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The generator coordinate method begins with the variational construction of a set of non-orthogonal mean-
field states that span a subspace of the full many-body Hilbert space. These states are then often projected onto
states with good quantum numbers to restore symmetries, leading to a set with members that can be similar to
one another, and it is sometimes possible to reduce this set without greatly affecting results. Here we propose
a greedy algorithm that we call the energy-transition-orthogonality procedure (ENTROP) to select subsets of
important states. As applied here, the approach selects on the basis of diagonal energy, orthogonality, and
contribution to the matrix element that governs neutrinoless double-β decay. We present both shell-model and
preliminary ab initio calculations of this matrix element for the decay of 76Ge, with quadrupole deformation
parameters and the isoscalar pairing strength as generator coordinates. ENTROP converges quickly, reducing
significantly the number of basis states needed for an accurate calculation.

I. INTRODUCTION

The observation of neutrinoless double-β (0νββ) decay, in
which two protons decay into two neutrons without neutrino
emission, would show that neutrinos are Majorana particles.
The half life for such a decay depends on the nuclear matrix
element (NME) of the transition operator between the ground-
states of the initial and final nuclei. The NME, which must
be computed, is model-dependent, with results differing from
model to model by factors of up to three. Reducing the dis-
crepancy is difficult because each model has its own uncon-
trolled approximations. One way forward is to use ab initio
methods to compute the NME from first principles. In par-
ticular, in-medium similarity renormalization group (IMSRG)
methods [1, 2] with chiral interactions are promising and have
already been applied to nuclei such as 48Ca [3, 4] and 76Ge
[4] that are of great interest to experimentalists. The approach
leads to effective Hamiltonians and transition operators to be
used together with traditional many-body methods that can-
not by themselves easily incorporate high-energy correlations.
With the generator coordinate method (GCM) [5] as the tra-
ditional one, the approach has proved successful in describing
the spectra of low-lying states, and has been used to compute
the NME for 0νββ decay of 48Ca [3, 6].

The GCM, which has been applied most often within nu-
clear energy-density-functional theory [7–10], provides an ef-
fective way to construct wave functions that include collective
correlations. Such correlations, in particular involving defor-
mation (both axial and triaxial [11]), and pairing (of both like-
particle and proton-neutron [12, 13] type), are important for
0νββ NMEs. The GCM incorporates the effects of these de-
grees of freedom by taking them as “generator coordinates,”
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with values on a mesh that approximates the continuum. Un-
fortunately, the method scales exponentially with the number
of coordinates. Including many mesh points leads to a large
set of non-orthogonal states and a significant computational
burden. Some of these basis states, however, may closely re-
semble others or have little representation in low-lying wave
functions, and can therefore be omitted. Here, we propose a
schemes that we call the energy-transition-orthogonality pro-
cedure (ENTROP) for rejecting unimportant states. As the
name suggests, the approach is designed to work for transi-
tion matrix elements and we apply it to 0νββ NMEs.

The particular case that we examine is the decay of 76Ge
to 76Se. Both nuclei exhibit triaxial deformation [14, 15]. If
the GCM includes two deformation coordinates and one that
represents the effects of isoscalar pairing, [11, 13] in a large
single-particle space, the computing time required to restore
all the broken symmetries in the resulting set of states can be
significant, making the three-coordinate case a good one for
testing/applying our algorithms. We do so within two kinds
of calculations, the first in a small shell-model valence space
and an appropriate semi-phenomenological interaction, and
the second in seven major shells and an ab initio interaction
resulting from the in-medium evolution of a chiral Hamilto-
nian.

The rest of this paper is organized as follows: Section II
discusses the nature of the GCM basis and presents ENTROP,
along with a procedure based on the work of Ref. [16]. In
Section III we present the results obtained after the applica-
tion of these methods in the computations just described. In
Section IV, we offer conclusions.

II. METHODS

M0ν, the NME that we wish to calculate enters the rate of
0νββ decay that is mediated by the exchange of light Majorana
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where Q is the energy difference between the initial and final
atoms, G0ν is a phase space factor, the mk are the masses of
the three light neutrinos and the Uek are the elements of the
neutrino mixing matrix that connects the electron neutrino to
the state with mass eigenvalue mk. One traditionally separates
M0ν into Gamow-Teller, Fermi, and tensor pieces,

M0ν = MGT
0ν −

g2
V

g2
A

MF
0ν + MT

0ν , (2)

where gV and gA are the nuclear vector and axial-vector weak
coupling constants (we use gA = 1.27 here) and MGT

0ν , MF
0ν,

and MT
0ν are defined, e.g., in Ref. [17] (though MF

0ν mistakenly
contains an extra factor of g2

V/g
2
A there.)

The GCM combines constrained mean-field states into a
fully-correlated nuclear wavefunction [18], which we call a
GCM state from now on. The starting point is the set of mean-
field states, for us Hartree-Fock-Bogoliubov (HFB) quasipar-
ticle vacua |ϕ(q)〉, that minimize the energy 〈ϕ(q)|H |ϕ(q)〉
under the constraint that a vector of observables Q̂ =

(Q̂1, Q̂2, . . . , Q̂N) takes the values 〈ϕ(q)| Q̂ |ϕ(q)〉 = q. The
coordinates q that label the mean-field states are frequently
chosen to lie on an N-dimensional mesh that discretizes the
space of quasiparticle vacua. The coordinate operators Q̂ are
generally those that are important for a good description of
the nucleus. In this paper, we choose the quadrupole opera-
tors, Q̂20 and Q̂22, and the isoscalar-pair creation operator P̂†0
as generator coordinates. Details appear in the next section.

A GCM state |ΨJM
NZ 〉 has the form

|ΨJM
NZ 〉 =

∑
K,q

f J
K,q |NZJMK, q〉 , (3)

where the states |NZJMK, q〉 are projections of the |ϕ(q)〉:

|NZJMK, q〉 = P̂J
MK P̂N P̂Z |ϕ(q)〉. (4)

Here P̂J
MK is the operator that projects a state onto compo-

nents with well defined angular momentum J, z-projection M,
and intrinsic-z-projection K. Since K is not a good quantum
number for a triaxially-deformed nucleus, components with
all values of K contribute to a GCM state (through “K mix-
ing”). The operators P̂N and P̂Z project states onto compo-
nents with well-defined neutron number N and proton number
Z.

The projection operators produce basis states that are not
orthonormal, and lead to the Hill-Wheeler-Griffin (HWG)
equation for f J

K,q,∑
K′,q′

[
H J

KK′ (q, q
′) − EJN J

KK′ (q, q
′)
]
f J
K′,q′ = 0 , (5)

where the Hamiltonian and norm kernels H and N are given
by the expressions

H J
KK′ (q, q

′) = 〈NZJMK, q| Ĥ |NZJMK′, q′〉 (6)

N J
KK′ (q, q

′) = 〈NZJMK, q|NZJMK′, q′〉 , (7)

and EJ is the energy of the state with angular momentum J
that we are interested in (we’ve suppressed the labels N and
Z in places for convenience). We solve the HWG equation
in the standard way [18], by diagonalizing the norm kernel to
obtain a basis of “natural states” and then diagonalizing the
Hamiltonian H in that basis. The second diagonalization can
be numerically unstable, a problem we deal with by truncating
the natural basis to include only states with norm eigenvalues
larger than a reasonable value. That step eliminates the insta-
bility by removing states that are nearly linearly dependent on
others.

The computational time in this method lies mostly in the
construction of the kernels for the Hamiltonian and 0νββ tran-
sition operators. That process entails an integration of matrix
elements of two-body operators over Euler and gauge angles
to project onto conserved quantities. The norm kernels require
the same integration, though without an operator sandwiched
between states. It is difficult to know ahead of time how dense
to make the coordinate mesh or how far to extend it, and so
we would like to select a subset of points on the mesh before
computing all the kernels. We can expect some basis states
to contribute little to the energy of the GCM ground state or
to the 0νββ NME between two GCM states, and others to be
very similar to one another (the result of too dense a mesh).
Our best prescription for subset selection is based on three
observations:

• States with lower expectation values for the Hamil-
tonian are in general more important than those with
higher expectation values.

• The largest contributions to NMEs often come from
transitions between basis states (in our case in two dif-
ferent nuclei) with the same values for the collective co-
ordinates q, including the isoscalar pairing coordinate
[7, 12, 19]. These large contributions can be both posi-
tive and negative.

• States that can nearly be represented as a linear com-
bination of states in the selected subset need not them-
selves be included in the subset. They add only numeri-
cal noise to the HWG equation that must be removed in
its solution.

ENTROP incorporates these observations through the fol-
lowing procedure: we order the |ϕ(q)〉 in each nucleus by di-
agonal energies 〈H〉JKq ≡ H

J
KK(q, q)/N J

KK(q, q) and select
the one with the lowest value in, e.g., the initial nucleus. We
then move to the final nucleus, selecting first the state with the
lowest diagonal energy and then the state with the same coor-
dinates q as the first state from the initial nucleus (the “part-
ner” of that state), provided that its projection onto the previ-
ously included state has squared length L less than some cutoff

value Lc (so that it is nearly linearly independent). Next we
return to the initial nucleus,selecting the state with the second-
lowest diagonal energy and the partner of the first the state in
the final nucleus, again after checking projections. We con-
tinue in this way, including each state that we examine only if
its projection onto the space of previously-selected states has
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Initial Nucleus Final Nucleus

Select state with lowest energy Select state with lowest energy

Select next state in energy
order with L < Lc

Select partner of most recent
unpartnered state from
other nucleus, if L < Lc

Select next state in energy
order with L < Lc

Select partner of most recent
unpartnered state from
other nucleus, if L < Lc

FIG. 1. Schematic diagram of the state selection order produced by
ENTROP.

length less than Lc, i.e. if

L ≡
〈n + 1|P(n)|n + 1〉
〈n + 1|n + 1〉

< Lc. (8)

Here |n + 1〉 is the state we are testing and P(n) is the projec-
tor onto the n states already selected (see the Appendix for
details). After including each new state we diagonalize H in
the appropriate subset and look for convergence of the eigen-
values and NME. Figure 1 contains a flow chart representing
the selection procedure. The method saves time because we
compute the off-diagonal norm kernels only of the states we
examine and the off-diagonal Hamiltonian and 0νββ kernels
only of the states we eventually select.

The procedure just outlined contains the parameter Lc, the
value of which we have yet to specify. To determine it, we re-
peat the entire procedure for a range of Lc and within several
pairs of small subspaces of the full space (one space in the pair
for the initial nucleus and one for the final). We then choose
the smallest value of Lc that “works” within each pair of sub-
spaces — that is, a value that brings us so close to the ener-
gies and NMEs obtained in each complete subspace pair that
increasing Lc further (and thus including more basis states)
has little effect. We then assume that the same will be true in
any subspace pair, including one that contains all basis states
on the mesh in both nuclei. This assumption cannot be rigor-
ously justified but is reasonable.

Our original intent was to implement something like the
procedure discussed in Ref. [16], which successfully re-
produces the low-lying portions of collective spectra within
energy-density functional theory. In that approach, one starts
from random mean-field states (Slater determinants in Ref.
[16] itself) obtained without constraints, descending towards
local minima in the energy surface via imaginary-time evo-
lution and selecting states along the way to subject to an or-
thogonality test like the one described here. We test a mod-
ification of that procedure, in which we use gradient descent
rather than imaginary-time evolution to approach energy min-
ima in our space of quasiparticle vacua, for the decay of 76Ge
to 76Se with the shell-model space and Hamiltonian described
at the beginning of the next section. We use 50 randomly se-
lected quasiparticle vacua as starting points, and then select

a random number of states along the corresponding paths of
descent once the energy has dropped below 10 MeV. In the
most successful version of this procedure, we then order the
states by energy and fix a cutoff Lc in the same way as with
ENTROP. We’ll see shortly that while we can roughly repro-
duce the exact spectra of 76Ge and 76Se with about 30 states
in each nucleus (from about 17 distinct starting points in 76Ge
and 18 in 76Se), we are not able to obtain as accurate an NME
as we can with ENTROP. That result is not entirely surpris-
ing because, unlike the GCM, the procedure of Ref. [16] in no
way ensures that states in one nucleus are similar to those in
the other.

III. RESULTS

A. Shell-model test

To test the accuracy of ENTROP, we examine the decay
76Ge −→ 76Se in a model space built on the 0 f5/2, 1p3/2, 1p1/2
and 0g9/2 orbits, with the effective valence-space shell-model
Hamiltonian GCN2850 [20]. The model space allows an exact
solution with modern shell model codes. Ref. [11] carefully
examined the performance of the GCM for this problem, con-
structing a mesh of 184 quasiparticle vacua with constraints
on the coordinates representing axial deformation, triaxiality,
and the isoscalar pairing strength. The operators that corre-
spond to these coordinates are

Q̂20 =
∑

i

r2
i Y20

i

Q̂22 =
∑

i

r2
i Y22

i (9)

P̂†0 =
1
√

2

∑
l,α

√
2l + 1[a†l,αa†l,α]J=1,T=0

M=0,Tz=0 ,

where i labels nucleons in first quantization, the square brack-
ets signify the coupling of orbital angular momentum, spin,
and isospin, and the operator a†l,α creates a particle in the
single-particle level with orbital angular momentum l and
other quantum numbers specified by α. Here we replicate the
calculation of Ref. [11] to test the results of restricting our-
selves to particular subsets of its states. To construct the basis
states and solve the resulting eigenvalue problem, we use the
FORTRAN program TAURUS [21, 22]. As mentioned in the
methodology section, in order to choose the cutoff Lc, we eval-
uate the NME in subspace pairs with increasing dimension,
here those spanned by the first 20, 40, and 60 states chosen
in the order indicated in Fig. 1, with Lc set to 1 to make sure
no states are skipped. We then find that Lc = 0.995 (so that
trial states have to be almost completely expressible in terms
of those already selected to be rejected) is the smallest value
that accurately allows us to reproduce the NME in all three
subspaces.

Fig. 2 shows how well the cutoff Lc = 0.995 works for
the NME in the subspaces just mentioned. In all three cases
it yields a number very close to the complete ones, with little
more than half the basis states in the two larger subspace pairs.



4

3.0

3.5

4.0

4.5 (a) (b) (c)

3.0

3.5

4.0

4.5

M
0ν

(d) (e) (f)

5 10 15 20 25 30
3.0

3.5

4.0

4.5 (g)

5 10 15 20 25 30

State number

(h)

5 10 15 20 25 30

(i)

FIG. 2. Valence-space NME for the decay of 76Ge, computed with the GCN2850 interaction in pairs of subspaces spanned together by the
first 20, 40 and 60 states (top row, middle row, and bottom row) after applying ENTROP up to the combined (from both-nuclei) state number
indicated by the x axis. The states are ordered as indicated in Fig. 1, with cutoff values Lc of 0.994 (left column), 0.995 (middle column), and
0.996 (right column). The dashed line is the result produced by the full set of states in each subspace pair. The value Lc = 0.995, corresponding
to the middle column (in red) is the smallest that reproduces the full results in all three subspace pairs.

This analysis leads us to expect that the states we will discard
with Lc = 0.995 in our complete calculation so nearly lie in
the spaces spanned by the states we will have already selected
that they will not alter the results.

Our expectation turns out to be the case. Fig. 3 shows the
results of our analysis in panel (b); after 20 states, the NME is

2.5

3.5

4.5 Energy ordering only (a)

States

2.5

3.5

4.5

M
0ν

ENTROP (b)

0 10 20 30 40 50 60 70

State number

2.5

3.5

4.5 Gradient descent (c)

FIG. 3. Valence-space NME for the decay of 76Ge produced by
ENTROP without including “partner states” (top, see text), by full
ENTROP with Lc = 0.995 (middle), and by the procedure based on
that in Ref. [16] (bottom), at the combined (both-nuclei) state num-
ber indicated by the x axis.

very close to the full GCM value. Panel (a) in the same figure
shows what happens when we do not use the 0νββ operator
to select states, that is, when we do not include partner states.
Performance is generally worse, and even after 60 states the
result is not as close to the full one as it is after 20 states in
panel (b). Finally, panel (c) shows the result of the Ref. [16]-
like analysis discussed in the previous section. As we noted
there, our NME does not approach the exact result within the
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FIG. 4. The middle panel of Fig. 3 broken into the three components

of M0ν: MGT
0ν , −

g2
V

g2
A

MF
0ν, and MT

0ν from Eq. (2).
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FIG. 5. Valence-space 76Ge ground-state energy in the natural basis
(blue) and from ENTROP (red). The dashed line is the full GCM
result. Here, the state number refers to a single nucleus only.

set of states we collect. Figure 4 shows the always quick con-
vergence of the individual pieces of the matrix element. The
exact values for these Gamow-Teller, Fermi, and tensor pieces
are 2.74, 0.42, and -0.01. Our Gamow-Teller and tensor val-
ues are quite close, but our Fermi matrix element is almost
50% too large, in part because our HFB states can break the
isospin symmetry that is conserved by the shell-model inter-
action. When we use an isovector proton-neutron pairing co-
ordinate in place of the isoscalar version, the discrepancy is
cut in half. The Fermi matrix element is much smaller than its
Gamow-Teller counterpart, however, so the error associated
with isospin breaking does not have a large effect on the sum
M0ν.

The convergence of the ground-state energies under
ENTROP behaves a little differently than that of the NME.
Figs. 5 and 6 show the convergence towards the ground-state

0 20 40 60 80 100
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−86.0

−85.5

−85.0

E
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eV
]

Natural basis

ENTROP

Full result

FIG. 6. Same as Fig. 5 but for 76Se.

energies of 76Ge and 76Se, respectively, within ENTROP and
in the full-GCM “natural basis”, the one that for a given num-
ber of states picks out the subspace that most closely spans
the full set [25]. Even after the very first state — the uncon-
strained HFB minimum, the ENTROP energy is well within a
percent of the correct one. After that it converges more grad-
ually, eventually tracking the results of the natural-basis trun-
cation. Using a larger value of Lc than 0.995 simply extends
the ENTROP curve along that corresponding to the natural ba-
sis. We believe that this is the best that one can do without an
explicit (and time consuming) consideration of off-diagonal
contributions to the energy. Fortunately, however, the long tail
of rejected states makes almost no difference in the NME; if
we extend the curves in the top two panels of Fig. 3 the NME
never moves significantly from the full GCM value.

Finally, Fig. 7 shows the low-lying spectra produced by the
184-state GCM and the method related to that of Ref. [16].
Both the approximations do a good job with the excitation
energies, though ENTROP is more accurate.

What states does ENTROP select to achieve these results?
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FIG. 7. Low-lying energy spectrum of 76Ge and 76Se computed by
shell-model code BIGSTICK [23, 24] (Exact), from the procedure
based on that in the Ref. [16] and described in the text (Grad. de-
scent), and by ENTROP. The figure doesn’t show an overall upward
shift in the Grad.-descent energies of about 1.5 MeV in 76Ge and 2
MeV in 76Se. The corresponding upward shift for ENTROP is about
a factor of 10 smaller.
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FIG. 8. States selected by ENTROP in 76Ge (top) and 76Se (bottom). The colors represent surface-potential energy and the variable ϕ is the
expectation value of the isoscalar pairing operator P̂†0 (see text). Each red dot represents a selected state, and the size of the dot is proportional
to the square of the collective ground-state wave function at that point.

Figure 8 shows the properties of the states it uses. The param-
eters β and γ are defined a little differently than in Ref. [11],

2.0

2.5

3.0
(a)

2.0

2.5

3.0

M
0ν

(b)

5 10 15 20 25 30

State number

2.0

2.5

3.0
(c)

FIG. 9. Ab initio NME for the decay of 76Ge, with the total number
of states in the subset pairs equal to 20 (top), 30 (middle), and 40
(bottom), after applying ENTROP up to the combined (both-nuclei)
state number indicated by the x axis.

through the relations

β =
4π

3R2
0A

√
〈Q̂20〉

2
+

(
〈Q̂22〉 + 〈Q̂2−2〉

)2

2

γ = tan−1
(
〈Q̂22〉 + 〈Q̂2−2〉
√

2 〈Q̂20〉

)
,

(10)

with R0 = 1.2A1/3 fm and ϕ ≡ 〈P̂†0〉. The sizes of the circles
represent their probabilities as given by the collective wave
functions. Many of the states in 76Se have ϕ = 1, indicating
the significant role played by isoscalar pairing.

B. Ab initio calculation

We turn now to the ab initio computation of the same decay
NME. Using a chiral NN + 3N interaction [26, 27] employed
in recent studies of light nuclei [28] and 48Ca [3], and evolving
it and the decay operator according to the equations of the IM-
SRG [1] with a reference ensemble comprising prolate, spher-
ical, and oblate HFB minima in both 76Ge and 76Se and with
emax = 6 (i.e. in 7 shells), we repeat the steps just described.
Results in a larger space will be published soon. Unlike in
our shell-model computation — and this would be the case in
any realistic application — we do not have “complete” results
with which to test our approximations. Our mesh in the space
of deformation parameters β, γ, and ϕ [11] (related to the ax-
ial deformation, triaxiality and isoscalar pairing strength used
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FIG. 10. ENTROP NME for the decay of 76Ge, with Lc = 0.902.

in the shell-model calculation) contains 145 points (or 290 if
we count the points in both nuclei), and a complete solution
to the HWG equation in the resulting space is more than we
can currently handle. We thus once again apply ENTROP, this
time without comparing to an exact result.

Fig. 9 shows that within subspace pairs consisting of 20, 30,
and 40 total states, a cutoff value Lc = 0.902 is sufficient to
obtain the correct NME for each pair. It is the smallest value
of the cutoff that does so. We therefore adopt this cutoff and
generate another sequence of states, leading to the results in
Figs. 10 and 11. Though the energies in Fig. 11 are still falling
slowly after 18 and 16 states in 76Ge and 76Se, the NME in Fig.
10 has more or less converged long before, by about 20 states
from the two nuclei combined. Of course, we cannot be sure
that the long plateau continues indefinitely, but the longer it
extends, the more confidence we have.

The three parts of our NME are

MGT
0ν = 2.68

−
g2

V

g2
A

MF
0ν = 0.65

MT
0ν = −0.16 .

(11)

A recent valence-space IMSRG calculation obtained MGT
0ν =

2.76, g2
V/g

2
AMF

0ν = 0.54, and MT
0ν = −0.49 with the same chi-

ral interaction and the same value of emax [4]. The main dif-
ference between the two sets of results is in the tensor matrix
element. In the valence-space calculation, this component re-
duces the total NME by 17%, while in ours it reduces it by
only 5%, a number that is similar to what has been obtained
in more phenomenological computations. We will publish a
more complete calculation of these matrix elements with a
larger value for emax elsewhere.

IV. CONCLUSIONS

We have presented a greedy algorithm called ENTROP to
select the most important mean-field states for GCM calcula-
tions of ground-state energies and 0νββNMEs. The algorithm
starts with one HFB quasiparticle vacuum per point in a large
mesh within a space of collective coordinates, and reduces the
number of projected HFB states that need to be worked with.
The steps in the procedure, briefly, are as follows:

• Sort the projected states by their diagonal energies.

• Consider the first N states in each nucleus for several
values of N.

• Find the smallest value of Lc that, when the selection
scheme in Fig. 1 is applied, leads to subsets of the first
N states (for all the values of N) that succeed in repro-
ducing the corresponding NME.

• Use that value of Lc to create a subspace pair in the full
GCM spaces, solve the corresponding HWG equations,
and compute the NME.

The scheme reduces computational effort because we need
to compute norm kernels only for the projected states states
that we test, and Hamiltonian and ββ kernels only for those
that are actually selected. We successfully tested our method
in a computation of the NME for the decay of 76Ge within a
valence shell-model space with a phenomenological interac-
tion; it reduced computation time there by more than a factor
of 100. We also applied the method to an ab initio compu-
tation of the same NME with an IMSRG-evolved chiral in-
teraction, where a full calculation is too time consuming to
carry out. In both our examples, ENTROP appears to lead to
a suitable basis with many fewer states than in typical GCM
calculations, opening up the possibility of adding new gener-
ator coordinates to the usual set.

0 5 10 15 20

State number

−600.5

−600.0

−599.5

−599.0

−598.5

−598.0

E
[M

eV
]

76Ge
76Se

FIG. 11. Ab initio ENTROP ground-state energies for 76Ge (blue)
and 76Se (red), with Lc = 0.902. The state number refers to a single
nucleus only.
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As we just noted, ENTROP requires norm kernels for the
set of states that are tested, and although those take less time to
compute than do Hamiltonian or ββ kernels, they are still not
always cheap. We have found the use of approximate norm
kernels, e.g. from unprojected basis states to be promising,
and are also exploring machine-learning techniques to reduce
the number of norm kernels that must be calculated.
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Appendix: Squared length of projection onto a subspace

To compute L for a given state and a subspace of previ-
ously selected states we proceed as follows. Let the subspace

be spanned by the un-normalized and non-orthogonal vectors
|1〉 , |2〉 , . . . , |n〉. A candidate state |n + 1〉 will not be included
in this set if it is nearly a linear superposition of those states.
Calling the projector onto the subspace P(n), we have

P(n)|n + 1〉 =

n∑
i=1

α(n)
i |i〉, (A.1)

for some coefficients α(n)
i , which are determined by requiring

that |n + 1〉 − P(n)|n + 1〉 is orthogonal to |k〉 for all k ≤ n,

〈k|n + 1〉 − 〈k|P(n)|n + 1〉 = 0 −→
n∑

i=1

〈k|i〉α(n)
i = 〈k|n + 1〉 .

(A.2)
In matrix form, Eq. (A.2) is

S(n)α(n) = β(n), (A.3)

with S (n)
i j = 〈i| j〉 and β(n)

i = 〈i|n + 1〉. The solution is

α(n) = (S(n))−1β(n) . (A.4)
The squared length L of the projection of the normalized can-
didate state onto the space spanned by the already selected
states is then

L =
〈n + 1|P(n)|n + 1〉
〈n + 1|n + 1〉

=

∑n
i=1 〈n + 1|i〉α(n)

i

〈n + 1|n + 1〉

=
β(n)†(S(n))−1β(n)

〈n + 1|n + 1〉
. (A.5)
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