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As an extension of previous work, we calculate the production cross-section of heavy neutron-rich isotopes
by employing the quantal diffusion description to 48Ca+ 238U collisions. The quantal diffusion is deduced
from stochastic mean-field approach, and transport properties are determined in terms of time-dependent single-
particle wave functions of the time-dependent Hartree-Fock (TDHF) theory. As a result, the approach allows
for prediction of production cross-sections without any adjustable parameters. The secondary cross-sections by
particle emission are calculated with the help of the statistical GEMINI++ code.

I. INTRODUCTION

Extensive experimental investigations of the multi-nucleon
transfer process have been done in heavy-ion collisions with
actinide targets at near barrier energies [1–9], and more inves-
tigation are currently in progress. These studies may provide
an efficient mechanism for production of heavy neutron-rich
isotopes, which may not otherwise be possible in fusion, fis-
sion, and fragmentation reactions. In quasi-fission reactions,
colliding nuclei stick together in a di-nuclear configuration.
During long contact times, large number of nucleons are trans-
ferred between projectile-like and target-like nuclei.

In theoretical studies of multi-nucleon transfer mecha-
nism a number of macroscopic models have been employed
including the di-nuclear system model [10–13], Langevin-
type stochastic models [14–19], and the quantum diffusion
model [20–22]. These phenomenological models with a num-
ber of adjustable parameters provide qualitative and partly
semi-quantitative description of the reaction mechanism.

In order to provide a more reliable predictive capability, it
is highly desirable to develop a microscopic description with-
out any adjustable parameters. The time-dependent Hartree-
Fock (TDHF) theory with effective interactions (effective en-
ergy density functional) provides a microscopic description
for nuclear dynamics at low energies where the Pauli block-
ing is very effective [23–27]. The applicability of TDHF to
study quasi-fission for a wide selection of systems is well es-
tablished [25–34] (see [23,35–37] for recent reviews of TDHF
applications to heavy-ion reactions). However, the TDHF the-
ory has a severe limitation: it can only describe the most
probable dynamical path of the collision dynamics with small
fluctuations around it. It describes the mean kinetic energy
loss due to one body dissipation rather well but it cannot de-
scribe the large dispersions of mass and charge distribution
of the fragments. Particle projection method applied to TDHF
clearly demonstrates that dispersion of a few nucleon transfers
are described reasonable well but it falls short for a large num-
ber of transfers [31,38]. This suggests that an improvement of
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the TDHF theory beyond the mean-afield approximation is re-
quired. The time-dependent random phase approximation of
Balian and Vénéroni provided a significant improvement be-
yond the mean field approximation for the dispersions of the
one-body observables [39–42].

The stochastic mean-field (SMF) approach provides further
improvement of the TDHF beyond the mean field approxi-
mation [43–46]. In particular, the quantal transport descrip-
tion obtained by projecting the SMF approach on a collec-
tive space provides a powerful microscopic tool for describ-
ing multi-nucleon transfer mechanism, energy dissipation and
fluctuations in low energy heavy-ion collisions. As we dis-
cussed in publication [47], employing closure relation in di-
abatic limit makes it possible to calculate macroscopic trans-
port coefficients in terms of only the occupied single particle
states of TDHF. As a result, microscopic transport descrip-
tion of dissipation and fluctuation dynamics of low heavy-ion
collisions are characterized in terms of TDHF wave functions
by taking quantal effects due to shell structure, full collision
geometry and Pauli exclusion principle into account without
any adjustable parameters. In the analyses, we do not make
a distinction between quasi-fission and multi-nucleon transfer
mechanism.

In Sec. II we briefly describe the quantal diffusion de-
scription of multi-nucleon transfer based on the SMF ap-
proach. Section III presents the result of calculations of
isotope cross-section produced in 48Ca + 238U collisions at
Ec.m. = 193 MeV. In Sec. IV, conclusions are given.

II. QUANTUM DIFFUSION DESCRIPTION OF
MULTINUCLEON TRANSFER

In TDHF theory a unique single-particle density matrix is
calculated with a given initial condition. On the other hand,
in the SMF approach to the mean-field theory an ensemble
of single-particle density matrices are generated by incorpo-
rating the fluctuations of the initial state. The single parti-
cle density matrix in each event is determined by the TDHF
equations with the self-consistent Hamiltonian of that event.
In each event of the SMF approach, fluctuations of the ran-
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dom element of the initial density matrices are determined
by Gaussian distributions with variances specified by the re-
quirement that ensemble average of dispersions of one-body
observables matches the quantal expressions in the mean-field
approach.

When a di-nuclear structure is maintained in the collision
dynamics, we do not need to generate an ensemble of mean-
field events. In this case, it is possible to develop much easier
transport description in terms of Langevin transport equations
for relevant macroscopic variables by the geometric projec-
tion procedure of the SMF approach with the help of the win-
dow dynamics. For details of the quantal diffusion description
and the window dynamics we refer to Refs. [46–52]. For de-
scribing nucleon diffusion mechanism, we consider neutron
number and proton number of the projectile-like fragments as
relevant macroscopic variables. We can determine the neutron
Nλ

1 (t) and proton Zλ
1 (t) numbers of the projectile-fragments

in an event λ by integrating the particle density on the left
side or the right side of the window, according to the window
dynamics,(

Nλ
1 (t)

Zλ
1 (t)

)
=
∫

d3r Θ[(x− x0)cosθ +(y− y0)sinθ ]

×
(

ρλ
n (~r, t)

ρλ
p (~r, t)

)
, (1)

where the quantity

ρ
λ
α (~r, t) = ∑

i j∈α

Φ
∗α
j (~r, t;λ )ρλ

jiΦ
α
i (~r, t;λ ) , (2)

denotes the neutron and proton number (α = n, p) densities
in the event λ of the ensemble of the single-particle density
matrices. In this expression, x0(t) and y0(t) are the coordi-
nates of the window center relative to the origin of the center
of mass frame, θ(t) is the smaller angle between the orien-
tation of the symmetry axis of the di-nuclear system and the
beam direction. Neutron and proton numbers of the projectile-
like fragments (or target-like fragments) fluctuate from one
event to another, and these numbers can be decomposed as
Nλ

1 (t) = N1(t)+ δNλ
1 (t) and Zλ

1 (t) = Z1(t)+ δZλ
1 (t). Here,

N1(t) and Z1(t) are the mean values determined by the mean-
field description of the TDHF theory. According to the quan-
tal diffusion approach, fluctuations of the neutron δNλ

1 (t) and
the proton δZλ

1 (t) numbers evolve according to the coupled
Langevin equations,

d
dt

(
δZ1(t)
δN1(t)

)
=

(
∂vp
∂Z1

(
Zλ

1 −Z1
)
+

∂vp
∂N1

(
Nλ

1 −N1
)

∂vn
∂Z1

(
Zλ

1 −Z1
)
+ ∂vn

∂N1

(
Nλ

1 −N1
) )

+

(
δvλ

p (t)
δvλ

n (t)

)
, (3)

where quantities vλ
α(t) = vα(t) + δvλ

α(t) are the drift coef-
ficients of neutrons and protons with the mean values and
the fluctuating parts are expressed by vα(t) and δvλ

α(t), with
α denoting neutron and proton labels. The linear limit of
Langevin description presented here provides a good approx-
imation when the driving potential energy is nearly harmonic

around the mean values of the mass and charge asymme-
try. The mean values of drift coefficients are extracted from
TDHF, and their derivatives are evaluated at the mean values.
The explicit expressions of the stochastic parts of drift coeffi-
cients δvλ

α(t) can be found in Ref. [47].

A. Quantal Diffusion Coefficients

Stochastic part of the drift coefficients, δvλ
p (t) and δvλ

n (t),
provide the source for generating fluctuations in mass and
charge asymmetry degrees of freedom. According to the SMF
approach, stochastic parts of drift coefficients have Gaus-
sian random distributions with zero mean values, δ v̄λ

p (t) = 0,
δ v̄λ

n (t) = 0, and the auto-correlation functions of stochastic
drift coefficient integrated over their time history determine
diffusion coefficients Dαα(t) for proton and neutron transfers,

∫ t

0
dt ′δvλ

α(t)δvλ
α(t ′) = Dαα(t) . (4)

In general diffusion coefficients involve a complete set of
particle-hole states. It is possible to eliminate the entire set of
particle states by employing closure relations in the diabatic
limit, which is a good approximation for evolution of TDHF
wave function during short time intervals. This provides a
great simplification and as a result, diffusion coefficients are
determined entirely in terms of the occupied single-particle
states of the TDHF evolution. Explicit expressions of diffu-
sion coefficients are provided in previous publications [46–51]
and for analysis of these coefficients please see Appendix B in
Ref. [47]. As seen in these expressions, the source of fluctua-
tions, which are expressed with diffusion coefficient, are spec-
ified by the mean-field properties. This result is consistent
with the fluctuation dissipation theorem of non-equilibrium
statistical mechanics and greatly simplifies calculations of the
diffusion coefficient. Diffusion coefficients include the quan-
tal effects due to shell structure, Pauli blocking, and full ef-
fect of the collisions geometry without any adjustable param-
eters. We observe that there is a close analogy between the
quantal expression and the classical diffusion coefficient in
the random walk problem [53–55]. The direct part is given as
the sum of the nucleon currents across the window from the
target-like fragment to the projectile-like fragment and from
the projectile-like fragment to the target-like fragment, which
is integrated over the memory. This is analogous to the ran-
dom walk problem, in which the diffusion coefficient is given
by the sum of the rate for the forward and backward steps.
The second part in the quantal diffusion expression stands
for the Pauli blocking effects in nucleon transfer mechanism,
which does not have a classical counterpart. As an example,
in Fig. 1 we present neutron and proton diffusion coefficients
in 48Ca+ 238U collision at Ec.m. = 193 MeV for the initial an-
gular momentum `= 40h̄.
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FIG. 1. Neutron and proton diffusion coefficients as a function of
time in 48Ca+ 238U collision at Ec.m. = 193 MeV for the tip geome-
try of the uranium and initial orbital angular momentum `= 40h̄.

B. Derivatives of drift coefficients

To solve the coupled Langevin Eqs. (3) we need to evalu-
ate derivatives of the mean drift coefficients with respect to
neutron and proton numbers. A single mean-field event is not
sufficient to evaluate these derivatives. To calculate deriva-
tives, one needs to evolve several mean-field events with sim-
ilar initial conditions. As another possibility for determining
the derivatives, we can employ the Einstein relation in the over
damped limit [46–51]. In the over damped limit, drift coef-
ficients are related to the driving potential energy surface in
(N,Z)-plane as,

vn =−
DNN

T ∗
∂U
∂N1

,

vn =−
DNN

T ∗
∂U
∂N1

, (5)

where T ∗ and U(N1,Z1) represent the effective temperature
and the potential energy surface of the system. As an exam-
ple, Fig. 2 shows the evolution of the mean values of neutron
and proton numbers of projectile-like fragments as a func-
tion of time in 48Ca + 238U collision at Ec.m. = 193 MeV
for the tip orientation with initial orbital angular momentum
` = 40h̄. The thick black line in Fig. 3 shows the drift path,
which represents the mean evolution of neutron and proton
numbers of the projectile-like fragments in the (N,Z)-plane.
The charge asymmetry of projectile 48Ca and target 238U are
(N−Z)/(N+Z)≈ 0.17 and (N−Z)/(N+Z)≈ 0.23, respec-
tively. During the initial phase of the collision from touching
point at tA = 180 fm/c until about tB = 480 fm/c system rapidly
evolves toward charge equilibration with charge asymmetry
approximately equal to (N − Z)/(N + Z) ≈ 0.20. After this
instant the system follows nearly a straight line path, referred
to as the iso-scalar path, toward mass symmetry at which
neutron and proton numbers are N0 = (Np + NT )/2 = 87,
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FIG. 2. Mean drift path of the projectile-like fragments in (N,Z)−
plane for the 48Ca+ 238U collision with tip geometry of the uranium
at bombarding energy Ecm = 193 MeV and initial angular momen-
tum `= 40h̄.
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FIG. 3. The mean-drift path in the (N,Z)-plane for the 48Ca+ 238U
collision with tip geometry of the uranium at bombarding energy
Ecm = 193 MeV and initial angular momentum `= 40h̄.

Z0 = (Zp +ZT )/2 = 56. We approximately describe the po-
tential energy surface of the the system in (N,Z)− plane in
terms of two parabolas. One of these parabolas is oriented
along the iso-scalar direction with its minimum located at the
mass symmetry point and the second one is oriented in a di-
rection perpendicular to the iso-scalar path with its minimum
located at the iso-scalar path at each point and it is referred to
as the iso-vector path. Potential energy of a fragment with
(N1,Z1) is approximately given by,

U(N1,Z1) =
1
2

aR2
S(N1,Z1)+

1
2

bR2
V (N1,Z1) . (6)

Here, RV = (Z0−Z1)sinφ +(N0−N1)cosφ and RS = (Z0−
Z1)cosφ − (N0−N1)sinφ , represent the distance of a frag-
ment with (N1,Z1) from the equilibrium point and the perpen-
dicular distance from the iso-scalar path, respectively. The
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angle φ is the angle between the iso-scalar path and N−axis,
which is about φ = 32◦. Using Einstein relations in Eq. (5),
we can determine the reduced curvature parameters α = a/T ∗

and β = b/T ∗ in terms of drift and diffusion coefficients.
Since only ratios of the curvature parameters (a,b) and the
effective temperature appear, the effective temperature is not
a parameter in the description. Due to the shell effect the re-
duced curvature parameters vary in time during the TDHF
evolution. We can estimate reduced curvature parameters
by taking average over suitable time intervals. Time inter-
val from touching point A at tA = 200 fm/c until point B
at tB = 500 fm/c, where charge asymmetry equilibration is
reached, provides a suitable interval for calculating the av-
erage value of the reduced iso-vector curvature parameter,

α =
∫ tB

tA

(
vn(t)sinφ

DNN(t)
−

vp(t)cosφ

DZZ(t)

)
/RS(t)dt . (7)

We can also estimate the reduced iso-scalar curvature param-
eter as average over the time interval from tB = 500 fm/c until
close to separation time tC = 1200 fm/c,

β =
∫ tC

tB

(
vn(t)cosφ

DNN(t)
+

vp(t)sinφ

DZZ(t)

)
/RV (t)dt . (8)

We deduce average value of the reduced curvature parameters
as α = 0.13 and β = 0.05. The potential energy surface has a
sharp slope in iso-vector direction and much shallower in the
iso-scalar direction. This is a typical behavior of the potential
energy surface. In a previous work [47], we have determined
the curvature parameters as a function of time for the same
system. Here, we evaluate average values of the reduced cur-
vature parameters over the suitable time intervals. In heavy
di-nuclear systems centrifugal potential energy has a small
contribution to the potential energy surface. Therefore, the
curvature parameters we estimated for the initial angular mo-
mentum ` = 40h̄ provide a good approximation for the other
angular momenta as well. Since the drift coefficients have an
analytical form, we can immediately determine their deriva-
tives as,

∂νn

∂N1
=−DNN

(
α sin2

φ +β cos2
φ
)

(9)

∂νz

∂Z1
=−DZZ

(
α cos2

φ +β sin2
φ
)

(10)

∂νn

∂Z1
=−DNN (β −α)sinφ cosφ (11)

∂νz

∂N1
=−DZZ (β −α)sinφ cosφ . (12)

The curvature parameter α perpendicular to the beta stability
valley is much larger than the curvature parameter β along the
stability valley. Consequently, β does not have an appreciable
effect on the derivatives of the drift coefficients.

C. Fragment probability distributions

In general, joint probability distribution function P̀ (N,Z)
for producing a binary fragment with neutron N and proton Z

numbers is determined by generating a large number of solu-
tions of Langevin Eqs. (3). It is well known that the Langevin
equation is equivalent to the Fokker-Planck equation for the
distribution function of the macroscopic variables [55]. In the
particular case when drift coefficients are linear functions of
macroscopic variables, as we have in Eq. (3), the proton and
neutron distribution function for initial angular momentum `
is given as a correlated Gaussian function described by the
mean values, the neutron, proton and, mixed dispersions as,

P̀ (N,Z) =
1

2πσNN(`)σZZ(`)
√

1−ρ2
`

exp(−C`) . (13)

Here, the exponent C` for each impact parameter is given by

C` =
1

2
(
1−ρ2

`

) [( Z−Z`

σZZ(`)

)2

−2ρ

(
Z−Z`

σZZ(`)

)(
N−N`

σNN(`)

)

+

(
Z−Z`

σZZ(`)

)2
]
, (14)

with ρ` = σ2
NZ(`)/(σZZ(`)σNN(`)). It is possible to de-

duce coupled differential equations for variances σ2
NN(`) =

δNλ δNλ , σ2
ZZ(`) = δZλ δZλ , and co-variances σ2

NZ(`) =

δNλ δZλ by multiplying Langevin Eq. (3) by δNλ and δZλ

and taking the average over the ensemble generated from the
solution of the Langevin equation. These coupled equations
are presented in Refs. [47–51]. Variances and co-variances
are determined from the solutions of these coupled differen-
tial equations with initial conditions σ2

NN(t = 0) = 0, σ2
NN(t =

0) = 0, and σ2
NN(t = 0) = 0 for each angular momentum. As

an example, Fig. 4 shows neutron, proton and mixed vari-
ances as a function of time for the 48Ca+ 238U collisions in
the tip orientation of uranium with the bombarding energy
Ec.m. = 193 MeV for the initial angular momentum ` = 40h̄.
The set of coupled equations are also familiar from the phe-
nomenological nucleon exchange model, and they were de-
rived from the Fokker-Planck equation for the fragment neu-
tron and proton distributions in the deep-inelastic heavy-ion
collisions [56,57]. The quantitiesN` = N̄λ

` , Z` = Z̄λ
` denote

the mean neutron and proton numbers of the target-like or
project-like fragments. These mean values are determined by
the TDHF calculations.

III. RESULTS

In a previous investigation [47], we have calculated primary
fragment mass yield in 48Ca+ 238U collisions at bombarding
energy Ec.m. = 193 MeV, and compared the result with ex-
perimental data of Kozulin et al. [2]. Here we present results
for cross-sections σ(N,Z) of production of primary and sec-
ondary isotopes with proton numbers Z = 64−80 in the same
system at the same bombarding energy. Also we improve the
yield calculation by including binary fragment production by
fusion-fission mechanism. We assume the same experimental
set up where the detectors are placed at angles ±64◦ with 10◦
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FIG. 4. Neutron, proton and mixed variances as a function of time
in the 48Ca+ 238U collision for the tip geometry of the uranium at
bombarding energy Ec.m. = 193 MeV and initial angular momentum
`= 40h̄.

acceptance range in laboratory frame. We consider three colli-
sion geometries of the target nucleus: tip configuration where
the symmetry axis of uranium is parallel to the beam direction
and two side geometries in which symmetry axis of uranium
perpendicular to the beam direction (in reaction plane and per-
pendicular to reaction plane). According to the TDHF calcu-
lations, mean trajectories of fragments reach the acceptance

TABLE I. Final orbital angular momentum ` f , final average total ki-
netic energy T KE, average total excitation energy E∗ and scattering
angles corresponding to a range of initial angular momentum `i.

`i (h̄) ` f (h̄) T KE E∗ θcm θ lab
1 θ lab

2
38 32.8 203.6 76.1 92.8 77.6 52.7
40 33.4 207.8 78.9 86.8 72.0 57.3
42 33.2 203.8 78.4 85.3 70.6 57.8
44 34.7 206.4 69.4 91.5 76.6 53.6
46 38.6 197.7 71.6 91.5 52.4 75.0
48 38.0 195.6 77.6 88.9 74.0 54.1
50 39.8 197.2 74.6 86.9 72.1 55.6
52 42.8 199.5 72.2 85.3 70.7 56.9
54 43.6 196.2 73.0 84.1 69.7 57.1
56 44.2 187.7 81.5 83.5 68.9 56.6

range of detectors in collisions only in the tip configuration
with initial angular momentum in the range `= 38−56h̄. Ta-
ble I shows results of TDHF calculations in tip geometry for
final angular momentum, final total kinetic energy, total exci-
tation energy, scattering angles in the center of mass frame and
laboratory frame for a range initial angular momentum. The
results presented in this table are obtained by performing cal-
culations with the TDHF code [58]. According to the detector
set up, the range of initial angular momentum ` = 38− 56h̄
is within the acceptance range of detectors. Table II shows
the mean values of initial and final mass and charge numbers
of projectile-like and target-like fragments. Same table shows

asymptotic values of quantum diffusion calculations for neu-
tron σ2

NN , proton σ2
ZZ and mixed σ2

NZ variances. Since we
determine curvature parameters of the potential energy using
a different approach, some differences appear for dispersion
results from those presented in [47].

A. Primary mass yield

In the previous investigation, we included only the multi-
nucleon transfer (mnt) processes in the primary yield calcu-
lations. Here, we improve the yield calculations by incorpo-
rating binary fragments production in fusion-fission (ff) pro-
cesses. We can express the yield of primary fragments mass
distribution according to

Y (A) = η
(
Pmnt(A)+P f f (A)

)
, (15)

where Pmnt(A) and P f f (A) are the fragment mass distributions
due to multi-nucleon transfer and due to fusion-fission mecha-
nism, respectively, and η is a normalization constant. Accord-
ing to quantal diffusion calculations, probability distribution
due to multi-nucleon transfer is given by

P(A) =
1

∑` (2`+1) ∑
`

(2`+1)
[
Ppro
` (A)+Ptar

` (A)
]
, (16)

with the range of initial angular momentum spanning the in-

TABLE II. Mean values of mass and charge numbers of the initial
and final fragments, neutron variance, proton variance and mixed
variance for a range of initial orbital angular momentum `i.

`i (h̄) A f
1 Z f

1 A f
2 Z f

2 σ2
NN σ2

ZZ σ2
NZ σ2

AA
38 78.5 31.5 207.5 80.5 115.7 50.5 67.8 234.0
40 79.7 32.1 206.3 79.9 116.8 50.9 68.6 236.3
42 78.6 31.6 207.4 80.4 114.6 49.9 67.1 231.6
44 77.5 31.2 208.5 80.8 107.2 46.8 62.3 216.3
46 75.0 30.1 211.0 81.9 102.4 44.8 59.2 206.4
48 75.8 30.5 210.2 81.5 101.6 44.4 58.6 204.6
50 76.1 30.6 209.9 81.4 99.8 43.7 57.5 201.0
52 76.3 30.8 209.7 81.3 97.4 42.7 55.9 196.0
54 75.2 30.3 210.8 81.7 94.5 41.4 54.0 189.9
56 74.2 30.1 211.8 81.9 91.6 40.2 52.1 183.9

terval ` = 38− 56h̄. Here Ppro
` (A) and Ptar

` (A) are mass dis-
tributions of projectile-like and target-like fragments. We can
determine the probability distribution P̀ (A) of the mass num-
ber A of the primary fragments, by integrating Eq. (16) over Z
substituting N = A−Z to find,

P`(A) =
1√

2πσAA
exp

{
−1

2

[(
A−A`

σAA(`)

)2
]}

. (17)

Here, mass dispersion is given by σ2
AA = σ2

NN + σ2
ZZ +

2σ2
NZ and A` indicates the mean value of the mass num-

ber projectile-like or target-like for each angular momentum.
We cannot employ quantal diffusion approach to determine
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FIG. 5. Solid blue line shows the combined primary yield of multi-
nucleon transfer (dashed red line in center region) and binary fission
(black dashed dotted line) as function fragment mass A in collision
of 48Ca+ 238U at Ec.m. = 193.1 MeV. Red solid points show data
taken from [1].

fragment mass distribution due to fusion-fission mechanism.
However we can estimate fusion-fission probability in the fol-
lowing manner: Bombarding energy Ec.m. = 193.1 MeV is
very close to fusion barrier located around Ebar = 193.8 MeV.
At this bombarding energy, TDHF calculations are not very
reliable for determining fusion probability. We assume that at
this bombarding energy near central collisions up to critical
angular momentum `c lead to fusion. The excitation energy
of the compound nucleus is determined as E∗C = Ec.m.−Qgg,
where Qgg is the ground state Q-value of the compound nu-
cleus relative to the initial state. We determine fission prob-
ability compound nucleus into binary fragments using GEM-
INI++ code [59]. Normalized mass distribution of binary frag-
ments is given by,

P f f (A) =
1

∑` (2`+1) ∑
`

(2`+1)P f f
` (A) . (18)

Here, P f f
` (A) denotes fission probability distribution of the

compound nucleus produced in collision with initial angular
momentum `. Summation interval extends up to a critical an-
gular momentum ` = 0− `c. We expect that average value
of fission fragment distribution not to be very sensitive to the
magnitude of the critical angular momentum. Hence, in calcu-
lations we take the critical angular momentum for leading to
fusion as `c = 5h̄. In Fig. 5 solid blue line shows the combined
primary yield of multi-nucleon transfer (dashed blue line in
center region) and binary fission (blue dashed dotted line) as
function of fragment mass. Calculations are compared with
data of reference [1] shown by red solid points. Normalization
constant in Eq. (15) is determined by fitting data at a suitable
point to give η = 214.

B. Isotope production with Z = 64−80

We calculate the cross sections for production of primary
isotopes using the standard expression,

σ(N,Z) =
π h̄2

2µEc.m.
∑
`

(2`+1)
[
Ppro
` (N,Z)+Ptar

` (N,Z)
]
.

(19)

Here, Ppro
` (N,Z) and Ptar

` (N,Z) denote the probability of pro-
ducing projectile-like and target-like fragments. These prob-
abilities are given by Eq. (13) with mean values of projectile-
like and target-like fragments, respectively. In the summation
over `, the range of initial angular momentum depends on the
detector geometry in the laboratory frame. In calculations we
take the range of angular momentum ` = 38− 56h̄ accord-
ing to the experimental set up of Kozulin et al. [2], for the
48Ca+238U system at bombarding energy Ec.m. = 193.1 MeV.
Blue solid lines in Fig. 6 show the production cross-sections of
primary target-like isotopes with proton number Z = 65−80
as a function of mass number A. These primary isotopes
are excited and cool down by emitting light particles, mostly
neutrons, protons, and alpha particles, and may also decay
via binary fission. In a recent publication [45], employing
Eq. (19), we analyzed primary and secondary cross-sections
for heavy isotope production in 136Xe +208 Pb collisions at
Ec.m. = 514 MeV and compared the results with data reported
in the study of E. M. Kozulin et al. [1]. In that work, we
have determined the secondary cross-sections by shifting the
primary cross-sections according to the number of neutrons
emitted which is the dominant process in de-excitation mech-
anism. We estimated the number of emitted neutrons accord-
ing to the mean excitation energies in heavy primary frag-
ments. In the present study, we determine the secondary
cross-sections by analyzing de-excitation mechanism of pri-
mary fragments using statistical code GEMINI++ [59]. We
estimate the total excitation energy of binary primary frag-
ments according to E∗` (Z,A) = Ec.m.−TKE`−Qgg(Z,A). In
this expression TKE` is the mean value of total asymptotic
kinetic energy in collision with initial angular momentum `
and Qgg(Z,A) denotes ground state Q-value of the primary bi-
nary fragments relative to the initial value. It is possible to
add Coulomb correction to the total final kinetic energy due
to proton transfer in excess of the mean number of proton
transfer [50]. We ignore this correction in the present study.
We share the total excitation energy and total angular mo-
mentum transfer in proportion to the mass ratio of binary pri-
mary fragments. Red histograms in Fig. 6 show the secondary
cross sections for target-like isotopes with proton numbers
Z = 65−80 as a function of mass number A. We note that sec-
ondary isotope distributions shift toward the valley of stabil-
ity by emitting 5−6 neutrons depending on excitation energy
of primary fragments. The secondary cross-sections are not
obtained from the primary cross-sections by merely shifting
the primary cross-sections with the number of emitted neu-
trons. According to the statistical de-excitation code GEM-
INI++, in addition to neutron emission, the secondary isotopes
with small proton numbers are populated by de-excitation of
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FIG. 6. Solid blue lines show primary isotope yields for Z = 65− 80 as function fragment mass A in collision of 48Ca+ 238U at Ec.m. =
193.1 MeV. Red histograms show production cross-sections of secondary isotopes calculated with GEMINI++.

primary fragments with larger proton numbers by emitting al-
pha particles and protons, and by induced secondary fission.
The de-excitation mechanisms other than neutron emission in-
crease the secondary cross-sections to the left of peak values
of the primary cross-sections, and even overshoot the max-
imum value of the primary cross-sections values as seen in
Fig. 6. We also note production cross-sections for heavy neu-

tron rich isotopes of mercury, gold and platinum with neutron
numbers around 125− 130 are in the order of several micro
barns. These cross-sections are much larger than the estimates
given by Adamian et al. [12].
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IV. CONCLUSIONS

As an extension of previous work, we have investigated
multi-nucleon transfer mechanism in 48Ca+238U collisions at
Ec.m. = 193.1 MeV using quantal diffusion description based
on the SMF approach. In this approach, transport coeffi-
cients associated with macroscopic variables such as charge
and mass asymmetry variables are evaluated in terms of time-
dependent single-particle wave functions of TDHF theory.
Transport description includes quantal effects due to shell
structure, full geometry of the collision dynamics, and the
Pauli exclusion principle without any adjustable parameters
aside from the standard description of the effective Hamilto-
nian of TDHF theory. Joint probability distribution of primary
fragments is determined by a correlated Gaussian function in
terms of mean values of neutron-proton numbers and neutron,
proton, mixed dispersions for each initial angular momen-
tum. We calculate the yield of primary fragments as a func-
tion of mass number and compare with data of Kozulin et al..
Primary yield contains fragments produced by multi-nucleon
transfer and also secondary fission products. Since the bom-

barding energy is very close to fusion barrier located at about
Ebar = 193.8 MeV, TDHF is not very reliable for determin-
ing the fusion mechanism. We assume 48Ca+ 238U collisions
lead to fission at near central collisions and determine fission
probability employing GEMINI++ code. Calculations pro-
duce good description of experimental mass yield distribution.
We investigate de-excitation mechanism of heavy target-like
primary fragments in the range of Z = 65−80, and calculate
secondary isotope cross-sections as a function of mass num-
ber. Calculations predict cross-sections on the order of several
micro barns for heavy neutron rich isotopes of mercury, gold
and platinum with neutron numbers in the range of 125−130.
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