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A systematic global investigation of differential charge radii has been performed within the CDFT
framework for the first time. Theoretical results obtained with conventional covariant energy den-
sity functionals and the separable pairing interaction of Ref. [1] are compared with experimental
differential charge radii in the regions of the nuclear chart in which available experimental data
crosses the neutron shell closures at N = 28, 50, 82 and 126. The analysis of absolute differential
radii of different isotopic chains and their relative properties indicate clearly that such properties
are reasonably well described in model calculations in the cases when the mean-field approxima-
tion is justified. However, while the observed clusterization of differential charge radii of different
isotopic chains is well described above the N = 50 and N = 126 shell closures, it is more difficult
to reproduce it above the N = 28 and N = 82 shell closures because of possible deficiencies in
the underlying single-particle structure. The impact of the latter has been evaluated for spherical
shapes and it was shown that the relative energies of the single-particle states and the patterns of
their occupation with increasing neutron number have an appreciable impact on the evolution of

the δ
〈
r2
〉N,N′

values. These factors also limit the predictive power of model calculations in the
regions of high densities of the single-particle states of different origin. It is shown that the kinks
in the charge radii at neutron shell closures are due to the underlying single-particle structure and
due to weakening or collapse of pairing at these closures. The regions of the nuclear chart in which
the correlations beyond mean-field are expected to have an impact on charge radii are indicated;
the analysis shows that the assignment of a calculated excited prolate minimum to the experimental
ground state allows to understand the trends of the evolution of differential charge radii with neu-
tron number in many cases of shape coexistence even at the mean-field level. It is usually assumed
that pairing is a dominant contributor to odd-even staggering (OES) in charge radii. Our analysis
paints a more complicated picture. It suggests a new mechanism in which the fragmentation of
the single-particle content of the ground state in odd-mass nuclei due to particle-vibration coupling
provides a significant contribution to OES in charge radii.

I. INTRODUCTION

Together with nuclear masses, the charge radii are
among the most fundamental properties of atomic nu-
clei. The essential information on the saturation den-
sity of symmetric nuclear matter is imprinted into them.
They also depend on the properties of nuclear forces and
nuclear many-body dynamics.

Significant experimental efforts have been dedicated
over the decades for the measurement of charge radii
[2, 3]. While the changes of the charge radii within the
isotopic chain are measured with high precision using
laser spectroscopy, the situation with the measurements
of absolute values of root-mean-square (rms) charge radii
rch is less satisfactory because of lower precision of their
determination in muonic spectra and electronic scatter-
ing experiments and the impossibility of such experi-
ments in radioactive elements [2, 3]. For example, for
nuclei with proton number Z > 83, (uranium is the
exception), there are no experimental data for the ab-
solute nuclear charge radii [2]. Theoretical calculations
within different density functional theories (DFTs) pro-
vide a quite accurate global description of experimental
charge radii presented in the compilation of Ref. [2]: the
rms deviations of calculated rch from experimental ones
are at the level of ≈ 0.03 fm [4]. Considering that the

average experimental rms charge radius in the nuclear
chart is around 4.8 fm (see, for example, Fig. 23 in Ref.
[4] and Figs. 2-4 in Ref. [2]), this amounts to high aver-
age precision of 0.625% in the prediction of charge radii.
However, this information has to be taken with a grain
of salt because of the issues mentioned above with the
measurements of absolute values of rms charge radii and
some reliance on interpolation/extrapolation procedures
in the compilation of Ref. [2].

Thus, the differential mean-square (ms) charge radii
(see Eq. (6) below for definition), measured with high
precision within the isotopic chains, become an impor-
tant quantity. The evolution of the charge radii within
the isotopic chain with increasing neutron number is de-
fined by the pull on the proton states generated by neu-
trons gradually added to the nuclear system. This is, in
reality, a quite complicated and, in some cases, contra-
intuitive process. Here the strong nuclear symmetry en-
ergy acts to increase the overlap between all the pro-
ton states and the overall nuclear density. This effect is
expected to be enhanced when the overlap between the
wave functions is maximal. The most investigated case
here is the kink in charge radii at N = 126 and the evo-
lution of charge radii above N = 126 in the Pb isotopic
chain. The pattern of these effects critically depends on
the occupation of the 2g9/2 and 1i11/2 orbitals, on their
relative energies, and on how close they are in energy
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[5, 6]. Both in relativistic and non-relativistic density
functional theories (DFT), the single-particle rms neu-
tron radius of the 2g9/2 orbital is larger than that of the
1i11/2 orbital (by ≈ 0.6 fm [see Table II below] and ≈ 1.0
fm [see Ref. [5]], respectively). Intuitively (for example,
by using liquid drop model concepts), the occupation of
the neutron 2g9/2 orbital would bring a larger proton
radius as compared with the occupation of the 1i11/2 or-
bital. However, the DFT calculations showed an opposite
trend [5, 6] the deep microscopic origin of which has been
found only in Ref. [6]. It is traced back to a nodal struc-
ture1 of these two orbitals (n = 1 for 1i11/2 and n = 2
for 2g9/2, where n stands for principal quantum number;
see also Fig. 6.2 in Ref. [9] for a pattern of respective
wavefunctions). The principal quantum number of the
neutron 1i11/2 orbital is the same as for the majority of
occupied proton orbitals (including deeply bound ones).
This leads to a large overlap of their wave functions and
thus provides a large pull of these neutron states on pro-
ton orbitals via the symmetry energy and allows the re-
production of the kink in charge radii at N = 126.

A significant amount of experimental data on charge
radii has been collected over the years: the review [2]
provides a compilation of such data measured by early
20112. In recent years an explosion of high-quality mea-
surements of charge radii is observed (see, for example,
review [3]). They cover, for example, in recent years the
K [10], Ca [11, 12], Cu [13], Cd [14], Sn [15, 16], Hg
[17], Bi [18], At [19], Ac [20] and No [21] isotopic chains.
These experimental studies are supplemented mostly by
a theoretical analysis within non-relativistic Skyrme or
Fayans DFTs (see overview below) and occasionally by
the analysis within Gogny DFT (the Ca isotopes in Ref.
[11]), the CDFT (the Pb and Hg isotopes in Ref. [17]
and No isotopes in Ref. [22]) or non-relativistic ab-initio
calculations (see Refs. [10, 11]).

They reveal several interesting features. The most fa-
miliar are the kinks in charge radii at neutron numbers
corresponding to shell closures and the odd-even stagger-
ing (OES) in charge radii. In charge radii, a shell closure
is observed as a sudden increase in the rate of the change
of charge radius of the isotopes just beyond magic shell
closure; this leads to the kinks in charge radii which are
well known at N = 28, 50, 82 and 126 [2, 11, 15, 23].
In addition, the analysis of experimental data presented

1 Note that the nodal structure of the wavefunctions plays an im-
portant role not only in the evolution of charge radii of spherical
nuclei. In extremely deformed nuclei, it also defines the neces-
sary conditions for α clusterization in very light nuclei, and its
suppression with the increase of mass number [7]. Moreover, the
nodal structure of the deformed wavefunctions allows us to un-
derstand the coexistence of ellipsoidal mean-field-type structures
and nuclear molecules at similar excitation energies and the fea-
tures of particle-hole excitations connecting these two types of
structures [7, 8].

2 The experimental data shown in the present paper is based on
this compilation supplemented when available with more recent
data.

in Ref. [23] reveals a puzzling feature related to similar
slopes of differential charge radii δ

〈
r2
〉

as a function of
neutron number above the neutron shell closures for dif-
ferent isotopic chains (see Fig. 5 in Ref. [23] for even-
and odd-Z isotopic chains and Figs. 12(a), 17(a), 19(a)
and 25(a) below for only even-Z isotope chains). On the
contrary, all these isotopic chains have different slopes of
differential charge radii for neutron numbers below the
shell closures. To our knowledge, this observed feature,
which exists in the Ca, Sr, Sn, and Pb regions, has not
been addressed in a systematic theoretical analysis so far.

Different theoretical approaches have been used with
different degrees of success to describe the evolution of
charge radii in various isotopic chains. The initial focus
of such studies was the kink in differential charge radii of
the Pb isotopes at N = 126 but later studies covered also
other isotopic chains. The calculations in non-relativistic
density functional theories (NR-DFTs) based on conven-
tional energy density functionals (EDFs) were unable to
reproduce the kink in the Pb isotopes [15, 24]. On the
contrary, this kink is quite successfully reproduced in co-
variant DFT (CDFT) for all employed covariant energy
density functionals (CEDFs) [17, 25, 26]. As discussed
above the relative energies of the 1i11/2 and 2g9/2 neu-
tron orbitals play a crucial role in this difference between
NR-DFT and CDFT results in the Pb isotopes. Two
possible ways of resolving the problem emerged in the
NR-DFTs. The first one includes a modification of spin-
orbit interaction either by its fitting to CDFT results
[5] or by introducing a density dependence in the spin-
orbit interaction [27]. The second approach, introduced
by Fayans et al. [28–30] includes an extension of non-
relativistic functionals by adding gradient terms into the
surface part and the pairing interaction. Although this
approach has been reasonably successful (especially after
fitting the Fayans functionals to differential charge radii
data in Ref. [31]) in the description of the evolution of
charge radii [11, 13–15, 29–31], the microscopic origin of
these gradient terms is not clear. It was stated that the
pairing functional of the Fayans model is supposed to ef-
fectively account for the coupling to surface vibrations
[31]. However, this contradicts to the observation that
such a coupling is quite small for the ground states in
even-even nuclei in the Sn and Pb regions (see discussion
in Sec. IX below) so that the charge radii of such nuclei
are not expected to be strongly modified by it.

Alternative DFT approaches are based either on
non-relativistic finite range Gogny functionals, a non-
relativistic Yukawa interaction or on CEDFs. The Gogny
DFT studies of differential charge radii are less frequent
than those based either on the Skyrme or Fayans EDFs.
For example, the isotopic evolution of charge radii in
even-even and even-odd Sr, Zr, and Mo isotopes with
N = 47 − 68 and the impact of triaxiality on charge
radii of even-even Mo isotopes with N = 62, 64, and
66 have been investigated in Ref. [32]. The differen-
tial charge radii of the 52,48Ca isotopes were studied at
and beyond mean-field level with the Gogny functional
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D1S in Ref. [11]. The non-relativistic HFB approach
with a finite-range Yukawa interaction [33] and density-
dependent spin-orbit interaction has been successfully
applied for the description of differential charge radii in
spherical nuclei of the Ca, Ni, Sn and Pb isotopic chains
[27, 34, 35].

The studies of differential charge radii are also rare
within the CDFT3. The first-ever [among any type of
DFT] successful description of the kink in charge radii
of the lead isotopes has been achieved in Ref. [25] for
CDFT with the NL-SH and NL1 functionals. This work
was followed by a number of the studies of differential
charge radii in spherical even-even nuclei in the Ca, Sn,
and Pb isotopic chains in Refs. [5, 38, 39]. The odd-even
staggering and the kink in charge radii of the Pb and Hg
isotopes has been successfully described recently in Ref.
[17] using the DD-ME2 CEDF. An ansatz for charge radii
in CDFT has been suggested in Ref. [40]; it adds the phe-

nomenological term a0/
√
A|

n∑
k>0

ukvk −
p∑
k>0

ukvk| to the

definition of charge radii without affecting the definitions
of other physical observables. Although it can describe
the charge radii and their OES in selected isotopic chains,
its physical meaning is not clear and it does not appear
in conventional DFTs.

The goal of the present paper is to perform detailed
studies of differential charge radii within the CDFT
framework in order to understand specific facts, such as
the underlying single-particle structure and the role of
pairing, affecting the theoretical description of the evo-
lution of charge radii with the neutron number, the pres-
ence and magnitude of the kinks and OES in the iso-
topic chains. Note that we employ conventional func-
tionals which do not use any new fit parameters nor the
above mentioned modifications. The aim is to under-
stand to which extent they can provide a satisfactory
description of differential charge radii in the regions of
the nuclear chart in which available experimental data
crosses shell closures at N = 28, 50, 82 and 126. One
should note that conventional relativistic functionals pro-
vide, amongst many other nuclear properties, a reason-
able description of rotational bands, which are sensitive
to pairing, not only in even-even but also in odd-A nuclei
(see Refs. [41, 42]). Thus, they provide access to OES in
the moments of inertia, the physical mechanism of which
[blocking in odd-A nuclei] is similar to the one partially
responsible for OES in charge radii and in binding ener-
gies. At present, it is not clear whether the inclusion of
gradient terms into the pairing functional will preserve

3 This is despite the fact that global studies of charge radii of even-
even nuclei located between the two-proton and two-neutron drip
lines with the assessment of systematic theoretical uncertainties
have been performed in Refs. [4, 36] and tabulated values of
charge radii are publicly available in the supplemental material
for Ref. [4] (for the DD-PC1 functional) and at MassExplorer
[37] (for the DD-PC1, DD-ME2, DD-MEδ and NL3* CEDFs).

this feature. An additional goal of the present paper is
to search for alternative physical mechanisms affecting
differential charge radii and OES.

The paper is organized as follows. A brief outline
of the theory is given in Sec. II. Charge radii and re-
lated indicators are discussed in Sec. III. The charge
radii of the Pb isotopes are used in Sec. IV as a test-
ing ground to evaluate the importance of the underlying
single-particle structure and pairing in the evolution of
differential charge radii between the two-proton and two-
neutron drip lines, in the appearance of the kinks at shell
closures and for the comparison of the results of calcu-
lations with and without pairing. Charge radii, their
evolution with neutron number, the sources of the dis-
crepancies between theory and experiment, absolute and
relative properties of differential charge radii in differ-
ent isotopic chains in the Pb, Sn/Gd, Sr and Ca regions
are discussed in detail in Secs. V, VI, VII and VIII, re-
spectively. Note that the discussion in these sections is
restricted to even-even nuclei. Sec. IX is dedicated to
the analysis of odd-even staggering in charge radii and
its origin. A new mechanism of OES, relying on the frag-
mentation of the single-particle states in odd-N nuclei
due to particle-vibration coupling, is suggested for the
first time in this section. Finally, Sec. X summarizes the
results of our paper.

II. THEORETICAL FRAMEWORK

In the present paper, the relativistic Hartree-
Bogoliubov (RHB) approach is used in the calculations.
The formalism of this approach is discussed in detail in
Refs. [4, 43]. The calculations are performed with com-
puter codes that preserve either spherical or axial sym-
metry. The former code has been considerably modi-
fied to allow for fully self-consistent calculations of the
ground and excited states in odd-A spherical nuclei; in
was applied for the first time in Ref. [17]. The axial code
employed in Ref. [4] has been used here for calculations
which include deformation.

To assess the dependence of the results on the under-
lying single-particle structure, several state-of-the-art co-
variant energy density functionals (CEDFs) such as NL3*
[44], DD-PC1 [45], DD-ME2 [46], DD-MEδ [47] and PC-
PK1 [48] are used in the present paper. They represent
the major classes of CEDFs and their global performance
in describing ground state properties such as masses and
charge radii of even-even nuclei has been tested in Refs.
[4, 36, 49]. Note that many of the results on charge radii
and the deformations of the ground states employed in
the present analysis are taken from Refs. [4, 37]. This
allows us to test the predictive power of the models with
respect to the description of differential charge radii.

The separable pairing interaction of finite range, intro-
duced as a simplification of the Gogny pairing by Tian
et al in Ref. [1], is used in the present paper. Its matrix
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elements in r-space have the form

V (r1, r2, r
′
1, r
′
2) =

= −f Gδ(R−R′ )P (r)P (r′)
1

2
(1− Pσ) (1)

with R = (r1 + r2)/2 and r = r1 − r2 being the center
of mass and relative coordinates. The form factor P (r)
is of Gaussian shape

P (r) =
1

(4πa2)3/2
e−r

2/4a2 (2)

The parameters G = 728 MeV fm3 and a = 0.644 fm
of this interaction, which are the same for protons and
neutrons, have been derived by a mapping of the 1S0

pairing gap of infinite nuclear matter to that of the Gogny
force D1S [1] under the condition that f = 1.0. The
particle number dependence of the scaling factor f of the
pairing force is taken from Ref. [4].

The proton quadrupole deformation β2 is defined from
proton quadrupole moment Q20 as

β2 =

√
5πQ20

3ZR2
0

(3)

where

Q20 =

∫
d3rρ(r) (2z2 − r2⊥) (4)

with r2⊥ = x2+y2. Here R0 = 1.2A1/3 and ρ(r) stands for
proton density. Eq. (3) is used also in the extraction of
experimental β2 deformation parameters from measured
data [50]. This justifies its application despite the fact
that this simple linear expression ignores the contribu-
tions of higher power/multipolarity deformations to the
proton quadrupole moment. Including higher powers of
β2, as in Ref. [51], yields values of β2 that are ≈ 10%
lower.

III. CHARGE RADII AND RELATED
INDICATORS

The charge radii were calculated from the correspond-
ing point proton radii as

rch =
√
< r2 >p +0.64 fm (5)

where < r2 >p stands for proton mean square point ra-
dius and the factor 0.64 accounts for the finite-size effects
of the proton. Here we have neglected the small contri-
butions to the charge radius originating from the electric
neutron form factor and the electromagnetic spin-orbit
coupling [52, 53] as well as the corrections due to the
center of mass motion. Note that the functional DD-
PC1 [45] has been adjusted only to nuclear binding en-
ergies.

In addition, two differential indicators are commonly
used to facilitate the quantitative comparison of the ex-
perimental results with those from theoretical calcula-
tions. One of them is the differential mean-square charge
radius4

δ
〈
r2
〉N,N ′

p
=
〈
r2
〉
p

(N)−
〈
r2
〉
p

(N ′) =

= r2ch(N)− r2ch(N ′) (6)

where N ′ is the neutron number of the reference nucleus.
Another is the three-point indicator

∆〈r2〉(3)(N)=

=
1

2

[
〈r2(N − 1)〉+ 〈r2(N + 1)〉 − 2〈r2(N)〉

]
=

=
1

2

[
r2ch(N − 1) + r2ch(N + 1)− 2r2ch(N)

]
(7)

which quantifies OES in charge radii.
In addition, the neutron skin thickness is commonly de-

fined as the difference of proton and neutron root-mean-
square (rms) radii

rskin =< r2n >
1/2 − < r2p >

1/2 . (8)

The neutron skin thickness is an important indicator of
isovector properties.

IV. THE PB ISOTOPES: FROM UNPAIRED TO
PAIRED RESULTS

For a better understanding of the physical features
which affect the description of charge radii it is very il-
lustrative to start from the analysis of the results of the
calculations performed without pairing but with differ-
ent CEDFs representing the major classes of the CDFT
models. They provide comparable global descriptions of
the ground state properties [4, 49, 54] but reveal visible
differences in the single-particle properties (see, for ex-
ample, Fig. 1). The addition of pairing will reveal how it
affects the detailed properties of differential charge radii.

The experimental absolute value of the charge radius of
the nucleus 208Pb is well described by the employed func-
tionals (see Table I), but there exist some uncertainties
in the prediction of the neutron skin in the model calcu-
lations and in its experimental measurements. One can
see that non-PREX5 experiments provide neutron skins

4 This quantity is frequently written as a function of mass number
A. However, we prefer to define it as a function of neutron

number N since this allows to see the behavior of the δ
〈
r2

〉N,N′

p

curves at neutron shell closures.
5 Different types of non-PREX experiments are discussed in Refs.

[55, 56] and references quoted therein. Note that the exper-
imental data on the neutron skin are extracted in a model-
dependent way in all these experiments. For instance, the
neutron skin thicknesses rskin = 0.161 ± 0.042 fm [57] and
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FIG. 1. Neutron and proton single-particle states at spherical shape in 208Pb obtained in the calculations without pairing
with the indicated CEDFs. Solid and dashed connecting lines are used for positive- and negative-parity states, respectively.
Spherical gaps are indicated.

which are by ≈ 0.09 fm smaller than the one obtained in
the PREX-II experiment.

The δ
〈
r2
〉N,126

values of the Pb isotopes obtained
with various CEDFs in calculations without pairing are
shown in Fig. 2. One can see that the slope of this func-

tion (namely, the derivative δ
〈
r2
〉N,126

/δN) changes at
N = 120, N = 124 and N = 126 in all functionals. The

changes in the slope of δ
〈
r2
〉N,126

as a function of N
are traced back to the changes in the occupation of dif-
ferent spherical neutron subshells. The sequence of the
occupation of different spherical subshells with increasing
neutron number is the same for all functionals (see Figs.
2 and 1). The ν2f5/2 subshell is occupied for neutron

numbers N = 115 − 1206. For higher neutron numbers
N = 121−124, the ν3p3/2 subshell gradually fills up with

rskin = 0.190±0.028 fm [58] obtained from the energy of the anti-
analog giant dipole resonance rely on relativistic proton-neutron
quasiparticle random-phase approximation calculations based on
the RHB model. Another example is the value of the neutron
skin thickness of rskin = 0.15±0.03(stat)+0.01

−0.03(sys) fm extracted
from coherent pion photoproduction cross sections [59]. In this
case the extraction of information on the nucleon density dis-
tribution depends on the comparison of the measured (γ, π0)
cross sections with model calculations. On the contrary, the elec-
troweak probe (PREX types of experiment) has the advantage
over experiments using hadronic probes that it allows a nearly
model-independent extraction of the neutron radius that is inde-
pendent of most strong interaction uncertainties [60].

6 In the calculations without pairing, the occupation of either an
odd neutron (in odd-A nuclei) or a pair of neutrons (in even-even

TABLE I. The charge radius rch and the neutron skin rskin
of the nucleus 208Pb obtained in calculations with the indi-
cated functionals. The experimental value of rch is taken from
Ref. [2]. Two experimental values are provided for rskin: one
(approximate, labelled as non-PREX) obtained from the ex-
periments which do not employ parity violating electron scat-
tering on nuclei (PREX) (see discussion in Sect. X of Ref. [4]
for more details) and another (labelled as PREX-II) from the
PREX-II experiment [61].

CEDF rch [fm] rskin [fm]
DDME2 5.518 0.193
DDMEδ 5.509 0.186
DD-PC1 5.513 0.202
NL3* 5.509 0.288
PCPK1 5.519 0.257
exper. 5.5012± 0.0013 ≈ 0.19 [non-PREX]

0.283± 0.071 [PREX-II]

increasing neutron number. This change of the occupa-
tion from the ν2f5/2 to the ν3p3/2 subshell leads to the

change of the slope of the δ
〈
r2
〉N,126

function at N = 120
because these two subshells have different density distri-
butions and thus different neutron radii. The next change

nuclei) from the same spherical subshell leads to the same slope

of the δ
〈
r2

〉N,126
function. Thus, for simplicity we consider only

even-even nuclei in this part of the discussion.
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of the slope of this function takes place at N = 124 at
the transition from the occupation of the ν3p3/2 to the
ν3p1/2 subshell. Since these two subshells are spin-orbit
partners, they have the same orbital quantum number
and, as a consequence, very similar spatial distributions
of the density. Minor differences in the latter are caused
by the fact that the ν3p1/2 subshell is located somewhat
higher in energy than the ν3p3/2 one [see Fig. 1(b)] and
thus in the region of a somewhat larger radius of the
nucleonic potential.

The inclusion of pairing modifies the results visibly as
compared to those obtained in the calculations without
pairing (compare Fig. 3 with Fig. 2). First, the changes
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208Pb obtained in calculations without pairing with the NL3*
CEDF (see text for details). The results of RHB calculations
with pairing for even-even nuclei are presented for compari-
son.

of the slopes of the δ
〈
r2
〉N,126

curves at N = 120 and
N = 124, which are present in the calculations with-
out pairing, are almost washed out when pairing is taken
into account. This is because pairing modifies the occu-
pation of different subshells (see, for example, Fig. 5) and

thus the evolution of the δ
〈
r2
〉N,126

values with neutron
number becomes more gradual at these particle numbers.

Second, the kink in the δ
〈
r2
〉N,126

values at N = 126 still
exists because of the large shell closure at this particle
number which leads to the collapse of pairing. If (hypo-
thetically) pairing would survive at N = 126, the kink
would be less pronounced. Third, the spreads and ab-

solute magnitudes in the predictions of the δ
〈
r2
〉116,126

and δ
〈
r2
〉134,126

values (the values taken at the extremes
of the plots presented in Figs. 2 and 3) are reduced when
the pairing is taken into account. These values are lo-
cated in the ranges from −0.58 fm2 to −0.48 fm2 (from
−0.51 fm2 to −0.49 fm2) and from 0.86 fm2 to 1.12 fm2

(from 0.78 fm2 to 0.92 fm2) in the calculations without
(with) pairing, respectively. Fourth, the relative order of
the results obtained with different functionals in Figs. 2
and 3 at given neutron number is different in the calcu-
lations with and without pairing. This is best illustrated
by considering the case of N = 134 and the sequence
of functionals ordered according to the increase of calcu-

lated δ
〈
r2
〉N,126

values. The sequences of functionals are
DD-MEδ, DD-ME2, DD-PC1, NL3* and PC-PK1 in the
calculations without pairing (see Fig. 4) and DD-ME2,
DD-PC1, NL3*, PC-PK1 and DD-MEδ in the calcula-
tions with pairing (see Fig. 3).

To better understand these features we analyze the
results of the calculations presented in Figs. 4 and 5.
The calculations without pairing clearly show that the
occupation of the ν1i11/2 subshell for N > 126 is needed
for the formation of the experimentally observed kink at
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N = 126 and that the occupation of the ν2g9/2 subshell
above N=126 does not lead to the formation of a kink
at N = 126 (see Fig. 4). The inclusion of pairing leads
to a partial occupation of these two subshells (see Fig.

5) and thus to δ
〈
r2
〉N,126

values located in between of
those obtained in the calculations without pairing for the
occupation of these two subshells (see Fig. 4).

Fig. 4 also illustrates that the sequential occupation of
a given subshell (either ν1i11/2 or ν2g9/2) above N = 126

in odd-A and even-even nuclei leads to δ
〈
r2
〉N,126

values
that form a straight line as a function of neutron number.
Thus, with this occupation pattern, the OES of charge
radii cannot be formed in the calculations without pair-
ing. However, as discussed in detail in Ref. [17] the scat-
tering of the occupation of the orbitals in these subshells
will lead to the formation of an OES in the charge radii
which has a magnitude comparable to experiment.

Fig. 5 allows to better understand the role of pairing
and the impact of the underlying single-particle struc-
ture on the magnitude of the kink in the charge radii at
N = 126. This figure focuses on the occupation pattern
and the relative energies of the neutron 2g9/2 and 1i11/2
orbitals located above N = 126. Other states (such as
3d5/2, 4s1/2, 2g7/2 etc) do not play a significant role in
the creation of the kink since they are separated by a
large energy gap from the pair of the states under study
(see Fig. 1(b)) and their occupation in the presence of
pairing is small. The occupation probability v2/(2j + 1)
of the respective subshell is defined in such a way that
it is equal to 1 or 0 when a given subshell of multiplicity
2j+ 1 is either fully occupied or empty. This occupation
probability grows almost linearly with increasing neutron
number [see Fig. 5(a)].

The largest energy gap between the neutron 2g9/2 and
1i11/2 subshells exists in the DD-MEδ functional for all
neutron numbers of interest (see Fig. 5(b)). As a conse-
quence, for a given neutron number the occupation of the
lowest (highest) in energy 1i11/2 (2g9/2) subshell is large
(small) but they gradually raise with increasing neutron
number (see Fig. 5(a)). This significant preference in
the occupation of the 1i11/2 subshell leads to the largest

δ
〈
r2
〉N,126

/δN values for N > 126 isotopes among the
considered functionals which exceeds the experimental
data (see Fig. 3). In all other functionals, the gap be-
tween the 2g9/2 and 1i11/2 subshells is smaller (see Fig.
5(b)) but still the occupation of the 1i11/2 subshell is fa-

vored7. Thus, as compared with the DD-MEδ functional
the difference in the occupation of these orbitals becomes
smaller [see Fig. 5(a)]. This leads to a reduction of the

δ
〈
r2
〉N,126

/δN values for N > 126 nuclei which now be-
come close to experiment (see Fig. 3).

7 It is only in the PC-PK1 functional that the 2g9/2 subshell is
lower in energy than the 1i11/2 one for N = 126 [see Fig. 1(b)].
However, already at N = 128 the 1i11/2 subshell dives below
2g9/2 [see Fig. 5(b)].
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FIG. 5. (a) The evolution of occupation probabilities v2/(2j+
1) of the neutron 2g9/2 and 1i11/2 orbitals as a function of
neutron number in the N > 126 nuclei. (b) The evolution
of the energies of these single-particle states as a function of
neutron number.

There are large similarities between the results ob-
tained with the different CEDFs presented in Fig. 3. This
is the consequence of the fact that in all functionals (i)
different single-particle subshells are well separated in en-
ergy below N = 126 (see Fig. 1) and (ii) the sequence
of the single-particle subshells occupied with increasing
neutron number is the same (see Table III). In order to
see whether a similar situation persists for higher neutron
numbers, we performed calculations with and without
pairing for all even-even Pb isotopes located between the
two-proton and the two-neutron drip lines (see Fig. 6).
Note that we restrict the calculations to spherical shapes
to see the sources (not affected by the shape changes)
of major differences between the functionals. This is
a somewhat hypothetical scenario since the calculations
with deformation included indicate the presence of defor-
mation in the ground states of the Pb isotopes located in
the middle of the region between the magic neutron clo-
sures (see Fig. 19 of Ref. [4]). The neutron single-particle
rms radii of the single-particle orbitals are shown in Ta-
ble II. One can see very large neutron rms radii of the
3d5/2, 2g7/2, 3d3/2 and, especially, of the 4s1/2 subshells.
However, as discussed in the introduction and in Ref. [6]
the real impact of the occupation of these orbitals on
the charge radii will be defined by the pull they exert on
proton densities.

We start from the analysis of calculations performed
without pairing (see upper curves in Fig. 6). The signifi-
cant (comparable to that seen at N = 126) changes of the

slope of the δ
〈
r2
〉N,126

curves are observed at N = 138:
at this neutron number the 1i11/2 subshell is completely
filled and the 2g9/2 subshell is filled at higher neutron

number (up to N = 148). The slopes of the δ
〈
r2
〉N,126

curves for different CEDFs as a function of the neutron
number are similar in the neutron range N = 126− 148,
and these curves do not cross. However, the situation
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TABLE II. Neutron single-particle rms radii rspneu =
√
〈r2〉sp

of the indicated single-particle orbitals obtained in 208Pb in
calculations without pairing with the CEDF DD-ME2. The
order [from top to bottom] of the orbitals is the same as in
Fig. 1(b). The radii of the first two orbitals located above the
N = 126 spherical shell gap are shown in bold.

s-p orbital rspneu [fm]
1 2

3d3/2 8.9411
2g7/2 7.4880
4s1/2 9.3128
3d5/2 8.2905
2g9/2 7.0227
1i11/2 6.4131
3p1/2 6.4775
3p3/2 6.3856
2f5/2 6.2215
1i13/2 6.4108
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FIG. 6. The same as Figs. 2 and 3, but for all even-even Pb
isotopes located between the two-proton and two-neutron drip
lines. Note that the results of the calculations with pairing are
shifted down by −2.0 fm2 in order to compare the results of
the calculations with and without pairing on the same panel.

starts to change above N = 148 because of the different
sequences of the occupation of the single-particle sub-
shells (see Table III) caused by the fact that five differ-
ent subshells, clustered into an energy window which is
slightly larger than 1 MeV (see top of Fig. 1), have some-
what different relative energies for the different function-
als. The NL3* and PC-PK1 functionals have the same
sequences of filling of spherical subshells with increasing

TABLE III. The sequence of the spherical subshells occupied
in the Pb isotopes with increasing neutron number in the
calculations without pairing. Note that these sequences are
the same for the pairs of the NL3* and PC-PK1 as well as DD-
PC1 and DD-MEδ functionals. The numbers in the brackets
[N1 −N2] provide the range of neutron numbers between N1

and N2 for which the occupation of a given subshell takes
place. The sequences of the subshells and neutron number
ranges are shown in the columns 2 and 3 only starting from
the point at which the difference with the column 1 emerges.

NL3*/PC-PK1 DD-PC1/DD-MEδ DD-ME2
1 2 3

1i13/2 [101− 114]
2f5/2 [115− 120]
3p3/2 [121− 124]
3p1/2 [125− 126]
1i11/2 [127− 138]
2g9/2 [139− 148]
3d5/2 [149− 154] 1j15/2 [149− 164] 3d5/2 [149− 154]
2g7/2 [155− 162] 2g7/2 [165− 172] 4s1/2 [155− 156]
4s1/2 [163− 164] 3d5/2 [173− 178] comp. [157− 172]
1j15/2 [165− 180] 4s1/2 [179− 180] 3d5/2 [173− 178]
3d3/2 [181− 184] 3d3/2 [181− 184] 4s1/2 [179− 180]

3d3/2 [181− 184]

neutron number (see column 1 in Table III). As a con-

sequence, the δ
〈
r2
〉N,126

curves for these two function-
als have comparable evolutions as a function of neutron
number with minor changes of the slope at neutron num-
bers at which the transition from filling of one subshell
to another one takes place. A similar situation also ex-
ists in the pair of functionals DD-PC1 and DD-MEδ (see
Fig. 6) for which the sequences of the occupation of the
single-particle subshells with increasing neutron number
are the same (see column 2 in Table III). Note that the

δ
〈
r2
〉N,126

values calculated with these two functionals
are extremely close to each other.

The situation is more complex in the case of the DD-
ME2 functional. Calculations with this functional re-
veal a complicated interplay of the occupation of differ-
ent spherical subshells with increasing neutron number.
The neutron 3d5/2 and the 4s1/2 subshells are gradually
occupied for N = 149 − 156 (see Table III). However,
in the neutron number range N = 157 − 172 a compli-
cated interplay of the occupation of the 2g7/2 and 1j15/2
subshells and deoccupation of the 3d5/2 and 4s1/2 sub-
shells with increasing neutron number take place [this
region is labeled as ”comp.” in Table III]. It leads to

substantial irregularities in the δ
〈
r2
〉N,126

curve at these
particle numbers (see Fig. 6). At N = 172 the 2g7/2
and 1j15/2 subshells are fully occupied, and the repeti-
tive occupation of the 3d5/2 and 4s1/2 subshells as well as
the occupation of the 3d3/2 subshell takes place at higher
neutron numbers.

The inclusion of pairing leads to a redistribution of
the occupation of the single-particle states located in the
vicinity of the neutron Fermi level and basically removes
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all the changes in the slopes of the δ
〈
r2
〉N,126

curves seen
in the calculations without pairing for N > 126 (compare
the results of the calculations with and without pairing
shown in Fig. 6). However, important differences be-
tween the functionals still exist. This is best illustrated
by comparing the results obtained with the DD* func-

tionals. For these functionals δ
〈
r2
〉184,126 ≈ 4.3 fm2 both

in the calculations with and without pairing (see Fig. 6).
At N = 184, neutron pairing collapses (see, for example,
Fig. 2 in Ref. [62]) but proton pairing is present due
to the reduced size of the Z = 82 shell closure as com-
pared with the one for the N=126 isotope. It is weakest
for the DD-ME2 functional and strongest for the DD-
MEδ one. This feature explains the slightly larger spread

∆(δ
〈
r2
〉184,126

) = 0.117 fm2 of the δ
〈
r2
〉184,126

values
obtained with the DD* functionals in the calculations
with pairing as compared without pairing.

Thus, the results of the DD* functionals are the same
at N = 126 (by normalization) and almost the same at
N = 184. However, the difference between the DD-ME2
and DD-PC1/DD-MEδ functionals8 is increasing on mov-
ing away from the shell closures, and it is maximized at
N = 170 where it reaches 0.302 fm2 (see bottom curves of
Fig. 6). This is due to different sequences of the filling of
spherical subshells in these two groups of the functionals
(see Table III).

Thus, the relative energies of the single-particle states
and the patterns of their occupation with increasing neu-
tron number are still important even in the calculations
with pairing. They can lead to different predictions in dif-
ferent functionals and to discrepancies with experiment.
It is important to remember that the group of the single-
particle subshells discussed above is located in a very
narrow energy range (≈ 1.0 MeV, see Fig. 1). Thus,
the correct description of the sequence of the occupa-
tion of the single-particle states with increasing neutron
number requires an enormous accuracy (within approxi-
mately 200 keV) for the description of the energies of the
single-particle states. Such an accuracy is unachievable
in the present generation of energy density functionals
(both covariant and non-relativistic ones). This is be-
cause the structure of the experimental ground states
in odd-A nuclei is reproduced globally only in approxi-
mately 40% of the nuclei in the DFTs, and there are sub-
stantial differences between experimental and calculated
single-particle spectra [63–65]. The inclusion of particle-
vibrational coupling increases the accuracy of the de-
scription of the single-particle configurations in odd-A
nuclei but such studies are, so far, limited to spherical
nuclei (see Refs. [66–68]).

8 Note that the δ
〈
r2

〉N,126
curves obtained with the CEDFs DD-

PC1 and DD-MEδ are almost the same for all neutron numbers.
This is the consequence of (i) the same sequences of the filling
of spherical subshells with increasing neutron number (see Table
III) and (ii) similar isovector properties of these two functionals
(see Table III in Ref. [36]).

The results of the calculations with PC-PK1 and NL3*
functionals show the same trends in the δ

〈
r2
〉N,126

curves
(see Fig. 6) reflecting the same sequence of the occu-
pations of the spherical subshells (see Table III). At

N = 184, the δ
〈
r2
〉184,126

values obtained with these
two functionals are higher than those obtained with the
DD* ones. This is most likely the consequence of the dif-
ferent isovector properties of the compared functionals
(see Ref. [36]).

V. CHARGE RADII IN ISOTOPIC CHAINS OF
THE PB REGION

The absolute values of experimental and calculated
charge radii of the Pt, Hg, Pb, Po, and Rn isotopes are
compared in Fig. 7, while a similar comparison for dif-
ferential charge radii is presented in Fig. 12 below. Note
that in these and in other figures, which cover the nuclei
over the specific region, we consider only experimental
even-Z and calculated even-even nuclei. This is done
in order to focus on general global features and avoid
the discussion of odd-A nuclei and related OES in charge
radii which will be separately considered in Sec. IX below.
The calculated quadrupole deformations of the lowest in
energy solutions are presented in Fig. 8.

The relative charge radii of the Pt, Hg and Pb isotopes
are reasonably well reproduced in the region of neutron
numbers around N ≈ 120 (see Fig. 7). The increase of
proton number above Z = 82 leads to a gradual increase
of charge radii in model calculations with all employed
CEDFs (see Figs. 7(b), (c), (d), (e) and (f)). In contrast,
there is a substantial gap in experimental charge radii of
the Z = 82 and Z = 84 isotopes (see Fig. 7(a)) which
is larger than that predicted in the calculations. The
increase of charge radii in going on from the Po to Rn
isotopes is somewhat smaller in experiment as compared
with theoretical results. Note that at this point it is not
clear whether these differences are due to the deficien-
cies of the model predictions or experimental evaluations
of absolute values of charge radii (see discussion in the
Introduction).

The evolution of experimental charge radii in the Rn
isotopes are rather well reproduced in model calculations
(see Fig. 7). Note that only the isotopes in the vicinity
of the neutron shell closure at N = 126 are spherical in
the lowest in energy solutions (see Fig. 8). Some mod-
erate deformation |β ≈ 0.10| appears in the calculations
for experimentally known nuclei at N = 116 − 120, but
their potential energy curves (PEC) are very soft [see
Fig. 1 in the supplemental material (Ref. [69])] so they
are expected to be transitional. The shift from spherical
to transitional nuclei does not trigger visible changes in
charge radii in experiment since beyond mean-field effects
are expected to smooth out this transition.

The evolution of charge radii in the Po isotopes is re-
produced rather well from the isotope with the high-
est neutron number accessible in experiment down to
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FIG. 7. The charge radii rch of the Pt (Z = 78), Hg (Z = 80), Pb (Z = 82), Po (Z = 84) and Rn (Z = 86) isotopes as a
function of neutron number. In panel (a), experimental data are shown only for even-even nuclei. The only exception is the Hg
isotopes for which experimental data for odd-N isotopes is included in order to illustrate a typical magnitude of OES in charge
radii induced by shape coexistence (the N = 101− 106 region, see Sec. IX A for a detailed discussion) or by other effects when
neighboring even and odd-N isotopes have comparable shapes (the rest of the Hg curve). In panels (b)-(f), thick solid lines
show the rch values obtained in the calculations for the lowest in energy solutions in each isotopes. Open symbols show the
isotopes for which these solutions are either spherical or quasi-spherical (|β2| ≤ 0.05). This ”line-symbol” convention is used
in all figures below. Thin dashed lines show the charge radii of spherical solutions in neutron-poor Pt, Hg and Pb isotopes.
Vertical black dashed line indicates N = 126.

N = 120 in DD-MEδ, N = 118 in DD-ME2, NL3*
and DD-PC1 and N = 116 in PCPK1 CEDFs (see Fig.
7). At lower neutron numbers, the experimental charge
radii gradually bend up so that at N = 108 experimen-
tal rch exceed the value defined from the trend of charge
radii defined at N = 118 − 126 by ≈ 0.04 fm. How-
ever this process is more abrupt in the calculations, since
the calculated radii for N = 108− 116 exceed the above
mentioned trend by ≈ 0.04 fm. In the calculations, this
abrupt shift in calculated charge radii at N ≈ 118 is
caused by the transition from spherical to oblate shapes
with β2 ≈ −0.18 (see Fig. 8). These facts suggest that
the rch values of the N = 108 and N ≈ 118 [depends
on functional] isotopes are rather well reproduced in the
calculations, but the mean-field calculations fail to repro-
duce the gradual transition in rch seen between N = 106
and N ≈ 118 isotopes. This gradual transition is most

likely due to beyond mean-field effects since the nuclei in
this neutron number range have soft PECs [see Fig. 2 in
the supplemental material (Ref. [69])]. In addition, the
triaxiality could play a role in this gradual transition.

The charge radii of the Pb isotopes in the N =
116 − 132 range are well described in the model calcu-
lations of Sec. IV. Here we focus on more neutron-poor
Pb isotopes in the range of N = 100− 116. Experimen-
tal charge radii in this neutron range continue the trend
seen at N = 116− 126 [see Fig. 7(a)]. This suggests that
the shapes of the nuclei in the measured states are either
spherical or near-spherical. Indeed, if we consider spher-
ical solutions in these nuclei (see green dashed lines in
panels (b)-(f) of Fig. 7), then the experimental data are
rather well reproduced. However, the calculations pre-
dict either oblate or prolate shapes for the ground states
of the N = 104−114 isotopes in CEDFs DD-ME2, NL3*
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FIG. 8. Quadrupole deformations β2 of the lowest in energy solutions of the Pt (Z = 78), Hg (Z = 80), Pb (Z = 82), Po
(Z = 84) and Rn (Z = 86) isotopes obtained in the calculations with the indicated functionals.

and DD-PC1, of the N = 102− 118 isotopes in DD-MEδ
and of the N = 108 − 110 isotopes in PC-PK1 (see Fig.
8). Despite that, spherical minima, located either close in
energy to the ground states or at some excitation energy,
exist in all isotopes in all functionals with the exception
of DD-MEδ (see Fig. 9). Note that PECs of these nu-
clei are rather soft in quadrupole deformation (see Fig. 9
). Thus, the correlations beyond mean-field can play an
important role in these nuclei.

According to the droplet model (DM) [70] the following
relation 〈

r2
〉
DM

=
〈
r2
〉spher
DM

(1 +
5

4π
β2
2) (9)

exists between the predictions of charge radii
〈
r2
〉
DM

and〈
r2
〉spher
DM

at quadrupole deformation β2 and at spherical
shape, respectively. This relation is frequently used in
the experimental analysis of the data for the extraction of
quadrupole deformations. This equation tells us that the
charge radii form a parabolic function of β2 with the min-
imum at spherical shape; this function is symmetric with
respect to a sign change of the deformation. Realistic cal-
culations presented in Fig. 10 confirm this parabolic-like
dependence of charge radii on the quadrupole deforma-
tion. However, it is somewhat asymmetric with respect
of the change of the sign of the deformation9. This dif-
ference between Eq. (9) and the results of Fig. 10 are

9 Note that Ref. [71] provides even higher order expansion of

most likely due to neglecting higher-order deformations
(such as β4 etc.) in Eq. (9). Note that the functional
dependence of the charge radii on deformation β2 almost
does not depend on the functional (see Fig. 9). This fact
is quite useful in the selection of the most probable sce-
nario when comparing the experimental situation in the
Pb region with the results of the calculations that provide
several local closely lying minima.

Detailed investigations within the CDFT framework of
charge radii in Hg isotopes with neutron numbers N =
121−128 are presented in Refs. [17, 72]. Good agreement
between theory and experiment is obtained. The charge
radii are also well described for neutron numbers N =
110− 120 in calculations with DD-ME2, NL3* and DD-
PC1, for N = 112 − 120 with DD-MEδ, and for N =
108 − 120 in PC-PK1 (see Fig. 7). However, they also
suggest that these nuclei are oblate with β2 ≈ −0.15 in
their ground states (see Fig. 8 and Fig. 11) which leads to
a slight increase of rch as compared with the ones for the
spherical solution (compare dashed red lines with solid
red lines with red squares in panels (b)-(f) of Fig. 7).
A significant odd-even staggering in the Hg charge radii
exists for N = 100−106 [see Fig. 7(a)] the origin of which
is discussed in Sec. IX A.

charge radii in terms of multipole deformations within the droplet
model. However, the asymmetry of

〈
r2

〉
DM

as a function of β2 is
opposite to that seen in the RHB calculations in Fig. 10 because
of cubic term in β2 .
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Except for calculations with the DD-MEδ functional,
the evolution of experimental data in the Pt isotopes is
rather well reproduced for the N = 112−120 nuclei. The
results of the calculations with DD-ME2, NL3*, DD-PC1
and PC-PK1 suggest that the ground states of these nu-
clei have weakly deformed oblate shapes with β2 ≈ −0.13
[see Fig. 3 in the supplemental material (Ref. [69])].
However, the competing prolate minimum exists in all
these isotopes. With decreasing neutron number, this
prolate minimum with β2 ≈ 0.3 becomes the lowest in
energy at N = 110 [see Fig. 8 and Fig. 3 in the sup-
plemental material (Ref. [69])]. This leads to a sharp
increase in charge radii which overshoots the experimen-
tal data by roughly 0.04 fm (see Fig. 7). However, if
we would associate excited oblate states with deforma-
tion β2 ≈ −0.2 in the N = 100 − 110 nuclei with the
observed ground states, then the experimental data on
charge radii would be much better described since they
are characterized by lower charge radii (see discussion of
Fig. 10 above). The change of the slope of experimen-

tal charge radii at N ≈ 106 is possibly an indicator of
such a transition from oblate shapes with nearly constant
β2 ≈ −0.2 for N = 100− 106 to oblate shapes where the
deformation decreases in absolute value with increasing
neutron number above N = 106 [see Fig. 8 and Fig. 3 in
the supplemental material (Ref. [69])].

Fig. 12 shows the evolution of the δ
〈
r2
〉N,126

values
in the Pt, Hg, Pb, Po, and Rn isotopes. These curves
are similar [clustered] for different isotopic chains for
N = 112− 136, but their slopes change at N = 126. Be-
low N = 112 this feature is disturbed in the Po isotopes
due to the gradual transition to prolate shapes, but still,
it is present for the isotopic chains of Pb, Hg (excluding

odd nuclei), and Pt. This clustering of the δ
〈
r2
〉N,126

values for different isotopic chains is well reproduced in
all functionals above N = 126. The situation is some-
what different belowN = 126. The DD-ME2, NL3*, DD-
PC1 and PC-PK1 functionals reproduce this clustering

of the δ
〈
r2
〉N,126

values down to N ≈ 116 and for the Pt,
Hg, and Rn isotopic chains even to lower neutron num-
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nuclei as a function of the quadrupole deformation obtained
in RHB calculations with the indicated functionals.

bers. However, as discussed above in the low-N region
the calculations do not reproduce correctly the lowest
in energy minimum leading to the discrepancies between
theory and experiment. Note that among the functionals
under consideration DD-MEδ provides the worst descrip-
tion of experimental data in the nuclei with N < 126.

VI. CHARGE RADII IN ISOTOPIC CHAINS OF
THE SN/GD REGION

The calculated and experimental differential charge
radii for the Sn isotopes are compared in Fig. 13. The

experimental δ
〈
r2
〉N,74

curve is well described in the
N = 58 − 74 range in model calculations with the best
reproduction provided by the NL3*, DD-MEδ and DD-
PC1 functionals. However, the slope of the experimen-

tal δ
〈
r2
〉N,74

curve is somewhat overestimated in the
N = 74− 82 range by all functionals. The experimental
data shows a kink at N = 82, the magnitude of which
is underestimated by the NL3*, PC-PK1, DD-ME2 and
DD-PC1 CEDFs. Only the DD-MEδ functional repro-
duces it reasonably well with the slope of the experimen-

tal δ
〈
r2
〉N,82

curve forN > 82 described almost perfectly
(see inset in Fig. 13).

The origin of this feature can be traced back to the
occupation pattern of the neutron 1h9/2 and 2f7/2 sub-
shells located above the N = 82 shell closure (see Fig.
14(a)). The calculations without pairing show that the
occupation of the 2f7/2 orbital, which is the lowest in
energy subshell above N = 82 (see Fig. 14(a)), does not
create a kink at N = 82 (see inset in Fig. 13). A similar
situation exists for the occupations of other orbitals such
as the n = 2 orbital 2f5/2 and the n = 3 orbitals 3p3/2,
and the 3p1/2 orbitals located above N = 82. It is only
the occupation of the n = 1 1h9/2 orbital which drives
the N = 84 isotope to a visibly larger charge radius and
creates a kink at N = 82 (see inset in Fig. 13). This

situation is very similar to the one seen in the Pb iso-
topes in which only the occupation of the n = 1 1i11/2
subshell above N = 126 creates a kink in charge radii at
this particle number (see Sec. IV).

Pairing leads to a redistribution of the occupation of
different single-particle orbitals in the N = 84 isotope of
Sn (see Fig. 15). However, it is only for the DD-MEδ
functional that the 1h9/2 orbital is strongly occupied in
the RHB calculations [stronger than the 2f7/2 one] be-
cause of the closeness of the 2f7/2 and 1h9/2 orbitals in
energy (see Fig. 14(b)). And this balance of the occu-
pation of these orbitals leads to an almost perfect repro-
duction of the slope of differential charge in the N > 82
Sn isotopes (see inset in Fig. 13). In contrast, in other
functionals the 1h9/2 orbital is higher in energy by ap-
proximately 2 MeV than the 2f7/2 one (see Fig. 14(b))
and, as a result, its occupation probability is by a factor
three or four [dependent on CEDF] smaller than that for
2f7/2 (see Fig. 15). As a consequence, the slope of differ-
ential charge radii in the N > 82 isotopes as well as the
magnitude of the kink at N = 82 is underestimated by
these functionals (see inset in Fig. 13).

The experimental and calculated differential charge
radii in the Cd, Sn, Te, Xe, Ba, Ce, Nd, Sm, and Gd
isotopic chains are compared in Figs. 16 and 17. One
can see that, on average, the experimental data are well
reproduced.

For the nuclei with N < 82, the experimental

δ
〈
r2
〉N,82

curves diverge away from each other with de-
creasing neutron number (see Fig. 17). The only ex-
ceptions from this trend are the Cd (Z = 48) and Sn
(Z = 50) isotopic chains, for which the experimental dif-
ferential charge radii are almost the same. These features
are best reproduced by the NL3* functional [compare
panels (a) and (d) of Fig. 17]. The similarity of differen-
tial charge radii in the Cd and Sn isotopic chains is repro-
duced in all functionals. Note that the ground states of
all Sn isotopes are predicted to be spherical [see Figs. 4
and 12 in the supplemental material (Ref. [69])]. On the
contrary, the N = 56 − 62 Cd isotopes are predicted to
be slightly prolate with β2 ≈ 0.15 [see Fig. 4 in the sup-
plemental material (Ref. [69])], but the PECs of many of
them are soft in quadrupole deformation [see Fig. 13 in
the supplemental material (Ref. [69])] so that the effects
beyond mean-field could play a role in the definition of
the exact ground state deformation. The relative prop-
erties of differential charge radii of the Te (Z = 52) and
Sn isotopes are reproduced rather well in all functionals.
Note that the calculations predict that many of the Te
nuclei are soft in their ground states [see Fig. 11 in the
supplemental material [Ref. [69])].

The evolution of differential charge radii in the Xe
(Z = 54) isotopes and the kink at N = 82 are reasonably
well described by all functionals [see Fig. 16(d)]. How-
ever, some functionals slightly underestimate the experi-
mental data in the N < 82 nuclei. The relative properties
of differential radii of the Xe and Te isotopic chains are
somewhat better described by the DD-MEδ functional
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FIG. 11. The same as Fig. 9 but for the Hg isotopes with N = 100− 120.

(compare panels (c) and (a) in Fig. 17). Note that in
this functional the N = 64 − 68 isotopes are predicted
to be oblate with β2 ≈ −0.2, while other isotopes are
prolate with β2 ≈ 0.2 [see Fig. 4(b) in the supplemen-
tal material (Ref. [69])]. In contrast, in other function-
als the calculated ground state deformation is prolate at
N = 64−68, and it reaches a maximum value at N ≈ 66
[see Figs. 4(a), (c), (d) and (e) in the supplemental ma-
terial (Ref. [69])]. As a result, the differential radii show
a small peak at these neutron numbers (see Figs. 17(b),
(d), (e) and (f)). However, the excited oblate minimum
in those functionals is only slightly higher in energy than
the prolate one [see Fig. 10 in the supplemental material
(Ref. [69])]. If one associates this oblate minimum with
the ground state in the N = 64 − 68 nuclei, then the
experimental differential charge radii will be well repro-
duced by model calculations [see dashed green lines in
Figs. 17(b), (d), (e) and (f)].

Experimental data on differential charge radii of the

Ba (Z = 56) isotopes extends down to N = 64 with

δ
〈
r2
〉N,82

values being nearly constant but slightly de-
creasing with decreasing neutron number [see Fig. 16(e)].
Similar trends are observed in the calculations with all
CEDFs which reasonably well reproduce the evolution

of experimental δ
〈
r2
〉N,82

curve as well as the kink at
N = 82. However, the calculated curves are disturbed
by a small peak at N = 68 in the calculations with DD-
ME2, NL3*, DD-PC1, and PC-PK1 [see Figs. 17(b), (d),

(e) and (f)] and a substantial downslope of the δ
〈
r2
〉N,82

curve with decreasing neutron number which starts at
N = 64 in the calculations with DD-MEδ [see Figs. 16(e)
and Fig. 17(c)]. This peak takes place at neutron num-
bers where the rate of the increase of prolate deformation
with decreasing neutron number is enhanced [see Fig. 4
in the supplemental material (Ref. [69])].

In the N < 82 nuclei, the experimental data for even-
even Ce (Z = 58) isotopes are available only for N = 78
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and 80. It is reasonably well described in all model cal-

culations [see Fig. 16(f)]. The experimental δ
〈
r2
〉N,82

values of the Nd (Z = 60) isotopes are close to zero for
N = 72−82 and this feature is described by all function-
als [see Fig. 16(g)]. The only exception is 132Nd in the
calculations with the CEDFs DD-ME2 and DD-PC1 for
which a substantial increase of differential charge radii is
predicted [see Figs. 16(g) and 17(b), (e)]. This is caused
by the drift of the prolate minimum from β2 ≈ 0.2 to
β2 ≈ 0.4 [see Fig. 7 in the supplemental material (Ref.

[69])]. The experimental δ
〈
r2
〉N,82

values of the Sm
(Z = 62) isotopes are slightly higher than those of the Nd
ones and are decreasing with increasing neutron number
in the N = 76− 80 range [see 16(h)]. These two features
are reasonably well described in the model calculations.
The only exception is the DD-MEδ functional which does
not predict this decreasing trend [see Figs. 17(c)].

Let us consider the evolution of differential charge radii
in the N > 82 nuclei. Note that experimental data for
the Cd isotopes stops at N = 82 and the one for the

Sn and Te isotopic chains at N = 84. The isotopic Ce
and Nd chains extend up to N = 90, those of Xe, Ba,
and Sm up to N = 92, and the Gd isotopic chain up to
N = 96. The substantial kink in charge radii at N =

82 is present in all these isotopic chains; the δ
〈
r2
〉84,82

values range from 0.226 fm2 in Sn up to 0.297 fm2 in
Gd. These kinks are reasonably well described in the
majority of the calculations (see Fig. 16). Note also that
the calculations reasonably well reproduce the N > 82
branches of differential charge radii.

The experimental differential charge radii of the in-
dicated isotopic chains cluster in the N > 82 nuclei [see
Fig. 17(a)] and this feature is reproduced well only in the
calculations with DD-MEδ (compare panels (c) and (a)

in Fig. 17). The spread of the δ
〈
r2
〉90,82

values obtained
in the calculations with DD-ME2, NL3*, DD-PC1, and
PC-PK1 for the isotopic chains under study is larger by a
factor of approximately two than that seen in the experi-
ment (compare panels (b), (d), (e), and (f) with panel (a)
in Fig. 17). Note that theoretical results for the Cd, Sn,
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nuclei.

and Te isotopic chains have to be ignored in such a com-
parison since experimental data in these chains extends
only up to either N = 82 or 84.

The calculations indicate that only the N = 82 and
84 Xe, Ba, Ce, Nd, Sm, and Gd isotopes are spherical in
their ground states, while higher N isotopes are prolate
[with a pair of exceptions for DD-MEδ] [see Fig. 4 in the
supplemental material (Ref. [69])]. This suggests that
the clustering of differential charge radii of these isotopic
chains has to be, in part, traced back to the similarity of
calculated deformations. Indeed, in the neutron number
range of 82− 92, the smallest spread of calculated defor-
mations is seen in the calculations with DD-MEδ [see Fig.
4(b) in the supplemental material (Ref. [69])], and this
functional provides the best description of the clustering
(see Fig. 17). However, this is probably not the complete
picture since the spread of calculated deformations for
DD-PC1 is only slightly higher than in the calculations
with DD-MEδ [compare panels (b) and (d) in Fig. 4 of
the supplemental material (Ref. [69])], but it does not
produce a good description of clustering. As a result,
alternative sources of the clustering of differential charge
radii for the nuclei above shell closures may be possible.
One possibility is that it is related to the lowering of the
energy of the 1h9/2 neutron subshell to the vicinity of
the N = 82 shell closure, which is present only for the
DD-MEδ functional (see Fig. 14).

It is interesting to compare the situation with the clus-
tering of differential charge radii above the neutron shell
closure in the Pb and Sn regions. This clustering in
the Pb region for N > 126 is defined by only three
isotopic chains, namely, Pb, Po, and Rn (see Fig. 12).
Moreover, the calculations suggest that the nuclei in the

N = 126− 130 range are spherical, and that only a weak
deformation (|β2 ≈ 0.1|) develops for N = 132, 134, and
136 (see Fig. 8), the highest neutron numbers in the ex-
perimentally observed isotopic chains of Pb, Po, and Rn,
respectively. So, the latter nuclei remain quasi-spherical.
All these factors explain why it is easier to reproduce the
clustering of differential charge radii in the Pb region as
compared with the Sn/Gd one.

VII. THE CHARGE RADII IN THE ISOTOPIC
CHAINS OF THE SR REGION

The isotopic chains of Kr, Sr, and Mo allow us to test
how the differential radii are modified when the N =
50 shell closure is crossed. In Fig. 18 the experimental
data for these chains are compared with the results of
the calculations.

Let us first consider the differential radii for theN > 50
isotopes. In the Kr isotopes, the calculations reproduce
rather well the experimental data for N = 52 and 54,
but start to overestimate it for N = 56, 58 and 60 with
the biggest overestimate given by the DD* functionals
[see Fig. 18(a)]. All functionals rather well reproduce the
experimental differential radii of the Sr isotopes for N =
50−58 [see Fig. 18(b)]. Note that in both isotopic chains,
the ground states have moderately oblate deformation
with β2 ≈ −0.18 above N = 52 [see Figs. 14 and 16 in
the supplemental material (Ref. [69])]. Except for PC-
PK1, the differential charge radii of the Mo isotopes are
also rather well reproduced for N = 50 − 58 [see Fig.
18(c)]. Note that the calculations show a competition of
prolate and oblate shapes in this neutron number range
[see Fig. 14 in the supplemental material (Ref. [69])].

The differential charge radii drastically increase for
N = 60 and 62 in the Sr isotopes and N = 60, 62, and
64 in the Mo isotopes [see Figs. 18(b) and (c)]. This in-
crease is related to the transition of the ground states to
a prolate minimum with β2 ≈ 0.4. Such a minimum is
excited by 100-200 keV in the Sr N = 60 and 62 isotopes
in the calculations with DD-ME2, DD-PC1, and NL3*
[see Figs. 16 (n) and (o) in the supplemental material
(Ref. [69])], and by approximately 1 MeV as compared
with the oblate ground state minimum in the N = 60, 62,
and 64 Mo isotopes [see Figs. 15 (l), (m) and (n) in the
supplemental material (Ref. [69])]. Note that for some
functionals and some neutron numbers such a minimum
is either non-existent [appears as shoulder in the PEC] or
separated by a very small barrier from the minima with
lower deformation. Figs. 18(b) and (c) illustrates that ex-

perimental δ
〈
r2
〉N,50

values for these neutron numbers
are rather well reproduced if the calculated charge radii
in this minimum are used for comparison.

It is interesting to compare the performance of rel-
ativistic and non-relativistic functionals in the descrip-
tion of differential charge radii in the N > 50 nuclei of
the Sr region. The results of the calculations with non-
relativistic Skyrme functionals for the Sr isotopes are pre-
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sented in Fig. 20. The best reproduction of experimen-
tal data in the N = 50 − 58 range is provided by the
SLy4 functional, but in general, the Skyrme functionals

provide a less accurate description of the δ
〈
r2
〉N,50

val-
ues in this neutron number range as compared with the

CEDFs. At higher neutron number, except for the SkP
functional, the prolate minimum with β2 ≈ 0.37 is the
lowest in energy in the Skyrme DFT calculations, and
this allows explaining the experimental data at N = 60
and 62.

Similar results have also been obtained in Ref. [32]
in calculations with Gogny D1S for the Sr, Mo, and
Zr isotopic chains. They underestimate experimental

δ
〈
r2
〉N,50

values for N = 52−58 but correctly predict the
existence of a highly deformed prolate minimum above
N = 58. This minimum is the lowest in energy in the Sr
isotopes but an excited configuration in Mo. Moreover,
similar to our results for these shapes, they overestimate

δ
〈
r2
〉N,50

values for the Sr isotopes, but correctly repro-
duce them for Mo. Despite all these differences, both
relativistic and non-relativistic functionals predict a sim-
ilar trend of the evolution of charge radii with increasing
neutron numbers above N = 50 provided that the correct
minimum is associated with the experimental data.

Both covariant and non-relativistic DFTs fail to re-
produce the evolution of experimental δ

〈
r2
〉N,50

curve
in the N = 40− 50 Kr and Sr isotopes (see Figs. 18 and
20 in the present paper and Fig. 7 in Ref. [73]). This
is, because in the absolute majority of the cases, these
models predict spherical ground states for these isotopes
[see Figs. 14, 15, 16 and 17 in the supplemental material
for CDFT results (Ref. [69]), Fig. 20 and Mass Explorer
at FRIB [37] for Skyrme DFT results and Ref. [74] for
Gogny DFT results). However, the PECs obtained in
the CDFT calculations indicate the presence of a prolate
minimum with β2 ≈ 0.5 in the N = 36 − 42 Sr isotopes
[see Figs. 16 (b), (c), (d) and (e) in the supplemental
material (Ref. [69])] which [with the exception of the cal-
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culations with a few functionals in the N = 38 isotope]
is the excited one. The calculated charge radii in this
minimum somewhat overestimate experimental data [see
the lines without symbols in Fig. 18(b)]. The existence
of similar prolate minima is seen also in the Skyrme DFT
calculations: it becomes the lowest in energy in the cal-
culations with SkM* for N = 34−44, with UNEDF1 and
SLy4 at N = 38 and with UNEDF0 at N = 38− 40 (see
Fig. 20). Similar to our results, the Skyrme calculations
for this minimum somewhat overestimate experimental

δ
〈
r2
〉N,50

values. An excited prolate minimum exists
also in PECs of the Kr isotopes in the CDFT calcula-
tions: its deformation drifts from β2 ≈ 0.45 for N = 40
and 42 down to β2 ≈ 0.25 for N = 34 and 36 [see Fig. 17
in the supplemental material (Ref. [69])]. This drift ex-

plains the experimentally observed decrease of δ
〈
r2
〉N,50

on going from N = 40 to N = 36 [see 18(b)].

Note that the PECs obtained for the Kr and Sr iso-
topes in the Gogny DFT calculations with the D1S force
(see Ref. [74]) are very similar to those obtained in our
calculations. The inclusion of the correlations beyond
mean-field within the framework of a five-dimensional
collective quadrupole Hamiltonian based on the Gogny
DFT allows to improve the description of charge radii in
the N < 50 Sr isotopes (see the discussion of Fig. 7 in
Ref. [73]). Considering the similarity of mean-field PECs
obtained in the CDFT and Gogny DFT calculations, it

is reasonable to expect that the inclusion of the correla-
tions beyond mean-field will also improve the description
of charge radii in the N < 50 nuclei of the Sr region in
the CDFT framework.

Finally, Fig. 19 compares the relative properties of dif-
ferential charge radii of the Kr, Sr, and Mo isotopic chains
obtained in the calculations with the employed function-
als. One can see that the clustering of these radii seen
for N = 50 − 58 in the experiment is reasonably well
reproduced in the model calculations.

VIII. THE CHARGE RADII IN THE ISOTOPIC
CHAINS OF THE CA REGION

The Ca isotopes have been in the focus of extensive
experimental and theoretical studies over the years. In
the context of the studies of charge radii, there are two
puzzling features of these isotopes, namely, (i) almost
exactly the same charge radii of the 40,48Ca isotopes and
(ii) a large and unexpected increase of charge radii in
neutron-rich beyond N = 28 nuclei (see Ref. [11]).

First, let us consider the similarity of the charge radii
in the 40,48Ca nuclei. These two nuclei are doubly magic
with a proton shell closure at Z = 20 and the neutron
shell closures at N = 20 and 28, respectively (see Fig.
21). As a consequence, proton and neutron pairings are
expected either to collapse or to be extremely weak and
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FIG. 17. The same as Fig. 12 but for the δ
〈
r2
〉N,82

values of the Sn (Z = 50), Te (Z = 52), Xe (Z = 54), Ba (Z = 56), Ce
(Z = 58), Nd (Z = 60), Sm (Z = 52), and Gd (Z = 54) isotopes. The experimental data are taken from Ref. [2].

TABLE IV. The experimental and calculated δ
〈
r2
〉28,20

val-

ues [in fm2] of the Ca (Z = 20) isotopes and their connection
to the nuclear matter properties (such as symmetry energy
J and its slope L0) for the employed CEDFs. ”N/A” means
that the data are either not applicable or not available. The
functionals are arranged in such a way that the calculated

δ
〈
r2
〉28,20

values decrease. References for either the func-
tionals or for related results are shown in the first column.

CEDF δ
〈
r2
〉28,20

[fm2] J [MeV] L0 [MeV]
exper. [11] -0.001 N/A N/A
NL-IT [5] ≈ 0.06 39.4 N/A
NL-SH [75] 0.040 36.13 113.68
NL5(E) [76] 0.031 38.93 124.96
NL5(D) [76] 0.003 38.87 123.98
NL1 [77] -0.006 43.46 140.07
NL-I [5] ≈ −0.01 39.7 N/A
NL3 [78] -0.014 37.40 118.53
NL-Z [5] -0.015 41.72 133.91
NL3* [44] -0.028 38.68 122.60
DD-MEX [79] -0.056 32.87 47.81
NL5(A) [76] -0.088 34.92 108.85
NL5(C) [76] -0.092 35.925 112.31
NL5(B) [76] -0.094 34.92 108.33
PCPK1 [48] -0.098 35.60 113.00
DDME2 [46] -0.111 32.40 49.40
DD-PCX [39] -0.178 31.12 46.32
DD-PC1 [45] -0.229 33.00 68.40
DDMEδ [47] -0.296 32.35 52.90

thus, these two nuclei are ideal candidates for testing of

the particle-hole channel of DFTs, underlying EDFs and
their isovector dependencies. This is because the theoret-
ical results will not be polluted by the uncertainties in the
treatment of pairing. In addition, the PECs presented in
Figs. 22(e) and (i) of the supplemental material (Ref.
[69]) indicate extreme localization of the ground states
of these two nuclei at spherical shape with little or no
expected impact from beyond mean-field effects; these
features also do not depend on the CEDF.

Table IV and Fig. 25 present the summary of published

and newly calculated δ
〈
r2
〉20,28

values for the Ca iso-
topes and their connections with nuclear matter proper-

ties of the functionals. One can see that δ
〈
r2
〉28,20 ≈ 0 is

produced by the functionals (such as NL3) characterized
by large values of the symmetry energy J ≈ 40 MeV and
its slope L0 ≈ 110 MeV while the large negative values of

δ
〈
r2
〉20,28

are produced by the CEDFs with low values
of J and L0. The latter feature is also seen for tradi-
tional non-relativistic Skyrme EDFs such as SkM*, SkP,
SLy4, SV-min, UNEDF0 and UNEDF1 which are char-
acterized by low values of the symmetry energy J ≈ 32
MeV and its slope L0 ≈ 50 MeV (see Fig. 24)10. It is

not likely that the fact that δ
〈
r2
〉28,20 ≈ 0 in the Ca iso-

topes can be related to the details of the single-particle

10 The Fayans functionals of Ref. [31] are also able to describe

δ
〈
r2

〉28,20 ≈ 0 but they are specifically designed for that by the

use of experimental value of δ
〈
r2

〉28,20
in the fitting protocol.
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values of the isotopic chains in the Sr region. The calculated charge radii in excited prolate minima
are shown by the thin lines without symbols. The typical deformation in these minima are indicated.

spectra since they are very similar (especially for the pro-
ton subsystem) for the functionals which provide different

predictions for δ
〈
r2
〉28,20

(see Fig. 21).

TABLE V. The experimental and calculated δ
〈
r2
〉32,28

values

[in fm2] of the Ca (Z = 20) and Fe (Z = 26) isotopes.

CEDF Ca Fe
exper. 0.530 0.606
DDME2 0.407 0.670
DDMEδ 0.377 0.633
DD-PC1 0.302 0.591
NL3* 0.336 0.645
PCPK1 0.317 0.697

Although there are the correlations between nuclear

matter properties and the δ
〈
r2
〉20,28

values in the
Ca isotopes, other factors contribute to experimental

δ
〈
r2
〉20,28 ≈ 0 value.

First, non-relativistic HFB calculations of Ref. [27]
with the semi-realistic M3Y-P6a interaction can repro-

duce δ
〈
r2
〉28,20

and δ
〈
r2
〉32,28

values in the Ca iso-
topes: this is attributed to the density dependence of
the three-nucleon spin-orbit interaction and its impact
on the density distributions of specific single-particle or-
bitals. However, these calculations fail to reproduce the
inverted parabola-like behavior of differential charge radii

for N = 22− 26.
Second, it is necessary to recognize that the function-

als used in the present paper have been fitted in a time
when the importance of the fine structure in the charge
radii and alternative mechanisms contributing to them
have not been completely recognized. As a result, an ap-
proximate Eq. (5) has been used for charge radii in the
absolute majority of the publications within the CDFT
framework. However, a more general expression for a
charge radius in the CDFT is given by [81, 82]

r2ch =
〈
r2p
〉

+ r2p +
〈
r2p
〉
SO

+
N

Z

(
r2n +

〈
r2n
〉
SO

)
(10)

where < r2p > stands for proton mean square point ra-
dius, rp and rn for single proton and neutron radii, re-
spectively, and

〈
r2p
〉
SO

and
〈
r2n
〉
SO

for proton and neu-
tron spin-orbit contributions to the charge radius. So,
Eq. (5) takes into account only the first two terms of this
general expression.

It turns out that Eq. (5) is a quite reasonable approx-
imation to Eq. (10) for medium and heavy mass nuclei
especially for differential charge radii. This is because
the spin-orbit contribution to charge radii decreases with
increasing the mass of nuclei and it almost does not de-
pend on the CEDF. These features are illustrated in Ta-
ble II of Ref. [81]. Since the calculations of this reference
are restricted to spherical shape and neglect pairing cor-
relations, the values quoted for spin-orbit contribution
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values of the Kr (Z = 36), Sr (Z = 38), and Mo (Z = 42) isotopic chains.
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values for the Sr (Z = 38) isotopes.
The experimental data are taken from Ref. [2] and the results
of the Skyrme DFT calculations from Mass Explorer [37].

to charge radii in this table for non-doubly magic nuclei
have to be considered as an upper limit. This is because
deformation and pairing give rise to the fragmentation
of the spin-orbit strength which results in a smoothing
of the spin-orbit correction to charge radii as a function
of particle number [83]. In addition, for existing experi-
mental data the range of the variation of the N

Z r
2
n term

is significantly smaller in medium and heavy mass nuclei
as compared with light nuclei and its contribution to the

differential charge radii is cancelled to a large degree.
However, the last two terms of Eq. (10) are impor-

tant in light nuclei (see Refs. [81, 82]). For example,
when these terms are taken into account the differential
charge radius δ

〈
r2
〉20,28

for the Ca isotopes changes from

−0.013 fm2 to +0.164 fm2 in the NL3 CEDF and from
−0.07 fm2 to +0.108 fm2 in the NLSH one (see Table
1 in Ref. [82]) moving away from experimental value of
−0.001 fm2. Let us assume a similar range of correc-
tions by these two terms of Eq. (10) for other function-
als. Then the accuracy of the description of experimental

δ
〈
r2
〉20,28 ≈ 0 value after inclusion of these corrections

would degrade for the functionals listed in upper part
(down to NL3*) of Table IV, would remain similar for
DD-MEX and would improve for the functionals located
in the bottom part of Table IV.

An analysis of the contributions of spin-orbit densi-
ties and other terms to charge radii has also been per-
formed in the non-relativistic framework (see Refs. [83–
85]). There are some differences between relativistic and
non-relativistic treatments of these terms (see detailed
discussion in Ref. [82]), however, in general a comparable
modification of charge radii is generated by such terms in
non-relativistic DFTs. For example, these contributions

change δ
〈
r2
〉20,28

of the Ca isotopes from −0.198 fm2 to

−0.048 fm2 (see Table 1 in Ref. [82] and Fig. 1 in Ref.
[85] in the Skyrme DFT calculations with the SLy4 func-
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val-
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slope L0 of employed functionals. See Table IV for additional
details.

tional bringing them closer to experimental data. Similar
results are obtained for the Skyrme SV-bas and Fayans
Fy(∆r, HFB) functionals in Ref. [83] with spin-orbit den-
sity and N

Z r
2
n term providing approximately 0.1 fm2 and

0.04 fm2 contributions to the δ
〈
r2
〉20,28

value, respec-
tively. Assuming that similar corrections appear for other
non-relativistic functionals shown in Fig. 24, it is clear
that their addition will improve the description of exper-

imental δ
〈
r2
〉20,28

value in these functionals. However,
their addition do not allow either to reproduce the in-
verted parabola-like behavior of differential charge radii
for N = 22 − 26 or improve the description of the large

δ
〈
r2
〉32,28

experimental value in the Ca isotopes (see Fig.

1 in Ref. [85]). The latter is because spin-orbit densi-

ties do not modify substantially the calculated δ
〈
r2
〉32,28

value.

Since the experimental data on charge radii is included
in the fitting protocols (which rely on Eq. (5) for the def-
inition of charge radii) of the CEDFs employed in the
present paper, they partially include the corrections pro-
vided by additional terms of Eq. (10). Thus, to avoid
double counting of these corrections, new fits of CEDFs
with charge radii defined by Eq. (10) are needed. They
will provide a more consistent (and, hopefully, more ac-
curate) description of charge radii. However, in the con-
text of the present study with the employed functionals
one can conclude that for a given isotopic chain the rela-
tive properties of charge radii and differential charge radii
provided by two CEDFs should not be very much affected
by these corrections. This is because existing studies in-
dicate their weak dependence on the functional. On the
other hand, the calculated absolute values of these radii
are expected to be partially affected by these corrections
and this fact is taken into account in further discussion.
However, this effect is expected to be reasonably small for
the calculated differential charge radii of isotopic chains
in the experimentally available range in neutron number
if this range is rather short (see Ref. [83]). These are Ti,
Cr and Fe isotopic chains (see, for example, Fig. 23).

These new functionals are also needed to answer the
question on whether δ

〈
r2
〉20,28 ≈ 0 of the Ca isotopes

can provide a meaningful constraint on nuclear matter
properties. The discussion provided above on that issue
is not conclusive. The analysis of proton density distribu-
tions determined by electron scattering and the neutron
density distributions determined by proton elastic scat-
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are taken from Ref. [2]. The experimental data for the Ca isotopes are mostly taken from Ref. [11] while that for the 39,41Ca
isotopes from Ref. [80] and for 36,37,38Ca from Ref. [12].

tering in the 40,48Ca nuclei supplemented by the studies
within Skyrme DFT and CDFT support low values of
J ≈ 28 MeV and L = 28 − 50 MeV [86]. In contrast,
the recent PREX-II measurements of the neutron skin
in 208Pb [61] imply a stiff equation of state with large
J = 38.1± 4.7 and L0 = 106± 37 MeV values [87].

The calculated and experimental differential charge
radii are compared in Figs. 23 and 25. One can see that
all employed CEDFs fail to describe the evolution of dif-
ferential charge radii in the Ca isotopes in the neutron
number range N = 16 − 28 and especially the peak at
N = 24 [see Fig. 23(b)]. However, the same problem ex-
ists also in all non-relativistic Skyrme EDFs (see Fig. 24).
As discussed above, the accounting of spin-orbit densities
and the N

Z

〈
r2n
〉

term in Eq. (10) can somewhat modify
this situation but in no way will it correct the problem
with the description of the peak at N = 24. The analy-
sis of the occupation probabilities indicates that mostly
neutron 1f7/2 states are occupied in the transition from
40Ca to 48Ca, and this leads either to a linear increase or
nearly constant differential charge radii in conventional
functionals. This figure also indicates that the inverted
parabola-like behavior of differential charge radii in the

N = 20 − 28 isotopes is reproduced on average only in
the Fayans Fy(∆r) functional which includes gradients
both in surface and pairing terms and was fitted to ex-
perimental (absolute and relative) data on charge radii
in 40,44,48Ca in Ref. [31].

The rise in the differential charge radii above the
N = 28 shell closure is underestimated in the model
calculations (see Fig. 23(b) and Table V). The non-

relativistic results of Ref. [85] indicate that the δ
〈
r2
〉32,28

value is only moderately affected by spin-orbit densities.
If that result holds also in the CDFT, then the best re-

production of experimental δ
〈
r2
〉28,32

values is achieved
by the DD-ME2 functional which underestimates it only
by 23% (see Table V). Note that the problem with the
description of the rise in charge radii in the Ca isotopes
above N = 28 also exist in non-relativistic Skyrme and
Gogny calculations and in non-relativistic ab initio cal-
culations (see, for example, Fig. 24 in the present paper
and Fig. 3 in Ref. [11]).

The slope of the experimental δ
〈
r2
〉N,28

curve for the
Ar (Z = 18) isotopes is best reproduced in the calcula-
tions with the DD-PC1 and PC-PK1 functionals [see Fig.
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from Mass Explorer at FRIB [37]. The results of the Fayans
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23(a)]. However, even these functionals underestimate
the experimental data by ≈ 0.2 fm2. Based on avail-
able estimates in this mass region (see Refs. [81–83, 85]),
the contribution of spin-orbit densities to the differential
charge is below this value. Note that in the calculations,
many of the Ar isotopes are oblate in their ground states
[see Fig. 18 in the supplemental material (Ref. [69])] and
that the PECs of almost all Ar isotopes are extremely
soft in quadrupole deformation [see Fig. 23 in the sup-
plemental material (Ref. [69])]. In such a situation, the
correlations beyond mean-field are expected to play an
important role.

The differential charge radii in the Ti (Z = 22) iso-

topes are gradually decreasing from δ
〈
r2
〉N,28 ≈ 0.3 fm2

at N = 22 down to zero at N = 28 (see Fig. 23(c)). This
trend is reasonably well reproduced for N = 24 − 28 by
the NL3*, PC-PK1, and DD-ME2 functionals. This is
due to two facts. First, the N = 24 and 26 isotopes are
prolate in the calculations with β2 ≈ 0.15 [see Fig. 18
in the supplemental material (Ref. [69])], so their charge
radii are larger than those at the spherical shape. Sec-
ond, these are two functionals that reproduce reasonably
well the near equality of charge radii in 40,48Ca (see Table
IV). Other functionals (DD-PC1 and DD-MEδ), which
cannot reproduce this feature, also fail to describe the
evolution of charge radii in the Ti isotopes. Note that in
the calculations, the PEC of the N=22, 24, and 26 iso-
topes are soft in quadrupole deformation, which suggests
that beyond mean-field effects could play an important
role in the reproduction of experimental data. Assuming
that these effects could lead to the creation of a prolate
minimum with β2 ≈ 0.2 in theN = 22 isotope, this would
also allow explaining the charge radius of this isotope in
the calculations with PC-PK1, DD-ME2, and NL3* (see

results presented by thin solid magenta, black and blue
lines in Fig. 23(c)).

The experimental differential charge radii of the Cr
(Z = 24) isotopes show asymmetric parabola-like fea-
tures at N = 26− 30 with the minimum at N = 28 [see

Fig. 23(d)]. The experimental δ
〈
r2
〉26,28

value is overes-
timated by a factor of approximately 1.5 in all calcula-
tions. Note that in the model calculations, the N = 26
and N = 30 isotopes are prolate with β2 ≈ 0.22, while
the N = 28 isotope is spherical [see Fig. 18 in the supple-
mental material (Ref. [69])]. The PECs of these isotopes
are soft in quadrupole deformation [see Fig. 19 in the
supplemental material (Ref. [69])], so the ground-state
properties of these nuclei could be affected somewhat by
beyond mean-field correlations.

The experimental differential charge radii of the Fe
(Z = 26) isotopes are available for N = 28 − 32 [see

Fig. 23(e)]. The large increase in δ
〈
r2
〉N,28

observed in
the experiment above N = 28 is rather well reproduced in
model calculations (see above mentioned figure and Table
V). The N = 28 isotope is spherical or quasi-spherical
in model calculations, while the N = 30 and 32 isotopes
are prolate with a quadrupole deformation of β2 ≈ 0.23
[see Figs. 18 and 19 in the supplemental material (Ref.
[69])].

It is clear that the description of differential charge
radii in the Ca region represents a case of the ”hit-or-
miss” situation when some data are rather well described
while others are difficult to reproduce. This is especially
the case for the relative properties of differential charge
radii of different isotopic chains. Figure 25 shows that
it is more difficult to reproduce them in the Ca region
as compared with other regions. It is expected that this
conclusion will not be affected by the inclusion of the
spin-orbit densities or the N

Z

〈
r2n
〉

term.
It is interesting that theN = 22−28 Ca and Ti isotopes

show very similar trends in differential charge radii [see
Fig. 25(a)]. It is also likely that the Cr isotopes will follow
the same trend if experimental data are extended to lower
neutron numbers. The challenge here lies in the fact that
in the model calculations, the N = 22 − 26 isotopes are
prolate and spherical in the Ti and Ca isotopic chains,
respectively [see Fig. 18 in the supplemental material
(Ref. [69])]. In contrast to the experiment, this suggests
a quite substantial difference in charge radii. Indeed, the
model calculations with some functionals can reproduce
the data in the Ti isotopes but fail to do that in the Ca
ones.

One possible exit from this contradiction is the possi-
bility that the N = 22−26 Ca isotopes are much softer in
quadrupole deformation as compared with the suggestion
provided by PECs obtained at the mean-field level [see
Fig. 22 of the supplemental material (Ref. [69])]. The
low excitation energy of the superdeformed (SD) band in
40Ca (see Ref. [88]), which is the lowest amongst all SD
bands in the nuclear chart, may point to a substantial
softness of the Ca isotopes. To our knowledge, mean-
field calculations substantially overestimate the excita-
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tion energy of this SD band and thus, quite likely, predict
stiffer Ca isotopes. The enhanced influence of the corre-
lations beyond mean-field on the charge radii of the Ca
isotopes as compared with the Sn and Pb isotopes has
already been pointed in Refs. [5, 30]. However, its mag-
nitude and neutron number dependence are not sufficient
to reproduce the peak in the differential charge radii at
N = 24. If the mean-field PECs are softened (especially
for the N 6= 20, 28 isotopes) then the correlations beyond
mean-field could be enhanced and maybe the experimen-

tal peak in δ
〈
r2
〉N,20

at N = 24 could be reproduced. In
contrast, the analysis of Ref. [89] partially based on the
QRPA calculations indicates that the ground state corre-
lations associated with the surface modes of the Ca iso-
topes are important and that they qualitatively explain
the observed inverted parabola-like behavior of differen-
tial charge radii with neutron number for N = 20 − 28.
However, these calculations rely on a number assump-
tions which have to be verified in more microscopic cal-
culations. All these calculations point to potential limita-
tions of the mean field approximation in the description
of the ground state properties of light nuclei such as the
Ca isotopes and the need to include correlations beyond
mean field.

IX. ODD-EVEN STAGGERING IN CHARGE
RADII

The compilation of all available experimental data on
OES in charge radii is presented in Figs. 26 and 27. In
most of the cases, the charge radius of an odd-N nu-
cleus is smaller than the average of its even-N neighbors.
This corresponds to positive and negative values of the

∆
〈
r2
〉(3)

(N) indicators at odd- and even-N values, re-
spectively. However, in approximately 25% of the cases
(indicated by dashed circles in Figs. 26 and 27), this or-
der is inverted. Then we speak about inverted OES in
charge radii. The origin of this inversion depends on the
neutron number.

The full or near-complete collapse of neutron pairing
at magic neutron shell closures at N = 28 in the Ca
isotopes [Fig. 26(c)], at N = 50 in the Kr, Sr [Figs. 26(e)
and (f)] and Rb [Fig. 27(c)], at N = 82 in the Sn, Ba, Nd,
and Sm [Figs. 26(h), (j), (k) and (l)], Cs and Eu [Figs.
27(e) and (f)] isotopes, at N = 126 in the Pb [Fig. 26(r)]
and Bi [Fig. 27(n)] is one of such sources of the inversion
of OES in charge radii. Note that this kind of inversion
is mostly localized at neutron numbers corresponding to
the shell closures in these isotopic chains.

The transition from spherical or quasi-spherical nuclei
to deformed ones taking place with increasing neutron
number at N ≈ 88 triggers the inversion of OES in charge
radii of the Dy, Tb, Eu, and Tm isotopic chains [see Fig.
26(m) and Fig. 27(g), (f) and (i)]. A similar transition at
N ≈ 58 is responsible for the inversion of OES in the Rb
isotopic chain [see Fig. 27(c)]. Note that not in all cases
this kind of transition triggers the inversion of OES: the

magnitude of OES in charge radii is simply increased in
the vicinity of these neutron numbers as compared with
the ones for lower/higher N values in isotopic chains of
the Kr, Sr, Sm, and Ho [Fig. 26(e), (f) and (m) and Fig.
27(g)].

In addition, several other mechanisms of OES in charge
radii and its inversion have been suggested earlier. They
will be discussed below using the results obtained in the
CDFT framework. However, the mechanism presented
in Sec. IX C is completely new.

A. Shape coexistence as a source of OES in charge
radii and its inversion

Significant odd-even staggering in the Hg charge radii
exists at N = 100− 106 [see Fig. 7(a) and Fig. 28]. Sev-
eral scenarios have been suggested for an explanation of
this OES (see overviews in Sec. 4.7 of Ref. [70] and in
Ref. [90]), but the one which agrees most with experi-
mental data on OES in charge radii was first suggested
in Ref. [97]. This paper, together with the analysis in the
Skyrme DFT (Ref. [90]) and CDFT (present paper) sug-
gest the following scenario: the even-N isotopes should
have a weakly deformed oblate minimum (quasi-spherical
in the language of Ref. [70]) while the odd-N nuclei in
the region should have large prolate deformations. Two
such minima (oblate with β2 ≈ −0.15 and prolate with
β2 ≈ 0.3) coexists in the isotopes of interest (see Fig. 11).
Note that the latter values are close to experimental esti-
mates of the deformations in 181,183,185Hg (see Ref. [70]).

Under such a scenario the evolution of the δ
〈
r2
〉N,126

values for even-N numbers is reasonably well described,
especially with the NL3* and PC-PK1 functionals (see
Fig. 28). In addition, the magnitude of OES (as the dif-
ference of the charge radii in prolate and oblate minima)
is not far away from experimental values.

The only caveat in this CDFT interpretation is the fact
that the prolate minimum is the lowest in energy in the
nuclei for which OES in charge radii is observed (see Fig.
11). However, the oblate minimum is only by approxi-
mately 1 MeV higher in energy than the prolate one for
most functionals. The only exception is the DD-MEδ
functional, for which this difference is more significant.
One should note that this energy difference between the
minima is extremely sensitive to the fine details of the
functional and that most non-relativistic models also fail
to reproduce this difference (see review in Sec. IVD of
Ref. [90] and Ref. [98]). Note also that the PECs in Hg
nuclei with N ≤ 100 show that the oblate minimum be-
comes the lowest in energy, and the prolate minimum
starts to disappear. This is consistent with the disap-
pearance of OES in charge radii seen in the experiment
at low N (see Fig. 28).

Since the deformation and thus the charge radii are
larger in odd-N isotopes as compared with even-N ones,
the OES of charge radii in the light Hg isotopes is in-
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verted11 [see Fig. 26(q)]. Note that this is the largest
OES of charge radii in the whole nuclear chart. A similar,
but somewhat smaller, inverted OES is observed in the
neighboring Pt (for N = 101− 110) [see Fig. 26(p)] and
Au (for N = 105 − 108) [see Fig. 27(l)] isotopic chains.
Considering the magnitude of OES as well as its local-
ization in neutron number, it is quite likely that it has
the same origin as in the Hg isotopes. It may be that
the small inverted OES seen at N = 101− 104 in the Pb
isotopes [see Fig. 26(r)] has a similar origin.

11 One can easily imagine a situation where the absolute values of
deformation (and thus charge radii) are smaller in odd-N iso-
topes as compared with even-N ones. This will lead to a regular
OES. Thus, a sensitive energy balance between two local minima
with different deformations and deformation driving properties
of the unpaired orbital in the odd-N nucleus will define whether
OES is regular or inverted.

B. Pairing as a source of OES in charge radii

As illustrated in previous examples, the charge radii
are increasing nearly linearly with increasing neutron
number when the single-particle states of the same spher-
ical neutron subshell (let us call it a j-shell) are occupied.
This trend is schematically illustrated as a dashed line in
Fig. 32. In the calculations with pairing, the blocking
effect in odd-N nuclei leads to an additional redistri-
bution of the occupation of the single-particle orbitals
and typically to a decrease of the charge radius of the
odd-N nucleus below the average given by two even-even
neighbors. As a consequence, the increase in charge radii
∆(rch)qpMF on going from even-N to odd-A is typically
smaller as compared both with the increase correspond-
ing to a linear increase defined by rch1 and rch3 and that
obtained in the calculations without pairing (see Fig.
32). This leads to a regular OES in charge radii and, so
far, the pairing has been considered to be its dominant
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FIG. 26. Experimental OES of charge radii of even-Z nuclei. The data points are encircled by blue dashed circles when they

deviate from the regular pattern [regular OES], namely, from ∆
〈
r2
〉(3)

(N) > 0 for odd values of N and from ∆
〈
r2
〉(3)

(N) < 0
for even values of N . These encircled points correspond to inverted OESs. The experimental data are taken from Ref. [2]. Note

that, with the exception of the Ca isotopes, we use the same range of ∆
〈
r2
〉(3)

on the vertical axis of all panels. Until specified
otherwise, the experimental data are taken from Ref. [2]. Only for the Ca isotopes they are mostly taken from Ref. [11], from
Ref. [80] for 39,41Ca and from Ref. [12] for 36,37,38Ca. The experimental data for the radii are taken from Ref. [90] for the Hg
isotopes with N < 106 and from [91, 92] for the Po isotopes.
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FIG. 27. The same as Fig. 26 but for odd-Z nuclei. The experimental data are taken from Refs. [2] (compilation), [93] (Fr
isotopes), [19, 94] (At isotopes) and [95, 96] (Ac isotopes).

source in isotopic chains which do not undergo significant
shape changes like those discussed in Sec. IX A (see Refs.
[30, 31, 70]) .

Let us consider an example of realistic calculations in
the Sn isotopes. In the RHB calculations, two different
procedures labeled as LES (lowest in energy solution)
and EGS (experimental ground-state) are used for the
blocking in odd-A nuclei12, and these abbreviations label

12 They were first employed in the studies of OES of differential
radii in the Pb and Hg isotopic chains in Ref. [17].

the results of the respective calculations. In the LES
procedure, the lowest in energy configuration is used. It
has been applied in all earlier calculations of OES with
non-relativistic DFTs [30, 31]. In the EGS procedure,
the configuration with the spin and parity of the blocked
state corresponding to those of the experimental ground
state is employed, although it is not necessarily the lowest
in energy.

In Fig. 29 the results of calculations with different
functionals are compared with experimental data. One
can see that the results of the RHB calculations with
the LES procedure significantly underestimate the mag-
nitude of experimental OES and occasionally provide a
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wrong phase of the OES. The use of the EGS proce-
dure significantly improves the description of both the
phases and the magnitude of OES, especially for DD-
MEδ. However, even in that case, the magnitude of OES
is underestimated by a factor of approximately two. This
suggests that an important part of physics is still missing;
it is addressed in Sec. IX C. Note that the analysis of the
Pb and Hg isotopic chains performed both in relativistic
and non-relativistic frameworks indicates that the EGS
procedure is needed for a proper description of OES in
charge radii (see Ref. [17]).

A significant underestimate of OES in charge radii is
also observed in Skyrme DFT calculations with conven-
tional functionals. The suggested resolution of this prob-
lem lies in the use of Fayans functionals which include
gradient terms in both surface term and pairing [29, 30].
The latest functional of this type is Fy(∆r) [31]. How-
ever, it overestimates the magnitude of OES in the Sn
[14] and other isotopic chains [31].

C. Particle-vibration coupling as a source of OES
in charge radii

There is a principal difference between the ground
states in even-even and odd nuclei which is schemati-
cally illustrated in Fig. 30 and which has been ignored
in the studies of differential charge radii before. It is
related to a substantial fragmentation of the wavefunc-
tion of the ground states in odd-A nuclei (especially in
spherical nuclei) due to the coupling of single-particle mo-
tion with phonons [particle-vibration coupling (PVC)].
In even-even nuclei, the correlations beyond mean-field
can affect the binding energies and equilibrium deforma-
tions [and thus the charge radii] of the ground states, but
they do not lead to a significant fragmentation of their
wavefunctions in the nuclei with stiff parabola-like PECs

(such as Pb and Sn isotopes [see, for example, Fig. 12
in the supplemental material (Ref. [69])]). Indeed, such
correlations are rather small in the ground states of the
even-even spherical Pb and Sn nuclei [5, 30, 99] and do
not modify their charge radii substantially [5, 30]. Thus,
the treatment of the ground states of such nuclei at the
mean-field level represents a reasonable approximation.
In this approximation the physical observables of inter-
est are defined by the single-particle properties and the
occupation probabilities v2

state(N) of these states (see left
and right columns of Fig. 30).

In contrast, PVC in odd-A nuclei leads to a substan-
tial fragmentation of many single-particle states (includ-
ing the ground state) which is experimentally observed
(see Refs. [66–68, 100–104] and references quote therein).
As schematically shown in the middle part of Fig. 30,
each mean-field state k (k = i or j in this figure) with
energy εk is split into many levels due to PVC, so the
single-particle strength is fragmented over many levels.
In the diagonal approximation for the nucleonic self-
energy, these levels have the same quantum numbers as
the original mean-field state k, but different energies ενk
and spectroscopic factors Sνk . In the PVC model, the
spectroscopic factors, which are the real numbers be-
tween zero and one, play a role of the occupation proba-
bilities of these fragmented states satisfying the sum rule∑
ν S

ν
k=1. For the states in the vicinity of the Fermi sur-

face, one dominant level with 0.5 ≤ Sνk ≤ 1.0 and many
other levels with small Sνk are usually obtained. Both in
experiment and in the calculations, the dominant single-
particle state is typically the lowest in energy among the
set of fragmented states originating from the mean-field
state k. However, for the mean-field states located far
away from the Fermi surface, one observes a very strong
splitting over many levels with much smaller and compa-
rable spectroscopic factors.

The detailed global analysis of the impact of the occu-
pation of neutron single-particle orbitals in the vicinity
of spherical neutron shell closures presented in Fig. 31 re-
veals a strong correlation between the principal quantum
number n of the single neutron orbital occupied above
the neutron shell closure and the impact of the occu-
pation of this orbital on differential charge radii. One
can see that in a given isotopic chain the largest impact

on δ
〈
r2
〉N,N ′

is provided by the occupation of the orbital
with the lowest n. This feature has already been revealed
for the Pb isotopes in Ref. [6] but the present study gen-
eralizes it to a larger set of the nuclei and exposes new
features. For example, it uncovers that for the n = 1
orbitals this feature is strictly speaking true only for the
occupation of the orbitals located above the shell closure
the spin-orbit partner orbitals of which are fully occupied
below this shell closure. Indeed, this is the case for the
”j = l− 1/2” type 1i11/2, 1h9/2, 1g7/2 and 1f5/2 orbitals
the ”j = l + 1/2” spin-orbit partners of which, namely,
1i13/2, 1h11/2, 1g9/2 and 1f7/2, are fully occupied below
the N ′ = 126, 82, 50 and 28 neutron shell closures in
the Pb, Sn, Sr and Ca nuclei under study. However, the
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FIG. 29. The OES in charge radii of the Sn isotopes. The experimental data are taken from Ref. [2].

differential charge radius in the Pb isotopes provided by
the occupation of the n = 1 1j15/2 orbital located above
the N ′ = 126 shell closure (see Fig. 1(b)) is only approx-
imately half of that provided by the 1i11/2 one and it is
not far away from differential charge radii generated by
occupation of the n = 2 orbitals (see Fig. 31). In addi-
tion, Fig. 31 shows that there are no clear correlations

between δ
〈
r2
〉N,N ′

and rspneu. It is also interesting that
the differential charge radii for a given n only weakly
depend both on the mass of the nucleus and rspneu. In
addition, within the spin-orbit doublet the occupation of
the lower lying partner orbital with j = l+ 1/2 provides
smaller differential charge radii than the occupation of
the higher lying partner orbital with j = l−1/2 (see Fig.
31). This is because the latter ones have large neutron
radii as compared with former ones.

As a consequence, the single-particle content of un-
paired neutron states in odd-A nuclei plays an important
role in our understanding of OES in charge radii since it
defines the pull on charge densities (see also the discus-
sion in the introduction). One of the ways to modify this
content is via the pairing interaction (see Sec. IX B). An-
other is via the fragmentation of the single-particle states
by means of PVC. Indeed it reduces substantially (down
to 60-90% [67, 68, 103]) their full single-particle content
and this fact is experimentally confirmed. A strict way to
calculate the OES effect in charge radii in the presence of
beyond mean field effects would be to perform quasipar-
ticle random phase approximation (QRPA) calculations
in even-even (Z,N) nucleus and then PVC calculations
in odd-A (Z,N + 1) nucleus and then to define the dif-

ferential charge radius. Note that the PVC calculations
in the latter nucleus use the (Z,N) core with QRPA cor-
relations included and then adds particle-vibration cou-
pling [67, 68, 103]. Existing calculations show that away
from the vicinity of doubly magic shell closures even-
even cores supplemented by QRPA correlations behave
smoothly as a function of neutron number (see Ref. [30])
and their contributions to charge radii are rather modest.
Because of these reasons, the addition of the neutron is
not expected to modify the proton part of the core in
the PVC calculations. The detailed investigation of OES
in differential charge radii requires a fully fledged PVC
calculations which will be undertaken in a future.

At this point, we want to estimate whether the deple-
tion of the single-particle content of the wave function in
odd-N nuclei due to fragmentation could lead to a right

phase (defined as a the sign of ∆
〈
r2
〉(3)

(N) at given
N) and magnitude of OES in charge radii. The basic
assumptions behind the discussion below are the follow-
ing. First, we use the fact that beyond mean field ground
state correlations in even-even spherical nuclei and their
impact on charge radii are rather small and that they be-
have smoothly as a function of neutron number (see Refs.
[5, 30, 99]). Second, the wavefunction of the odd-neutron
ground state in the odd-N nucleus represents a superposi-
tion of single-particle and vibrational contributions. The
pull on proton densities is provided predominantly by the
former while the latter is not expected to provide a signif-
icant contribution to the differential charge radii. This is
because these vibrational contributions (i) are the super-
position of two-quasiparticle states the wavefunctions of
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which have only a small overlap with that of the ground
states of even-even cores and (ii) even-even cores are very
similar in neighbouring even-even and odd-A nuclei.

In this kind of situation it is reasonable to expect that
(i) the average behavior of charge radii as a function of
neutron number can be reasonably well approximated by
the mean field [since anyway it does not provide a contri-
bution to OES of charge radii] and (ii) only the part of the
single neutron in the odd-N nucleus defined by the spec-
troscopic factor S1

k of the dominant single-particle level
provides a pull on proton densities and thus the lead-

ing contribution to the oscillating part of ∆
〈
r2
〉(3)

(N).
The latter leads to a reduction of the increase of charge
radii in going from the even-N to the odd-N nucleus
from ∆(rch)qpMF at the mean-field level to approximately
S1
k∆(rch)qpMF when the fragmentation of the dominant

single-particle level is taken into account (see Fig. 30).
The impact of this modification for representative val-

ues of the spectroscopic factors S1
k = 0.9, 0.8 and 0.7 is

illustrated in Fig. 33. One can see that additional frag-
mentation of the structure of the unpaired neutron in
odd-N nuclei leads to an increase of the magnitudes of
OES in charge radii and correct phases of the OES both
in the LES and EGS procedures. With the spectroscopic
factors S1

k being in the vicinity of those calculated in

Refs. [67, 68, 99, 103], the calculated OES are close to
experimental ones in the Sn isotopes (see Fig. 33).

Note that in some cases, PVC leads to a change of the
relative order of the single-particle states obtained at the
mean-field level. Such a possibility is illustrated in Fig.
30. In the odd-N nucleus, the state i is lower in energy
than the j state at the MF level, and both states have
single-particle nature. In contrast, in the MF+PVC case,
the fragmented level with a dominant single-particle j
state component and the energy ε1j is lower in energy than
the fragmented level with the dominant single-particle
component i and the energy ε1i . This feature has been
used in Ref. [17] for a simultaneous explanation of the
kink in charge radii at N = 126 and the OES in charge
radii of the Pb and Hg isotopes with N > 126.

D. Other sources of the inversion of OES

The inverted OES is also observed in the At (for
N = 133), Rn (forN = 133−135), Fr (forN = 135−138),
Ra (for N = 133 − 138 and 140), and Ac (for N = 137)
isotopic chains [see Fig. 26(t) and (u) and Figs. 27(o), (p)
and (s)]. It is frequently attributed to the effect of oc-
tupole deformation (see Refs. [19, 20, 70]. For example,
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δ
〈
r2
〉N,N′

(N = N ′ + 1) generated by the occupation of a
given single neutron orbital above the neutron shell closure
located at N ′ and the rms neutron radius rspneu =

√
〈r2〉sp

of this orbital. The results presented for the 48,49Ca (N ′ =
28), 88,89Sr (N ′ = 50), 132,133Sn (N ′ = 82) and 208,209Pb
(N ′ = 126) are based on the calculations without pairing and
the NL3* CEDF. The calculations are restricted to spherical
shapes. Circles, squares, triangles and diamonds are used for
the orbitals with principal quantum numbers n = 1, 2, 3 and
4, respectively. If spin-orbit partner orbitals appear above the
shell closure, then solid (open) symbols of the same type are
used for the j = l + 1/2 (j = l − 1/2) ones. The following
neutron orbitals are considered: 1i11/2, 1j15/2, 2g9/2, 2g7/2,

3d5/2, 3d3/2 and 4s1/2 in 208,209Pb (see Fig. 1(b)), 1h9/2,

2f7/2, 2f5/2, 3p3/2 and 3p1/2 in 132,133Sn (see Fig. 14(b)),

1g7/2, 2d5/2, 2d3/2 and 3s1/2 in 88,89Sr and 1f5/2, 2p3/2 and

2p1/2 in 48,49Ca (see Fig. 21(b)). Dashed lines show average
trends for different values of n.

it was suggested in Refs. [105, 106] that the OES inver-
sion originates from the fact that octupole deformation
should be more pronounced in odd than in even nuclei.
This leads to a charge radius of the odd-N nucleus being
larger than the average charge radius of the two even-
even neighbors. However, non-relativistic Skyrme DFT
calculations for the Ac isotopes presented in Ref. [20]
show that this is not necessary the case since such an
inversion appears at some neutron numbers even in the
calculations without octupole deformation. Theoretical
models also differ in the prediction of static octupole de-
formation in the Rn isotopes (see Table I in Ref. [107]
and Ref. [108]). However, experimental data presented
in Refs. [109, 110] strongly suggests that 218−222Rn nu-
clei behave like octupole vibrators and not like the nuclei
with static octupole deformation. We also have to keep
in mind that the picture of a static octupole deforma-
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FIG. 32. Schematic illustration of the impact of pairing
and particle-vibration coupling on charge radii in odd-N nu-
clei. The dashed straight line corresponds to a linear in-
crease of charge radii due to a sequential occupation of the
single-particle subshell in the calculations without pairing.
∆(rch)qpMF corresponds to an increase of the charge radii in
odd-N as compared with the one given in the system with
even-N neutrons when one neutron is added in the calcula-
tions with pairing. S1

k∆(rch)qpMF provides a similar quantity
for the case when the depletion of the single-particle content
due to fragmentation is additionally taken into account (see
text for details).

tion and the coupling to dynamic octupole vibrations has
much in common. Both models describe in many ways,
but not completely, the same physics of static and dy-
namic polarization effects (see, for instance, Ref. [111],
where the same problem has been discussed in detail for
static pairing correlations and pairing vibrations).

In addition, there are other isotopic chains in which the
OES is inverted either locally (for a few neutron numbers
only) or over a substantial range of neutron numbers.
These are isotopic chains of Kr, Sr, Rb, Ba, Sm, Cs,
Yb, Hf, Eu, Lu, and Ir [see Figs.26(e), (f), (j), (l), (n),
and (o) and Figs. 27(c), (e), (f), (j) and (k)]. The oc-
tupole deformation is not present in the ground states of
these nuclei, so there should be other sources of the OES
inversion different from octupole deformation. For exam-
ple, it was speculated in Ref. [112] that OES in charge
radii of light Kr, Rb, and Sr nuclei is due to a polariza-
tion effect of the even-even core by the unpaired neutron,
driving the odd-N nuclei toward stronger quadrupole de-
formation [as compared with the average given by even-
N neighbors]. However, this was not supported by any
model calculation.

Note that all above discussed cases involve deformed
nuclei, and these isotopic chains include both odd and
odd-odd nuclei. Because of the complexity of the de-
scription of such nuclei (see Refs. [64, 113]) a detailed
investigation of OES and its inversion in these isotopic
chains goes beyond the scope of the present paper, but
it is planned for the future.
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FIG. 33. OES in charge radii of the Sn isotopes corrected for
the fragmentation of the single-particle content of the dom-
inant single-particle state in odd-N nuclei by PVC coupling
within the framework of a schematic model discussed in the
text for different values of the spectroscopic factor S = S1

k.

X. CONCLUSIONS

A systematic global investigation of differential charge
radii has been performed within the CDFT framework for
the first time. Theoretical results obtained with conven-
tional covariant energy density functionals and the sep-
arable pairing interaction of Ref. [1] are compared with
experimental differential charge radii in the regions of the
nuclear chart where available experimental data crosses
neutron shell closures at N = 28, 50, 82, and 126. The
main results can be summarized as follows:

• In spherical nuclei, the appearance of the kinks in

the δ
〈
r2
〉N,N ′

curves at neutron shell closures is de-
fined predominantly in the particle-hole channel of
the CDFT with details of the single-particle struc-
ture above shell closures playing an important role.
This conclusion is different from the one obtained
in nonrelativistic Skyrme and Fayans DFTs in Ref.

[15] which indicates that pairing is the dominant
contributor to the kink. In the RHB approach, the
kinks are already present in the calculations with-
out pairing. Pairing acts only as an additional tool
that mixes different configurations and somewhat
softens the evolution of charge radii as a function
of neutron number.

• The relative energies of the single-particle states
and the patterns of their occupation with increas-
ing neutron number have a significant impact on

the evolution of the δ
〈
r2
〉N,N ′

values even in the
calculations with pairing included. Considering ex-
isting inaccuracies in the description of the energies
of the single-particle states in the DFT calculations,

the predictive power of such models for δ
〈
r2
〉N,N ′

is expected to decrease in the regions of high densi-
ties of the single-particle states of different origin.

• The analysis of absolute differential radii of dif-
ferent isotopic chains and their relative properties
clearly indicate that such properties are reasonably
well described in model calculations in cases where
the mean-field approximation is justified. The anal-
ysis of potential energy curves provides the latter
justification. However, it turns out that it is more
difficult to describe the clusterization of the differ-
ential charge radii in the Sn and Ca regions for neu-
tron numbers above shell closures at N = 82 and
28 since it depends on the details of the underlying
single-particle structure.

• There are regions of the nuclear chart where the
description at the mean-field level faces difficulties
in reproducing experimental data. In the CDFT
calculations, these are the Ca isotopes, the N < 50
and N > 58 nuclei in the Sr region and the neutron-
poor nuclei in the Pb region. The latter two re-
gions are characterized by shape coexistence, and,
in many cases, the assignment of the calculated ex-
cited prolate minimum to the experimental ground-
state allows understanding the trends of the evolu-
tion of differential charge radii with neutron num-
ber. The inclusion of beyond mean-field effects
could possibly improve the description of charge
radii is these systems. As follows from the com-
parison of the calculated and experimental masses
in Ref. [4] and from increased [as compared with
heavy nuclei] OES in charge radii of very light nu-
clei [see Figs. 26(a), (b) and (c) and Figs. 27(a)],
such effects are expected to play a significant role
in the properties of the ground states of light nu-
clei. That was a reason why light nuclei have been
excluded from the analysis in the present paper.

• It is usually assumed that pairing is the dominant
contributor to OES in charge radii. Our analysis
paints a more complicated picture and suggests a
new additional mechanism where the fragmentation
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of the single-particle content of the ground state in
odd-mass nuclei due to particle-vibration coupling
provides a significant contribution to OES in charge
radii. Note that similarly, the pairing indicators,
which depend on OES of binding energies, are also
expected to be affected by particle-vibration cou-
pling with its impact to be especially pronounced
in spherical nuclei (see Ref. [114]).

• The PECs curves obtained in the calculations with
the CEDF DD-MEδ13 quite frequently deviate from
those obtained with DD-ME2, DD-PC1, NL3* and
PC-PK1. This could also affect the results of be-
yond mean field calculations making them in some
nuclei significantly dissimilar for DD-MEδ as com-
pared with above mentioned functionals.

This difference could be due to two factors, mak-
ing DD-MEδ substantially different from the other
conventional CDFTs:

First, DD-MEδ has less fit parameters, and there-
fore the adjustment of this CEDF could be less suc-
cessful: DD-MEδ is the most microscopic CEDF.
Only four parameters at the saturation density are
fitted to finite nuclei and the full density depen-
dence of the parameters is derived from ab-initio
calculations [47]. On the contrary, the other in-
teractions contain an additional 2 (NL3*), 4 (DD-
ME2), 5 (PC-PK1), and 6 (DD-PC1) phenomeno-
logical parameters for the fine-tuning of different
channels of CEDFs and their density dependence.
Note that not all of these additional parameters are
independent (see Refs. [76, 79]).

Second, in addition to the three spin-isospin chan-
nels represented by the σ-, ω-, and ρ-meson, DD-
MEδ also contains, as the only parameter set con-
sidered here, an isovector scalar channel repre-
sented by the δ-meson. This influences the isospin
dependence of the spin-orbit field and, therefore,

that of the single-particle energies. However, it
is practically impossible to adjust the parameters
of the δ-meson to experimental data because (i)
there is very little data on the isospin dependence
of single-particle energies and the largely unknown
influence of tensor forces and of particle vibrational
coupling [68] forbids the fitting to single-particle
levels anyhow, and (ii) it has been shown in Ref.
[47], that the parameters of the δ-meson cannot
be determined by fitting to the usual bulk prop-
erties of finite nuclei, because here the changes in
the parameters of the δ-meson are completely com-
pensated by corresponding changes in the remain-
ing isovector channel, i.e. by the ρ-meson [47].
Therefore for the CEDF DD-MEδ, in Ref. [47],
the strength and the density dependence of the δ-
nucleon vertex have been adjusted to ab-initio re-
sults, i.e. to the isovector effective mass m∗p −m∗n,
derived from relativistic Brueckner theory in Ref.
[116]. These relativistic Brueckner-Hartree-Fock
(RBHF) calculations suffer from the fact that the
Thompson equation has not been treated in full
Dirac space, and the coupling to negative energy
solutions is only treated approximately. Only re-
cently the RBHF calculations for symmetric nu-
clear matter have been carried out in full Dirac
space [117], but corresponding solutions for asym-
metric nuclear matter are still missing.
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A. Teigelhöfer, and J. Watkins, Proton superfluidity and
charge radii in proton-rich calcium isotopes, Nat. Phys.
15, 432 (2019).

[13] R. P. de Groote, J. Billowes, C. L. Binnersley, M. L.
Bissell, T. E. Cocolios, T. D. Goodacre, G. J. Farooq-
Smith, D. V. Fedorov, K. T. Flanagan, S. Franchoo,
R. F. Garcia-Ruiz, W. Gins, J. D. Holt, Koszorús,
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try, E. Minaya Ramirez, W. Nazarewicz, S. G. Por-
sev, M. S. Safronova, U. I. Safronova, B. Schuetrumpf,
P. Van Duppen, T. Walther, C. Wraith, and A. Yaku-
shev, Probing sizes and shapes of nobelium isotopes by
laser spectroscopy, Phys. Rev. Lett. 120, 232503 (2018).



36

[22] S. O. Allehabi, V. A. Dzuba, V. V. Flambaum, A. V.
Afanasjev, and S. E. Agbemava, Using isotope shift for
testing nuclear theory: The case of nobelium isotopes,
Phys. Rev. C 102, 024326 (2020).

[23] R. F. G. Ruiz and A. Vernon, Emergence of simple pat-
terns in many-body systems: from macrosocpic objects
to the atomic nucleus, Eur. Phys. J. A 56, 136 (2020).

[24] N. Tajima, P. Bonche, H. Flocard, P.-H. Heenen, and
M. S. Weiss, Self-consistent calculation of charge radii
of pb isotopes, Nucl. Phys. A 551, 434 (1993).

[25] M. M. Sharma, G. A. Lalazissis, and P. Ring, Anomaly
in the charge radii of pb isotopes, Phys. Lett. B 317, 9
(1993).

[26] M. M. Sharma, G. Lalazissis, J. König, and P. Ring,
Isospin dependence of the spin-orbit force and effective
nuclear potentials, Phys. Rev. Lett. 74, 3744 (1995).

[27] H. Nakada, Further evidence for three-nucleon spin-
orbit interaction in isotope shifts of nuclei with magic
proton numbers, Phys. Rev. C 92, 044307 (2015).

[28] S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and
D. Zawischa, Isotope shifts within the energy-density
functional approach with density dependent pairing,
Phys. Lett. B 338, 1994 (1).

[29] S. A. Fayans and D. Zawischa, Towards a better
parametrization of the nuclear pairing force: density
dependence with gradient term, Phys. Lett. B 383, 19
(1996).

[30] S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and
D. Zawischa, Nuclear isotope shifts within the local
energy-density functional approach, Nucl. Phys. A 676,
49 (2000).

[31] P.-G. Reinhard and W. Nazarewicz, Toward a global de-
scription of nuclear charge radii: Exploring the fayans
energy density functional, Phys. Rev. C 95, 064328
(2017).
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