
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Restoring broken symmetries for nuclei and reaction
fragments

Aurel Bulgac
Phys. Rev. C 104, 054601 — Published  1 November 2021

DOI: 10.1103/PhysRevC.104.054601

https://dx.doi.org/10.1103/PhysRevC.104.054601


NT@UW-21-12

Restoring Broken Symmetries for Nuclei and Reaction Fragments

Aurel Bulgac1, ∗

1Department of Physics,University of Washington, Seattle, Washington 98195–1560, USA

In typical microscopic approaches, particularly when pairing correlations are present, nuclei and
nuclear fragments do not have well defined quantum numbers and symmetries should be restored.
I present here a formalism for the simultaneous projection of total particle numbers of a nucleus,
particle number of reaction fragments, and of the reaction fragment intrinsic spins and of their
correlation, and also for their symmetry restored densities and total energies. These new formulas
for the symmetry restored quantities, are free of any singularities, unlike those in the previously
introduced prescriptions.

I. INTRODUCTION

The problem of restoring broken symmetries within
mean field treatments of nuclear systems is decades old,
see monograph [1] and older references therein, and new
studies are published on an almost constant pace over the
years, see many references to more recent studies [2–8].
Essentially all studies published so far treat the case of ei-
ther a Hartree-Fock (HF) or a Hartree-Fock-Bogoliubov
(HFB) type of generalized Slater determinant. Such a
generalized Slater determinant is typically used to min-
imize the total energy of a nucleus, either before or af-
ter minimization, within a mean field approach and from
that procedure one extracts the restored symmetry nu-
cleus wave functions.

This symmetry restored wave function in either static
or time-dependent formulation of the framework is of the
typical Generator Coordinate Method [9–12]. With the
emergence of the Density Functional Theory (DFT) how-
ever, the role of the (generalized) Slater determinant was
replaced by the (generalized) number densities, in which
case the nuclear energy density functionals (NEDF) is not
defined as an expectation value of a many-body Hamil-
tonian, but as an expectation of an energy density func-
tional, which depends on several one-body densities. Try-
ing to apply the HF(B) projection techniques to DFT
studies leads to a number of difficulties. Some of these
difficulties are discussed in Refs. [2–8].

The approach discussed here is based entirely on a
treatment of strongly interacting many-fermion systems
within the DFT framework, see Refs. [13–16] and refer-
ences therein. The restoration of broken symmetries in
case of DFT was discussed earlier [16] and it will be dis-
cussed in detail in this paper. The physical justification
of such an approach was discussed earlier in Ref. [17],
where a quantization of a semi-classical level was sug-
gested, which can be easily converted into the projec-
tion technique discussed here. Unlike the approaches
based on the generalized Wick theorem applied to gen-
eralized Slater determinants and evaluation of the total
energy, the present approach is free of singularities, see
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Section VII. A few of the results discussed here have been
briefly discussed in Ref. [16] and a few inaccuracies in
that paper are corrected here.

This is a formal paper, where I derive a series of new
formulas, not discussed previously in literature, needed in
order to restore particle and rotation broken symmetries.
In Section II I review some needed known facts. In Sec-
tion III I describe how to double project the total number
and the reaction fragment particle number for a reac-
tion fragment. in Section IV I describe how to construct
particle projected number and anomalous densities. In
Sections V and VI I show how to simplify the particle
projection in the canonical basis. In Section VI I present
formulas for number and anomalous densities and for the
number projected total energy. In Section VII I describe
how to simultaneously project the total particle number
and the particle number of a reaction fragment. In Sec-
tion IX I develop formulas for double projection of the
total and fragment number density. In Section X I show
how to project the total particle and reaction fragment
particle along with the intrinsic spins of the fragments
and their correlations. The particular case of total and
fragment particle numbers, the intrinsic fragment spins,
and the total relative orbital momentum are discussed in
Section XI. The last Section XII is devoted to the discus-
sion of some numerical aspects. A number of formulas
discussed here have been recently used in Refs. [18, 19].

These formulas presented here were developed for fis-
sion applications, but they can be used for heavy-ion re-
actions as well, with some small adjustments. The pre-
sentation here is restricted to systems with even particle
parity, but its extension appears to be simple.

II. STRUCTURE OF A GENERALIZED

SLATER DETERMINANT

The creation and annihilation quasi-particle operators
are represented as [1]

α†
k =

∫

dξ
[

uk(ξ)ψ
†(ξ) + vk(ξ)ψ(ξ)

]

, (1)

αk =

∫

dξ
[

v∗k(ξ)ψ
†(ξ) + u∗

k(ξ)ψ(ξ)
]

, (2)
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and the reverse relations

ψ†(ξ) =
∑

k

[

u∗
k(ξ)α

†
k + vk(ξ)αk

]

, (3)

ψ(ξ) =
∑

k

[

v∗
k(ξ)α

†
k + uk(ξ)αk

]

, (4)

where ψ†(ξ) and ψ(ξ) are the field operators for the cre-
ation and annihilation of a particle with coordinate ξ.
The normal number (Hermitian n = n† ) and anomalous
(skew symmetric κ = −κT ) densities are

n(ξ, ξ′) = 〈Φ|ψ†(ξ′)ψ(ξ)|Φ〉 (5)

=
∑

k

v∗
k(ξ)vk(ξ

′) =
∑

l=n,n̄

v2l φ
∗
l (ξ)φl(ξ

′),

κ(ξ, ξ′) = 〈Φ|ψ(ξ′)ψ(ξ)|Φ〉 (6)

=
∑

k

v∗
k(ξ)uk(ξ

′) =
∑

l=n,n̄

ulvlφ
∗
l (ξ)φ

∗
l̄ (ξ

′),

∫

dξφ∗k(ξ)φl(ξ) = δkl, (7)

with u2l + v2l = 1, 0 ≤ ul = ul̄ ≤ 1, 0 ≤ vl = −vl̄ ≤ 1,
and n and n̄ denote time-reversed states in the canonical
representation [1, 20, 21], and where

αk|Φ〉 = 0, |Φ〉 = N
∏

k

αk|0〉, 〈Φ|αkα
†
l |Φ〉 = δkl,

(8)

where N is a normalization factor, determined up to an
arbitrary phase, and assuming that αk|0〉 6= 0 for any k.
In case any

∫

dξ|vk(ξ)|2 = 0 or αk|0〉 = 0 the correspond-
ing factor αk is skipped. Here the discussion will be ex-
plicitly limited to systems with an even particle number
parity, as the extension to the general case is trivial [1].

Here I will elaborate at first on details of the projec-
tion technique developed in Ref. [16], which were not
discussed before. The particle projection on a fragment
of the system is performed with the help of the unitary
operator, introduced earlier in Ref. [22]

P̂Θ(η) = eiη
∫
dξΘ(ξ)ψ†(ξ)ψ(ξ) = eiηN̂

Θ

, (9)

N̂Θ =

∫

dξΨ†(ξ)ψ(ξ)Θ(ξ), (10)

Θ2(ξ) = Θ(ξ), P̂Θ(η)P̂Θ(−η) = 1, η ∈ [−π, π] (11)

Θ(ξ) is the Heaviside function and for all non-negative
integer particle numbers

|ΦΘ(N)〉 =

∫ π

−π

dη

2π
e−iηN P̂Θ(η)|Φ〉. (12)

is the component of the wave function |Φ〉 with exactly
N particles in the space region where Θ(ξ) = 1.

One can easily show that under the transformation
with this operator the field and quasiparticle operators

change according to the rules

ψ†(ξ, η) = P̂Θ(η)ψ†(ξ)P̂Θ(−η) = eiηΘ(ξ)ψ†(ξ), (13)

α̃k(η) =

∫

dξ
[

eiηΘ(ξ)v∗
k(ξ)ψ

†(ξ) + e−iηΘ(ξ)u∗
k(ξ)ψ(ξ)

]

.

It is easy to show that

{α̃†
k(η), α̃l(η)} = δkl, {α̃k(η), α̃l(η)} = 0. (14)

This implies that when Θ(ξ) ≡ 1 the components of the
quasiparticle wave functions (qpwfs) change as

[v∗
k(ξ), u

∗
k(ξ)] → [eiηΘ(ξ)v∗

k(ξ), e
−iηΘ(ξ)u∗

k(ξ)]. (15)

and correspondingly the new vacuum is (assuming that
for all α̃k|0〉 > 0)

|Φ̃(η)〉 = N
∏

k

α̃k(η)|0〉 = P̂Θ(η)|Φ〉. (16)

In the case 2Ω = 4 the wave function |Φ〉 will have 4-
particle, 2-particle, and 0-particle components. A typical
2-particle component arising from

∫

dξ1dξ2dξ3dξ4 u∗
1(ξ1)v

∗
2(ξ2)v

∗
3(ξ3)v

∗
4(ξ4)

ψ(ξ1)ψ
†(ξ2)ψ

†(ξ3)ψ
†(ξ4)|0〉

has the structure

=

∫

dξu∗
1(ξ)v

∗
2(ξ)

∫

dξ1dξ2v
∗
3(ξ1)v

∗
4(ξ2)ψ

†(ξ1)ψ
†(ξ2)|0〉

−

∫

dξu∗
1(ξ)v

∗
3(ξ)

∫

dξ1dξ2v
∗
2(ξ1)v

∗
4(ξ2)ψ

†(ξ1)ψ
†(ξ2)|0〉

+

∫

dξu∗
1(ξ)v

∗
4(ξ)

∫

dξ1dξ2v
∗
1(ξ1)v

∗
4(ξ2)ψ

†(ξ1)ψ
†(ξ2)|0〉.

There are two more contributions to the 2-particle com-
ponent arising from the terms containing the combi-
nations of field operators ψ†(ξ1)ψ(ξ2)ψ

†(ξ3)ψ
†(ξ4) and

ψ†(ξ1)ψ
†(ξ2)ψ(ξ3)ψ

†(ξ4).

After applying the operator P̂Θ(η) on the above 2-
particle component only the quasiparticle v-components
change as v∗

k(ξ) → eiηΘ(ξ)v∗
k(ξ), but only for terms with

factors like
∫

dξvk(ξ)ψ
†(ξ). Terms containing factors of

the type
∫

dξuk(ξ)ψ(ξ) do not survive after normal or-
dering. The terms like

∫

dξu∗
k(ξ)v

∗
l (ξ) are left invariant

by either by transformation Eq. (15) or by the operator

P̂Θ(η).
According to the analysis performed above on the

example of 2Ω = 4 only the overlaps between the v-
components of the qpwfs in the Onishi-Yoshida [1, 23]
formula are changed, namely

〈Φ|P̂Θ(η)|Φ〉 =
√

det [〈uk|ul〉+ 〈vk|eiηΘ|vl〉]

=
√

det [δkl + (eiη − 1)〈vk|Θ|vl〉]. (17)

One should note, that no overlaps of the type
∫

dξu∗
k(ξ)v

∗
l (ξ)Θ(ξ) appear in the Onishi-Yoshida over-

lap formula, which otherwise might have led to spurious
terms.
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III. DOUBLE PROJECTION OF FRAGMENT

PARTICLE NUMBER AND ALSO OVERALL

PARTICLE NUMBER

When evaluating the particle number of a fragment one
should remember that its particle number distribution
is affected by the uncertainty in the particle number in
the total many-body wave function. Let me consider the
projection of the total particle number

eiη0N̂ |Φ〉 =
Ω
∑

n=0

a2ne
2inη0 |Φ2n〉, (18)

Ω
∑

n=0

|a2n|
2 = 1, N̂ =

∫

dξψ†(ξ)ψ(ξ), (19)

where n = N are non-negative integers and Φ2n are linear
combinations of ordinary Slater determinants for exactly
N = 2n particles. Since only even 2nη0 frequencies are
present one can limit the integral over the interval η0 ∈
[−π/2, π/2].

The wave function (16) constructed for Θ ≡ 1

|Φ̃(η0)〉 = P̂Θ(η0)|Φ〉 = N
∏

k

α̃k(η0)|0〉, (20)

with the operators

α̃k(η0) =

∫

dξ
[

eiη0v∗k(ξ)ψ
†(ξ) + e−iη0u∗

k(ξ)ψ(ξ)
]

. (21)

has according to Onishi-Yoshida formula the overlap

〈Φ|Φ̃(η0)〉 =
√

det [e−iη0〈uk|ul〉+ eiη0〈vk|vl〉], (22)

= e−iη0Ω
√

det [δkl + (e2iη0 − 1)〈vk|vl〉] (23)

with both positive and negative frequencies einη0 ,

〈Φ|Φ̃(η0)〉 = e−iη0Ω
2Ω
∑

m=0

ã2me
2imη0 . (24)

From the arguments presented in Sections V and VI and
from our numerical simulations as well it follows that the
frequency spectrum lies in the interval [−Ω,Ω]η0, unlike
the natural expansion Eq. (18), where only the expected
terms with 0 ≤ N = 2n ≤ 2Ω are present. In the par-
ticular case of ordinary Slater determinant with exactly
N -particles one obtains using Onishi-Yoshida formula

〈Φ|Φ̃(η0)〉 = e−iη0Ωeiη0N , (25)

since 〈uk|uk〉+ 〈vk|vk〉 = 1 and there are exactly N over-
laps 〈vk|vk〉 = 1, while the rest 2Ω−N such overlaps van-
ish. Thus, using Onishi-Yoshida overlap formula results
in an incorrect frequency spectrum, a situation which can
be quite easily rectified as suggested below.

It is useful to introduce a different set of annihilation
operators [16]

αk(η0) =

∫

dξ[e2iη0v∗
k(ξ)ψ

†(ξ) + uk(ξ)ψ(ξ)] (26)

=e−iη0 α̃k(η0) =
∑

l

[Akl(η0)αl +Bkl(η0)α
†
l ], (27)

Akl(η0) = δkl + (e2iη0 − 1)

∫

dξv∗
k(ξ)vl(ξ) (28)

Bkl(η0) = (e2iη0 − 1)

∫

dξv∗
k(ξ)u

∗
l (ξ), (29)

with the new associated qpwfs

[v∗
k(ξ), u

∗
k(ξ)] → [ei2η0v∗k(ξ), u

∗
k(ξ)] (30)

and

|Φ(η0)〉 = N
∏

k

αk(η0)|0〉. (31)

On can then easily see that

〈Φ|Φ(η0)〉 = eiη0Ω〈Φ|Φ̃(η0)〉 =
Ω
∑

n=0

a2ne
2inη0 , (32)

similarly to Eq. (18) and also that

〈Φ|Φ(η0)〉 = eiη0N (33)

for the case of an ordinary Slater determinant for N -
particles one obtains the correct result. These conclu-
sions are also confirmed in Sections V and VI, where an
analysis is performed using the canonical basis. Numer-
ical simulations also show that maxN |aN |2 occurs, as

naturally expected, for N ≈ 〈Φ|N̂ |Φ〉, see also Ref. [16].
It then follows that the projected overlap on the total

particle number N wave function

〈Φ|ΦN (ηF)〉 =

∫ π

−π

dη0
2π

e−iη0N 〈Φ|Φ(η0, η
F)〉, (34)

〈Φ|Φ(η0, η
F)〉 = N (η0, η

F) (35)

× 〈Φ|
∏

k

∫

dξ
[

e2iη0eiη
FΘF(ξ)v∗

k(ξ)ψ
†(ξ) + u∗

k(ξ)ψ(ξ)
]

|0〉

is a sum of overlaps of (ordinary) Slater determinants for
exactly N -particles, where 0 ≤ N ≤ 2Ω is even.

As I discussed in the previous section, in |Φ〉 =

N
∏2Ω
k=1 αk|0〉 only terms with an even number creation

operators ψ†(ξ) and no annihilation operators ψ(ξ) sur-
vive after normal ordering. The integration over the an-
gle η0 selects only terms with exactly N creation opera-
tors ψ†(ξ) from |Φ(η0, ηF)〉. In order to correctly evalu-
ate the particle number in a reaction fragment one has to
perform a double particle number projection, on the total
particle number N and on the fragment particle (integer)
number NF, where 0 ≤ NF ≤ N .
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In order to accurately determine the particle number
in a fission fragment (FF) one has to perform a double
particle projection [24–26], the first projection to fix the
total particle number in the fissioning nucleus and the
second projection to determine the particle number in
the FF. One has thus to consider the overlap

〈Ψ|Ψ(η0, η
F)〉 =

√

det [δkl + 〈vk|e2iη0eiη
FΘF − 1|vl〉]

=
√

det [δkl + (e2iη0 − 1)Okl + e2iη0(eiηF − 1)OF
kl], (36)

Okl = 〈vk|vl〉, OF
kl = 〈vk|Θ

L,H|vl〉, (37)

OH
kl +OL

kl = Okl, if ΘL +ΘH = 1, (38)

and where ΘF = ΘL,H selects the spatial region of either
the heavy (H) or of the light (L) FF. The double particle
projection is required as the initial state does not have
a well defined particle number. Since N = NL + NH

the probability distributions for the two FFs are related
P (N,NL) = P (N,N −NH), where

P (N,NF) =2

∫ π/2

0

dη0
π

∫ π

0

dηF

π
(39)

× Re[〈Ψ|Ψ(η0, η
F)〉e−iη0N−iηFNF

]

For systems with even particle number N one can restrict
η0 ∈ [−π/2, π/2]. The particle probability distribution in
a fragment is given by the conditional probability

PN (NF) =
P (N,NF)

∑N
NF=0 P (N,N

F)
. (40)

In case of a reaction between two superfluid nuclei one
needs to perform a triple projection, on both initial part-
ners and one on the final fragment.

The attentive reader has noticed that in Ref. [16] it was
argued that for a FF particle projection, where the pro-
jection on the total particle number was not considered,
one should use the overlap

〈Ψ|Ψ(ηF)〉 =
√

det [δkl + 〈vk|eiη
FΘF − 1|vl〉]

=
√

det [δkl + (eiηF − 1)OF
kl]. (41)

Since the projection on the total particle number selects
in Eq. (36) overlaps of ordinary Slater determinants, the
projection of the FF particle number can proceed follow-
ing the procedure outlined above, see Eqs. (34) and (35),
as it was established earlier in the literature [16, 22].

IV. PROJECTING THE PARTICLE NUMBER

FOR AN ARBITRARY ONE-BODY

OBSERVABLE

Here I will derive a formula for a particle average of
the operator Q̂ =

∫

dξdξ′〈ξ|Q|ξ′〉ψ†(ξ)ψ(ξ′). Consider at
first the transformation

uk(ξ, ǫ) = uk(ξ), vk(ξ, ǫ) = e2ǫQ̂vk(ξ), (42)

one can show that

d〈Φ|Φ(ǫ)〉

dǫ

∣

∣

∣

∣

ǫ=0

= lim
ǫ→0

√

det [δkl + 〈vk|e2ǫQ̂ − 1|vl〉]

ǫ

=
∑

k

〈vk|Q̂|vk〉 = 〈Φ|Q̂|Φ〉, (43)

where |Φ(ǫ)〉 was constructed with qpwfs (42). Since one
needs the “deformed” quasi-particle wave functions with

an accuracy O(ǫ) only one can use 1+2ǫQ̂ instead of e2ǫQ̂.
In this case the transformation of the quasi-particle wave
functions is

un(ξ, ǫ) = un(ξ), (44)

vn(ξ, ǫ) =

∫

dξ′[δ(ξ − ξ′) + 2ǫ〈ξ|Q|ξ′〉]vn(ξ
′).

The number density matrix - and in a similar man-
ner the anomalous density, see below - is naturally de-
fined as a functional derivative, see Negele and Orland
[27] and Furnstahl [28],

n(ξ, ξ′) =
δq

δ〈ξ|Q|ξ′〉
, where q = 〈Φ|Q̂|Φ〉 (45)

This definition of the number density matrix, as the func-
tional derivative of the partition function with respect
to an arbitrary external field and which widely used in
quantum field theory for decades, is the main differ-
ence between the broken symmetry restoration frame-
work described here and those introduced in previous ap-
proaches. The density matrix is thus naturally defined as
the response or the measurement due to an appropriately
chosen weak external probe acting on the system.

The normal particle projected one-body density can be
calculated as the variational derivative

n(ξ, ξ′|η0) =
δq(η0)

δ〈ξ|Q|ξ′〉
(46)

where, in order to evaluate q(η0) one should use now the
overlap

〈Φ|Φ(ǫ, η0)〉 =

√

det [δkl + 〈vk|e2iη0e2ǫQ̂ − 1|vl〉] (47)

and thus

n(ξ, ξ′|η0) = 〈Φ|Φ(η0)〉e
2iη0

∑

kl

v∗
k(ξ)vl(ξ

′) alk(η0). (48)

The matrix akl(η0) is the inverse of the matrix Akl(η0)

Akl(η0) = [δkl + (e2iη0 − 1)〈vk|vl〉], (49)
∑

l

Akl(η0)alm(η0) = δkm. (50)

In the case of the anomalous density κ(ξ, ξ′|η0) one
would have to consider a transformation different from
Eq. (97), namely the transformation

un(ξ, ǫ, η0) = un(ξ) + 2ǫ

∫

dξ′〈ξ|∆|ξ′〉e2iη0vn(ξ
′),

vn(ξ, ǫ, η0) = vn(ξ) (51)
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in order to construct |Φ(ǫ, η0)〉 and follow the same steps

as in the case of a normal operator Q̂ outlined above and
obtain for the anomalous density Eq. (6)

κ(ξ, ξ′|η0) = 〈Φ|Φ(η0)〉e
2iη0

∑

lk

v∗k(ξ)ul(ξ
′) alk(η0). (52)

These formulas simplify significantly in the canonical ba-
sis, see Section VI.

V. CANONICAL BASIS

The calculation of the particle projected averages are
greatly simplified in the canonical basis. After diagonal-
izing the overlap Okl = 〈vk|vl〉 of the v-components the
new qpwfs satisfy the relations

〈ṽk|ṽl〉 = nkδkl (53)

it follows that the overlap matrix of the uk-components
is also diagonal

〈ũk|ũl〉 = (1 − nk)δkl, (54)

and the average particle number is given by

N =
∑

k

nk. (55)

The occupation probabilities nk = 〈ṽk|ṽk〉 are differ-
ent from 〈vk|vk〉, even though their sums add to the
same total particle number N , due to invariance of the
trace of a matrix. The number of vk-components is
2Ω = 2NxNyNz for neutrons and protons respectively.
In an infinite box 2Ω = ∞.

It is useful to introduce the unitary transformation,
and correspondingly the set of eigenvectors, which diag-
onalizes Okl

∑

l

OklUlm = Ukmnm,
∑

n

U∗
kmUkn = δmn, (56)

vk(ξ) =
∑

m

Ukmṽm(ξ), ṽn(ξ) =
∑

l

U∗
lnvl(ξ) (57)

Okl =
∑

m

UkmnmU∗
lm. (58)

In the canonical basis the overlap for the double par-
ticle projection Eq. (36) acquire the simpler form

〈Ψ|Ψ(η0, η
F)〉 (59)

=

√

det
[

[1 + (e2iη0 − 1)nk]δkl + e2iη0(eiηF − 1)ÕF
kl

]

,

ÕF
kl = 〈ṽk|Θ

L,H|ṽl〉. (60)

The overlap 〈ṽk(t)|ṽl(t)〉 does not remain diagonal as a
function of time in a time-dependent evolution. For that
reason the simplified formulas for the number projected
quantities should be derived in the canonical basis deter-
mined at the time when the corresponding observables
are needed.

VI. TEXTBOOK DEFINITION OF THE

CANONICAL BASIS

Since the eigenvalues of the matrix Okl are double
degenerate and can always choose the canonical qpwfs
ũk(ξ), ṽk(ξ) of the textbook form [1]

|Φ〉 = N
Ω
∏

n=1

αnαn|0〉 =
Ω
∏

n=1

(un + vna
†
na

†
n)|0〉, (61)

where

αn = unan − vna
†
n, αn = unan + vna

†
n, (62)

a†n =

∫

dξφn(ξ)ψ
†(ξ), a†n =

∫

dξφn(ξ)ψ
†(ξ), (63)

〈φn|φn〉 = 〈φn|φn〉 = 1, 〈φn|φn〉 = 0 (64)

and real un ≥ 0, vn ≥ 0.
After normal ordering one obtains

αnαn = v2na
†
na

†
n + unvn (65)

+ u2nanan − unvn(a
†
nan + a†nan).

1

vn
αnαn|0〉 = (un + vna

†
na

†
n)|0〉, u2n + v2n = 1. (66)

After a gauge transformation P̂Θ(η)αnαn|0〉 only the

creation operators a†na
†
n in first term in Eq. (66) are af-

fected by the action of P̂Θ(η). Then the overlap

1

vmvn
〈0|α†

mα
†
m P̂

Θ(η)αnαn|0〉

= umun + vmvn〈0|amamP̂
Θ(η)a†na

†
n|0〉. (67)

The matrix element can be simplified

〈0|amamP̂
Θ(η)a†na

†
n|0〉 = (68)

= { [δmn + (eiη − 1)〈φm|Θ|φn〉]

× [δmn + (eiη − 1)〈φm|Θ|φn〉]

− (eiη − 1)2〈φm|Θ|φn〉〈φm|Θ|φn〉}.

If Θ(ξ) ≡ 1 this formula simplifies

1

vmvn
〈0|α†

mα
†
mP̂

Θ(η)αnαn|0〉 = δmn[u
2
n + e2iηv2n]. (69)

I will introduce now the gauge transformed operators
and total wave function and using Eq. (66) one obtains

αn(η0) = unan − vne
2iη0a†n, (70)

αn(η0) = unan + vne
2iη0a†n, (71)

αn|Φ(η0)〉 = 0, αn|Φ(η0〉 = 0, (72)

|Φ(η0)〉 =
Ω
∑

n=0

a2ne
2iη0n|Φ2n〉, (73)

Ω
∑

n=0

|a2n|
2 = 1, (74)
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and where n, n = 1, . . . ,Ω and where |Φ2n〉 are sums
of (ordinary) Slater determinants for exactly N = 2n
particles. The particle probability distribution is thus
given by

P (N) = |aN |2 = 2Re

∫ π/2

0

dη0
π
e−iη0N 〈Φ|Φ(η0)〉, (75)

〈Φ|Φ(η0)〉 =
Ω
∏

n=1

[u2n + v2ne
2iη0 ], (76)

where the integration integral was halved, since
〈Φ|Φ(η0 + π)〉 = 〈Φ|Φ(η0).

In the case of double particle projection one introduces
the quasiparticle operators

αn(η0, η
F)

= −vne
2iη0

∫

dξφn(ξ)e
iηFΘF(ξ)ψ†(ξ) + unan, (77)

αn(η0, η
F)

= vne
2iη0

∫

dξφn(ξ)e
iηFΘF(ξ)ψ†(ξ) + unan, (78)

and the corresponding overlap has the structure

〈Φ|Φ(η0, η
F)〉

=
√

det [δkl + vkvl〈φk|e2iη0eiη
FΘF − 1|φl〉], (79)

where k, l run over both sets of n, n = 1, . . . ,Ω and nk,l =
v2
k,l are occupation probabilities, see Eq. (53).

VII. PARTICLE NUMBER PROJECTED

DENSITIES AND TOTAL ENERGY

For any FF observables expression of the projected
densities are useful. The densities n(ξ, ξ′|η0), Eq. (48)
and κ(ξ, ξ′|η0), Eq. (52) acquire in the canonical basis a
simple form

n(ξ, ξ′|η0) = 〈Φ|Φ(η0)〉
∑

k

ṽ∗
k(ξ)ṽk(ξ

′)e2iη0

1 + (e2iη0 − 1)nk
, (80)

κ(ξ, ξ′|η0) = 〈Φ|Φ(η0)〉
∑

k

ṽ∗
k(ξ)ũk(ξ

′)e2iη0

1 + (e2iη0 − 1)nk
, (81)

where the sum and products run over all quasiparti-
cle states. The use of Eqs. (48) and 52 for the defini-
tion of the number and anomalous densities, as a func-
tional derivative of the expectation value of an observ-
able, is what distinguishes my approach from previous
approaches in literature. One can easily show that in the
canonical basis,

〈Φ|Φ(η0)〉 =
2Ω
∏

k=1

√

1 + (e2iη0 − 1)nk (82)

and where the canonical occupation numbers nk are dou-
ble degenerate. For this reason there is no singularity in
Eqs. (80) and (81) when 1+ (e2iη0 − 1)nk = 0 only when
both η0 = ±π/2 and nk = 1/2. For η = 0 one obtains the
corresponding unprojected densities. Formulas for pro-
jected densities on both the total and fragment numbers
are straightforward to derive.

Notice that the qpwfs

∑

k

uk(ξ)u
∗
k(ξ

′) + vk(ξ)v
∗
k(ξ

′) = δ(ξ − ξ′) (83)

form a complete non-orthogonal set. This holds true for
the qpwfs in the canonical basis as well.

It is useful as well to define the projected density ma-
trix respectively

n(ξ, ξ′|N) =
1

P (N)
Re

∫ π

0

dη0
π
e−iη0Nn(ξ, ξ′|η0), (84)

N =

∫

dξ n(ξ, ξ|N), (85)

2Ω
∑

k=0

nk =

2Ω
∑

N=0

NP (N), (86)

which as expected has the correct normalization.
As discussed in Ref. [16] the densities (80) and (81)

can be used to evaluate the number projected energy of
a system as follows

E(N) =
1

P (N)
Re

∫ π

0

dη0
π
e−iη0N (87)

×

∫

dξ E [n(ξ, ξ|η0), ...], (88)

P (N) = Re

∫ π

0

dη

π
e−iNη0〈|Φ|Φ(η0)〉, (89)

2Ω
∑

N=0

P (N) = 1, (90)

2Ω
∑

N=0

E(N)P (N) =

∫

dξ E [n(ξ, ξ|η0), ...]η0=0, (91)

and unlike the prescriptions suggested in the past [2–
8], these projected densities have no singularities. This
aspect was discussed in Ref. [16], and it is also evident
from their definitions, as the needed overlaps to evaluate
these densities and their derivatives 〈Φ|Φ(ǫ, η0)〉 have by
construction no singularities.

VIII. SIMULTANEOUS PROJECTION ON

PARTICLE NUMBER AND A FISSION

FRAGMENT INTRINSIC SPIN

One can introduce the transformation of the v-
components of the qpwfs when applying a projection op-
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erator. The overlap matrix element (for one kind of nu-
cleons) is in this case 〈Φ|Φ(η0, ηF, β)〉 is given by

〈Φ|Φ(η0, η
F, β)〉 =

√

det [δkl +Okl(η0, ηF, βF)], (92)

Okl(η0, η
F, β) = 〈vk|e

2iη0eiη
FΘF

eiJ
F

x
βF

− 1|vl〉, (93)

using an obvious generalization of the argumentation pre-
sented in Section II. The practical advantage of using this
type of angular momentum operator becomes clear when
one considers simulations, where nuclei are placed in rect-
angular boxes. While the v-components of the qpwfs are
localized around the center of mass of a fragment and
their rotated support remain localized in such a local-
ized spatial domain, the u-components are fully delocal-
ized [29] and their rotated support is ill defined in such
simulation boxes.

The intrinsic spin of corresponding fragment is JF =
∫

dxdy ψ†(x)ψ(y)〈x|jF |y〉 [16], where

〈x|jF |y〉 (94)

= 〈x|ΘF(r)[(r −RF)× (p−mvF) + s]ΘF (r)|y〉,

and r and p are the nucleon coordinate and momentum, s
its spin, m the nucleon mass, RF and vF are the center of
mass and the center of mass velocity of the respective FF,
and ΘF(r) = 1 only in a finite volume centered around
that FF and otherwise ΘF(r) ≡ 0.

The probability that a FF emerges with NF particle
number and total intrinsic spin JF in the fission of an
axially symmetric even-even nucleus, is given by, see also
Refs. [16, 30],

P (N,NF, JF) = (2J + 1)

∫ π/2

−π/2

dη0
π

∫ π

−π

dηF

2π

∫ π

0

dβFsinβF

× 〈Φ|Φ(η0, η
F, βF)〉PJ (cosβ

F), (95)

where PJ (x) is a Legendre polynomial. This formula has
a straightforward extension to projecting simultaneously
the particle and the intrinsic spins of both FFs using the
qpwfs overlap

〈vk|e
2iη0eiη

FΘF

eiJ
L

x
βL

eiJ
H

x
βH

− 1|vl〉, (96)

where one can use for F either L or H. These equations
are generalizations of those used recently in Ref. [18],
where particle projection and double FF intrinsic spins
distributions were not considered.

IX. DOUBLE NUMBER PROJECTION FOR AN

ONE-BODY OBSERVABLE

Now consider the overlap 〈Φ|Φ(ǫ, η0, ηF)〉, for the
transformation

un(ξ, ǫ, η) = un(ξ),

vn(ξ, ǫ, η0, η
F) = [1 + 2ǫQ̂F]e2iη0eiη

FΘF

vn(ξ), (97)

where

Q̂F =

∫

dξdξ′〈ξ|ΘFQΘF|ξ′〉ψ†(ξ)ψ(ξ′) (98)

and evaluate q(η0, η
F)

q(η0, η
F) =

d〈Φ|Φ(ǫ, η0, ηF)〉

dǫ

∣

∣

∣

∣

ǫ=0

(99)

= 〈Φ|Φ(η0, η
F)〉e2iη0eiη

F
∑

kl

〈vk|Q̂
F|vl〉 alk(η0, η

F),

δkm =
∑

l

[δkl + 〈vk|e
2iη0eiη

FΘF

− 1|vl〉] alm(η0, η
F),

(100)

and thus one can evaluate the particle number projected
value of Q̂F

Q(N,NF) (101)

=

∫ π/2

−π/2

dη0
π

∫ π

−π

dηF

2π
e−iNη0−iη

FNF

q(η0, η
F).

If the overlap 〈Φ|Φ(η0, ηF)〉 vanishes then the inverse
matrix alm(η) does not exist. However, the determi-

nant det [δkl + 〈vk|e
2iη0eiη

FΘF

(1 + 2ǫQF)− 1|vl〉] clearly
has no singularity for ǫ = 0, which implies that all these
formulas are well defined everywhere. The formulas for
the double projected number and anomalous densities,
and the total energy can be derived following the steps
outlined in previous sections.

X. CORRELATIONS BETWEEN INTRINSIC

SPINS OF THE FISSION FRAGMENTS

A quantity of great interest if the correlation between
the magnitudes and the relative orientations of the FF
intrinsic spins [31–34]. This correlation can be evaluated
by generalizing Eq. (93), using the canonical basis, to the
case of two FFs

〈Φ|Φ(η0, η
L, βL, βH)〉 (102)

=
√

det [δkl +Okl(η0, ηL, βL, βH)],

Okl(η0, η
L, βŁ, βH) (103)

= 〈vk|e
2iη0eiη

LΘL

eiJ
L·nLβL

eiJ
H·nHβH

− 1|vl〉,

where nL,H are two independent unit vectors. Since both
N and NL are fixed there is no need of a projection on
NH. One can simplify the projection operator in this
matrix element

e2iη0eiη
LΘL

eiJ
L·nLβL

eiJ
H·nHβH

− 1 (104)

=(e2iη0 − 1)

+e2iη0ΘL(eiη
L

eiJ
L·nLβL

− 1)

+e2iη0ΘH(eiJ
H·nHβH

− 1).
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Even without performing FF particle projections, by ig-
noring the dependence of this overlap on η0,L, one can
extract valuable information about the correlations be-
tween the relative orientations of the FF intrinsic spins,
using the simpler overlap

Okl(β
L, βH) = 〈vk|e

iJL·nLβL

eiJ
H·nHβH

− 1|ṽl〉 (105)

= 〈ṽk|Θ
L[eiJ

L·nLβL

− 1]|vl〉+ 〈vk|Θ
H[eiJ

H·nHβH

− 1]|vl〉

and using a small set of relative angles nL·nH = cosβLH.
However, no difference was observed between the two
cases when n̂L ·n̂H = ±1 in the work reported in Ref. [18].

There is no advantage in this case to use the canonical
basis and one can proceed exactly as in Ref. [35] and use
the original basis vk,l(ξ) for axially symmetric FFs.

XI. THE ORBITAL ANGULAR MOMENTUM

IN SPONTANEOUS FISSION

The spontaneous fission of 252Cf is a particularly im-
portant and very clean case to discuss. Since this even-
even nucleus has a zero spin in its ground state the FF
intrinsic spins and angular momentum satisfy the trivial
relation

JL + JH +Λ = 0 (106)

and the distribution of the FFs orbital angular momen-
tum can then be extracted. One can project on the sum
of the two FF intrinsic spins with

P (Λ) =
2Λ + 1

2

∫ π

0

dβ sinβ0 PΛ(cosβ0)〈Φ|Φ(β0)〉, (107)

〈Φ|Φ(β0)〉 =
√

det [δkl +OΛ
kl(β0)], (108)

where

OΛ
kl(β0) =

∑

F=L,H

〈vk|Θ
F[eiJ

F

x
β0 − 1]|vl〉. (109)

According to Eq. (106) in the case of 252Cf one has

e−iΛxβ0 = ei(J
L

x
+JH

x
)β0 and in this case the projection

on Λ is equivalent to the projection on the sum of the
FF intrinsic spins, if the total wave function has exactly
the quantum numbers 0+, see discussion below too. This
type of projector is in fact a projector on the combined
FF intrinsic spins. Notice that one can flip the sign of β0
without any consequence.

One can also add total and fragment particle projec-
tions for more detailed information using the following

qpwfs overlaps

OΛ
kl(η0, β0) = (e2iη0 − 1)〈vk|vl〉

+ e2iη0〈vk|Θ
L(eiJ

L

x
β0 − 1)|vl〉

+ e2iη0〈vk|Θ
H(eiJ

H

x
β0 − 1)|vl〉, (110)

OΛ
kl(η0, η

L, β0) = (e2iη0 − 1)〈vk|vl〉

+ e2iη0〈vk|Θ
L(eiη

L+iJL

x
β0 − 1)|vl〉

+ e2iη0〈vk|Θ
H(eiJ

H

x
β0 − 1)|vl〉. (111)

In the general case Eq. (106) should read

JL + JH +Λ = S0, (112)

where S0 is the initial spin of the fissioning compound
nucleus and Eq. (107) will provide the probability distri-
bution P (|Λ− S0|) only.

One can project simultaneously on both intrinsic FF
spins and the FFs orbital angular momentum using the
overlap

Okl(β
L + β0, β

H + β0)

= 〈vk|e
iJL

x
βL

eiJ
H

x
βH

ei(J
L

x
+JH

x
)β0 − 1|vl〉

=
∑

F=L,H

〈vk|Θ
F[eiJ

F

x
(βF+β0) − 1]|vl〉. (113)

This type of overlap depends only on two angles βF+β0,
where F = L, H.

One might consider also an additional projection to
enforce the value of total angular momentum S0, with
the rotation operator

P0 = ei(J
L

x
+JH

x
+Λx)γ (114)

where Λx rotates the entire system around its center of
mass. The result of such a combined rotation is a ro-
tation of each FF around its own center of mass by an
angle 2γ due to the action of both Λx and JF

x , as well as
a displacement of each FF along the y-axis by an amount
DFγ for small γ, whereDL = AHD/A and DH = ALD/A
and D is the FF separation and A = AL + AH. Such a
combined rotation and displacement of the FFs will make
the corresponding overlap OΛ

kl(β, γ) an extremely narrow
function of γ at γ = 0. The net results is that the effec-
tive integration interval over γ becomes extremely small,
which will lead to a negligible correction to Eq. (107).

XII. NUMERICAL ASPECTS

The extraction of a square root from a complex number
leads to two possible roots and numerically the continuity
of the overlap 〈Ψ|Ψ(η)〉 as a function of η is not ensured.
However, one can use the function unwrap, a function
common in many computer languages to generate a con-
tinuous overlap.
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An ambiguity can arise sometimes however if one or
more occupation probabilities nk ≡ 1/2, in which case
the overlap has a zero, but only for η0 = ±π/2, and thus
irrelevant, as discussed before [16]

In HFB calculations one can find that very deep levels
have occupations probabilities very close to 1, but that
does not seem to lead to any numerical issues however
in our time-dependent simulations, as all our βl < 1 and
they always come in pairs.

The potential vanishing of the denominator in
Eqs. (80) and (81) is compensated by the vanishing of
the overlap 〈Φ|Φ(η)〉. In the case of double particle pro-
jection the equations are a bit more involved.

As the total and fragment average particle numbers
〈Φ|N̂ |Φ〉 =

∑

k〈vk|vk〉 and 〈Φ|N̂Θ|Φ〉 =
∑

k〈vk|Θ|F|vk〉
can be rather easily be evaluated, the particle projec-
tion can be performed for particle numbers in relatively
small windows around these average values only and at
most one or two dozen integration points in each vari-
able should suffice as for small values of |N − 〈N̂〉| the
integrand has only a few oscillations. The evaluation of
fragment particle projected values of other observables
(intrinsic spin, deformation, etc.) will proceed in a simi-
lar fashion as discussed above in this text.

The great advantage of working in the canonical basis
when performing a double projection is that it requires a
single diagonalization of the overlap 〈vk|vl〉 and a single
evaluation of the overlap matrix 〈ṽk|ΘF|ṽl〉. The numer-
ical evaluation of the Eq. (59) and its subsequent inte-
gration of the angles η0, η

F is relatively inexpensive.

When projecting FF intrinsic spins the overlap ma-
trix element 〈Φ|Φ(η0, ηF, βF)〉 is numerically significant
in a relatively small interval around βF = 0 [18] and thus
only a small number of integration points are necessary to

evaluate Eq. (95) for example. The same situation occurs
as well in the case of projecting on both FF intrinsic spins
and also on the FFs orbital angular momentum. In par-
ticular, the projection on FF intrinsic spins and the FFs
orbital angular moment um using the qpwfs overlap (113)
can be evaluated fast using the Gauss-Legendre quadra-
ture formulas. Since the none of these Intrinsic spins and
FFs orbital angular momentum are larger than 50~ for
each angle one can limit the number of quadrature points
to at most n ≈ 50. That number is even further reduced
by the fact that any qpwfs overlap is negligible for angles
π/3 (radians) and then only quadrature points in the in-
terval β0 + βF ∈ [0, 0.7], a significant reduction of the
number of quadrature points.

XIII. CONCLUSIONS

I presented a new set of formulas for restoring bro-
ken symmetries in nuclear systems. These formu-
las are particularly useful when performing static and
time-dependent nuclear energy density calculations. A
new qualitative element of the present formalism is the
absence of singularities for one-body densities, which
plagued previous prescriptions, see Section VII. Even
though the simultaneous restoring of the broken particle
numbers of the total system and of the reaction fragment
symmetries require multiple projections, they appear fea-
sible, see recent study [8, 35].
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