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Nuclides sharing the same mass number (isobars) are observed ubiquitously along the stability
line. While having nearly identical radii, stable isobars can differ in shape, and present different
quadrupole deformations. We show that even small differences in these deformations can be probed
by relativistic nuclear collisions experiments, where they manifest as deviations from unity in the
ratios of elliptic flow coefficients taken between isobaric systems. Collider experiments with isobars
represent, thus, a unique means to gain precise knowledge of the geometric shape of atomic nuclei.

Introduction. A remarkable connection between low- and high-energy nuclear physics has been recently estab-
lished in collider experiments conducted at the BNL Relativistic Heavy Ion Collider (RHIC) and at the CERN Large
Hadron Collider (LHC) with the realization that the output of relativistic nuclear collisions is strongly affected by
the deformation of the colliding ions.

The key observable driving this finding is elliptic flow, the quadrupole deformation (second Fourier harmonic) of
the azimuthal distribution of hadrons detected in the final state of relativistic nuclear collisions [1]:

V2 ∝
∫
detector

f(ϕ)ei2ϕ, (1)

where f(ϕ) is the distribution of azimuthal angles (in momentum space) collected in a collision event.
In nucleus-nucleus collisions, elliptic flow emerges as a response to the quadrupole asymmetry (ellipticity) of the

system created, right after the interaction takes place, in the plane transverse to the beam direction [2]:

E2 ∝
∫
overlap area

ε(r, φ) r2ei2φ, (2)

where (r, φ) parametrize the transverse plane (for simplicity at z = 0), and ε is the density of energy deposited in
the overlap. In full generality, E2 6= 0 ⇒ V2 6= 0. As illustrated in the left panel of Fig. 1, any collision occurring at
finite impact parameter presents an overlap area which carries an elliptical deformation, i.e., E2 6= 0, explaining in
particular the observation that V2 grows steeply with the collision impact parameter.

However, for the majority of isotopes, even in the limit of vanishing impact parameter one expects E2 6= 0, and thus
V2 6= 0 from nuclear structure arguments. Most of nuclei present in fact a nonvanishing intrinsic quadrupole moment,
i.e., an ellipsoidal deformation [3]:

Q20 ∝
∫
nucleus

ρ(r,Θ,Φ) r2Y20(Θ,Φ), (3)

where ρ(r,Θ,Φ) represents the nucleon density in the intrinsic frame of the nucleus. Ultrarelativistic collisions take
snapshots of randomly-oriented configurations of nucleons at the time of interaction, so that, if the colliding ions
present Q20 6= 0, regions of overlap such as that proposed in the right panel of Fig. 1 can be produced. These lead to
E2 6= 0 at zero impact parameter.

The bottom line is that in nucleus-nucleus collisions:

Q20 6= 0 =⇒ E2 6= 0 =⇒ V2 6= 0. (4)

The importance of this statement has been recently clarified in the context of 238U+238U collisions at RHIC, with
the realization that observables based on V2 (and on the hadron mean transverse momentum, 〈pt〉) are essentially
dominated by effects due to the deformed shape of uranium nuclei [4, 5], and at LHC with the measurement of an
abnormally large V2 in 129Xe+129Xe collisions compared to 208Pb+208Pb collisions [6–8].

These discoveries naturally trigger the question of whether one can use the great resolving power of high-energy
colliders to infer something new about the low-energy structure of nuclei, and provide a new means to test state-of-
the-art approaches to the nuclear many-body problem. In this Letter, we show that this is possible, and how such a
goal can be pursued experimentally.
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The idea. We exploit the seemingly uninteresting fact that a large number of stable nuclides belong to pairs of
isobars, i.e., that for a given nuclide X one can often find a different nuclide Y that contains the same number of
nucleons. This feature has an important implication for high-energy collisions. If X and Y are isobars, then X+X
collisions produce a system which has the same properties (volume, density) as that produced in Y+Y collisions. As
a consequence, X+X and Y+Y systems present the same geometry, the same dynamical evolution, and thus the same
elliptic flow in the final state.

Given isobars X and Y, we ask, hence, the following:

v2{2}X+X

v2{2}Y+Y

?
= 1 (5)

where v2{2} represents the usual rms measure of the magnitude of V2 in a given multiplicity class. As argued above,
the ratio should be equal to 1. Experimentally, once a number of minimum bias collisions of order 108 is available,
the ratio at small centralities can be obtained free of statistical error, while systematic uncertainties cancel in the
ratio if the detector conditions of the X+X and Y+Y runs are the same [9]. Corrections to the ratio in Eq. (5) can
further appear if the systems produced in X+X and Y+Y collisions have different sizes, for instance, due to the fact
that X and Y present different neutron numbers. However, two stable isobars can differ in matter radius by at most
0.5% [10], leading to a small correction. For the isobars collided at RHIC in 2018, 96Ru and 96Zr, deviations from
unity in the ratio of v2 coefficients have been analyzed in Ref. [11], for different models of the nucleon density. In
central collisions and for spherical nuclei, it was found that the deviation from unity is at maximum 1%. A deviation
as large as 2% appears, on the other hand, in peripheral collisions, due to the different diffusivity [see a in Eq. (6)]
of the two isobars [12, 13]. This effect is however pronounced (>1%) only at large impact parameters, where nuclear
deformation does not influence the rms elliptic flow.

For central collisions, significant deviations (>1%) from unity in the ratio of the v2 coefficients can only arise from
the different deformations of the isobars. Deformation reflects the collective organization of nucleons in the nuclear
ground state, and it varies with proton and neutron numbers. In general, one does not expect two stable isobars to
present the same deformation. The point we want to make in this Letter is, then, the following:

Given two isobars, X and Y, if one measures v2{2}X+X

v2{2}Y+Y
> 1 in central collisions, with a deviation from

unity larger than 1%, then one must conclude that X has a larger intrinsic quadrupole deformation than
Y.

This statement is based on two facts: (i) that elliptic flow emerges from the elliptic anisotropy of the overlap area; (ii)
that nuclei in their ground states typically have nonvanishing intrinsic quadrupole moments. These are established
features of nuclear physics that do not rely on any specific approximation or model.

Therefore, through measurements of the ratio in Eq. (5) one obtains a qualitative information about the relative
deformation of the isobars which, as we show in the following, can be turned into a quantitative one, as even small
differences in the quadrupole deformation of two isobars give rise to unambiguous and detectable effects in the ratio
of the v2 coefficients. As mentioned above, this ratio is virtually devoid of experimental error and systematically
accessible, under the same experimental conditions, throughout the Segrè chart. Such features are hardly attainable
in low-energy nuclear structure experiments. Therefore, collider data will challenge the predictions of nuclear models
tuned to low-energy experimental data in an unprecedented way.

Application. To get some intuition about the kind of results that will be obtained in collider experiments, we
now perform quantitative calculations of Eq. (5) by means of models, namely, a standard parametrization for the
deformed nuclear matter density, and a Glauber-type model for the collision process.

A common parametrization of the nucleon density is the 2-parameter Fermi (2pF) distribution:

ρ(r,Θ,Φ) ∝ 1

1 + exp ([r −R(Θ,Φ)] /a)
, (6)

where a denotes the surface diffuseness and the half-density radius R carries information about the deformed shape.

We characterize R through a spherical harmonic expansion: R(Θ,Φ) = R0

[
1 + βY2,0(Θ,Φ)

]
, truncated at the axial

quadrupole, Y2,0, as corrections to v2{2} due to triaxial, Y2,±2, and hexadecapole, Y4,0, deformations are negligible in
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the limit of central collisions [14]. The coefficient β quantifies1 the ellipsoidal shape of the nucleus:

β ' 4π

5

∫
ρ(r,Θ,Φ) r2Y20(Θ,Φ)∫

ρ(r,Θ,Φ) r2
. (7)

Well-deformed nuclei, such as 238U, or the stable nuclides with 150 < A < 180, are characterized by β ≈ 0.3.
Two nuclei, described as randomly oriented, deformed batches of nucleons sampled independently according to the

2pF distribution given in Eq. (6), are then collided at ultrarelativistic energy. On a collision-by-collision basis, the
energy density deposited in the process possesses a nonvanishing eccentricity, ε2 ≡ |E2|, which triggers the development
of elliptic flow during the expansion of the system, resulting in the observed momentum anisotropy, V2. Dubbing
v2 ≡ |V2|, at a given multiplicity (centrality) one has: v2 = κ2ε2, where κ2 is a real coefficient that depends on the
properties of the system (e.g., equation of state and viscosity in a hydrodynamic model [1]). As anticipated, isobaric
systems share the same physical properties, so that a crucial simplification occurs: κ2[X + X] = κ2[Y + Y]. In the
ratio between v2 coefficients calculated in two different isobaric systems, then, the response κ2 drops out. This in
turn implies that:

v2{2}X+X

v2{2}Y+Y
=
ε2{2}X+X

ε2{2}Y+Y

?
= 1. (8)

The question of whether or not the measured ratio of v2 coefficients is equal to unity boils down to whether the two
isobaric system possess the same fluctuations of ε2.

This allows us now to employ a collision model to calculate Eq. (8), and thus to perform a quantitative evaluation
of the ratio of the v2 coefficients to be measured at colliders. To do so, we use the default TRENTo model [17], which
has proven able to capture with good accuracy the effects of the quadrupole deformation of nuclei on elliptic flow
data collected in 238U+238U collisions. We perform this analysis for two pairs of isobars:

• A pair of well-deformed nuclei, namely, 154Sm and 154Gd. For the 2pF density profile, we assume that the
matter distribution is identical to the measured charge density, a good approximation for stable nuclides. For
both nuclei we employ R = 5.975 fm and a = 0.59 fm Ref. [18]. For the deformation parameters, we adopt
values inferred from the measured transition probabilities of the electric quadrupole operator from the ground
state to the first 2+ state, tabulated, e.g., in Ref. [19]. One finds2 β = 0.34 for 154Sm and β = 0.31 for 154Gd.

• A pair of lighter nuclei, 96Zr and 96Ru, of great relevance since 96Zr+96Zr and 96Ru+96Ru collisions have been
performed at RHIC in 2018 [9], and experimental results will be released shortly. For the 2pF of these nuclei
we set R = 5.06 fm for 96Zr and R = 5.03 fm for 96Ru, taking into account the fact that 96Zr has an excess of
4 neutrons, while a = 0.52 fm for both. The deformation parameters are β = 0.15 for 96Ru, and β = 0.06 for
96Zr [19].

For each system we simulate 5 million minimum bias collisions. We sort events into centrality classes according to
the entropy created in the process, following the default TRENTo prescription. In each centrality bin, we evaluate
ε2{2}, and by subsequently taking the ratio of Eq. (8), we obtain the results displayed in Fig. 2.

The shaded band corresponds to a departure from unity smaller than 1%. We interpret any deviation falling
outside the band as a genuine signature of the different quadrupole deformations carried by the two isobars, although
we caution that for precise comparisons with future data, uncertainties related to the centrality definition of our
model will have to be carefully addressed [21, 22]. The black solid line represents our result for the systems collided
in 2018 at RHIC. It is consistent with a similar calculation done in Ref. [23], and can be confronted with upcoming
data. For our choice of the deformation parameters, we observe that the splitting between the flow coefficients in
central collisions is well above 1%, consistent with the fact that 96Ru has a larger quadrupole deformation. The same
behavior is observed for the pair of heavier nuclei (red dashed line), where a deviation from unity of order 5% emerges
in central collisions, reflecting the larger deformation of 154Sm nuclei.

The fact that both pairs return a similar (small) splitting between v2 coefficients can be understood as follows. At
a given centrality, one expects [24, 25]:

ε2{2}2 = a0 + a1β
2. (9)

1 We assume here that nuclei have a fixed quadrupole deformation, though shape fluctuations are normally present, depending on the
“softness” of the nuclear system (see e.g. Ref. [15]). We have checked that the quantitative results presented in this section do not
change significantly if a distribution in β is considered instead of the fixed value stated below [16].

2 These results rely on approximations (e.g., a sharp nuclear surface) that are not fully consistent with the use of Eq. (6). We neglect this
possible mismatch, typically of order 5-10% [20].
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The coefficient a0 is the eccentricity due to nucleon positions, while the term proportional to β2 represents the
contribution from fluctuations in the orientation of the deformed ions. Systems X+X and Y+Y have the same size
and number of participant nucleons, therefore, they present the same a0 and a1. In the TRENTo results we find that,
even for A = 154 and β ≈ 0.3, the contribution from a0 to Eq (9) is larger than the contribution from a1β

2. Inserting
Eq. (9) in Eq. (8), expanding the ratio around unity, and keeping the leading correction, equation (8) becomes:

v2{2}X+X

v2{2}Y+Y
' 1 +

c

2

(
β2
X − β2

Y

)
, (10)

where c gives the relative variation of the ms eccentricity with β2, c = d
(
ln ε2{2}2

)
/dβ2|β2

Y
. For both pairs in our

application one has β2
X − β2

Y ≈ 0.02, and c ≈ 6, explaining the similarity between the curves in Fig. 2.
We note that c is a property of the geometry of the system, whose uncertainty can be quantified from initial

condition models. This means that in high-energy experiments one can extract the difference β2
X − β2

Y with a well-
defined theoretical error. As the way ε2{2}2 depends on β is largely model-independent [25], this error will be small.
Therefore, while heavy-ion collisions may not yet provide a simple way to extract the value of β from collisions of
a given species, the extraction of relative information, involving more than one system, is remarkably robust, and
leads to a knowledge of precision comparable to that obtained from low-energy measurements. Such knowledge is
fully complementary to the existing one, albeit free from uncertainties appearing in the translation of spectroscopic
information into shape parameters. High-energy collisions can be performed, for instance, with any nucleus, even or
odd, while it is not possible to unambiguously assign a meaning in terms of geometric shapes to spectroscopic data
for isotopes containing either an odd number of protons or neutrons.

Our most important result concerns the heavier species with A = 154. The contribution from the nuclear defor-
mation in Eq. (9) is quadratic in β, therefore, it is much more important for well-deformed nuclei, β ≈ 0.3. For this
reason, as found in Fig. 2, for well-deformed nuclei even percent-level differences in the values of β will leave visible
signatures in the ratio of flow coefficients. In this scenario, the qualitative statement that X is more deformed than
Y turns into a nontrivial quantitative issue, driven by tiny differences in the shape of the isobars.

Conclusion & Outlook. Relativistic collision experiments involving stable isobars, such as 96Zr+96Zr and
96Ru+96Ru collisions recently run at RHIC, yield ratios of v2 coefficients between isobaric systems that are not
simply equal to one, but rather look like the curves shown in Fig. 2. A given ratio falling outside the shaded band
indicates that the geometric shapes of the colliding ions are different. This information is virtually free of experi-
mental error. It has to be confronted with our knowledge of nuclear physics across energy scales and can be accessed
systematically across the nuclide chart thanks to the abundance of stable isobars found in Nature.

Physicists should take advantage of this opportunity. All pairs and triplets of isobars which are stable enough
to be used in potential collider experiments are listed in Tab. I. Well-deformed nuclei are highlighted in a red box.
A recent study [26] further suggests that 146,148,150Nd and 150Sm may present an octupole deformation (Q30 ∝∫
r3Y30(Θ,Φ)ρ(r,Θ,Φ) 6= 0) in their ground state. A small octupole deformation would be visible in high-energy

collisions as an enhancement of the fluctuations of triangular flow, v3 [14, 27]. Therefore, Nd and Sm isotopes
represent ideal candidates for such a study.

These experiments can be repeated for several pairs of isotopes in identical conditions, and provide us with an
information independent of specific nuclear structure details. High-energy collisions represent, thus, a tool truly
complementary to modern low-energy experiments. They offer a unique way to test the predictions of nuclear models
for a wide range of species, and consequently pose a solid baseline for the next generation of theory-to-data comparisons
involving ab-initio frameworks of nuclear structure currently under intense development [28].
Note added. During the process of publication of this manuscript, the STAR collaboration has released exper-

imental data on ratios of flow coefficients in 96Zr+96Zr and 96Ru+96Ru collisions [29]. The enhancement of v2 in
96Ru+96Ru collisions predicted in Fig. 2 has been observed. Additionally, a strong enhancement of v3 in 96Zr+96Zr
collisions has been reported. This suggests the presence of an octupole deformation in the ground state of 96Zr. This
conclusion seems consistent with low-energy spectroscopic measurements that have identified a low-lying 3− state with
a large B(E3) transition strength in such nuclei [30], pointing to octupole collectivity. Yet, the theoretical descrip-
tion of such correlations in the ground state of 96Zr represents a challenge for state-of-the-art theoretical frameworks
(see, e.g., [26, 31] and the discussion in [30]). These findings corroborate our point that colliding isobars at high
energy provides a new type of information on the shape of nuclei and can critically reinforce or challenge analyses of
low-energy data.
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FIGURES



7

y

x
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FIG. 1. Anisotropic overlap regions in nuclear collisions. Left: a collision of spherical nuclei breaks anisotropy in the transverse
plane due to the finite impact parameter. Right: a central collision of deformed nuclei breaks anisotropy due to the non-spherical
shape of the colliding bodies.
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FIG. 2. Rms elliptic flow in X+X collisions divided by the rms elliptic flow in Y+Y collisions as a function of collision centrality.
The ratio of flow coefficients is estimated following Eq. (8) and the TRENTo model. The shaded band represents a 1% deviation
from unity. Any deviation from unity which falls outside the shaded band can be considered as a significant signature that
βX 6= βY.
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TABLES
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A isobars

36 Ar, S

40 Ca, Ar

46 Ca, Ti

48 Ca, Ti

50 Ti, V, Cr

54 Cr, Fe

64 Ni, Zn

70 Zn, Ge

74 Ge, Se

76 Ge, Se

78 Se, Kr

80 Se, Kr

84 Kr, Sr, Mo

86 Kr, Sr

87 Rb, Sr

92 Zr, Nb, Mo

94 Zr, Mo

96 Zr, Mo, Ru

98 Mo, Ru

100 Mo, Ru

102 Ru, Pd

104 Ru, Pd

106 Pd, Cd

108 Pd, Cd

110 Pd, Cd

112 Cd, Sn

113 Cd, In

114 Cd, Sn

115 In, Sn

116 Cd, Sn

120 Sn, Te

122 Sn, Te

123 Sb, Te

124 Sn, Te, Xe

126 Te, Xe

128 Te, Xe

130 Te, Xe, Ba

132 Xe, Ba

134 Xe, Ba

136 Xe, Ba, Ce

138 Ba, La, Ce

142 Ce, Nd

144 Nd, Sm

146 Nd, Sm

148 Nd, Sm

150 Nd, Sm

152 Sm, Gd

154 Sm, Gd

156 Gd, Dy

158 Gd, Dy
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160 Gd, Dy

162 Dy, Er

164 Dy, Er

168 Er, Yb

170 Er, Yb

174 Yb, Hf

176 Yb, Lu, Hf

180 Hf, W

184 W, Os

186 W, Os

187 Re, Os

190 Os, Pt

192 Os, Pt

198 Pt, Hg

204 Hg, Pb

TABLE I. Pairs and triplets of stable isobars (half-life longer than 108 y). A total of 139 nuclides are listed. The region marked
in red contains large well-deformed nuclei (β > 0.2). The region marked in blue corresponds to nuclides which may present an
octupole deformation in their ground state [26].
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