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β-decay properties of nuclei are investigated within the relativistic nuclear energy density func-
tional framework by varying the temperature and density, conditions relevant to the final stages of
stellar evolution. Both thermal and nuclear pairing effects are taken into account in the descrip-
tion of nuclear properties and in the finite-temperature proton-neutron relativistic quasiparticle
random-phase approximation (FT-PNRQRPA) to calculate the relevant allowed and first-forbidden
transitions in the β-decay. The temperature and density effects are studied on the β-decay half-lives
between temperatures T = 0–1.5 MeV, and at densities ρYe = 107 g/cm3 and 109 g/cm3. The
relevant Gamow-Teller transitions are also investigated for Ti, Fe, Cd, and Sn isotopic chains at
finite-temperatures. We find that the β-decay half-lives increase with increasing density ρYe, whereas
half-lives generally decrease with increasing temperature. It is shown that the temperature effects
decrease the half-lives considerably in nuclei with longer half-lives at zero temperature, while only
slight changes for nuclei with short half-lives are obtained. We also show the importance of includ-
ing the de-excitation transitions in the calculation of the β-decay half-lives at finite-temperatures.
Comparing the FT-PNQRPA results with the shell-model calculations for pf -shell nuclei, a reason-
able agreement is obtained for the temperature dependence of β-decay rates. Finally, large-scale
calculations of β-decay half-lives are performed at temperatures T9(K) = 5 and T9(K) = 10 and
densities ρYe = 107 g/cm3 and 109 g/cm3 for even-even nuclei in the range 8 ≤ Z ≤ 82, relevant for
astrophysical nucleosynthesis mechanisms.

I. INTRODUCTION

Nuclear β-decay is a fundamental process in atomic
nuclei, which plays a decisive role in nuclear astrophysics
[1–3] and particle physics [4–6] as well as for the prop-
erties and structure of nuclei [7–9]. Within the con-
text of nuclear astrophysics, recent studies are mainly
focused on the understanding of the synthesis of elements
heavier than iron via the rapid-neutron capture process
(r-process) [10–13]. Along with other nuclear proper-
ties (masses, separation energies, etc.), β-decay half-lives
are essential ingredients of the r-process calculations, de-
termining the time-scale of the process and the relative
abundances of the nuclear species [1, 2]. It is also known
that uncertainties in β-decay rates can produce signifi-
cant alterations in the abundance distribution of nuclei
[3]. Therefore, accurate calculations of β-decay proper-
ties are of utmost importance for r-process simulations.
Since it is still not possible to reach experimental data
for the β-decay half-lives of all relevant r-process nuclei,
the simulations mainly rely on theoretical predictions.

The first tabulation of weak interaction rates for stel-
lar environments was done by Fuller, Fowler, Newmann
(FFN) [14–17]. Using the independent particle model,
rate tables were created for a broad range of tempera-
tures and stellar densities. The shell-model (SM) calcu-
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lations were also performed to study β-decay rates of the
sd-shell nuclei [18], and then extended to the pf -shell
nuclei [19, 20]. Although significant progress has been
accomplished over the years, the calculations for heavy
nuclei are still demanding due to the huge configuration
space of the SM calculations [21–23]. Large-scale calcula-
tions were also performed with the quasiparticle random
phase approximation (QRPA) on top of the Finite Range
Droplet Model (FRDM) [24], which are mostly used in
r-process simulations today. Apart from the microscopic-
macroscopic models, self-consistent models based on the
non-relativistic and relativistic energy density function-
als were also applied to study β-decay properties of nu-
clei [25–27] and their impact on r-process calculations
[28, 29]. Recently, the relativistic Hartree-Bogoliubov
model (RHB) plus relativistic QRPA with momentum-
dependent meson-nucleon couplings were used to cal-
culate β-decay half-lives of neutron-rich nuclei in the
Z ≈ 28 and Z ≈ 50 regions [30]. Using a relativis-
tic model with momentum-dependent self-energies in the
calculations, predictions for the β-decay rates were im-
proved. Later on, in Ref. [31], the same model was em-
ployed to perform large-scale calculation of β-decay half-
lives and β-delayed neutron emission probabilities of 5409
neutron-rich nuclei in the range 8 ≤ Z ≤ 124, including
both the allowed (GT) and first-forbidden (FF) transi-
tions. In recent years, β-decay half-lives of nuclei were
also studied using the (quasi)particle-vibration coupling
techniques to take into account more complex configura-
tions and obtain a better agreement with the experimen-
tal data [32–38].

Investigation of the properties of highly-excited (hot)
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nuclei is one of the interests in the field of nuclear physics,
to better understand the behavior of nuclei under ex-
treme conditions. Over the years, many works have
been devoted to study the temperature-driven changes
in the nuclear properties as well as the collective exci-
tation properties of nuclei [38–43]. We also note that
β decays in nuclear astrophysics often occur in various
hot stellar environments [44, 45], thus they have to be
described by considering finite-temperature effects. For
instance, β-decay can compete with the electron capture
in certain stages of the core-collapse supernovae evolu-
tion, when the temperatures are in the range T = 1–
10 GK and product of stellar density (ρ) and electron-
to-baryon ratio (Ye) is ρYe ≥ 107 g/cm3 [46, 47]. At
present, theoretical description is decisive to provide nu-
clear properties and processes at finite-temperature, nec-
essary for astrophysical modeling. However, temperature
effects on β-decay rates have been scarcely explored up
to now. Some time ago, thermal effects on both elec-
tron capture and β-decay rates were studied based on
the thermal QRPA (TQRPA) in Ref. [48]. Model cal-
culations were performed for 56Fe in stellar environment
(high density and temperature). It was found that the
GT strength is redistributed at finite-temperatures and a
part of the strength can be found below the thermal vac-
uum energy, leading to an increase in the β-decay rates.
In Ref. [49] the finite-temperature QRPA (FT-QRPA)
was applied on top of the finite-temperature Skyrme-HF
+ Bardeen-Cooper-Schrieffer (BCS) theory in order to
determine β-decay half-lives of N = 82 isotones. It was
shown that the temperature effect first leads to a de-
crease of the β-decay half-lives, whereas an increase in
the half-lives has been obtained for some open-shell nu-
clei after T > 0.6 MeV. However, Ref. [49] includes only
Gamow-Teller (GT) excitations in the calculation of the
total decay rate. Recently, temperature effects were also
studied within the finite-temperature relativistic time-
blocking approximation, including nucleon-phonon cou-
plings [38]. It was shown that the β-decay rate is quite
sensitive to the changes in temperature due to its impact
on the low-energy region of the spin-isospin excitations.

At finite-temperature nucleus can be found in excited
states, and one has to take into account transitions be-
tween individual excited states both in initial and final
nucleus. Within shell-model calculations these transi-
tions can be considered explicitly, weighted by appro-
priate Boltzmann factors. On the other hand, the FT-
QRPA being formulated within a statistical ensamble,
contains this information in the form of thermal aver-
ages. Importance of considering transitions from highly
excited initial states with negative transition energy (de-
excitations) has been exemplified by Dzhioev et al. in
Refs. [50–55] in the framework of TQRPA. Shell-model
calculations also incorporate de-excitations from highly
excited states in the parent nucleus. They are calcu-
lated from the low-lying strength of the inverse process
(so-called back-resonance transitions) and corrected in
excitation energy by assuming Brink hypothesis [19, 20].

In this work, we present the first study of the evolu-
tion of β-decay half-lives at finite-temperature in stellar
environment characterized by a fixed density ρYe, includ-
ing large-scale calculation for even-even nuclei, based on
the self-consistent finite-temperature proton-neutron rel-
ativistic QRPA. Both allowed and first-forbidden transi-
tions are included in description of the β-decay half-lives
at zero and finite-temperatures. We choose Ti, Fe, Cd
and Sn nuclei to demonstrate the different effects of tem-
perature on the spin-isospin excitations and β-decay half-
lives of open and closed-shell nuclei. Our work provides
a theoretical framework capable for microscopic descrip-
tion of temperature-dependent β-decay rates across the
nuclide chart.

We establish a theoretical framework for the de-
scription of β-decay based on the relativistic nuclear
energy density functional (RNEDF) with momentum-
dependent self-energies [56]. The nucleons are treated
as point-particles that exchange isoscalar-scalar σ-
meson, isoscalar-vector ω-meson and isovector-vector
ρ-meson (see Refs. [57, 58]). In contrast to
usual RNEDFs, additional couplings between nucleon
and meson fields are present, containing momentum-
dependent terms, thus producing momentum-dependent
self-energies. Derivative-coupling (DC) models are
known to provide a higher value of the effective nucleon
mass m∗, giving a higher density of the states around
the Fermi level, while still having a good agreement with
nuclear-matter and finite-nuclei properties [30]. In our
work, we use the D3C∗ parametrization from Ref. [30],
which is known to produce a good agreement with ex-
perimental values of β-decay half-lives in medium and
heavy nuclei. In order to assess the model dependence
of the results and compare with the shell-model calcu-
lations, we also employ the effective density dependent
meson-exchange interaction DD-ME2 in the calculations
[59].

This paper is organized as follows. In Sec. II we sum-
marize the theoretical framework used in this work with
additional formalism supplemented in Appendix A. In
Sec. III, we study the temperature dependence of the
β-decay half-lives in Ti, Fe, Cd, and Sn nuclei. The im-
portance of including de-excitation transitions in calcu-
lations of the β-decay half-lives is also analyzed. The
results are presented for the temperature evolution of
β-decay half-lives of selected nuclei in the stellar envi-
ronment and compared to respective shell-model calcula-
tions. Large-scale calculation of β-decay half-lives is also
presented for even-even nuclei in the range 8 ≤ Z ≤ 82
at selected stellar densities and temperatures. Finally,
conclusions and an outlook are given in Sec. IV.

II. THEORETICAL FORMALISM

In this work, the finite-temperature Hartree-BCS the-
ory (FT-HBCS) is applied to calculate the nuclear prop-
erties of nuclei, and spherical symmetry is assumed in the
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calculations [60, 61]. In the present work, only isovector
pairing (T=1, S=0) contributes to the FT-HBCS calcu-
lations and leads to the partial occupation of states. The
isovector pairing strength parameters Gn(p) are adjusted
according to the five-point mass formula for each nucleus
[62].

The charge-exchange excitations are calculated using
the finite-temperature proton-neutron relativistic quasi-
particle random-phase approximation (FT-PNRQRPA)
[see Refs. [41, 62–64] for more details]. Both isovector
(T = 1, S = 0) and isoscalar pairing (T = 0, S = 1) con-
tribute in the particle-particle (pp) residual interaction
part of the FT-PNRQRPA [65, 66]. For the isoscalar
pairing, we employ formulation with a short-range re-
pulsive Gaussian combined with a weaker longer-range
attractive Gaussian

V12 = V is0

2∑
j=1

gje
−r212/µ

2
j

∏
S=1,T=0

, (1)

where
∏

S=1,T=0

denotes projector on T = 0, S = 1 states.

For the ranges we use µ1 = 1.2 fm, and µ2 = 0.7 fm, and
strengths are set to g1 = 1 and g2 = −2 [66]. For the
isovector pairing in residual interaction we employ pair-
ing part of the Gogny interaction [39]. Isoscalar pairing
strength V is0 is considered as a free parameter that can be
constrained by the Gamow-Teller excitation or β-decay
experimental data. In this work, the functional form in-
troduced in Ref. [29] is used,

V is0 = VL +
VD

1 + ea+b(N−Z)
, (2)

with values VL = 153.2(137.8) MeV, VD= 8.4(48.7) MeV,
a = 6.0(98.6), and b = −0.8(−3.1) for D3C∗(DD-ME2)
interaction, adjusted to best reproduce all experimen-
tally available half-life data in the range 8 ≤ Z ≤ 82. In
the particle-hole channel (ph) of the PNRQRPA resid-
ual interaction only ρ-meson and π-meson terms are
present [66]. Due to the derivative nature of pion-nucleon
coupling, the zero-range Landau-Migdal term is also in-
cluded, that accounts for the contact part of the nucleon-
nucleon interaction of the form [66]

Vδπ = g′
(
fπ
mπ

)2

τ 1τ 2Σ1 ·Σ2δ(r1 − r2), (3)

where for pion-nucleon coupling standard values are used

mπ = 138.0 MeV, f2
π/(4π) = 0.08, and Σ =

(
σ 0
0 σ

)
,

σ being the Pauli spin matrix and τ isospin opera-
tor. Unless otherwise stated, the strength parameter of
the Landau-Migdal term is taken as g′ = 0.76(0.55) for
D3C∗(DD-ME2) interaction, which is adjusted to repro-
duce the experimental excitation energy of the Gamow-
Teller resonance in 208Pb.

For the calculation of the β-decay half-lives both al-
lowed (L = 0) and first-forbidden (L = 0, 1) transitions

are included. General form of β-decay rate in stellar con-
ditions is given by [67]

λ =
ln 2

K

∫ p0

0

p2
e (W0 −W )

2
F (Z,W )C(W )[1−f(W )]dpe,

(4)
where W is electron energy in the units of mec

2, me de-
notes the electron mass, and pe is electron momentum in
units of mec. W0 is the maximal electron energy given by
difference of initial and final nuclear mass. The integra-
tion is performed up to a maximal electron momentum
p0. F (Z,W ) is the Fermi function, taking into account
distortion of electron wavefunctions [68]. Maximal elec-
tron energy in β-decay can be approximated as

W0 ≈ λnp + ∆np − EQRPA, (5)

where λnp = λn − λp is the difference between neutron
and proton chemical potentials, ∆np = 1.293 MeV is
the neutron-proton mass difference, and EQRPA is the
FT-PNRQRPA eigenvalue for the considered state. K is
measured in superallowed β-decay to be K = 6144± 2 s
[69]. C(W ) is the so-called shape factor. The outgoing
electrons follow a Fermi-Dirac distribution

f(W ) =
1

exp
(
W−µe

kBT

)
+ 1

, (6)

where the electron chemical potential µe is determined
by the inversion of [67, 70]

ρYe =
1

π2NA

(mec

~

)3
∞∫

0

(fe − fe+)p2
edpe, (7)

where ρ is the baryon density, Ye is electron-to-baryon
ratio, NA is Avogadro’s number, and fe+ denotes Fermi-
Dirac distribution of positrons, for which µe+ = −µe− .
For the allowed GT transitions, C(W ) is equal to the
reduced matrix element of the GT− transition

B(GT−) = g2
A

| 〈f ‖στ−‖ i〉 |2

(2Ji + 1)
, (8)

where τ− is lowering isospin operator, while Ji is an-
gular momentum of the initial state. Axial-vector cou-
pling constant gA is quenched from free-nucleon value of
gA = −1.26 to gA = −1.0 [31, 71]. Shape factor for the
first-forbidden transitions has functional form

C(W ) = k + kaW + kb/W + kcW 2. (9)

The details for the definitions of k, ka, kb, kc can be found
in Refs.[31, 72]. Finally, β-decay rate λ is connected to
half-lives T1/2 via T1/2 = ln(2)/λ.

It is well known that individual low-energy GT states
are decisive in the determination of the β-decay half-lives
of nuclei at zero temperature. At finite-temperature tran-
sitions between thermally excited states in both parent
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and daughter nucleus start to play an important role in
determining the total decay rate. Apart from usual tran-
sitions included within the FT-(R)QRPA, namely tran-
sitions between ground-state of parent nucleus to ther-
mally excited states in daughter as well as transitions
from thermally excited states in the parent, in stellar en-
vironment it is also important to include the so-called
de-excitations, i.e. transitions from highly excited states
in the parent nucleus, whose transitions are characterized
by the negative Q-value. The physical finite-temperature
strength function of an external field operator F̂ is de-
fined as [73, 74]

S̃ =
∑
if

pi|〈f |F̂ |i〉|2δ(E − Ef + Ei), (10)

where pi = e−βEi/
∑
j e
−βEj , β = 1/(kBT ), Ei(f) are

the energies of initial (final) states. On the other hand,
the FT-(R)QRPA response function is given by (see Ap-
pendix A for derivation)

RQRPA(E) =
∑
n

|〈[Γn, F̂ ]〉|2

E − En + iη
− |〈[F̂

†,Γn]〉|2

E + En + iη
, (11)

where n labels the FT-(R)QRPA eigenvalue En and the
FT-(R)QRPA creation operator Γn being defined in Ap-
pendix A. Finite width around poles of the response func-
tion has been added by including a small parameter η.
For the crucial step, it can be shown [75] that the phys-
ical strength at finite-temperature can be obtained from
the FT-(R)QRPA response function as

S̃(E) = − 1

π
Im

[
RQRPA(E)

1− e−β(E−λnp)

]
. (12)

Using the definition of GT external field operator as F̂ =
στ− the physical strength is

S̃(E) =
1

1− e−β(E−λnp)

[
S−(E) + S+(E)

]
, (13)

where S−(E) =
∑
n |〈[Γn, F̂ ]〉|2δ(E − En) and S+(E) =

−
∑
n |〈[F̂ †,Γn]〉|2δ(E + En). This means that excita-

tions of thermally averaged initial states are described
by GT− strength function at positive transition ener-
gies, while de-excitations are calculated using the GT+

strength (induced by F̂ † operator) at negative transition
energies. We note that negative transition energies mean
E < λnp for charge-changing transitions. Finally, by in-

serting the residues of physical strength function S̃ in the
expression for the total β-decay rate [cf. Eq. (4)], it can
be rewritten as

λβ = λ−β + λ+
β , (14)

where λ−β is the β-decay rate calculated using the ther-
mally averaged states with positive transition energy, and
λ+
β represents the contribution of de-excitations.

III. RESULTS AND DISCUSSION

In this part, we study the changes in the β-decay prop-
erties of nuclei alongside the Gamow-Teller excitations
at zero and finite-temperatures. To this aim, the FT-
PNRQRPA with D3C* functional is used in the calcu-
lations, which is known to provide a good description of
the β-decay properties of nuclei. The effects of increasing
the stellar densities on the β-decay properties of nuclei
are also discussed. In the last part, large-scale calcu-
lations are performed for even-even nuclei in the range
8 ≤ Z ≤ 82 for the selected stellar densities and temper-
atures.

A. β-decay properties at zero and
finite-temperature

As a benchmark for our study, we investigate the β-
decay half-lives in the zero-temperature limit for Ti, Fe,
Cd, and Sn isotopes, using D3C* interaction with the
Landau-Migdal term strength parameter g′ = 0.76 and
the isoscalar pairing strength V is0 as given in Eq. (2).
The results shown in Fig. 1 appear in good agreement
with the experimental data [76, 77]. In the case of Sn
isotopes, additional improvement of the half-lives can be
obtained by further adjustment of the g′ value, as shown
in Fig. 1(d). It is a known issue that the (Q)RPA con-
sisting of particle-hole (1p-1h) configuration may overes-
timate the half-lives of the doubly-magic nuclei [28, 31].
To improve description of the half-lives, contributions
due to complex configurations should be taken into ac-
count, resulting in lower predictions of half-life by in-
creasing the number of transitions in the low-energy re-
gion [36–38, 78]. To compensate for the shortcomings of
our model for the Sn chain, we induce more strength in
the low-energy region by adjusting the strength parame-
ter of the Landau-Migdal term g′ to the excitation energy
of main GT− peak of 132Sn, and the best fit is obtained
for g′ = 0.5, as shown in Fig. 1(d). The same value of
g′ = 0.5 is used throughout the whole Sn isotopic chain.
The model with the D3C∗ functional benchmarked in this
way at T = 0 MeV, is employed in further studies of the
finite-temperature effects on β-decay.

In this work, we first study the temperature evolution
of β-decay half-lives at fixed density (ρ) and electron-to-
baryon-ratio (Ye). Temperature is known to affect both
the properties and excitation spectrum of nuclei. Be-
sides, the nucleus goes under a phase transition from a
superfluid to a normal state at critical temperatures, and
pairing properties vanish completely [39, 64]. Apart from
the changes in the pairing properties and single (quasi)-
particle levels of nuclei, temperature also gives rise to the
opening of new excitation channels due to the smearing
of the Fermi surface and modifies the residual ph and pp
interactions of the FT-PNQRPA matrices [41, 62]. Even-
tually, the spin-isospin excitations and β-decay half-lives
of nuclei are affected, as we will discuss below.
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FIG. 1. Comparison between β-decay half-lives calculated
using the FT-PNRQRPA with the D3C∗ interaction using
g′ = 0.76 (black full line) and the experimental data from
Ref. [76, 77] (red dashed line) for Ti, Fe, Cd and Sn isotopic
chains. Additionaly, half-lives for the Sn chain obtained by
setting g′ = 0.5 are also shown (green full line).

In figure 2(a)-(d), we display the total β-decay half-
lives T1/2 of the selected isotopic chains using the FT-

PNRQRPA with D3C* functional. Both λ−β and de-

excitation λ+
β contributions of Eq. (14) are taken into

account in the calculation of the half-lives, i.e. T1/2 =

ln(2)/(λ−β + λ+
β ). The calculations are performed for the

range of temperatures between T = 0–1.5 MeV and stel-
lar density is fixed to ρYe = 107 g/cm3. As a demon-
stration of the model, we consider Ti, Fe, Cd, and Sn
isotopic chains. In Fig. 2(a)-(d), it is apparent that tem-
perature has a considerable impact on nuclei with long
β-decay half-lives at zero-temperature, whereas its effect
is smaller in short-lived nuclei. For all considered nu-
clei, the half-lives almost do not change up to T ≈ 0.3
MeV, above which they start to decrease or slightly in-
crease and converge to an almost constant value at higher
temperatures. As mentioned above, influence of tem-
perature is more pronounced for nuclei with long half-
lives at zero-temperature, e.g., 52Ti, 62Fe, 120Cd, and
130,132Sn where we first observe a sharp decrease of half-
lives with increasing temperature. As we will discuss in
Section III B, this sharp decrease in the β-decay half-
lives at low temperatures is related to the changes in the
pairing correlations as well as the changes in the low-
energy states and contribution of negative energy tran-
sitions (de-excitations) in the calculations, which even-
tually increase the β-decay phase space, and decrease
the half-lives. It is also seen that nuclei with shortest
half-lives at the zero-temperature, like 60Ti and 70Fe,
show almost no temperature dependence. The conclusion
by inspecting Fig. 2(a)-(d) is that in general tempera-
ture leads to a decrease of β-decay half-lives, effect being
larger (smaller) for nuclei with longer (shorter) half-lives
at zero temperature. In Fig. 2(d), we also display the
half-life of 132Sn (red triangles) calculated within the FT-
RTBA formalism from Ref. [38] at ρYe = 107 g/cm3. The

overall trend of the temperature dependence agrees well
between the FT-PNRQRPA and FT-RTBA calculations,
that is, the half-life decreases with increasing tempera-
ture. While our calculation predicts first significant tem-
perature effect at T ≈ 0.4 MeV, the FT-RTBA predicts
visible effects starting from T ≈ 0.5 MeV. At T = 1 MeV,
the results of both approaches agree reasonably well. It
should be noted that both the framework of the com-
pared models and the effective nuclear interactions used
in the calculations are different, which in turn results in
different predictions for the single-particle energies and
transitions relevant for the β-decay. Furthermore, within
our model, the chemical potential of electrons at lower-
temperatures (µe ≈ 1 MeV) is large enough to slightly
decrease the β-decay rate and thus increase the half-life.
Considering all of these reasons, the differences between
the FT-PNRQRPA and FT-RTBA calculations for the
half-lives of nuclei can be expected already at zero tem-
perature.

To demonstrate the importance of including de-
excitations in the calculation of β-decay half-lives, in
Fig. 2(e)-(h), we also display the temperature evolu-
tion of the ratio between de-excitation rate λ+

β and total

β-decay rate λβ for the same isotopic chains [cf. Eq.
(14)]. It is found that (i) negative energy transitions
(de-excitations) start to play a role already at T ≈ 0.3
MeV, (ii) its contribution increases for all considered nu-
clei with increasing temperature, (iii) for pf -shell 52,54Ti
and 62Fe nuclei, β-decay rates are fully determined by
de-excitation transitions around critical temperatures for
pairing correlations (iv) temperature evolution of λ+

β /λβ
depends on shell-structure of particular nucleus under
consideration. For most nuclei in Ti and Fe chain and
some in Cd and Sn isotopic chain, a sharp decrease of λ+

β
contribution occurs in the vicinity of critical temperature
for pairing phase transitions. As we will demonstrate
later in the section, this occurs due to redistribution of
the GT strength function when the pairing correlations
vanish at critical temperatures. It is shown that inclu-
sion of the negative energy transitions has the most con-
siderable effect on pf -shell nuclei with longer half-lives,
and leads to a smooth decrease in the β-decay half-lives
with increasing temperature. Also, the contribution of
the negative energy transitions increases with increasing
temperature for all nuclei considered in this work.

Apart from the Gamow-Teller states, the first-
forbidden transitions are also known to play a crucial
role in the determination of the β-decay half-lives in cer-
tain regions of the nuclear chart [31]. Therefore, in the
present analysis, both allowed and first-forbidden transi-
tions are considered for a proper description of half-lives
at finite-temperatures. In Fig. 3, we display the con-
tribution of the GT (1+ transition) and first-forbidden
(0−, 1−, 2−) transitions to the total β-decay rate in 54Ti,
62Fe, 120Cd and 132Sn with increasing temperature. It is
shown that for 54Ti and 62Fe the β-decay rate is domi-
nated by the allowed GT transition up to T = 1.5 MeV.
The first-forbidden transitions also start to contribute to
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the β-decay rate with increasing temperature, whereas
their contribution is quite less and can be neglected up
to T = 1.5 MeV. Although their impact on the total
β-decay rate is rather small compared to the GT tran-
sitions up to T ≈ 0.5 MeV, forbidden transitions start
to contribute to the β-decay rate of neutron-rich 120Cd
after T ≈ 0.5 MeV. On the other hand, at low temper-
atures (T < 0.3 MeV), both GT and 2− transitions are
important for the β-decay rate in 132Sn. By increasing
temperature further, the contribution of the GT excita-
tions increases considerably, while the contribution of 2−

multipole to the total rate cannot compete with GT and
becomes less. At T ≈ 1.5 MeV, contribution of 1− mul-
tipole has a non-negligible contribution to the β-decay
rates in 120Cd and 132Sn. Our results show that the con-
tribution of the first-forbidden transitions increases with
increasing temperature.

Even though one drawback of our model is the inclu-
sion of only two quasiparticle (q.p.) configurations within
the R(Q)RPA, it includes both the pairing and temper-
ature effects and can be applied to calculations through-
out the nuclide chart, allowing large-scale calculations
of relevance for astrophysical models of stellar evolution
and synthesis of chemical elements. The deformation is
another factor that can affect the β-decay properties of
nuclei. However, it is also known that deformation of nu-
clei decreases with increasing temperature, and a second-
order phase transition from the deformed state to the
spherical state generally occurs after T > 1 MeV [79–81].
Therefore, our model applies well for the extreme stellar
environments where the temperature is high enough (e.g.
core-collapse supernovae).

B. Gamow-Teller excitations at zero and
finite-temperature

To understand the temperature evolution of β-decay
half-lives we need to investigate changes in the spin-
isospin excitations in nuclei with increasing temperature.
To keep the discussion simple, we fix the stellar den-
sity to ρYe = 107 g/cm3 and consider only the allowed
Gamow-Teller transitions, whose strength is defined in
Eq. (8). In this section we study the changes in the
GT strength of two pf -shell nuclei 54Ti and 62Fe with
increasing temperature. To start with, the pairing gap
values at zero temperature and the critical temperatures
T cn(p) for neutrons (protons) of 54Ti and 62Fe are given in

Table I. Due to the grand-canonical treatment of nuclei
at finite-temperatures, pairing phase transition of nuclei
from superfluid state to normal state occurs at critical
temperatures, and pairing correlations disappear. Tem-
perature leads to a decrease in the excited state energies
of nuclei due to the vanishing of the isovector pairing
properties and changes in the single(quasi)-particle ener-
gies of nuclei as well as the decrease in the residual ph
and pp interactions. Besides, new excitation channels be-
come possible due to the smearing of the Fermi surface at

TABLE I. The pairing gap values at zero temperature ∆0
n(p)

and critical temperatures T cn(p) for neutrons (protons) calcu-
lated using the FT-HBCS theory and D3C∗ functional.

∆0
n [MeV] ∆0

p [MeV] T cn [MeV] T cp [MeV]
54Ti 1.03 1.76 0.59 0.91
62Fe 1.44 1.56 0.76 0.83

high temperatures [38, 40, 41, 62, 82, 83]. However, pres-
ence of the isoscalar pairing in the residual interaction
can slow down temperature-induced changes for open-
shell nuclei until the critical temperatures. As mentioned
before, both the isoscalar and isovector pairing correla-
tions are included in the calculations at zero and finite-
temperatures. While the isovector pairing contributes
to the FT-HBCS calculations and leads to an increase
in both the quasiparticle energies of the states and ex-
cited state energies, the isoscalar pairing contributes to
the residual pairing interaction and decreases the excited
state energies due to its attractive nature. By increas-
ing temperature, pairing effects first decrease and then
vanish completely at critical temperatures. Under the
influence of both the isoscalar and isovector pairing, the
changes in the GT− excitations strongly depend on the
interplay between the increasing effect of temperature
and the decreasing impact of the pairing correlations for
the considered nucleus (see Ref. [41] for more details).

In Fig. 4(a)-(e) we show the temperature evolution
of the GT strength in 54Ti within the β-decay energy
window (i.e. Qβ window).

As mentioned above, thermally induced negative en-
ergy transitions have a considerable impact on the cal-
culation of the β-decay half-lives below the critical tem-
peratures. To explain the working mechanism of includ-
ing de-excitations in our model, we display the finite-
temperature GT strength in Fig. 4(a)-(e). The neg-
ative energy strength representing de-excitations is lo-
cated up to λnp (denoted by black dashed vertical line
in Fig. 4(a)-(e)). In the same figure, the positive en-
ergy strength is also displayed between λnp and ∆nH . At
finite-temperature, both positive energy strength, deter-
mined by the GT− transitions for E > λnp and negative
energy strength, determined by the GT+ transitions for
E < λnp, contribute to the decay rate, where we have de-
noted the corresponding rates with λ−β and λ+

β [cf. Sec.

II]. Strength functions corresponding to these rates are
weighted by the temperature factor (1 − e−β(E−λnp))−1

(shown as thin colored lines in panels (a)-(e) of Fig. 4).
At T = 0 MeV, the main low-energy GT− peak within

the Qβ energy window is found at E = −4.83 MeV with
strength B(GT−) = 0.22 (see panel (a) of Fig.4). Al-
though this is not the only peak within the Qβ window,
it is the only one allowed by the phase-space factor in
Eq. (4) at ρYe = 107 g/cm3. Most of the GT− strength
comes from ν1f5/2 → π1f7/2 transition for this state,
where ν and π refer to neutron and proton, respectively.
At T = 0 MeV, weighting factor (1 − e−β(E−λnp))−1 re-
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FIG. 4. The temperature evolution of the Gamow-Teller
strength, located within the Qβ window, in 54Ti (panels (a)-
(e)) and 62Fe (panels (g)-(k)) at temperatures in the range
T = 0–1.5 MeV with respect to the excitation energy of par-
ent nucleus. The neutron-proton chemical potential difference
λnp = λn − λp is labeled by the black dashed line and it sep-
arates the negative energy transitions (determined by GT+

strength located at E < λnp) from GT− strength (located at
E > λnp). Within the panels (a)-(e) (and (g)-(k)) thick lines
denote the Gamow-Teller strength B(GT) while thin lines rep-

resent the weighting prefactors (1− e−β(E−λnp))−1. In panels
(f) and (l) the cumulative sum of half-lives is shown obtained
by restricting the summation in Eq. (4) for 54Ti and 62Fe,
respectively.

duces to 1, which is multiplied by the GT− strength for
the calculation of the λ−β rate. Besides, there is a peak
for E < λnp at E = −8.97 MeV. However, this state
does not contribute to the β-decay rate since the weight-
ing factor is zero for the states below E < λnp. In Fig.
4(f), we also display the cumulative sum of the β-decay

half-lives to follow the changes on the GT excitations
and β-decay properties of nuclei with increasing temper-
ature. At T = 0 MeV, the effect of the main low-energy
peak at E = −4.83 MeV can be seen clearly in reduc-
ing the half-life, while other peaks are being negligible.
Already at T = 0.3 MeV, temperature affects the GT
strength function. The main peak within the Qβ window
shifts by 0.05 MeV to lower energies, and is obtained at
E = −4.88 MeV. Since the weighting factor is greater
than zero for the states below E < λnp, the peak at
E = −8.95 MeV with B(GT+) = 0.63 also contributes
to the λ+

β part of the total β-decay rate. It is a nega-
tive energy transition originating from π1f7/2 → ν1f5/2

two-quasiparticle (2 q.p.) excitation. The impact of this
transition in decreasing the half-life can be seen in Fig.
4(f).

At T = 0.6 MeV, pairing collapse occurs for neutron
states (cf. Tab. I), and considerably changes the GT
strength function as can be seen from panel (c) of Fig.
4. The most important GT− peaks for E > λnp are: the
peak at E = −6.48 MeV with B(GT−) = 0.08 with main
contribution from ν1f5/2 → π1f7/2 transition and an-

other low-enegy peak at E = −1.15 MeV with B(GT−)
= 0.09 mainly formed with the ν2p1/2 → π2p3/2 tran-
sition. Besides, the new peaks appear with the opening
of new excitation channels, and the low-energy strength
fragments at higher energies (E > 0 MeV). These ex-
cited states do not play an important role in the β-decay
half-lives as can be seen from Fig. 4(f). For E < λnp the
main peak is located at E = −8.64 MeV with B(GT+)
= 0.70, again stemming from π1f7/2 → ν1f5/2 transi-
tion. Due to the growing impact of the weighting factor
(1− e−β(E−λnp))−1 for E < λnp, this peak gains consid-
erable importance by lowering the half-life as can be seen
in Fig. 4(f). At T = 0.9 MeV the pairing gap of proton
states reduces further to ∆p = 0.54 MeV, while there
is no pairing for neutron states (see Table I). The GT−

peaks for E > λnp are found at higher excitation ener-
gies. The first important peak is obtained at E = −1.08
MeV with strength B(GT−) = 0.11, originating from
ν2p1/2 → π2p3/2 transition. Another low-energy peak is

found at E = −0.57 MeV with B(GT−) = 0.05, having
contribution from ν1f5/2 → π1f5/2 and ν1f7/2 → π1f7/2

transitions. However, these peaks together with other
peaks located at E > 0 MeV have almost no contribution
to the β-decay half-life. At T = 0.9 MeV, the β-decay
half-lives are almost fully determined by de-excitations,
located on the E < λnp side. The first peak is obtained
at E = −8.04 MeV with B(GT+) = 0.24 and the sec-
ond one is found at E = −7.29 MeV with B(GT+) =
0.15, both stemming from the π1f7/2 → ν1f5/2 negative
energy transition. Combined with the increasing impact
of the weighting factor, the inclusion of de-excitations
leads to a smooth decrease in the half-lives with increas-
ing temperature (see fig. 2(a)). At T = 1.5 MeV, pairing
effects are washed out completely, and new transitions
appear because of the unblocking effect of the temper-
ature. The fragmentation of the states also increases
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around E ≈ 0 MeV. Although the overall strength in-
creases with the opening of the new excitation channels
at finite-temperatures, the strength mostly lies in the
higher energy region of the Qβ window and its effect on
the half-life is negligible. At T = 1.5 MeV, the most
important contribution to the total β-decay rate comes
from the negative energy transition at E = −7.36 MeV
with B(GT+) = 0.24, which is mainly formed by the
π1f7/2 → ν1f5/2 transition. Notice that at T = 1.5 MeV
half-life slightly decreases compared to T = 0.9 MeV.

Temperature dependence of GT strength for 62Fe is
also shown in Fig. 4(g)-(k). At zero temperature, only
contribution to GT− strength comes from ν1f5/2 →
π1f7/2 2 q.p. excitation and we obtain an excited state

at E = −3.04 MeV with B(GT−) = 0.45. By increasing
temperature, the negative energy π1f7/2 → ν1f5/2 tran-
sition becomes allowed due to non-vanishing weighting
factor multiplying the strength. Similar to the findings
in 54Ti, de-excitations start to have a dominant contri-
bution to the half-life with increasing temperature (see
Fig. 4(l)). At T = 0.9 MeV pairing correlations vanish
for both proton and neutron states (check Tab I). After
the pairing collapse, the GT− peak is obtained at E ≈ 0
MeV, which is formed with the ν2p1/2 → π2p3/2 tran-
sition and has almost no contribution to β-decay half-
lives. At the same time, the impact of the de-excitations
increases which in turn leads to a smooth decrease in the
half-lives. At T = 1.5 MeV, E < λnp strength is frag-
mented into two peaks due to temperature unblocking,
and both π1f7/2 → ν1f5/2 and π1g9/2 → ν1g7/2 transi-

tions contribute to the λ+
β rate. In Tab. II, we also pro-

vided the most important peaks for the β-decay half-lives
alongside their excitation energy E, strength B(GT), ab-
solute value of weighting factor |(1−e−β(E−λnp))−1|, and
main 2 q.p. components for 62Fe. Evolution of β-decay
half-lives in Fig. 2(a)-(d) for 54Ti and 62Fe precisely fol-
lows these trends of GT strength, mainly (i) at low tem-
peratures (T < 0.5 MeV), the rate is determined only by
a few GT peaks in Qβ window yielding long half-lives,
(ii) once the temperature reaches T ≈ 0.6 MeV half-lives
are dominated by the de-excitations and (iii) due to in-
clusion of higher number of states in GT strength at high
temperatures (T > 1 MeV) rates are less dependent on
temperature effects.

C. Dependence of finite-temperature β-decay rates
on stellar density

It is also of interest for astrophysical applications to
study the dependence of β-decay rates on the density ρYe.
Therefore, we also consider the changes in the β-decay
rates at higher stellar densities with increasing tempera-
ture. In Fig. 5 we compare our results (FT-PNRQRPA)
for selected pf -shell nuclei calculated using D3C∗ (black
dashed line) and DD-ME2 (blue dash-dotted line) inter-
actions in the temperature range T = 0–2 MeV with
the large scale shell-model results (LSSM) from Ref. [20]

and shell-model results based on pf-GXPF1J interaction
from Refs. [84, 85] at ρYe = 107 g/cm3 (upper panels)
and ρYe = 109 g/cm3 (lower panels). Since the shell-
model calculations do not include first-forbidden tran-
sitions, we only use the allowed Gamow-Teller transi-
tions in the calculations for the comparison. Compar-
ing the upper and lower panels of Fig. 5, it can be seen
that β-decay rates significantly decrease with increasing
density. It is also seen that the FT-PNRQRPA calcula-
tions using both D3C∗ and DD-ME2 interactions are in
good agreement with both shell-model results, and over-
all trends of increasing rates with increasing temperature
are well reproduced. In principle, with increasing tem-
perature at fixed ρYe, the electron chemical potential µe
slightly decreases, allowing more states in the β-decay
energy window. Again, due to increasing contribution
of de-excitations, rates continue to increase with tem-
perature also at ρYe = 109 g/cm3, having good agree-
ment with shell-model results at finite-temperatures (see
the lower panels of Fig. 5). The agreement is better
at higher temperatures where individual nuclear proper-
ties (e.g. shell structure and pairing) become less im-
portant due to the larger number of excited states. It
should be noted that at high temperatures inclusion of
negative energy transitions becomes very important in
obtaining reasonable agreement with shell-model calcu-
lations. The differences between the β-decay rate pre-
dictions stem from the assumptions of the models, as ex-
pected. Note that in contrast to shell-model calculations,
which assume Brink hypothesis to treat transitions from
highly-excited states, our model makes no such assump-
tions. Inclusion of de-excitations follows from equating
the FT-(R)QRPA strength function to physical strength
function as in Eq. (12).

Considering these findings, we conclude that the in-
clusion of negative energy transitions in the calculation
of β-decay half-lives is crucial to obtain a better under-
standing of the temperature evolution of the half-lives.
Especially at lower temperatures, the inclusion of de-
excitations in the β-decay calculations counterbalances
the sudden disappearance of the GT− strength within
the Qβ window due to the vanishing of pairing properties
around the critical temperature and leads to a smooth de-
crease of the β-decay half-lives. Consequently, the FT-
PNRQRPA and shell-model results become compatible
with each other.

D. Large-scale calculations at zero and
finite-temperatures

After investigating the effects of temperature in β-
decay half-lives, we extend our investigation throughout
the nuclide chart. In this work, we focus on β-decay
half-lives of even-even nuclei in the 8 ≤ Z ≤ 82 range.
Following previous work from Ref. [31], we perform our
calculations for nuclei with half-lives below 104 s at zero-
temperature. Pairing gaps for open-shell nuclei are calcu-
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TABLE II. The most dominant Gamow-Teller excitations contributing to β-decay half-lives of 62Fe in the temperature range
T = 0–1.5 MeV. Displayed are both E > λnp (determined by GT−) and E < λnp (determined by GT+) excitations, together

with their excitation energy E (w.r.t. parent nucleus), strength B(GT±), absolute value of weighting factor |(1−e−β(E−λnp))−1|
and two-quasiparticle transitions having most relevant contributions.

T [MeV] E [MeV] B(GT) |(1− e−β(E−λnp))−1| transitions

0.0 GT− −3.04 0.45 1.00 ν1f5/2 → π1f7/2

GT+ −6.39 0.36 0.00 π1f7/2 → ν1f5/2

0.3 GT− −3.05 0.44 1.00 ν1f5/2 → π1f7/2

GT+ −6.37 0.37 0.004 π1f7/2 → ν1f5/2

0.6 GT− −4.36 0.04 2.29 ν1f5/2 → π1f7/2

−3.33 0.22 1.11 ν1f5/2 → π1f7/2

−0.84 0.04 1.00 ν2p1/2 → π2p3/2

GT+ −5.05 0.05 1.29 π1f7/2 → ν1f5/2

−6.08 0.42 0.11 π1f7/2 → ν1f5/2

0.9 GT− 0.02 0.24 1.01 ν2p1/2 → π2p3/2

GT+ −5.38 0.51 0.86 π1f7/2 → ν1f5/2

1.5 GT− 0.21 0.25 1.05 ν2p1/2 → π2p3/2

GT+ −5.36 0.31 1.22 π1f7/2 → ν1f5/2

π1g9/2 → ν1g7/2

−5.38 0.18 1.17 π1f7/2 → ν1f5/2

π1g9/2 → ν1g7/2
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FIG. 5. Beta-decay rates λβ for selected nuclei in the temperature range T = 0–2 MeV for densities ρYe = 107 g/cm3 (upper
panels) and ρYe = 109 g/cm3 (lower panels). The FT-PNRQRPA calculations based on the D3C∗ interaction (black dashed
line) and DD-ME2 interaction (blue dash-dotted line) are shown together with the LSSM (red squares) [20] and shell-model
calculations based on the pf-GXPF1J interaction (green triangles) [84, 85].
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FIG. 6. Left panel: the β-decay half-lives T1/2 of nuclei at zero-temperature. Large-scale calculations are performed for even-

even nuclei in the range 8 ≤ Z ≤ 82, and the stellar density is fixed to ρYe = 107 g/cm3. The even-even nuclei are shown
side-by-side for demonstration purposes. Right panel: The same but the density is fixed to ρYe = 109 g/cm3.

lated by adjusting monopole pairing constants Gn(p) (see
Refs. [41]) to pairing gaps obtained from five-point for-
mula [86]. Half-lives of doubly-magic 132Sn and 78Ni nu-
clei are adjusted to the available experimental half-lives
by modifying g′ coupling of Landau-Migdal term in Eq.
(3) as previously described in Sec. III A. The same value
of g′, as determined for the doubly-magic nucleus, is used
throughout the rest of Sn and Ni isotopic chain. This is
done to compensate for missing strength in doubly-magic
nuclei due to ommission of complex-configurations within
the (Q)RPA. We present only the results for the bound
nuclei with negative chemical potential λn(p) < 0 [87].

In Fig. 6 we first display the β-decay half-lives of 705
even-even nuclei at T9(K) = 0.01 (T9(K) denoting tem-
perature in 109 K units) using (N,Z) charts. This is
essentially zero-temperature result, however, due to ρYe
dependence non-vanishing temperature is usually intro-
duced to keep the calculations finite. In order to demon-
strate the effects of the stellar density on the β-decay
half-lives, the calculations are performed at ρYe = 107

g/cm3 (Fig.6(a)) and ρYe = 109 g/cm3 (Fig.6(b)). It is
shown that the β-decay half-lives decrease with increas-
ing neutron number in both panels, as expected. In-
creasing the density to ρYe = 109 g/cm3, half-lives are
predicted to be longer for all nuclei compared to the cal-
culations with ρYe = 107 g/cm3. We also notice that
the β-decay half-lives increase considerably in the less
neutron-rich side of the (N,Z) chart, and some nuclei
become even stable at high densities.

Let us explain the physical mechanism of the changes
in the β-decay rates of nuclei with increasing density.
From the rate equation (4), it can be easily deduced
that with increasing density (ρYe) β-decay rates decrease
rapidly. Because of the increased chemical potential of
electrons µe at higher densities, the Fermi-Dirac factor
in Eq. (6) increases. This factor enters Eq. (4) as

1 − fe(W ), thus reducing (increasing) the β-decay rate
(half-life) by limiting the number of available excitations
in the β-decay energy window. This is exactly the oppo-
site case of the electron capture, where higher densities
excite a larger part of the strength function [70, 88]. Al-
though densities considered within this work might be
too high for the r-process, they could be of significance
for the evolution of core-collapse supernovae, especially
in the stage when the collapse reaches A ≈ 60 where
β-decay can compete with the electron capture [46].

Similar calculations are also performed at finite-
temperatures, and the effect of the temperature is studied
on the β-decay half-lives of nuclei. To this aim, the calcu-
lations are performed at T9(K) = 5 and 10, and densities
are taken as ρYe = 107 g/cm3 and ρYe = 109 g/cm3. In
Fig. 7 we display the percentage change in the β-decay
half-lives of nuclei at finite-temperatures with respect to
the T9(K) = 0.01 (zero temperature) case. Already at
T9(K) = 5 for densities ρYe = 107 g/cm3 (Fig. 7(a))
and ρYe = 109 g/cm3 (Fig. 7(c)) temperature effects
start to become visible. In the majority of the nuclide
map, a decrease in the β-decay half-lives is obtained with
increasing temperature, as expected from previous anal-
ysis. Also, some nuclei display a slight increase in half-
lives, being located in between the closed shells and in
the proximity of neutron drip line. As mentioned above,
a decrease in half-lives is mainly related to the changes
in the pairing and excitation properties of nuclei with in-
creasing temperature. By inspecting Fig. 7(a) and Fig.
7(c), the β-decay half-lives of nuclei are generally im-
pacted more by the temperature effects for ρYe = 109

g/cm3, when compared to the results with ρYe = 107

g/cm3. At T9(K) = 5, the percentage change in the half-
lives are found to be below 20% for both densities near
the neutron-drip lines. Going towards the valley of β-
stability, the temperature leads to an important decrease
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FIG. 7. (a)-(b) The percentage change of the β-decay half-lives T1/2 at finite-temperatures T9(K) = 5, T9(K) = 10 with
respect to T9(K) = 0.01 (zero-temperature) results. Large-scale calculations are performed for even-even nuclei in the range
8 ≤ Z ≤ 82, and the stellar density is fixed to ρYe = 107 g/cm3. The even-even nuclei are shown side-by-side for demonstration
purposes. (c)-(d) The same but the density is fixed to ρYe = 109 g/cm3.

in the half-lives, and the obtained percentage decrease
reaches 100% for the calculations using ρYe = 109 g/cm3.
It is known that high density leads to an increase in the
half-lives of nuclei by decreasing the Qβ window at zero
temperature. Therefore, the half-lives become more sen-
sitive to the temperature-driven changes in the excitation
properties of nuclei.

At T9(K) = 10 (see Fig.7 (b) and (d)), half-lives are
significantly altered due to the increasing impact of the
temperature on the nuclear properties, and many nuclei
are showing much larger changes. Again, nuclei showing
the most change are those with initially long half-lives
(magic, semi-magic, and close to the valley of stability).
Similar to the findings at T9(K) = 5, it can be seen that
temperature effects are more pronounced at ρYe = 109

g/cm3, changing the half-lives of many nuclei in a con-
siderable way. We conclude that the general effect of the
temperature is to decrease the half-life of nuclei, espe-
cially those in the vicinity of valley of β-stability. Al-

though some nuclei display an increase in their half-lives
with increasing temperature, this effect is mild compared
to many other nuclei showing considerable decrease of
half-lives. In general, influence of temperature on half-
lives depends on the particular shell structure and the
pairing properties of nuclei, as discussed in Sec. III A.

IV. CONCLUSION

In this work, we have developed a microscopic frame-
work for the description of the temperature dependence
of β-decay half-lives, based on the relativistic nuclear en-
ergy density functional with the momentum-dependent
meson-nucleon couplings (D3C∗ parameterization). The
FT-PNRQRPA has been implemented in the calcula-
tions of the allowed and first forbidden transitions for
β-decay, by including both the nuclear pairing and finite-
temperature effects. The β-decay properties have been
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studied by varying the temperature and density, which
are relevant for some astrophysical conditions.

After benchmarking the model to reproduce the mea-
sured half-lives at zero temperature, it has been demon-
strated that temperature can have a considerable impact
on nuclei with longer half-lives, namely, for nuclei with
magic numbers and close to the valley of β-stability. By
increasing temperature, the excited states start to shift
downward and new states appear in the low-energy region
due to the unblocking mechanism of the temperature,
which in turn leads to an increase in the β-decay phase
space, and decrease in the half-lives. Furthermore, as the
temperature increases, transitions from highly excited
states in the parent nucleus i.e. de-excitations, become
important in shortening the half-lives around the critical
temperatures for pairing phase transition. Following the
example of nuclei in Ti, Fe, Cd, and Sn isotopic chains, we
have demonstrated that a significant decrease in half-life
occurs near the critical temperature for neutrons. Nuclei
with short half-lives at zero-temperature display only a
minor effect of temperature. Although those nuclei can
also exhibit an increase of half-lives with temperature,
on average this effect remains within 10% of the relative
difference with respect to half-life at zero-temperature.
It has also been shown that the impact of the forbidden
transitions on the half-lives becomes more pronounced
with increasing temperature due to the thermal unblock-
ing effect. Increasing the stellar density in the calcula-
tions, the β-decay half-lives increase considerably due to
the decrease in the available phase-space.

We have compared our β-decay rates for 52,54Ti and
60,62Fe with shell-model calculations and obtained rea-
sonable agreement (considering the difference between
the models) for both D3C∗ and DD-ME2 interactions,
especially at higher temperatures (T > 1 MeV) where
β-decay rates become less dependent on particular shell
structure.

The presented model is most suitable for large scale
calculations of β-decay half-lives at finite-temperature
throughout the nuclide chart, relevant for astrophysi-
cal nucleosynthesis mechanisms. As an initial study
toward this direction, the half-lives of 705 even-even
nuclei in the range between proton numbers 8 to 82
have been calculated at temperatures T9(K) = 5 and
T9(K) = 10 and stellar densities ρYe = 107 g/cm3 and
ρYe = 109 g/cm3. The strong impact of the tempera-
ture and density on the β-decay half-lives has also been
demonstrated over the nuclide map. Although tempera-
tures where half-lives change significantly appear higher
than in some of the nucleosynthesis mechanisms (e.g.,
r-process in Ref. [3]), temperature-dependent β-decay
half-lives could be important in the initial stages of r-
process [89] or astrophysical processes like rp-process
[44], dense thermonuclear explosions and supernovae sim-
ulations [45] where temperatures are higher. More so-
phisticated finite-temperature RHB theory, providing ac-
curate scattering of quasiparticle pairs to nuclear contin-
uum, instead of the BCS for the calculation of nuclear

properties, is going to be developed and implemented in
forthcoming studies. Improved description throughout
the nuclide chart by including the half-lives of odd-A nu-
clei and deformation effects, also necessary for a complete
understanding of temperature effects on the r-process,
are going to be addressed in our future studies.
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Appendix A: Derivation of the FT-PNRQRPA
response function

In this appendix, we present the derivation of Eq. (11)
i.e. the FT-PNRQRPA response function RQRPA(E).
Our derivation extends the formalism presented in Ref.
[90] to the finite-temperature case using the notation of
Ref. [64]. The linear response equation can be written in
the matrix form, at excitation energy E [cf. Eq. (3.19)
from Ref. [64]] as

[TW + E − EM]TδR = −TF , (A1)

where the above matrices are defined in the q.p. ba-
sis as following: Tµµ′ = diag(fµ′ − fµ, 1 − fµ′ − fµ, 1 −
fµ′ − fµ, fµ′ − fµ) where the Fermi-Dirac factors are

fµ = (1 + exp (βEµ))
−1

, Eµ being the q.p. energy. The
norm matrix is M = diag(1, 1,−1,−1), and Eµµ′ =
diag(Eµ +Eµ′ , Eµ−Eµ′ ,−Eµ−Eµ′ ,−Eµ +Eµ′). These
are diagonal matrices of the total dimension 4Nph×4Nph
where Nph is the number of q.p. pairs. We use a short-
hand notation where each element of presented matrices
is a submatrix of dimension Nph ×Nph. The interaction
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matrix W has the form

Wµµ′νν′ =
δHµµ′
δRνν′

=


C ′ a b D

a† A′ B bT

b† B∗ A′∗ aT

D∗ b∗ a∗ C ′∗

 , (A2)

where Hµµ′ is the interaction Hamiltonian containing
both ph and pp correlations written in the q.p. ba-
sis and Rνν′ is the generalized density matrix as de-
fined in Refs. [74, 91]. Definition of submatrices
a, aT , a†, b, bT , b†, A′, B,C ′ and D can be found in Ref.
[64]. The charge-changing external field operator F̂ has
the following form in the q.p. basis

Fµµ′ =
(
F 11 F 20 F 02 F 1̄1

)T
µµ′

. (A3)

If F̂ assumes the β− direction of isospin operator its com-
ponents in the q.p. basis are

F 11
πν = uπuν〈π|F̂ |ν〉, F 20

πν = uπvν〈π|F̂ |ν〉, (A4)

F 02
πν = vπuν〈π|F̂ |ν〉, F 1̄1

πν = vπvν〈π|F̂ |ν〉, (A5)

where 〈π|F̂ |ν〉 are the single-particle matrix elements and
uπ(ν), vπ(ν) are the quasi-proton(neutron) FT-HBCS am-
plitudes. The induced density δR in the q.p. basis is
defined as

δRµµ′(E) =
(
P (E) X(E) Y (E) Q(E)

)T
µµ′

. (A6)

We define the transition density as ρµµ′(E) =
[TδR(E)]µµ′ so that

ρµµ′(E) = −
∑
νν′

RF (E)µµ′νν′Fνν′ , (A7)

where the response function RF (E) =[
T−1(E − EM)−W

]−1
. In order to calculate RF (E)

we employ the FT-PNRQRPA eigenvalue problem

[E + TW ]TX =MTXΩ, (A8)

where X is the matrix whose columns consist of FT-
PNRQRPA eigenvectors as in Ref. [64]

X =


P1 . . . P2Nph

Q∗1 . . . Q
∗
2Nph

X1 . . . X2Nph
Y ∗1 . . . Y

∗
2Nph

Y1 . . . Y2Nph
X∗1 . . . X

∗
2Nph

Q1 . . . Q2Nph
P ∗1 . . . P

∗
2Nph

 , (A9)

while Ω = diag(E1 . . . E2Nph
,−E1 . . . − E2Nph

) contains
the FT-PNRQRPA eigenvalues. The normalization con-
dition for the FT-PNRQRPA eigenvectors can be written
in the form

X †TMX =M, (A10)

satisfying the condition [X †TMX ,Ω] = 0 under the as-
sumption of W = W †. The response RF (E) can be cal-
culated by using Eq. (A8) and Eq. (A10) as

RF (E) = TXM(Ω− E)−1X †T. (A11)

By explicitly calculating RF (E) we have the following
expressions for transition density in the q.p. basis

ρ11
µµ′(E) = −

∑
n

(
(fµ′ − fµ)Pnµµ′

En − E
〈[Γn, F̂ ]〉

+
(fµ′ − fµ)Qn∗µµ′

En + E
〈[F̂ †,Γn]〉∗

)
,

(A12)

ρ20
µµ′(E) = −

∑
n

(
(1− fµ′ − fµ)Xn

µµ′

En − E
〈[Γn, F̂ ]〉

+
(1− fµ′ − fµ)Y n∗µµ′

En + E
〈[F̂ †,Γn]〉∗

)
,

(A13)

and similarly for ρ02
µµ′ by exchanging X → Y and Y ∗ →

X∗ in Eq. (A13), and ρ1̄1
µµ′ by exchanging P → Q and

Q∗ → P ∗ in Eq. (A12). We have used the following
expressions in above equations

〈[Γn, F̂ ]〉 =
∑
νν′

Pn∗νν′F
11
νν′(fν′ − fν) +Xn∗

νν′F
20
νν′(1− fν′ − fν)

+ Y n∗νν′F
02
νν′(1− fν′ − fν) +Qn∗νν′F

1̄1
νν′(fν′ − fν),

(A14)

〈[F̂ †,Γn]〉 =
∑
νν′

Pn∗νν′F
1̄1∗
νν′ (fν′ − fν) +Xn∗

νν′F
02∗
νν′ (1− fν′ − fν)

+ Y n∗νν′F
20∗
νν′ (1− fν′ − fν) +Qn∗νν′F

11∗
νν′ (fν′ − fν),

(A15)

where 〈·〉 denote the thermal averages with respect to the
non-interacting generalized density matrix R0 [74]. The
2 q.p. excitation operator is defined as [64]

Γn =
∑
νν′

Pn∗νν′aνa
†
ν′ −X

n∗
νν′aνaν′ +Y n∗νν′a

†
νa
†
ν′ −Q

n∗
νν′a

†
νaν′ ,

(A16)

for the charge-changing external field F̂ for which

F̂ 6= F̂ †, a†π(ν)(aπ(ν)) being creation(annihilation) quasi-

proton(neutron) operators. Finally, the FT-PNRQRPA
response function is defined as

RQRPA(E) = F̂ †ρ(E) =
∑
µµ′

F∗µµ′ρµµ′(E), (A17)

and using the expression given in Eq. (A3) and Eqs.
(A12)-(A15), the FT-PNRQRPA response function is ob-
tained as

RQRPA(E) =
∑
n

|〈[Γn, F̂ ]〉|2

E − En
− |〈[F̂

†,Γn]〉|2

E + En
. (A18)
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In our calculations we add the finite width to the excita-
tion energy as E → E + iη, so that

RQRPA(E) =
∑
n

|〈[Γn, F̂ ]〉|2

E − En + iη
− |〈[F̂

†,Γn]〉|2

E + En + iη
. (A19)

The FT-PNRQRPA strength function is defined as

SQRPA(E) = − 1

π
ImRQRPA(E), (A20)

which yields

SQRPA(E) =
∑
n

|〈[Γn, F̂ ]〉|2δ(E−En)−|〈[F̂ †,Γn]〉|2δ(E+En).

(A21)
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Pinedo, and B. Möller, Physics Reports 442, 38 (2007).

[46] G. Martinez-Pinedo, K. Langanke, and D. J. Dean,
The Astrophysical Journal Supplement Series 126, 493
(2000).

[47] M. B. Aufderheide, S. D. Bloom, G. J. Mathews, and
D. A. Resler, Phys. Rev. C 53, 3139 (1996).

[48] A. Dzhioev, A. Vdovin, V. Y. Ponomarev, and
J. Wambach, Bulletin of the Russian Academy of Sci-
ences: Physics 72, 269 (2008).

[49] F. Minato and K. Hagino, Phys. Rev. C 80, 065808
(2009).

[50] A. A. Dzhioev, A. I. Vdovin, V. Y. Ponomarev,
J. Wambach, K. Langanke, and G. Mart́ınez-Pinedo,
Phys. Rev. C 81, 015804 (2010).

[51] A. A. Dzhioev, A. I. Vdovin, G. Mart́ınez-Pinedo,
J. Wambach, and C. Stoyanov, Phys. Rev. C 94, 015805
(2016).

[52] A. A. Dzhioev, A. I. Vdovin, and C. Stoyanov, Phys.
Rev. C 100, 025801 (2019).

[53] A. A. Dzhioev, K. Langanke, G. Mart́ınez-Pinedo, A. I.
Vdovin, and C. Stoyanov, Phys. Rev. C 101, 025805
(2020).

[54] A. Dzhioev, A. Vdovin, V. Y. Ponomarev, and
J. Wambach, Physics of Atomic Nuclei 72, 1320 (2009).

[55] A. A. Dzhioev, A. I. Vdovin, and J. Wambach, Phys.
Rev. C 92, 045804 (2015).

[56] S. Typel, Phys. Rev. C 71, 064301 (2005).
[57] P. Ring, Progress in Particle and Nuclear Physics 37, 193

(1996).
[58] Y. Gambhir, P. Ring, and A. Thimet, Annals of Physics

198, 132 (1990).
[59] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring,
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