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Collisions of light and heavy nuclei in relativistic heavy-ion collisions have been shown to be sensitive to
nuclear structure. With a proposed 16O16O run at the LHC and RHIC we study the potential for finding α
clustering in 16O. Here we use the state-of-the-art iEBE-VISHNU package with 16O nucleonic configurations
from ab initio nuclear lattice simulations. This setup was tuned using a Bayesian analysis on pPb and PbPb
systems. We find that the 16O16O system always begins far from equilibrium and that at LHC and RHIC it
approaches the regime of hydrodynamic applicability only at very late times. Finally, by taking ratios of flow
harmonics we are able to find measurable differences between α-clustering, nucleonic, and subnucleonic degrees
of freedom in the initial state.

Introduction In the past several years, the state-of-the-art
in the field of relativistic nuclear collisions has reached the
threshold of precision physics [1–5]. The evolution of nuclear
collisions is by now widely accepted to be well-described
within the framework of relativistic hydrodynamics, in which
fluid dynamical behavior is manifested by a collective re-
sponse to the initial collision geometry [6–14]. Precision mea-
surements for probing the hydrodynamic evolution of nuclear
collisions include a suite of flow observables [15, 16], multi-
particle correlation observables [17–19], soft-hard/heavy mul-
tiparticle azimuthal correlations [12, 20–23], and femtoscopic
radii [24–28], to name a few.

These observables are sensitive to the the initial state,
the pre-hydrodynamic evolution [29–32], and the subse-
quent hydrodynamic phase. Essential to disentangling the
effects of quantum fluctuations in the initial state and the
pre-hydrodynamic evolution from those of the subsequent
medium response is the ability to engineer initial conditions
with specified geometries. This approach has been exploited
already with great success in the context of small-system ge-
ometry engineering by the PHENIX collaboration [33–40]
and a quadruple deformation of 129Xe was confirmed at the
LHC [41–44]. More recently, dedicated runs of 16O16O colli-
sions have been proposed [22, 45–51] at both RHIC and LHC
as a way of extending the geometry scan results to systems of
intermediate size, which exhibit more exotic initial configura-
tions due to an effect known as “α-clustering”.

The phenomenon of α-clustering is a type of nucleon-
nucleon (NN) correlation which is expected on the basis of
nuclear lattice effective field theory (NLEFT) calculations to
be present in doubly magic nuclei such as 16O and 208Pb. In
such nuclei, nucleon positions are not completely uncorre-
lated, but tend to cluster together into groupings of two neu-
trons and two protons each, thereby effectively forming α par-
ticles (or “α clusters”) in the nucleus. These correlations lead

to quantifiable effects on the initial states of collisions between
such nuclei and may manifest themselves in corresponding
precision measurements of nuclear collision flow observables
[49, 52]. The possibility of measuring α clustering in 16O
is of enormous interest to the low-energy nuclear structure
community [53–57]. It may also be possible to have subnu-
cleonic fluctuations that would influence the collective flow
[58–64]. A natural question is thus whether α-clustering is
measurable in relativistic heavy-ion collisions once all rele-
vant effects have been considered.

The purpose of this paper is to explore the quantitative im-
pact on flow observables of incorporating α-clustering effects
vs. subnucleonic fluctuations into the initial conditions for
hydrodynamic simulations of 16O16O at both RHIC and LHC
energies. To do this we adopt the state-of-the-art setup used
in a recent Bayesian analysis [4] which was conditioned on
experimental data at the LHC.

Initial Conditions Heavy ion collisions are rarely head on,
but rather are characterized by a finite impact parameter. Con-
sequently, a number of nucleons do not participate in the col-
lision, traveling on to the detector. Participating nucleons are
counted using Npart and the impact region is treated as the
initial condition for relativistic hydrodynamic calculations. In
recent years [41, 42, 65–73] it has been found that the shape of
the nucleus can play a role in the geometrical shape of the im-
pact range, which is quantified through eccentricities. These
eccentricities are connected to the collective flow observables
through linear response for central [6–12] and mid-central col-
lisions and linear+cubic response in peripheral collisions [1].
Thus, deformations in the shape of the nucleus are then trans-
lated to final state observables, which are most detectable in
central collisions from linear response.

In order to model 16O one uses a three-parameter fit [74] of
the radial density distribution in the nuclear rest frame, written
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Parameterization R (fm) a (fm) w (fm)
16O 3pF 2.608 0.513 -0.051

TABLE I. Parameters from [74] for the Woods-Saxon density distri-
bution used in the initial conditions.

in spherical coordinates as:

ρ(r, θ, φ) = ρ0

(
1 + w

r2

R2

) [
1 + exp

( r − R
a

)]−1

. (0.1)

with ρ0 the nuclear saturation density, R a measure of the glu-
onic radius of the nucleus, and a is the surface diffusion pa-
rameter. For nuclei such as 208Pb, a “doubly magic” nucleus
in the nuclear shell model, these spherically symmetric den-
sities give a good description of elliptic flow at the LHC. The
parameters used in our initial conditions are given in Table I.
For 16O, only the three-parameter fit (0.1) is available. Being a
doubly magic nucleus, 16O is taken to be spherically symmet-
ric. We have coded this Woods-Saxon into the phenomenolog-
ically driven initial condition model, TRENTo [68], using the
following parameters: the thickness function scaling p = 0,
the multiplicity fluctuations k = 1.6, the nucleon width ω =

0.51 fm. The nucleon-nucelon cross-sections correspond to
the p-p values at each energy investigated: σNN = 42.5 mb at
√

sNN = 200 GeV (RHIC), and σNN = 72.5 mb at
√

sNN = 6.5
TeV (LHC).
Ab initio structure and clustering Nuclear clustering is a fea-
ture of many light nuclear systems and is particularly preva-
lent in nuclei with even and equal numbers of protons and neu-
trons. For such nuclei the clustering is mostly associated with
the formation of α clusters. See, for example, Ref. [75] for a
recent review. The nuclear states with the most pronounced
α cluster substructures are excited states near α separation
thresholds, such as the Hoyle state of 12C. However the strong
four-nucleon correlations also persist in ground states of nu-
clei. Recently it has even been suggested that the parameters
of the nuclear force lies close to quantum phase transition be-
tween a nuclear liquid and a Bose gas of α particles [54].

One of the ab initio methods that is able to probe α-
clustering is NLEFT. See Ref. [76] and [77] for reviews. In
this work we use the nucleonic configurations for 16O pro-
duced in Ref. [78]. These calculations used a simple leading
order interaction, although the reproduction of the binding en-
ergies and radii of light and medium mass are accurate to a
few percent error. In particular, the charge density distribu-
tion for 16O is in excellent agreement with electron scattering
data. These calculations were performed with a 1.32 fm spa-
tial lattice spacing.

The nucleon configurations were computed using the pin-
hole algorithm introduced in Ref. [79]. The pinhole algo-
rithm produces a classical distribution of the nucleon posi-
tions weighted according to the 16−nucleon density correla-
tion function for the 16O ground state. These 16−nucleon con-
figurations provide the initial conditions for our hydrodynam-
ics calculations to be described below. In the Supplemental
Materials, we quantify the amount of α-clustering in the 16O

wave function. The short-range two-nucleon, three-nucleon,
and four-nucleon correlations at lattice spacing 1.32 fm are
only about 14% higher than that associated with a simple
product state of four α clusters. Hence the degree of α-
clustering at the 1.32 fm distance scale is relatively high.
Hydrodynamic Setup We model the hydrodynamic evolu-
tion in 16O16O using the Duke Bayesian tune of the iEBE-
VISHNU package [4, 64] to p–Pb and Pb–Pb collisions at the
LHC. The framework uses the TRENTo model [68] to gener-
ate an initial entropy distribution. These distributions require
normalization constants of 5.3 (RHIC) and 17 (LHC), which
were obtained from an extrapolation of the energy depen-
dence elsewhere [4]. The initial entropy distribution is then
passed through a free-streaming phase of duration τs = 0.37
fm/c and then used to initialize the hydrodynamic evolution
at τ = τs. The construction of the hydrodynamic equation of
state, as well as the temperature dependences of the specific
bulk and shear viscosities (ζ/s)(T ) and (η/s)(T ) are described
in Ref. [64]. Finally, the hydrodynamic phase is terminated at
a freeze-out temperature of T f o = 151 MeV, at which point
the system is converted to particles and evolved until kinetic
freeze-out using UrQMD [80, 81]. The final output is a collec-
tion of discrete particles at a final timestep which may be used
to compute observables of interest, such as flow coefficients
and their ratios.

In order to make direct comparisons with experimental
data, cumulants of the flow harmonics [17] are calculated us-
ing:

vn{2}2 = 〈v2
n〉,

vn{4}4 = 2〈v2
n〉

2 − 〈v4
n〉,

where the moments of the vn distribution are used to calcu-
late the cumulants. Centrality class bins are determined based
on the initial state entropy density, which has been found to
be very good proxy for final state multiplicity distributions
(used for experimental data).We have run 30,000 events for
each different ion and configuration, and use sub-sampling to
determine statistical error.
Results Hydrodynamics is applicable when there is a large
separation of scales. In relativistic heavy ion collisions there
is some ambiguity of the correct scales to compare and, there-
fore, multiple Knusden Kn and Inverse Reynolds Re−1 num-
bers are used [82]:

Knπ = τπ
√
σµνσµν, Re−1

π =
√
πµνπµν/P, (0.2)

KnΠ = τΠθ, Re−1
Π = |Π| /P (0.3)

We consider first in Fig. 1 the time evolution of the Kn
and Re−1 numbers for bulk and shear, averaged at each
timestep over all fluid cells above the particlization temper-
ature of Tswitch = 0.151 GeV for a single event (the same
seed for the initial condition is chosen for Woods-Saxon,
Woods-Saxon+substructure, and α-clustering). We observe
that, while the choice of initial-state model makes little differ-
ence to the time-evolution of these quantities, both Knπ and
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FIG. 1. (Color online) Average Knudsen and inverse Reynolds val-
ues of regions above the freeze out temperature (0.151 GeV) vs time
for both

√
sNN = 200 GeV (top) and

√
sNN = 6.5 TeV (bottom) com-

paring the Woods-Saxon, Woods-Saxon + Quarks, and α clustering
models with common initial conditions.

Re−1
π are problematically large1 (& 0.5) for the majority of

the hydrodynamic phase, predominantly at early times τ . 2
fm/c. This observation holds at both RHIC and LHC ener-
gies, and suggests that the hydrodynamic formalism is pressed
to the limits of its validity in the description of intermediate
systems such as 16O16O . While Kn and Re−1 have been pre-
viously studied in an event averaged version of pPb [84], this
is the first study of their values with the setup used within the
Duke Bayesian analysis. It appears that eventually reasonable
Kn and Re−1 are reached after τ ∼ 3 fm although there is
some dependence on both the initial conditions. We note that
one must consider the maximum of all Kn and Re−1 to deter-
mine the applicability of hydrodynamics and, therefore, these
numbers indicate that even in intermediate systems one needs
to consider the implications of far-from-equilibrium effects.

In Fig.2 we present the flow cumulants predicted by our
model at RHIC and LHC energies as functions of centrality,
for the various initial-state models considered. We note that
the largest quantitative effects are due to subnucleonic fluc-
tuations and emerge at large centralities, while the effects of

1 The choice in “large” as of yet unclear, others have chosen larger vales e.g.
& 1 [83]

α-clustering are somewhat smaller but on the same order of
magnitude, and occur mainly at small centralities. v2 is the
most sensitive to details of the initial state, while v3 and v4 are
only weakly affected. These features are expected from a hy-
drodynamic response to initial geometry which is dominated
by fluctuations in central collisions and by global collision ge-
ometry in mid-central and peripheral collisions.
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FIG. 2. (Color online) Various flow coefficients (vn{m}) vs centrality
for both

√
sNN = 200 GeV (top) and

√
sNN = 6.5 TeV (bottom) com-

paring the Woods-Saxon, Woods-Saxon + Quarks, and α clustering
models.

The effects of different 16O16O initial-state models on the
vm {k}, although not qualitatively significant, should never-
theless be accessible for an analysis of O(100M) events col-
lected in a short 16O16O run at the LHC. Additional con-
straints can be obtained by considering ratios of flow coef-
ficients as functions of centrality, as shown in Figs. 3-5. In
this case, both subnucleonic fluctuations and α-clustering cor-
relations lead to non-trivial and measurable effects. The ratio
of v4 {2} /v2 {2} shown in Fig 3 demonstrates a suppression for
α cluster in central collisions at the LHC, opposite to sub-
nucleonic fluctuations that increase the ratio. This can be un-
derstood because α clustering enhance v2 more than v3. Per-
haps the strongest effects are visible in the ratio v4 {2} /v2 {2}
(Fig. 4), where the effects of subnucleonic fluctuations and α-
clustering tend to act in opposite directions and may even pro-
duce detectable non-monotonicity in the corresponding cen-
trality dependences. This is especially important, given that
the beam-energy dependence of the flow ratios contributes to
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the differences between RHIC and LHC energies in highly
non-trivial ways. Quantitatively reproducing both the central-
ity and

√
sNN dependences of all flow ratios would therefore

place stringent constraints on the importance of subnucleonic
fluctuations and α-clustering in real-world nuclear collisions,
and provides motivation to carry out 16O16O collisions at both
RHIC and LHC energies.

Because v4 appears to be the most promising observable to
distinguish α-clustering from subnucleonic fluctuations, we
also study the quantity v4 {4}4, which is sensitive to the fluctu-
ations of v4 on an event-by-event basis. v4 {4}4 is a particularly
interesting observable because hydrodynamic models have so
far failed to capture its sign change at the LHC, even for well-
understood PbPb collisions [85, 86]. In Fig. 5 we find that
at the LHC, there is clear separation in v4 {4}4 for central col-
lision, which indicates a nice potential for distinguishing be-
tween α-clustering and subnucleonic fluctuations. Addition-
ally, these mechanisms produce effects in opposite directions,
with α-clustering making v4 {4}4 significantly more negative
and subnucleonic fluctuations bringing the value of v4 {4}4

close to 0. In contrast, RHIC does not provide a clear sig-
nal and it is unlikely that v4 {4}4 could be used to distinguish
between our three scenarios. Finally, we have also checked
v2 {4} /v2 {2} but found that all three initial conditions pro-
duced relatively similar results.
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FIG. 3. v3{2}/v2{2} vs centrality for both
√

sNN = 200 GeV (top)
and
√

sNN = 6.5 TeV (bottom) comparing the Woods-Saxon, Woods-
Saxon + Quarks, and α clustering models.

Conclusions. In this work we use ab initio lattice effective
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FIG. 4. v4{2}/v2{2} vs centrality for both
√

sNN = 200 GeV (top)
and
√

sNN = 6.5 TeV (bottom) comparing the Woods-Saxon, Woods-
Saxon + Quarks, and α clustering models.

field theory calculations of the nuclear structure of 16O cou-
pled to the state-of-the-art relativistic hydrodynamics descrip-
tion of the Quark Gluon Plasma to determine the possibil-
ity of measuring α-clustering in relativistic heavy-ion colli-
sions. We find that LHC energies are better suited to find-
ing α-clustering but one must consider ratios of harmonics
such as v3{2}/v2{2} and v4{2}/v2{2}. Interestingly enough,
α-clustering suppresses v3{2}/v2{2} and enhances v4{2}/v2{2}
and in all our comparisons subnucleonic fluctuations always
has the opposite effect compared to α-clustering at LHC en-
ergies. Another promising observable is v4{4}4 where very
significant differences appear between α-clustering and sub-
nucleonic fluctuations between 0−30% centrality at the LHC.
In contrast, RHIC has more ambiguous results and appears
less likely to be sensitive to α-clustering but may be slightly
sensitive to substructure.

While our results for Kn and Re−1 may be somewhat con-
cerning, this does not immediately rule out the relativistic vis-
cous hydrodynamics picture in small and intermediate sys-
tems. One possible solution may be anisotropic hydrody-
namics [87–89], re-deriving the hydrodynamic equations of
motion in a far-from-equilibrium regime [90], effective trans-
port coefficients [91–95], an intermediate stage between initial
conditions and hydrodynamics [96, 97] or even considering
the Kn and Re−1 within the Bayesian analysis (and exclud-
ing parameter sets with unreasonable results). At the moment
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FIG. 5. v4{4}4 vs centrality for both
√

sNN = 200 GeV (top) and
√

sNN

= 6.5 TeV (bottom) comparing the Woods-Saxon, Woods-Saxon +

Quarks, and α clustering models.

we do not look for attractors (originally proposed in [98]) in
our simulations but leave that for a future work (complications
arise in more realistic scenarios with shear and bulk coupled
together and a realistic equation of state [99]).
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