGF

qf σWS
ko σGF

ko SGF

(state) [MeV] [fm] [fm] [fm−1/2] [fm−1/2] [mb] [mb] [mb] [mb]
14O (π1p3/2) 8.877 2.836 2.961 6.665 7.060 20.72 21.28 26.28 28.15 0.548
14O (π1p1/2) 6.181 2.991 3.160 4.872 5.401 21.08 16.89 28.61 31.33 0.760
14O (ν1p3/2) 21.33 2.513 2.722 11.39 14.64 30.55 32.80 21.13 23.92 0.773
16O (πs1/2) 15.89 2.295 2.233 13.06 13.81 7.870 7.696 16.97 15.81 0.074
16O (π1p3/2) 17.43 2.612 2.832 15.29 18.27 17.41 18.58 19.83 22.70 0.805
16O (π1p1/2) 10.65 2.816 3.077 8.624 10.70 9.094 9.913 22.54 26.29 0.794

3.077 11.22 9.625 25.24
16O (ν1p3/2) 20.71 2.580 2.807 11.96 13.88 27.88 30.26 18.81 21.66 0.801
16O (ν1p1/2) 13.83 2.767 3.032 6.684 7.578 14.64 16.47 21.20 24.89 0.790
22O (π1p3/2) 29.26 2.554 2.884 43.74 63.52 14.37 17.08 13.07 14.50 0.274

2.884 75.87 15.47 15.72
22O (π1p3/2) 25.67 2.606 2.820 35.00 54.07 13.30 14.20 12.93 15.10 0.443

2.820 49.22 15.13 14.66
22O (π1p1/2) 23.58 2.634 2.916 30.49 51.49 6.607 7.253 13.27 16.21 0.731
22O (ν1d5/2) 6.670 3.328 3.533 4.519 4.685 45.30 46.63 21.36 24.28 0.806
24O (π1p3/2) 28.57 2.609 2.886 45.76 66.45 12.13 13.29 11.37 14.01 0.675
24O (π1p3/2) 31.88 2.566 2.847 55.88 95.22 11.94 13.11 10.98 13.70 0.042
24O (π1p1/2) 25.28 2.657 2.985 37.04 57.21 6.054 6.881 11.81 15.11 0.740
24O (ν2s1/2) 4.120 4.190 4.479 3.971 4.130 13.94 19.95 31.81 36.45 0.844
24O (ν1d5/2) 6.961 3.436 3.557 2.056 2.106 40.53 41.95 19.51 21.11 0.832

the asymptotic limit (where the nuclear force is vanish-
ingly small), the radial part of the WS wavefunction and
GF overlaps can be expressed in terms of Whittaker func-
tion and a corresponding ANC, Clj , can be theoretically
deduced.

The r.m.s. radii of the GF wavefunctions are slightly
larger than those for the WS wavefunctions. There seems
to be a one-to-one correspondence of this behavior with
the quasi-free (p, pN) cross sections which are larger for
the GF wavefunctions. The only exception is the s1/2
state in 15N, fourth row in Table I, which does not have
dominant single-particle character and cannot be directly
associated neither to a 1s1/2 nor a 2s1/2 orbit. The
increase of the cross sections with the r.m.s. radii of
the wavefunction is also clearly visible for the additional
three other cases (one for 16O two others for 22O) where
the parameters of the WS potential were adjusted to re-
produce the same binding energies and same r.m.s. radii
as the GF wavefunctions. The comparison between the
cross sections for WS and GF wavefunctions improve, but
very noticeable differences remain, pointing again to the
fact that both QFS and knockout reaction mechanisms
depend on the details of the wavefunctions. Similar spec-

troscopic factors to the one listed in Table (I) were used
in Ref. [22] and shown to reproduce the data rather well.
It is also worthwhile noticing that in few cases the ANC
values are very different between the WS and GF wave-
functions. In essence, it is not necessary, nor expected,
that the GF wavefunctions reproduce the same ANC as
the WS case because they are constrained by the integral
of their internal part, which can vary sensibly due to cor-
relations.

Earlier ab initio wavefunctions obtained from expan-
sions in harmonic oscillator wavefunctions did not repro-
duce the large distance behavior of the nuclear states
unless the expansion runs over a very large number of
oscillator shells [33–35]. A simple way to prevent un-
necessary large-scale calculations was reported in Refs.
[34, 35] by using a procedure that replaces ab initio wave-
functions at their tails by those with appropriate asymp-
totic behavior such as solutions of a WS model. A fit
extending to the internal part of the ab initio overlap
functions and adequate renormalization yields appropri-
ate values for the ANCs. In fact, it was shown in Refs.
[34, 35] that this procedure leads to an excellent descrip-
tion of cross sections and momentum distributions of pro-
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Figure 2. Same as Figure 1, but showing the logarithmic tail
of the overlap functions.
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Figure 3. Wood Saxon (WS, red dashed line) wavefunction
and Green Function (GF, black dotted line) overlap function
for 24O, 1p3/2, EB = 31.88 MeV.

ton/neutron knockout reactions with heavy targets based
on overlap functions stemming from the No-Core-Shell-
Model (NCSM). Similar issues are now fully resolved for
both NCSM [36] and for SCGF theories. In our case, the
projection of Eq. (4) into momentum space, as discussed
in Refs. [26, 30, 36] always yields the correct asymptotics
without the need for ad-hoc corrections.

Probing deep inside the nucleus. An exact repro-
duction of a Whittaker tail is irrelevant in for (p, pN)
reactions. To show this, in Figure 1 we plot the over-
lap functions for a few selected states from Table I. All
cases are for protons except the bottom-right panel which
is for a neutron single-particle state. Solid lines are
SCGF calculations, while the dashed lines are for Woods-
Saxon (WS) potentials with parameters fitted to match
the same separation energies. Evidently, the form of the
wavefunctions are not very different, but some difference
in the details are noticeable and have an impact on the
rms radii and on the quasi-free cross sections, as one can
easily read from Table I. The cross sections can change

by as much as 20%.
In Figure 2 we show the logarithmic tails of the same

wavefunctions as in Figure 1. It is clear that our SCGF
overlap functions possess very reasonable exponential
slopes, as with the WS wavefunctions. Therefore, small
differences of the knockout cross sections in Table I are
due to the authentic modification of the height of the
tails due to many-body effects stemming for the interior
part of the GF overlap functions. All wavefunctions are
normalized to unity.

Substantial differences exist between heavy ion knock-
out cross sections obtained with single-particle and
many-body overlap functions. This can’t be ascribed to
the asymptotic behavior of the wavefunctions. By simply
rescaling the tails of the wavefunction with an ANC or
a spectroscopic factor would lead to a wrong experimen-
tal analysis, i.e., just the ANC, or spectroscopic factor,
is not enough. The full knowledge of the wavefunction is
necessary.

To clarify the latest point, and show that knockout re-
actions with heavy ions are also partially sensitive to de-
tails of the inner part of the wavefunctions, consider the
probability for one-nucleon stripping in a collision with
the core (surviving spectator) having an impact param-
eter b with the target, while the removed nucleon has an
impact parameter bn. The stripping probability is [7],

Pko(b) = Sc(b)
〈
1− |Sn(bn)|2

〉
= Sc(b)

∫
d3r|φnlj(r)|2 (1− |Sn(bn) |2) (5)

where φnlj(r) denotes the w.f. with quantum num-
bers nlj expressed in terms of the relative core-neutron
distance r. Sc(Sn) is the scattering matrix for the
core(nucleon)-target and |φnlj |2 is the probability to find
the nucleon at r. bn ≡ (bn, φn) and the intrinsic coordi-
nate r ≡ (r, θ, φ) are related by [7]

b =

√
r2 sin2 θ + b2n − 2rbn sin θ cos(φ− φn). (6)

We apply Eq. (6) to obtain the heavy ion proton
knockout from 24O, 1p3/2, with EB = 31.88 MeV. In
Fig. 3 we compare the GF and WS wavefunctions, notic-
ing that while the tails are similar to a Whittaker func-
tion (only seen in a logarithmic scale), there are visible
differences in their overall shapes. The calculated proton
stripping probabilities from Eq. (5) are shown in Fig. 4.
They are larger for the GF wavefunctions, yielding larger
cross sections, as expected by inspecting Table I.

A simple question raises: do the heavy ion knock-
out cross sections scale with the square of the ANCs?
The answer is negative. The respective ANCs scale as
(CGF /CWS)2 ∼ 3, whereas the cross sections scale as
σGFko /σ

WS
ko ∼ 1.25. This intriguing difference is best un-

derstood if the stripping probability is plotted logarith-
mically for large b. This is shown in Fig. 5. While at
very large distances, the probability seems as if it scales
with a single factor (the ratio between the ANCs), at
lower but still large impact parameters they visibly differ
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Figure 5. Same as in Fig. 4 but for very large impact param-
eters b, where the integrand in Eq. (5) is dominated by the
tail of the s.p. w.f.

from simple scaling. This result is understood by con-
sidering the stripping probability in Eq. (5). Even for
large b, when the core and the target pass by as much as
10 fm apart, the inner parts of the wavefunction are still
probed because the integrand is too small to make sub-
stantial contributions to the probability if bn � 1, as the
1−|Sn|2 goes to rapidly to zero there. We have observed
the same behavior for all the cases displayed in Table I.

The imprints of the details of the many-body overlap
functions are summarized in Figure 6 for the 17 reactions
in Table I. The horizontal scale is a list of the reactions
in Table I from top to bottom of the table. The vertical
scale represents (σGF −σWS)/σWS in percent for (p, pN)
reactions. Except for two cases, the quasi-free cross sec-
tions calculated with GF overlaps are larger than those
with WS wavefunctions. The squares (diamonds) [circles]
{stars} represent these quantities for 350 MeV/nucleon
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Figure 6. Percent deviation of cross sections using WS wave-
functions and GF overlaps for the 17 reactions in Table I for
QFS (full symbols) and knockout reactions (empty symbols).
Cross sections calculated with GF overlaps are larger than
those with WS wavefunctions, except for two states.

14O (16O) [22O] {24O} projectiles. It is evident that the
results change appreciably with a different form of the
internal part of the overlap functions. Fig. 6 also demon-
strates that variations with respect to the overlap func-
tions are smaller in the (p,pN) case (full symbols). This
as due to the capability of this reaction mechanism of
better probing the internal part of the nucleus.
Conclusions. In contrast to a commonly considered

idea, both heavy ion knockout reactions and (p, pN) re-
actions are sensitive to the internal details of the overlap
wave function and put strong constraints on the coordi-
nate dependence of the many-body wavefunctions.

An accurate experimental analysis ideally requires not
only the input of an accurately determined overlap func-
tion from many-body computations, but also a direct
comparison among possible predictions, so that one can
assess the extent of the model dependence for the inferred
spectroscopic factors. The latter task requires particular
attention since a good reproduction of nuclear binding
energies and radii is a fundamental constraint but only a
fraction of currently available ab initio Hamiltonians of-
fer satisfactory saturation properties [37–39]. While this
poses a more difficult task for the study of single-particle
configurations with heavy-ion knockout and (p,pN) reac-
tions, it also opens opportunities for a better and more
profound understanding of the many-body configurations
and their single-particle overlaps.

In view of the recent advances in experimental facilities
and detection techniques, it is suggested that heavy-ion
knockout and (p, pN) reactions are analyzed using a con-
sistent many-body model, because they are a formidable
tool to extend our knowledge in nuclear spectroscopy
only when many-body correlations are considered in the
analysis.
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