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fourth order of the chiral expansion
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Department of Physics, University of Idaho, Moscow, ID 83844, USA

We present and discuss predictions for a cross section of bulk and single-particle properties in
symmetric nuclear matter based on recent high-quality nucleon-nucleon potentials at N3LO and
including all subleading three-nucleon forces. We begin with the equation of state and its saturation
properties and proceed to the single-nucleon potential. We also explore short-range correlations
as seen through the defect function. The various predictions which we present have a common
foundation in an internally consistent ab initio approach.

I. INTRODUCTION

Constructing the equation of state (EoS) of infinite
nuclear matter microscopically from state-of-the-art few-
body interactions remains an important theoretical chal-
lenge in nuclear physics. The EoS gives fundamental in-
sight into effective nuclear forces in the medium, and is a
crucial input in a variety of fields, ranging from heavy-ion
(HI) reactions to astrophysical processes.

High-precision meson-theoretic or phenomenological
interactions [1–3] are still frequently employed in con-
temporary calculations of nuclear matter, structure, and
reactions. However, in those models of the past, three-
nucleon forces (3NFs), or more generally A-nucleon forces
with A > 2, have only a loose connection with the associ-
ated two-nucleon force (2NF) [4]. Furthermore, there ex-
ists no clear scheme to quantify and control the theoreti-
cal uncertainties. Chiral effective field theory (EFT) [5–
7], on the other hand, provides a systematic approach
for constructing nuclear many-body forces, which emerge
on an equal footing [8] with two-body forces, and for
assessing theoretical uncertainties through an expansion
controlled by the “power counting” [9] method. Further-
more, chiral EFT maintains consistency with the symme-
tries and of the underlying fundamental theory of strong
interactions, quantum chromodynamics (QCD), and the
breaking of those symmetries.

For the reasons described above, chiral EFT has
evolved into the authoritative approach for developing
nuclear forces, and modern applications have focused on
few-nucleon reactions [10–15], the structure of light- and
medium-mass nuclei [16–30, 32, 33], infinite matter at
zero temperature [7, 30, 31, 34–42] and finite tempera-
ture [43, 44], and nuclear dynamics and response func-
tions [45–51]. Although satisfactory predictions have
been obtained in many cases, specific problems per-
sist. These include the description of bulk properties
of medium-mass nuclei, which typically exhibit charge
radii that are too small [52] and binding energies that
are highly sensitive to the choice of nuclear force and of-
ten turn out to be too large [53]. More recently, it has
been observed that chiral two- and three-nucleon inter-
actions (at N2LO and at N3LO) which have been found
to predict realistic binding energies and radii for a wide
range of finite nuclei (from p-shell nuclei up to nickel iso-

topes) are unable to saturate infinite nuclear matter [54].
On the other hand, it has been shown that, when the fits
of the cD and cE couplings of the chiral three-nucleon
interactions include the constraint of nuclear matter sat-
uration in addition to, as is typically the case, the triton
binding energy, medium-mass nuclei are underbound and
their radii are sytematically too large [55]. Local chiral
interactions employed within the auxiliary field diffusion
Monte Carlo method have provided good descriptions of
nucle in the mass range between A=3 and A=16 [56, 57].

This has led some groups to fit the low-energy con-
stants that parametrize unresolved short-distance physics
in chiral nuclear forces directly to the properties of
medium-mass nuclei [58] and, indeed, better predictions
for other isotopes are then obtained. However, in the
ab initio spirit, one would prefer a genuine microscopic
approach in which the 2NF is fixed by two-nucleon data
and the 3NF by three-nucleon data, with no further fine
tuning. Applications to systems with A > 3 would then
be true predictions, though possibly with large uncer-
tainties.

In Ref. [59], high-quality soft chiral NN potentials
from leading order to fifth order in the chiral expansion
were constructed. These interactions are more consistent
than those constructed earlier [5, 60, 61], in the sense that
the same power counting scheme and cutoff procedures
are used at all orders. For these potentials, the very accu-
rate πN low-energy constants (LECs) determined in the
Roy-Steiner analysis of Ref. [62] are applied. The un-
certainties associated with these LECs are so small that
variations within the errors have negligible impact on the
construction of the potentials. These potentials are soft
and have good perturbative behavior, as demonstrated
in the investigations of Refs. [63, 64].

In a recent work [65], we concentrated on the neu-
tron matter (NM) EoS and the density dependence of
the symmetry energy with chiral 2NFs and 3NFs up to
N3LO, order-by-order and with proper chiral uncertainty
quantification. Our main focal point was the symmetry
energy, which we discussed in relation to recent empir-
ical constraints [66]. In the present work, we wish to
address several aspects related to the EoS of symmetric
nuclear matter (SNM), from bulk to single-particle prop-
erties. First, we will show order-by-order predictions for
the EoS and quantify the truncation error. In this way,
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we will be able to assess the level of agreement with pre-
vious work based on the same 2NF [64], where a different
many-body method is utilized.

Having addressed bulk properties, we will study the
impact of 3NFs on the single-particle potential. Single-
particle energies, often parametrized in terms of effective
masses, provide insight into both density and momentum
dependence of the in-medium interaction, and are an im-
portant part of the input for transport calculations.

Single-particle properties are impacted by short-range
correlations (SRC), which we will address next. We will
explore SRC in nuclear matter as seen through the corre-
lated vs. the uncorrelated wave functions. In particular,
we will investigate the impact of complete 3NFs at N3LO
on central and tensor correlations. Short-range correla-
tions have been at the forefront of recent discussions.
Claims that momentum distributions in nuclei, with par-
ticularly emphasis on SRC, can be measured have stim-
ulated considerable interest in the subject. These are
not new discussions, but they have recently resurfaced in
conjunction with inclusive or exclusive high-momentum
transfer electron scattering experiments [67–78]. We will
include a brief discussion of the issue.

The manuscript is organized as follows: in Sec. II we
briefly summarize the main features of the 2NFs and
3NFs employed in this work. The reader is referred to
Ref. [59] for a complete and detailed description of the
2NF. In Sec. III we present and discuss a variety SNM
properties. Our conclusions are summarized in Sec. IV,
along with near-future plans.

II. FEW-NUCLEON FORCES

A. The two-nucleon force

The NN potentials employed in this work are part
of a set that spans five orders in the chiral EFT expan-
sion, from leading order (LO) to fifth order (N4LO), with
the same power counting scheme and regularization pro-
cedures applied through all orders. Another novel and
important aspect in the construction of these improved
potentials is the fact that the long-range part of the in-
teraction is fixed by the πN LECs as determined in the
very accurate analysis of Ref. [62] – in practice, errors in
the πN LECs are no longer an issue with regard to uncer-
tainty quantification. Furthemore, at the fifth (and high-
est) order, the NN data below pion production threshold
are reproduced with high precision (χ2/datum = 1.15).

Iteration of the potential in the Lippmann-Schwinger
equation, and the fact that we are building a
low-momentum expansion, require cutting off high-
momentum components. This is accomplished through
the application of a regulator function, which, for the
bare NN potentials we use [59], have the non-local form

f(p′, p) = exp[−(p′/Λ)2n − (p/Λ)2n] . (1)

In building 3NFs in terms of medium-dependent 2NFs

– see next section – we adopt the same choice for con-
sistency. Furthermore, the momentum-space expressions
for the density-dependent 2NF are simpler and cutoff ar-
tifacts have been shown to be relatively small [79].

For the reasons mentioned in Sec. I, we will employ
the softer version of these potentials, with cutoff Λ =
450 MeV.

B. The three-nucleon force

Three-nucleon forces first appear at N2LO of the ∆-less
theory, which we apply in this work. At this order, the
3NF consists of three contributions [10]: the long-range
two-pion-exchange (2PE) graph, the medium-range one-
pion-exchange (1PE) diagram, and a short-range con-
tact term. We show the topologies in Fig. 1. In infi-
nite matter, these 3NFs can be expressed in the form of
density-dependent effective two-nucleon interactions as
derived in Refs. [80, 81]. They are represented in terms
of the well-known non-relativistic two-body nuclear force
operators and, therefore, can be conveniently incorpo-
rated in the usual NN partial wave formalism and the
particle-particle ladder approximation for computing the
EoS. The effective density-dependent two-nucleon inter-
actions at N2LO consist of six one-loop topologies. Three
of them are generated from the 2PE graph of the chiral
3NF and depend on the LECs c1,3,4, which are already
present in the 2PE part of the NN interaction. Two one-
loop diagrams are generated from the 1PE diagram, and
depend on the low-energy constant cD. Finally, there
is the one-loop diagram that involves the 3NF contact
diagram, with LEC cE .

The 3NF at N3LO has been derived [82, 83] and ap-
plied in some nuclear many-body systems [41, 64, 84, 85].
The long-range part of the subleading chiral 3NF consists
of (cf. Fig. 2): the 2PE topology, which is the longest-
range component of the subleading 3NF, the two-pion-
one-pion exchange (2P1PE) topology, and the ring topol-
ogy, generated by a circulating pion which is absorbed
and reemitted from each of the three nucleons. The
in-medium NN potentials corresponding to these long-
range subleading 3NFs in SNM are given in Ref. [86]. The
short-range subleading 3NF consists of (cf. Fig. 2): the
one-pion-exchange-contact topology (1P-contact), which
gives no net contribution, the two-pion-exchange-contact
topology (2P-contact), and relativistic corrections, which
depend on the CS and the CT LECs of the 2NF and are
proportional to 1/M , where M is the nucleon mass. The
in-medium NN potentials corresponding to the short-
range subleading 3NFs in SNM can be found in Ref. [87].

The LECs we use in this work, displayed in Table I,
are from Ref. [64]. A technical remark is in place: when
the subleading 3NFs are included, the c1 and c3 LECs
are replaced by -1.20 GeV−1 and -4.43 GeV−1, respec-
tively. This is because most of the subleading two-pion-
exchange 3NF has the same mathematical structure as
the leading one [88] and thus, in practice, a large part of
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(a) (b) (c)

FIG. 1: Diagrams of the leading 3NF: (a) the long-range 2PE, depending on the LECs c1,3,4; (b) the medium-range 1PE,
depending on the LEC cD; (c) the short-range contact, depending on the LEC cE .

(a) (b) (c) (d) (e)

FIG. 2: Some diagrams of the subleading 3NF, each being representative of a particular topology: (a) 2PE; (b) 2P1PE; (c)
ring; (d) 1P-contact; (e): 2P-contact. Note that the 1P-contact topology makes a vanishing contribution.

the subleading two-pion-exchange 3NF can be accounted
for with a shift of the LECs equal to -0.13 GeV−1 (for
c1), 0.89 GeV−1 (for c3), and -0.89 GeV−1 (for c4) [82].

III. SYMMETRIC NUCLEAR MATTER

We perform microscopic calculations of nuclear matter
with the interactions described above. We compute the
EoS using the nonperturbative particle-particle ladder
approximation, which generates the leading-order contri-
butions in the traditional hole-line expansion. The next
set of diagrams is comprised of the three hole-line con-
tributions, which includes the third-order particle-hole
(ph) diagram considered in Ref. [39]. The third-order
hole-hole (hh) diagram (fourth order in the hole-line ex-
pansion) was found to give a very small contribution to
the energy per particle at normal density (see Table II
and Table III of Ref. [39]). The ph diagram is relatively
larger, bringing in an uncertainty of about 1 MeV on the
potential energy per particle at normal density. We com-
pute the single-particle spectrum for the intermediate-
state energies self-consistently, keeping the real part.

A. Order by order predictions for the EoS

We begin with the study displayed in Fig. 3. The
curves are obtained with Λ = 450 MeV and the different
sets of cD, cE LECs displayed in Table I, of which set
(c) produces the best saturating behavior. In Fig. 4, we
show the energy per particle from leading to fourth or-
der. While the EoS has already a realistic behavior at the
first order where 3NFs appear (N2LO), there is a definite
improvement when moving to N3LO, for both saturation
density and energy. This is an important validation of

the predictive power of the chiral EFT – of course, NN
data and the three-nucleon system must be described ac-
curately for any subsequent many-body predictions to be
meaningful.

Next, we discuss chiral uncertainties. As pointed out
in Sec. II A, errors in the πN LECs are no longer an issue
with regard to uncertainty quantification. On the other
hand, crucial to chiral EFT is the truncation error. If
observable X is known at order n and at order n + 1,
a reasonable estimate of the truncation error at order n
can be expressed as the difference between the value at
order n and the one at the next order:

∆Xn = |Xn+1 −Xn| , (2)

since this is a measure for what has been neglected at or-
der n. To estimate the uncertainty at the highest order
that we consider, we follow the prescription of Ref. [89].
For an observable X that depends on the typical momen-
tum of the system under consideration, p, one defines Q
as the largest between p

Λb
and mπ

Λb
, where Λb is the break-

down scale of the chiral EFT, for which we assume 600
MeV [89]. The uncertainty of the value of X at N3LO is
then given by:

∆X = max{Q5|XLO|, Q3|XLO−XNLO|, Q2|XNLO−XN2LO|,

Q|XN2LO −XN3LO|} , (3)

where p could be identified with the Fermi momentum at
the density under consideration. To evaluate the trun-
cation error for saturation parameters using Eq. (3), one
might define a nominal “saturation” density, say ρ0 =
0.16 fm−3, for all orders. On the other hand, the EoS
at LO and NLO do not exhibit a saturating behavior,
thus, it may be more meaningful to consider the ac-
tual saturation densities for the EoS which do saturate
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TABLE I: Values of the LECs c1,3,4, cD, and cE for different orders in the chiral EFT expansion. The momentum-space cutoff
Λ is equal to 450 MeV. The LECs c1,3,4 are given in units of GeV−1, while cD and cE are dimensionless.

Λ (MeV) c1 c3 c4 cD cE CS CT

N2LO 450 –0.74 –3.61 2.44 (a) 2.25 0.07 -0.013000 -0.000283

(b) 2.50 0.1

(c) 2.75 0.13

N3LO 450 –1.07 –5.32 3.56 (a) 0.00 -1.32 -0.011828 -0.000010

(b) 0.25 -1.28

(c) 0.50 -1.25

(namely, those including 3NFs), especially for the pur-
pose of evaluating the incompressibility, which measures
the curvature of the EoS at the minimum. Estimat-
ing (pessimistically) the truncation error at N3LO as
|XN3LO − XN2LO|, we find, for the saturation density
at N3LO, ρ0 = (0.161 ± 0.015) fm−3. Proceeding in the
same way for the saturation energy and the incompress-
ibility, we find, at N3LO, e(ρ0) = (-14.98 ± 0.85) MeV,
and K0 = (216 ± 33) MeV. Adopting, instead, the pre-

scription |XN3LO−XN2LO|QΛ , where Q is identified with
the Fermi momentum at saturation density, the errors
would be reduced by about 44%.

Figure 5 displays the predictions at N3LO with the un-
certainty band calculated from Eq. 3. We note that our
N3LO(450) results for the energy per particle at satura-
tion agree with those from Ref. [64] within uncertainties.

B. The single-particle potential

Bulk properties of nuclear matter are very insightful
for testing theories as well as providing a connection with
bulk properties of nuclei. On the other hand, momentum-
and density-dependent single-particle potentials (SPP)
in nuclear matter provide complementary, and more de-
tailed information which is needed for HI transport sim-
ulations.

Together with the SPP in NM, one can construct
the momentum and density dependent SPP in isospin-
asymmetric matter – and thus the symmetry poten-
tial – to be used, for instance, in Boltzmann-Uehling-
Uhlenbeck (BUU) calculations of collective nuclear dy-
namics. A number of HI collision observables have been
found to be sensitive to the symmetry potential, such
as the neutron/proton ratio of pre-equilibrium nucleon
emission, neutron-proton differential flow, and the pro-
ton elliptic flow at high transverse momenta.

Next, we will take a look at the underlying Brueck-
ner SPP, derived self-consistently with the G-matrix and,
thus, the EoS, to learn about its momentum dependence
and how that changes with density and chiral order.
First, for two selected densities (saturation density and
about 2/3 of it, corresponding approximately to kF = 1.0
fm−3), we show the single-particle potential at third and
fourth order, Fig. 6.

Single-particle potentials derived from chiral interac-
tions are generally deep and grow monotonically from
the bottom of the Fermi sea. The impact of moving to
fourth order is much larger at the higher density.

The impact of including the complete 3NF up to N3LO
is demonstrated in Fig. 7. The effect is to decrease the
depth of the potential, and is strongly density dependent.
This is a precursor of the repulsive and density dependent
effect of the full 3NF on the average energy per nucleon.

Analyses of HI collision measurements are used to ex-
tract empirical constraints for the EoS. For instance, the
elliptic flow in midperipheral to peripheral collisions was
found to be particularly sensitive to the momentum de-
pendence of the nucleon mean field [90].

More specifically, the connection between the quanti-
ties displayed in Fig. 6-7 and reaction data is through
the nucleon isoscalar and isovector potentials, defined,
respectively, as

U0(k, ρ) =
Un + Up

2
(4)

and

Usym(k, ρ, α) =
Un − Up

2α
, (5)

where α =
ρn−ρp
ρn+ρp

. Naturally, the isovector potential,

also known as the symmetry potential, is relevant for
reactions with neutron-rich nuclei. Of particular interest
are rare isotopes, being studied with radioactive isotope
beams (RIB).

Isospin and momentum dependent transport models
for nuclear reactions are computed with accurately cal-
ibrated codes [91, 92]. Sensitivities of specific observ-
ables are carefully probed in different regions of the reac-
tion phase space [93, 94]. For instance, charge exchange
reactions to isobaric analog states (IAS) were found to
be dominated by the isovector nucleon potential [95].
On the other hand, for the purpose of extracting con-
straints on the nucleon field and the symmetry energy,
reaction data are often analysed using phenomenologi-
cal models. For the isovector potential, in particular,
constraints are determined using families of Skyrme or
Gogni parametrizations [96, 97], and discussed in terms
of the “mass splitting” – that is, whether the effective
mass of a proton is smaller or larger than the effective



5

-16

-14

-12

-10

-8

-6

E/
A

 (M
eV

)

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32
ρ (fm-3)

          

N3LO 450a 
N3LO 450b 
N3LO 450c 

FIG. 3: Energy per particle as a function of density at N3LO and cutoff equal to 450 MeV. The labels a, b, and c refer to the
different sets of cD, cE values given in Table I.
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FIG. 4: Energy per particle as a function of density from leading to fourth order of the chiral expansion. The cutoff is fixed at
450 MeV.

-16

-14

-12

-10

-8

-6

E/
A

 (M
eV

)

0 0.04 0.08 0.12 0.16 0.2 0.24
ρ (fm-3)

FIG. 5: Energy per particle as a function of density at fourth order of chiral expansion. The band shows the uncertainty
calculated from Eq. 3.

mass of the neutron in isospin asymmetric matter, with
different parametrizations yielding one conclusion or the
other. We submit that extraction of reliable constraints
through analyses of reaction observables at RIB facilities
should be guided by state-of-the-art theories of nuclear

forces and self-consistent nucleon potentials.
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FIG. 6: Predictions for the SPP at N2LO and N3LO. The cutoff is fixed at 450 MeV. For the left (right) frame, the Fermi
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FIG. 7: Impact of including the 3NF up to N3LO (solid curves) at two different densities. Left: kF = 1.0 fm−1; right: kF =
1.333 fm−1. The cutoff is fixed at 450 MeV.

C. Short-range correlations

Correlations in nuclear matter and nuclei carry impor-
tant information about the underlying nuclear forces and
their behavior in the medium. Since the early Brueckner
nuclear matter calculations [98], it has been customary to
associate the correlated two-body wave functions to the
strength of the nucleon-nucleon NN potential in specific
channels. For instance, the 3S1−3D1 channel will reveal
tensor correlations, which is of particular interest, since
the model dependence among predictions from different
NN potentials – those which cannot be constrained by
NN data – resides mostly in the strength of their respec-
tive (off-shell) tensor force. The most popular example
is the deuteron D-state probability.

Here, we wish to look at some well-established concepts

through a contemporary lens. First, a brief review of
useful definitions.

In terms of relative and center-of-mass momenta, the
Bethe-Goldstone equation can be written as

G(k0,k,P
c.m., E0, kF ) = V (k0,k)+

∫
d3k

′
V (k0,k

′
)
Q(kF ,k

′
,Pc.m.)

E − E0
G(k

′
,k,Pc.m., E0, kF ) ,

(6)

where k, k0, and k
′

are the final, initial, and inter-
mediate momenta of the two nucleons relative to their
center of mass, respectively, and P is the total momen-
tum. V is the NN potential, Q is the Pauli operator,
E = E(k

′
,Pc.m.), and E0 = E(k0,P

c.m.), with the func-
tion E the total energy of the two-nucleon pair.
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The second term of Eq. (6) builds SRC into the wave
function through the infinite ladder sum. In operator no-
tation, the correlated (ψ) and the uncorrelated (φ) wave
functions are related through

Gφ = V ψ , (7)

from which it follows that

ψ − φ = V
Q

E − E0
Gφ . (8)

Equation (8) defines the difference between the correlated
and the uncorrelated wave functions, f = ψ−φ, referred
to as the defect function. The defect function has the
attribute of being different from zero over the (finite)
range where SRC correlations are effective.

It is convenient to consider the momentum-dependent
Bessel transform of the defect function for each angular
momentum state [and average center-of-mass momentum
P c.m.avg (k0, kF )]:

fJSTLL′ (k, k0, kF ) =
k Q̄(kF , k, P

c.m.
avg )GJSTLL′ (P c.m.avg , k, k0)

E0 − E
,

(9)
where the angle-averaged Pauli operator has been em-
ployed. Also, following a well-established procedure [98]
to angle-average the center-of-mass momentum, we ob-
tain:

Pavg =
3

5
k2
F

(
1− k0

kF

)(
1 +

k2
0/k

2
F

3(2 + k0/kF )

)
. (10)

The magnitude squared of fJSTLL′ (k, k0, kF ) is the proba-
bility of exciting two nucleons with relative momentum
k0 and relative orbital angular momentum L to a state
with relative momentum k and relative orbital angular
momentum L′. (Following an earlier work [99], we take
the initial momentum equal to 0.55kF .) These compo-
nents of the correlated wave function are the basis for
the definition of the “wound integral”, which, for each
partial wave at some density ρ, is given by

κJSTLL′ (k0, kF ) = ρ

∫ ∞
0

|fJSTLL′ (k, k0, kF )|2dk . (11)

Thus, f and κ provide a clear measure of the strength of
correlations present in each channel. The wound integral
was first introduced by Brandow [100] in the context of
the Brueckner-Bethe-Goldstone theory of nuclear matter.

In Table II, we present the contributions to the inte-
gral, Eq. (11), from selected states or groups of states for
different choices of the interaction and three densities.
For all densities and models, it is apparent that SRC in
nuclear matter are mainly due to coupled S-waves. At
both the third and the fourth orders, the impact of 3NFs
is largest in 3S1 −3 D1 – more so at the fourth order –
indicating additional tensor force from the 3NF. With
regard to density dependence, several mechanisms play
competing roles in the density dependence of κ, such as

weaker Pauli blocking at lower density, enhanced impact
of the repulsive core with increasing density (for partial
waves dominated by the central force), increased strength
of the tensor force from the 3NFs. Overall, looking at the
values of κ from all partial waves, we conclude that SRC
generally decrease as density increases for the cases with
only 2NFs, whereas the opposite is true in the presence
of 3NFs – possibly the result of competing effects from
the 3NF (enhancing correlations) and Pauli blocking.

In Table III, we show the values of κ (from all partial
waves) obtained with three very different 2NFs: a state-
of-the-art chiral potential, a high-precision momentum-
space potential from the 90’s [101], and the local
AV18 [3]. In Fig. 8, the probability amplitudes – magni-
tude squared of Eq.(II) for the J = 1 coupled states– are
displayed for the three cases considered in Table III. The
impact of the cutoff in chiral EFT is apparent, with the
local AV18 extending the farthest, and both AV18 and
CD-Bonn extending much farther than N3LO.

These quantities, which can be dramatically different
from model to model – as has been known for decades
– are not observable. The SRC probabilities and high-
momentum distributions in nuclei, which have been and
are being extracted from hard electron scattering experi-
ments [67–78] are equally non-observable, although high-
momentum information can be extracted from data in
a scale and scheme dependent way [102]. The recent
comprehensive analysis from Ref. [102] describes the sit-
uation very clearly: the SRC knock-out experiments do
have merit, but their value “...is not new insight into the
interaction, but to demonstrate that short-range physics
can be isolated and to a certain extent controlled.” Re-
sults of these experiments cannot be used to to select the
“best” off-shell behavior, a concept that can be proven
to be fundamentally impossible [103–105]. For instance,
the momentum distribution of AV18 extends past 4 fm−1,
meaning that strong SRC are built into the wave func-
tion. On the other hand of the spectrum are SRG-evolved
interactions, with no high-momentum components. If
predictions with a particular potential are closest to the
knock-out measurements, in no way that implies that the
“measured” off-shell behavior has selected that particular
interaction – it means that the latter is more suitable for
the assumptions made in the data analyses, for instance,
impulse approximation. Ultimately, predictions from ob-
servables must agree for any realistic model, whether
SRC are built into the wave function or in the opera-
tors [102].

IV. SUMMARY, CONCLUSIONS, AND
FUTURE PLANS

We calculated the EoS of SNM from leading to fourth
order. At N3LO, we include all subleading 3NFs. An
EoS with good saturation properties (density, energy, and
curvature) can be obtained from chiral EFT and a softer
cutoff (smaller than 500 MeV).
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FIG. 8: Magnitude squared of the defect function in the 3S1 −3D1 channel as a function of momentum. Solid red: N3LO(450);
dashed blue: CD-Bonn; dotted black: AV18. All curves are obtained with 2NFs only.

TABLE II: Contributions to the wound integral, Eq. 11, from J = 0 and J = 1 states with different interactions and changing
densities. The last column shows the contribution from all partial waves.

kF (fm−1) Model 1S0 Total from J=0 3S1 −3 S1
3S1 −3 D1 Total from J=1 All partial waves

1.1 N2LO 0.0081 0.0086 0.027 0.047 0.087 0.093

N2LO+3NF 0.0028 0.0033 0.015 0.079 0.1064 0.1141

N3LO 0.011 0.011 0.038 0.062 0.1146 0.1203

N3LO+3NF 0.0088 0.0092 0.0351 0.095 0.1479 0.1555

1.3 N2LO 0.0033 0.0039 0.011 0.033 0.053 0.059

N2LO+3NF 0.0054 0.0059 0.0040 0.082 0.109 0.1185

N3LO 0.0085 0.0088 0.019 0.046 0.079 0.085

N3LO+3NF 0.016 0.016 0.015 0.096 0.141 0.151

1.4 N2LO 0.0023 0.0031 0.0070 0.027 0.042 0.048

N2LO+3NF 0.0095 0.010 0.0047 0.084 0.1194 0.1303

N3LO 0.0090 0.0093 0.014 0.038 0.067 0.073

N3LO+3NF 0.022 0.023 0.0094 0.097 0.1484 0.1599

We have also shown a representative sample of SPP
results, which we obtain self-consistently from the G-
matrix. We find the effect of 3NFs on the SPP to be large
at normal densities. Microscopically calculated SPP pro-
vide useful information to guide parametrizations of the
nucleon potential for use in transport simulations.

We then moved to a discussion of SRC in nuclear mat-
ter, as seen through the momentum-space defect function
and the integral of its magnitude squared. Central and
tensor correlations are seen mostly in uncoupled and cou-
pled S-waves. We took the opportunity to comment on
the model dependence and the non-observable nature of
SRC.

Having the EoS for SNM and NM [65] consistently at
N3LO, we are in the position to revisit neutron skins
and neutron stars. Our work in progress includes an-

other form of correlations, namely pairing in nuclear and
neutron matter. Pairing is a two-body correlation near
the Fermi surface – hence, it has features common to
any quantum system of fermions. The appearance of su-
perfluidity in neutron stars suppresses standard neutrino
cooling processes, and thus pairing effects can have a re-
markable role on the evolution of a neutron star.
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