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The equation of motion for the two-fermion two-time correlation function in the pairing channel is
considered at finite temperature. Within the Matsubara formalism, the Dyson-type Bethe-Salpeter
equation (Dyson-BSE) with the frequency-dependent interaction kernel is obtained. Similarly to
the case of zero temperature, it is decomposed into the static and dynamical components, where
the former is given by the contraction of the bare interaction with the two-fermion density and the
latter is represented by the double contraction of the four-fermion two-time correlation function, or
propagator, with two interaction matrix elements. The dynamical kernel with the four-body propa-
gator, being formally exact, requires approximations to avoid generating prohibitively complicated
hierarchy of equations. We focus on the approximation where the dynamical interaction kernel
is truncated on the level of two-body correlation functions, neglecting the irreducible three-body
and higher-rank correlations. Such a truncation leads to the dynamical kernel with the coupling be-
tween correlated fermionic pairs, which can be interpreted as emergent bosonic quasibound states, or
phonons, of normal and superfluid nature. The latter ones are, thus, the mediators of the dynamical
superfluid pairing. In this framework, we obtained the closed system of equations for the fermionic
particle-hole and particle-particle propagators. This allows us to study the temperature dependence
of the pairing gap beyond the Bardeen-Cooper-Schrieffer approximation, that is implemented for
medium-heavy nuclear systems. The case of 68Ni is discussed in detail.

I. INTRODUCTION

Superfluidity and superconductivity phenomena in nu-
clear systems, after their recognition in late 1950’s [1],
attracted a tremendous amount of theoretical effort since
then. Although the theory of Bardeen, Cooper and Schri-
effer (BCS) [2] appeared to be very successful when applied
to superconductivity in metals, building a consistent theory
of nuclear pairing correlations was complicated by the na-
ture of the nuclear forces. In particular, the presence of the
repulsive core in the nucleon-nucleon interaction and strong
in-medium correlations made the direct applicability of the
BCS theory to nuclear matter and finite nuclei problem-
atic. The development of powerful many-body methods,
such as numerous variants of perturbative and cluster ex-
pansions, the correlated basis function method, the Monte
Carlo approach and others, together with the advancements
of the nucleon-nucleon potentials, have helped significantly
to clarify microscopic mechanisms of nuclear superfluidity,
eventually going far beyond the BCS theory [3].

While the observations, such as the rotational anomalies
in pulsar periods and measurements of their surface tem-
peratures evidence unambiguously about superfluidity of
neutron stars, theoretical models still vary considerably in
the description of its characteristics, for instance, the pair-
ing gaps. The use of different nucleon-nucleon interactions
and regularization techniques as well as different treatments
of polarization effects may cause substantial differences in
model predictions. Refining the models of superfluidity in
both symmetric and asymmetric nuclear matters, in partic-
ular, clarifying the role of induced pairing in screening and
antiscreening is a topic of active research [4–10].

Investigation of pairing correlations in finite nuclei seems
to be less intense. In most of the applications to nuclear
structure calculations, rather simplistic concepts of pairing
like BCS, Hartree-Fock-Bogoliubov or Gor’kov Green func-
tions are employed, which is unavoidable to make otherwise
sophisticated many-body calculations feasible. The accu-
racy of such simplified treatments of pairing is comparable
with the errors introduced by other model approximations,
such as neglecting high-rank many-body correlations, mul-
tiparticle interactions and coupling to the continuum, to
name a few. However, with the progress of those aspects
also more accurate treatment of pairing correlations should
be considered.

One of the most intriguing issues in the strongly-coupled
many-body systems is the emergence of collective phenom-
ena. Understanding their significant role in the formation of
the nuclear ground and excited states has been progressed
impressively over the decades, since Bohr and Mottelson
[11, 12]. The impact of collective effects on nuclear pairing
was investigated in various phenomenological frameworks
[13–18], which revealed that coupling between nucleons and
collective surface vibrations (particle-vibration coupling, or
PVC) can be responsible for a large fraction of the pairing
gap. The PVC effects identified with the major contribu-
tion to the induced pairing are widely known to be of prime
importance in electronic condensed matter systems, where
they induce superconductivity by reversing the sign of the
repulsive Coulomb interaction [3, 19, 20].

Atomic nuclei embedded in stellar environments are of
special interest. Their response to various changes of those
environments and the associated nuclear reactions are com-
plicated by the thermodynamical conditions, first of all,
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by the non-zero temperature. It is widely recognized that
the modifications of nuclear properties by finite tempera-
ture can noticeably influence the star evolution scenarios.
In particular, the dependence of nuclear superfluidity on
temperature may play a non-negligible role for the electron
capture in collapsing stars and r-process nucleosynthesis in
neutron star mergers. Whereas the temperature-dependent
BCS is well understood and known for the superfluid to
non-superfluid phase transition at the critical temperature
Tc ∼ 0.6∆(T = 0), the temperature dependence of the in-
duced pairing is more complicated as well as the induced
pairing itself.

This kind of pairing at finite temperature was investi-
gated more intensely for nuclear matter, although abun-
dant shell-model Monte Carlo studies for finite nuclei are
available, see Refs. [21, 22] and references therein. In re-
cent Ref. [10] finite-temperature calculations of the sin-
glet pairing gap in dilute neutron matter were performed.
The authors investigated the pairing gaps and the critical
temperature of the superfluid phase transition. The Vlow-k

interaction derived from the Argonne potential AV18 was
employed for the static kernel of the pairing gap equation
and the effective interaction from the Skyrme family was
used for the RPA vertices, which determine the dynamical
kernel with the induced pairing. At higher densities the full
RPA lead to stronger screening than the reference Landau
approximation. As previously, for instance, in the studies
of the BEC-BCS crossover and the liquid-gas phase tran-
sition in hot and dense nuclear matter [23], it was pointed
out that the pairing gap and the phase transition temper-
ature are sensitive to the approximation used to describe
the medium polarization effects responsible for the induced
pairing.

In the present work we aim at investigating the tem-
perature dependence of the induced pairing in finite nu-
clei. Technically, we consider nuclear correlation functions
in the equation of motion (EOM) framework, which is one
of the most universal methods known across the many ar-
eas of quantum physics from condensed matter to quantum
chemistry [24–30]. Following our previous developments re-
ported in Ref. [31] for the zero-temperature case, in Section
II we generate the EOM for the fermionic pair, or particle-
particle, propagator, but now evolving in the domain of
imaginary time introduced by Matsubara [32]. We show
that the four-fermion correlation function in the dynamical
kernel of the resulting EOM, which is responsible for the in-
duced pairing, can be approximated with various degrees of
accuracy, in analogy with the zero-temperature case. At fi-
nite temperature, however, this kernel carries a non-trivial
temperature dependence, which is different from that of
the static kernel implied in the BCS theory. The impact of
the latter temperature dependence on nuclear pairing gaps
is studied numerically in Section III. The conclusions are
drawn in the summary Section IV.

II. FERMIONIC PAIR PROPAGATOR IN A
HEATED CORRELATED MEDIUM

In analogy with Ref. [31], we stay within the formalism of
correlation functions, such as the Green functions, or prop-
agators. As the propagators are directly related to observed
excitation spectra and ground state properties of the many-
body systems, this formalism is one of the most convenient
and powerful ones in the description of phenomena that oc-
cur in strongly-coupled media. Following Matsubara [32],
the temperature-dependent propagator of a fermionic pair
in a heated correlated medium can be defined as a thermal
average [33]

G(12, 1′2′) ≡ G12,1′2′(τ − τ ′) = −〈Tτψ(1)ψ(2)ψ̄(2′)ψ̄(1′)〉
(1)

with the chronological ordering Tτ of the one-fermion fields
in the imaginary time domain of the Wick rotated picture:

ψ(1) ≡ ψ1(τ1) = eHτ1ψ1e
−Hτ1 ,

ψ̄(1) ≡ ψ̄1(τ1) = eHτ1ψ†1e
−Hτ1 . (2)

The operator H is given by H = H − λN , where H is the
many-body Hamiltonian

H = H(1) + V (2) =
∑
12

t12ψ
†
1ψ2 +

1

4

∑
1234

v̄1234ψ
†
1ψ
†
2ψ4ψ3,

(3)
with the antisymmetrized matrix elements v̄1234 = v1234 −
v1243, λ is the chemical potential, and N is the particle
number operator. Here and in the following the number
subscript denotes the full set of the single-particle quantum
numbers in a given representation and the imaginary time
variables τ are related to the real times t as τ = it. The
fermionic fields ψ1 and ψ†1 satisfy the usual anticommuta-
tion relations, and the angular brackets in Eq. (1) stand
for the thermal average [33, 34]

〈O〉 =
∑
ν

wν〈ν|O|ν〉 (4)

with the summation over the expectation values in the
eigenstates of the Hamiltonian |ν〉 weighted with the prob-
abilities wν of finding the system in those states within the
grand canonical ensemble. In the present work the Hamil-
tonian of Eq. (3) is confined by the two-body interaction,
however, as in the zero-temperature case and as it follows
from the discussion below, the generalization to multipar-
ticle forces is straightforward.

The first equation of motion probing the evolution of the
correlation function of a fermionic pair defined by Eq. (1)
with the imaginary time can be generated by the differenti-
ation of this function with respect to the first time variable
τ :

∂τG12,1′2′(τ − τ ′) = −δ(τ − τ ′)〈[ψ1ψ2, ψ
†
2′ψ
†
1′ ]〉 −

−〈Tτ [H, ψ1ψ2](τ)(ψ̄2′ ψ̄1′)(τ
′)〉,

(5)
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where we adopted the notation:

[H, A](τ) = eHτ [H, A]e−Hτ (6)

for an arbitrary operator A. After the evaluation of the
commutators the first EOM reads:

−(∂τ + ε1 + ε2)G12,1′2′(τ − τ ′) = δ(τ − τ ′)N121′2′ +

+ 〈Tτ [V, ψ1ψ2](τ)(ψ̄2′ ψ̄1′)(τ
′)〉, (7)

where the single-particle energies ε1 are ε1 = t11 − λ and
we assumed that the working basis diagonalizes the one-
body part of the Hamiltonian. The norm matrix in the
pp-channel N121′2′ is the thermal average:

N121′2′ = 〈[ψ1ψ2, ψ
†
2′ψ
†
1′ ]〉 = δ121′2′(1−n1−n2) = δ121′2′n12,

(8)
where the one-body density matrix ρ11′ obeys ρ11′ =

〈ψ†1′ψ1〉 = δ11′n1 with n1 being, in general, the corre-
lated fermionic occupancies at the given temperature T .
In Eq. (8) we adopt the antisymmetrized Kronecker sym-
bol δ121′2′ = δ11′δ22′ − δ21′δ12′ and the notation n12 =
1− n1 − n2.

Differentiating the last term on the right hand side of the
first EOM (7) F121′2′(τ−τ ′) = 〈Tτ [V, ψ1ψ2](τ)(ψ̄2′ ψ̄1′)(τ

′)〉
with respect to the second time argument τ ′ generates the
second EOM:

(∂τ ′ − ε1′ − ε2′)F121′2′(τ − τ ′) =

= −δ(τ − τ ′)〈[[V, ψ1ψ2], ψ†2′ψ
†
1′ ]〉+

+〈Tτ [V, ψ1ψ2](τ)[V, ψ̄2′ ψ̄1′ ](τ
′)〉.

(9)

Applying the operator (∂τ ′ − ε1′ − ε2′) to the first EOM (7)
and combining Eqs. (7) and (9), we perform the Fourier
transformation to the domain of the Matsubara’s discrete
energy variable ωn = 2πnT . The spectral image in this
domain is defined by the relation:

G12,1′2′(τ − τ ′) = T
∑
n

e−iωn(τ−τ ′)G12,1′2′(ωn). (10)

In this way, we obtain:

G12,1′2′(ωn) = G(0)
12,1′2′(ωn) +

+
1

4

∑
343′4′

G(0)
12,34(ωn)T343′4′(ωn)G(0)

3′4′,1′2′(ωn),

(11)

where the free particle-particle propagator is introduced as:

G(0)
12,1′2′(ωn) =

N121′2′

iωn − ε1 − ε2
. (12)

The interaction kernel of Eq. (11) has the meaning of T -
matrix and reads:

T121′2′(ωn) =
1

4

∑
343′4′

N−1
1234

(
T (0)

343′4′ + T (r)
343′4′(ωn)

)
N−1

3′4′1′2′ .

(13)

The components T (0)
343′4′ and T (r)

343′4′(ωn) are, formally, the
Fourier images of the two last terms on the right hand side
of Eq. (9), i.e.,

T (0)
121′2′(τ − τ

′) = −δ(τ − τ ′)〈[[V, ψ1ψ2], ψ†2′ψ
†
1′ ]〉

T (r)
121′2′(τ − τ

′) = 〈Tτ [V, ψ1ψ2](τ)[V, ψ̄2′ ψ̄1′ ](τ
′)〉,

(14)

so that T (0) is the instantaneous, or static, part of the T -
matrix and T (r) is its dynamical part. In analogy with
the case of the particle-hole response [35] and the zero-
temperature particle-particle response [31], Eq. (11) can
be transformed to an equation of the Dyson type

G12,1′2′(ωn) = G(0)
12,1′2′(ωn) +

+
1

4

∑
343′4′

G(0)
12,34(ωn)K343′4′(ωn)G3′4′,1′2′(ωn)

(15)

by introducing the kernel K(ω) irreducible with respect to
the uncorrelated pp-propagator (12):

T121′2′(ωn) = K121′2′(ωn) +

+
1

4

∑
343′4′

K1234(ωn)G(0)
34,3′4′(ωn)T3′4′1′2′(ωn),

(16)

or K(ωn) = T (irr)(ωn). Thus, at finite temperature the
EOM for the propagator of a fermionic pair also acquires the
form of the Dyson Bethe-Salpeter equation (Dyson-BSE)
[36]. To further specify the interaction kernel of the latter
equation, one has to evaluate the commutators of Eq. (14).
For the static part, we find, similarly to the case of T = 0
[24, 31]:

T (0)
121′2′ = δ121′2′n12(Σ̃1 + Σ̃2) +K(0)

121′2′ , (17)

K(0)
121′2′ = v̄121′2′n12n1′2′

−
[(∑

il

v̄i12′lσ
(2)
l2i1′ +

δ22′

2

∑
ikl

v̄i1klσ
(2)
kli1′

)
−
(

1′ ↔ 2′
)]
−
[
1↔ 2

]
, (18)

where σ
(2)
ijkl is the correlated part of the two-body density

ρijkl = 〈ψ†kψ
†
l ψjψi〉 = ρikρjl − ρilρjk + σ

(2)
ijkl (19)

and Σ̃11′ is the mean-field part of the single-particle self-
energy

Σ̃11′ =
∑
l

v̄1l1′lnl, Σ̃11′ = δ11′Σ̃1. (20)

The latter ones can be absorbed in the uncorrelated prop-
agator, so that the Dyson-BSE takes the form:

G12,1′2′(ωn) = G̃(0)
12,1′2′(ωn) +

+
1

4

∑
343′4′

G̃(0)
12,34(ωn)K343′4′(ωn)G3′4′,1′2′(ωn),

(21)
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where G̃(0)
12,1′2′(ωn) is the uncorrelated particle-particle prop-

agator in the mean field

G̃(0)
12,1′2′(ωn) =

Ñ121′2′

iωn − ε̃1 − ε̃2
, ε̃1 = ε1 + Σ̃1, (22)

while the kernel K does not contain the mean-field term
in its static part. The full interaction kernel of Eq. (21)

can then be written as: K = Ñ−1(K(0) + K(r))Ñ−1. Re-
markably, the static kernel has the same form as at T = 0
because of its instantaneous character, however, it depends
implicitly on temperature via the fermionic densities.

The presence of the static kernel is a direct consequence
of the instantaneous nature of the bare interaction v̄, that
was our initial assumption about the Hamiltonian (3). In
general, the fermionic bare interaction does not have to be
instantaneous, for instance, it can be mediated by a boson,
whose exchange between fermions must have retardation.
In the case of nuclear forces, that is the meson exchange
between two nucleons in the vacuum. We will see in the
following that the in-medium analog of this type of inter-
action can be generated in the present EOM framework,
if the dynamical kernel is taken into account. Certain ap-
proximations, such as cluster decompositions of the dynam-
ical kernel, bring its structure to the boson-exchange form,
where the emergent bosons are correlated fermionic pairs,
and the intermediate propagators of these bosons are as-
sociated with retardation effects of the in-medium induced
interation. As we showed in detail in Refs. [31, 35], the
in-medium dynamical kernel in the form of the phonon-
exchange interaction is completely analogous to the meson-
exchange interaction between the nucleons in the vacuum.
In turn, the latter interaction should be, in principle, deriv-
able from the Hamiltonian of quarks and gluons. However,
if one wants to rely on the scale separation and consider
nucleons as elementary degrees of freedom, the consistent
framework implies neglecting the time-dependence of the
meson-exchange interaction. The latter approximation is
widely used in the low-energy nuclear physics in the so-
called ”ab initio” calculations.

The most common practice for various applications of the
many-body theory is to treat the EOM (21) in the simplest
approximation, which retains only the static partK(0) of the
kernel and neglects the correlations originating from K(r).
Such an approach forms the content of the self-consistent
particle-particle random phase approximation (RPA) [37],
the analogous particle-hole RPA and the self-consistent
quasiparticle random phase approximation, or SCQRPA,
which combines both of them and demonstrates great suc-
cess in applications to exactly-solvable models [38]. In nu-
clear physics, moreover, the common practice is not to com-
pute the static kernel according to Eq. (18), but rather
use effective interactions adjusted to finite nuclei or the G-
matrix of the Brückner’s type.

More and more applications of such approaches to nuclear
systems, however, indicate that confining by only the static
part of the interaction kernel can not lead to satisfactory
results. The most spectacular examples are nuclear exci-
tation spectra and associated decay properties, where the

part K(r) of the kernel associated with dynamical processes
induced by the medium plays a decisive role [35, 39, 40].
In the description of superfluid nuclear matter, this part
of the kernel produces an interplay of screening and antis-
creening effects which can be revealed, for instance, in the
calculations of pairing gaps [5, 9].

The evaluation of the commutators determining the dy-
namical kernel leads to the following result:

K(r)
121′2′(τ − τ

′) =
1

4
×

×
∑
ikl

∑
mnq

[
v̄i1kl〈Tτ (ψ†iψ2ψlψk)(τ)(ψ†mψ

†
nψ
†
2′ψq)(τ

′)〉irrv̄mn1′q

+v̄i1kl〈Tτ (ψ†iψ2ψlψk)(τ)(ψ†mψ
†
nψqψ

†
1′)(τ

′)〉irrv̄mn2′q

+v̄i2kl〈Tτ (ψ1ψ
†
iψlψk)(τ)(ψ†mψ

†
nψ
†
2′ψq)(τ

′)〉irrv̄mn1′q

+v̄i2kl〈Tτ (ψ1ψ
†
iψlψk)(τ)(ψ†mψ

†
nψqψ

†
1′)(τ

′)〉irrv̄mn2′q

]
= K(r;11)

121′2′(τ − τ
′) +K(r;12)

121′2′(τ − τ
′)

+ K(r;21)
121′2′(τ − τ

′) +K(r;22)
121′2′(τ − τ

′) (23)

which, in complete analogy to the case of the particle-
particle propagator at zero temperature [31], is determined
by the two-time four-fermion correlation functions con-
tracted with two interaction matrix elements in all possible
ways, which lead to a four-leg interaction kernel. Each term
of Eq. (23) contains a propagator of three particles and one
hole (3p − 1h). Rather than generating new EOM’s for
such higher-rank propagators, we will follow the approach
of cluster decomposition of Eq. (23) including up to two-
fermion correlation functions:

K(r;11)
121′2′(τ − τ

′) = −1

4

∑
ikl

∑
mnq

v̄i1kl ×

×
(

[Ri2,q2′Glk,nm](τ − τ ′) + [Rik,qnGl2,2′m](τ − τ ′) +

+[Ril,qmGk2,2′n](τ − τ ′)−AS
)
v̄mn1′q,

(24)

K(r;12)
121′2′(τ − τ

′) =
1

4

∑
ikl

∑
mnq

v̄i1kl ×

×
(

[Ri2,qnGlk,m1′ ](τ − τ ′) + [Ril,q1′Gk2,nm](τ − τ ′) +

+[Rik,qmGl2,n1′ ](τ − τ ′)−AS
)
v̄mn2′q,

(25)

K(r;21)
121′2′(τ − τ

′) = K(r;12)
212′1′(τ − τ

′), (26)

K(r;22)
121′2′(τ − τ

′) = K(r;11)
212′1′(τ − τ

′), (27)

where we implied that [Ri2,q2′Glk,nm](τ − τ ′) ≡ [Ri2,q2′(τ −
τ ′)Glk,nm(τ − τ ′) and the finite-temperature particle-hole
response function R is introduced as

R(12, 1′2′) ≡ R12,1′2′(τ − τ ′) = −〈Tτ ψ̄(1)ψ(2)ψ̄(2′)ψ(1′)〉.
(28)
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Eqs. (24 - 27) are, again, completely analogous to the zero-
temperature case [31]. The Fourier transformation of the
latter kernel to the domain of the Matsubara frequencies
requires calculation of the following generic integral

[R12,1′2′G34,3′4′ ](ωn) =

1/T∫
−1/T

dτeiωnτR12,1′2′(τ)G34,3′4′(τ),

(29)
which yields:

[R12,1′2′G34,3′4′ ](ωn) =

=
∑
ν′ν′′

wν′wν′′
[∑
νµ

ρνν
′

21 ρ
νν′∗
2′1′ α

µν′′

43 αµν
′′∗

4′3′

iωn − ωνν′ − ω(++)
µν′′

(
e
−(ωνν′+ω

(++)

µν′′ )/T − 1
)

−
∑
νκ

ρνν
′∗

12 ρνν
′

1′2′β
κν′′∗
34 βκν′′

3′4′

iωn + ωνν′ + ω
(−−)
κν′′

(
e−(ωνν′+ω

(−−)

κν′′ )/T − 1
)]
.

(30)

In Eq. (30) we have introduced the matrix elements of the

normal ρνν
′

12 and pairing αµν12 , β
κν
12 transition densities:

ρνν
′

12 = 〈ν′|ψ†2ψ1|ν〉
αµν12 = 〈ν(N)|ψ2ψ1|µ(N+2)〉, βκν

12 = 〈ν(N)|ψ†2ψ
†
1|κ(N−2)〉,

(31)

where the former connects the states |ν〉 of the given N -
particle system and the latter connect the states |ν〉 with
the states |µ〉, |κ〉 of the N±2-particle systems, respectively.
The frequencies in the denominators correspond to the as-
sociated energy differences. Similarly to Refs. [31, 35], it
is convenient to also introduce the vertices of the emergent
normal and pairing phonons as follows:

gνν
′

13 =
∑
24

v̄1234ρ
νν′

42 ,

γ
µν(+)
12 =

∑
34

v1234α
µν
34 , γ

κν(−)
12 =

∑
34

βκν
34 v3412,

(32)

where the presence of the two upper indices indicates
that these vertices characterize transitions between excited
states, in contrast to the case of zero temperature, where
only transitions between the ground and excited states were
considered. Then, the first component of the dynamical
kernel takes the following form:

K(r;11)
121′2′(ωn) = −

∑
ν′ν′′

wν′wν′′

×
[∑
νµ

Θ
µν;ν′ν′′(+)
121′2′

iωn − ωνν′ − ω(++)
µν′′

(
e
−(ωνν′+ω

(++)

µν′′ )/T − 1
)

−
∑
νκ

Θ
κν;ν′ν′′(−)
121′2′

iωn + ωνν′ + ω
(−−)
κν′′

(
e−(ωνν′+ω

(−−)

κν′′ )/T − 1
)]

(33)

with

Θ
µν;ν′ν′′(+)
121′2′ =

=
∑
kn

(
gνν

′

1k α
µν′′

2k αµν
′′∗

2′n gνν
′∗

1′n + γµν
′′(+)

1k ρνν
′

2k ρ
νν′∗
2′n γµν

′′(+)∗

1′n

)
Θ

κν;ν′ν′′(−)
121′2′ =

=
∑
kn

(
gνν

′∗
k1 βκν′′∗

k2 βκν′′
n2′ g

νν′

n1′ + γκν
′′(−)∗

k1 ρνν
′∗

k2 ρνν
′

n2′γ
κν′′(−)

n1′
)
,

(34)

while the second component reads:

K(r;12)
121′2′(ωn) =

∑
ν′ν′′

wν′wν′′

×
[∑
νµ

Σ
µν;ν′ν′′(+)
121′2′

iωn − ωνν′ − ω(++)
µν′′

(
e
−(ωνν′+ω

(++)

µν′′ )/T − 1
)

−
∑
νκ

Σ
κν;ν′ν′′(−)
121′2′

iωn + ωνν′ + ω
(−−)
κν′′

(
e−(ωνν′+ω

(−−)

κν′′ )/T − 1
)]
,

(35)

where

Σ
µν;ν′ν′′(+)
121′2′ =

∑
ik

(
γ
µν′′(+)
1i ρνν

′

2i α
µν′′∗
1′k gνν

′∗
2′k

+gνν
′

1i α
µν′′

2i ρνν
′∗

1′k γ
µν′′(+)∗
2′k + gνν

′

1i α
µν′′

2i αµν
′′∗

1′k gνν
′∗

2′k

)
Σ

κν;ν′ν′′(−)
121′2′ =

∑
ik

(
γ
κν′′(−)∗
i1 ρνν

′∗
i2 βκν′′

k1′ g
νν′

k2′

+gνν
′∗

i1 βκν′′∗
i2 ρνν

′

k1′γ
κν′′(−)
k2′ + gνν

′∗
i1 βκν′′∗

i2 βκν′′
k1′ g

νν′

k2′
)
.

(36)

The two remaining components K(r;21)
121′2′(ωn) and K(r;22)

121′2′(ωn)
can be found from Eqs. (33 - 36) with the help of the sym-
metry relations of Eqs. (26,27). Finally, all the expressions
can be analytically continued to the domain of real energies.

It is easy to see that in the approximation of Eq. (24 -
27) to the dynamical kernel the many-body problem can be
formulated as a closed scheme. For that, one would need
to supplement Eq. (21) with an analogous EOM for the
particle-hole response function (28) and for the lower-rank
single-fermion propagator. With the cluster decomposition
confined by the two-fermion propagators, all these propaga-
tors can be, in principle, found by a self-consistent iterative
procedure. Possibilities to implement such a program for
nuclear systems will be investigated elsewhere, and for the
rest of this work we will focus on calculations of the quantity
which is commonly referred to as pairing gap.

The equation for the pairing gap can be obtained from
Eq. (21) if, for instance, the energy argument of the pair
propagator is close to the transition frequency from the
ground state of the N -particle system to the ground state
of the (N + 2)-particle system. Then, the equation for the
pairing transition density αµν = αs in the vicinity of this
frequency ωs reads:

αs21 =
1− n1 − n2

ωs − ε̃1 − ε̃2

1

4

∑
343′4′

δ1234K343′4′(ωs)α
s
4′3′ . (37)
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If we assume that the ground state of the reference nucleus
is approximated by the finite-temperature BCS-like varia-
tional ansatz, where

n1(T ) = v2
1(1− f1(T )) + (1− v2

1)f1(T ), (38)

f1(T ) =
1

exp(E1/T ) + 1
, (39)

E1 =

√
(ε̃1 − λ̃)2 + ∆2

1 v2
1 =

E1 − (ε̃1 − λ̃)

2E1
,

(40)

the finite-temperature S-wave pairing gap ∆1 can be related
to the pairing transition density as

∆1(T ) = αs1̄1

2E1

1− 2f1(T )
, (41)

where the bar denotes the conjugate or the time-reversed
state [37]. In this approximation, at the frequency ωs =

2λ̃ Eq. (37) takes the form of the well-known pairing gap
equation:

∆1(T ) = −
∑

2

V11̄22̄

∆2(T )(1− 2f2(T ))

2E2
, (42)

which has formally the same structure as the finite-
temperature BCS equation, but with a more complicated
interaction kernel

V121′2′ =
1

2

(
K(0)

121′2′ +K(r)
121′2′(2λ̃)

)
, (43)

whose both the static and dynamical components include
the 〈Ñ−1... Ñ−1〉 factors. The dynamical part, although
taken in the static limit, carries the retardation effects and
the additional temperature dependence. Notice that Eq.
(42) has the same form regardless the approximations made
for its static K(0) and dynamical K(r) parts. As the fully
self-consistent treatment of those kernels is difficult even in
the approximation made for K(r) in Eqs. (24 - 27), fur-
ther approximations can be made. Besides the most strong
BCS-like one neglecting correlations, such as the complete
dynamical part K(r) and the terms with σ(2) in K(0), one
can make weaker approximations. For the static kernel K(0)

this could be the G-matrix, various kinds of preprocessing
of the bare interactions, such as the renormalization group
or low-k, and, eventually, effective interactions. For the
dynamical kernel K(r) the R, G or both correlation func-
tions appearing in Eqs. (24 - 27) can be approximated by
their uncorrelated mean-field analogs or, alternatively, cor-
relations in these propagators can be only partly relaxed.
This type of approaches were applied, for instance, for the
nuclear matter calculations of Refs. [5, 41, 42], to name a
few.

III. DETAILS OF CALCULATIONS, RESULTS
AND DISCUSSION

The numerical implementation of the approach of Eq.
(42) for the pairing gap with the kernel of Eq. (43) aimed

at the investigation of the temperature dependence of the
induced pairing, i.e., essentially of the role of the second
term in Eq. (43). Therefore, at this point we kept the static
kernel as simple as in Ref. [31], namely described by the
effective monopole-monopole force with adjustable strength
to avoid complications like taming the bare interaction with
the hard core. The latter will be investigated elsewhere.

As in the previous implementations of the relativistic
finite-temperature approaches with PVC, first we solve the
closed set of the relativistic mean field (RMF) equations us-
ing the non-linear sigma-model and the NL3 parametriza-
tion [43], where the Fermi-Dirac thermal fermionic occu-
pation numbers self-consistently modify the classical me-
son fields. The procedure generates a set of temperature-
dependent single-particle Dirac spinors and the correspond-
ing single-nucleon energies, which serve as the working basis
{1, ε̃1}. Then, the finite-temperature relativistic random
phase approximation (FT-RRPA) equations are solved to

obtain the phonon vertices gm ≡ gνν′ and their frequencies
ωm ≡ ωνν′ . In this implementation we relaxed correlations
in the particle-particle propagator of Eqs. (24-27), because
they are known to be less important than the correlations
in the particle-hole propagator. This means, technically, (i)
neglecting the terms with γ-vertices in the Eqs. (34,36) and
(ii) replacing the pairing transition densities α and β with
their uncorrelated analogs and, simultaneously, the pair-
ing frequencies ω(±±) with the sums of the single-particle
energies. Thus, the model space for the dynamical kernel
is formed by the set of the obtained FT-RRPA phonons
and the thermal RMF single-particle states coupled in the
pp⊗phonon, hh⊗phonon and ph⊗phonon configurations.
To avoid the divergencies of the norm factors 〈Ñ−1... Ñ−1〉
around the Fermi energy, their T = 0 Hartree values were
used in calculations. This approximation may be relaxed
in the self-consistent calculations of the dynamical kernel,
if pairing correlations are included explicitly in K(r).

Particle-hole configurations with the energies εph ≤ 100
MeV and the antiparticle-hole (αh) ones with εαh ≥ −1800
MeV, with respect to the positive-energy continuum, lim-
ited the particle-hole basis for the FT-RRPA calculations
of the phonons. The set of phonons included vibrations
with spins and parities Jπ = 2+, 3−, 4+, 5−, 6+ below
20 MeV. The phonon modes with the reduced transition
probabilities B(EL) equal or more than 5% of the maximal
one (for each Jπ) were included in the model space, and
the single-particle intermediate states entering the matrix
elements gνν

′

nk in the summations of Eqs. (34,36) with the
energy differences |εk − εn| ≤ 50 MeV were included in the
summation. The same truncation criteria were applied for
all temperature regimes, that is justified by our previous
calculations [44–46]. Note that we did not take into ac-
count the phenomenological static pairing in the mean field
calculations and in the calculations of the PVC vertices as
it was done in the first application of the approach at T = 0
in Ref. [31], therefore, the results at zero temperature are
slightly different (see a more detailed discussion be-
low). The main features of the solutions, however, remain
intact.
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FIG. 1. Sensitivity of the neutron pairing gap around the
Fermi surface of 68Ni to the strength of the static interaction:
BCS and BCS+PVC calculations with varying static pairing
strength are shown by diamonds and circles, respectively. In
both approaches, larger values correspond to larger static pair-
ing strength, see text for details. The vertical line marks the
Fermi energy in the BCS+PVC calculations at T = 0.

The solutions obtained for the neutron pairing gap in
68Ni at low temperature of T = 0.2 MeV are displayed in
Fig. 1. At this temperature the result is nearly identical
to that at T = 0. In this calculation we illustrate (i) the
role of the PVC effects in the formation of the pairing gap
in the present calculation scheme and (ii) the sensitivity
of the pairing gap values to the parameter g, which defines
the strength of the static part of the interaction kernel K(0).
As in the previous work of Ref. [31], the latter kernel was
taken in the form of the monopole-monopole interaction,
which is given in detail, for instance, in Ref. [47], so that
the present study is fully focused on the features of the
dynamical kernel K(r). The parameter g is the only free
parameter used in solving the pairing gap equation (42)
and, ideally, will be eliminated in the ab-initio calculations,
where the static kernel is determined explicitly according to
Eq. (18). Here we adjust this parameter to reproduce on av-
erage the experimental value of the pairing gap obtained in
the BCS+PVC calculation, where the averaging is weighted
with the orbital degeneracy 2j+ 1. The experimental value
of the neutron pairing gap in 68Ni was extracted from the
mass tables of Ref. [48] with the aid of the commonly used
three-point formula [49]. Such calculation scheme allows for
understanding the role of the dynamical PVC effects in the
formation of the pairing gap. One can see from Fig. 1 that
the dynamical PVC is responsible for more than 50 % of the
pairing gap value. Its contribution is slightly above 50 %
in the peripheral energy regions with respect to the Fermi
energy (FE) and increases to 60-70% for the states close
to the FE, where the pairing gap values exhibit a smooth
maximum. The presence of such maximum is attributed to
the functional form of the dynamical kernel K(r), namely its
propagator structure. This result is qualitatively consistent

-30 -20 -10 0 10
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n
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∆
n
 [

M
e
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] 
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    T = 1.4 MeV
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BCS + PVC BCS 

(a) (b)

FIG. 2. Temperature dependence of the pairing gaps in 68Ni
in BCS+PVC (a) compared to the pure BCS (b) approach. In
both cases, the pairing gaps are gradually decreasing with the
temperature increase. The vertical lines correspond to the Fermi
energies in the BCS+PVC and BCS calculations at T = 0.

with our previous work [31], where a different calculations
scheme was employed, as pointed out above, and with the
results of Ref. [16, 50]. As in the case of nuclear matter
[4–10], the dynamical kernel is sensitive to details of the
approximation made and to the calculation scheme. In the
present implementation the experimental value of the pair-
ing gap at T = 0 and low temperatures T ≤ 0.4 MeV is
best reproduced in BCS+PVC approach at g = 12.6 MeV,
so that with this parameter value 〈∆n〉 ≈ 1.6 MeV. The
latter value of g is adopted for the BCS+PVC calculations
at higher temperatures, which are presented in Figs. 2 and
3 and discussed below.

Fig. 2 illustrates the temperature dependence of the neu-
tron pairing gap in 68Ni in the BCS+PVC approach in com-
parison with the pure BCS model. For the latter case the
parameter g was increased accordingly to reproduce the ex-
perimental pairing gap, and the calculated pairing gap is
almost state-independent except for the energy window bor-
der, where it smoothly decreases to the zero value because
of the ”soft pairing window” implied in the monopole forces
[47]. In this way, it is possible to illuminate the difference
in the temperature evolution between the descriptions with
only the static and with both static and dynamical ker-
nels. In the conventional BCS, where only the static kernel
is taken into account, the temperature dependence is fully
determined by the factor 1− 2f2(T ) in Eq. (42), while the
static kernel itself has no explicit temperature dependence.
Implicitly, this kernel depends on temperature, if its ma-
trix elements are computed in a self-consistent cycle, but
this dependence is relatively weak. Some additional tem-
perature dependence may originate from the two-body den-
sity if the static kernel is calculated microscopically via Eq.
(18). Otherwise, from the transformations (29) it follows
that the explicit temperature dependence of the interac-
tion kernel is the consequence of the time dependence, i.e.,
of the retardation effects present in the dynamical kernel
components (33,35). For this study, the pairing gaps were
calculated at temperatures 0 ≤ T ≤ 1.4 MeV with the step
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FIG. 3. Pairing gaps for the states around Fermi energy (filled
symbols) and the average pairing gap (empty circles) as func-
tions of temperature in BCS+PVC approach compared to the
average pairing gap in BCS model (empty diamonds) in 68Ni.

of 0.2 MeV. One can see from Fig. 2 that in the BCS case
the pairing gap decreases quickly with the temperature in-
crease: at T = 1.2 MeV it already disappeares, while in the
BCS+PVC calculation the gap values are still quite sizable
grouping around 1 MeV. Another observation is that the
pairing gap retains its peaked character in the BCS+PVC
approach even when its average value decreases with the
temperature increase.

The critical temperature in the theory of superfluidity is
known as the temperature, at which the pairing gap van-
ishes. The canonical BCS relationship between the critical
temperature and the value of the pairing gap at T = 0 ∆0

is Tc ≈ 0.6∆0. In our BCS calculation, the pairing gap
disappears at the temperature below ≈ 1.1 MeV, so that
the coefficient between ∆0 and Tc is close to the canoni-
cal value. In the BSC+PVC approach with the additional
temperature dependence of the dynamical kernel one could
expect a different ratio between the ∆0 and Tc values and
also a variation of this ratio from state to state. These
trends are illustrated in Fig. 3, where we display the pair-
ing gap as a function of temperature for selected neutron
states in 68Ni, which was obtained in the BCS+PVC cal-
culations. Namely, we show this function for the examples
of states near and far from the Fermi energy. The average
pairing gap is also shown, and these results are compared
to the average BCS pairing gap. This representation helps
determine more accurately the values of the critical temper-
atures for all the cases. The first observation from Fig. 3 is
that in the BCS+PVC calculations the pairing gaps for all
the states collapse at the same critical temperature. In the
approximation described above we get the value Tc ≈ 1.4
MeV for all the states, independently on the pairing gap
values for these states at T = 0. Another observation is
that the critical temperature in the approach with the dy-
namical kernel is higher than the BCS critical temperature
at the same values of the T = 0 average pairing gaps. This
indicates that the retardation effects in the dynamical com-
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FIG. 4. Pairing gaps as functions of temperature in 44,46Ca.
Conventions are the same as in Figs. 1 and 3.

ponent of the in-medium nucleon-nucleon interaction can
help superfluidity survive at higher temperatures than it is
expected in simpler models with only the static kernels.

Figs. 4 and 5 display the analogous calculations for two
calcium isotopes, 44Ca and 46Ca. The upper panels of Fig.
4 show the results for the pairing gaps in these two nuclei
obtained within BCS+PVC and pure BCS approximation
at T = 0.2 MeV, which are nearly identical to T = 0 re-
sults. Both calculations are performed with the same static
pairing strength (only slightly different for 44Ca and 46Ca),
in order to isolate the PVC effects. In contrast to the case
of 68Ni, in calcium isotopes the PVC produces peaks in
the pairing gaps mainly around the Fermi energy while af-
fecting very little the pairing gaps of the peripheral states.
As in Ref. [31], this may be due to a stronger cancella-
tion between the self-energy and exchange PVC terms for
the peripheral states in these nuclei. One can also notice
some irregularities in the BCS+PVC pairing gaps in 46Ca,
namely the small gaps at 1d3/2 and 2s1/2. The remain-
ing variance with Ref. [31] pertains to the differences in
the calculation schemes, that is discussed below. The lower
panels show the temperature dependence of the BCS+PVC
pairing gaps for the states closest to the Fermi energy and
their weighted averages in comparison to the behavior of
the pure static pairing gaps. The latter are computed with
readjusted strength to reproduce the experimental pairing
gaps at T = 0. These calculations illustrate the drastic dif-
ference in the superfluid phase transition temperature in the
two models. Similarly to the case of 68Ni, in the BCS+PVC
calculations the critical temperature is considerably higher
than that in the BCS, with approximately the same ratio
between the BCS+PVC and BCS values. Thus, this fea-
ture of the dynamical kernel remains robust also in calcium
isotopes.

In Fig. 5 one can see a more global description of the
temperature dependencies of the pairing gaps in 44Ca and
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FIG. 5. Pairing gaps as functions of temperature in 44,46Ca.
Conventions are the same as in Fig. 2.

46Ca. As in the previous case, the BCS+PVC and pure
BCS calculations were performed with different values of
the static pairing strength, so that the weighted average
pairing gap values reproduce the T = 0 data in both ap-
proaches. The general result here is a noticeably slower
temperature evolution of the BCS+PVC pairing gaps, as
compared to the BCS ones, because of the presence of the
non-trivial temperature dependence in the dynamical ker-
nel in the former case. This is observed for all states under
study. Remarkably, the shape of the pairing gap as function
of energy evolves with temperature becoming less and less
peaked in the Fermi energy region with the temperature
growth.

As briefly mentioned above, the calculation scheme em-
ployed in this work is somewhat different from the one of
Ref. [31] for T = 0 calculations. There are technical reasons
why we do not adopt the same calculation scheme here. In
the latter scheme, on the first step, we initiated the pro-
cedure by running the RMF+BCS calculations. The BCS
equation was solved self-consistently with the RMF in the
usual static-kernel approximation with the monopole forces
and pairing strength adjusted to the odd-even mass differ-
ences, since the phonon vertices are not yet available at
this step. On the second step, the obtained pairing gap
was subsequently used in the relativistic QRPA (RQRPA),
and the phonon vertices and frequencies were extracted.
These vertices and frequencies were used on the final step
for solving the gap equation in the BCS+PVC approxima-
tion with both static and dynamical kernels. Notice that
in this scheme, using the RQRPA phonons is only partially
self-consistent, because in the final BCS+PVC calculation
the strength constant of the static pairing kernel has to
be refitted to reproduce the final pairing gap. In addition,
the denominators of the dynamical kernel contain the pure
single-particle energies (no quasiparticle energies) in com-
bination with RQRPA phonon frequencies, which have the

information about superfluid pairing.
To adopt an analogous calculation scheme at finite tem-

perature, we would need to (i) generalize the RQRPA to fi-
nite temperature, which is a non-trivial task on its own, (ii)
take into account a more complex structure of the phonon
vertices, which means (iii) re-deriving the entire approach
for the pairing propagator and, thus, for the pairing gap
in the thermal RMF+BCS (or Hartree-(Fock)-Bogoliubov)
quasiparticle basis. This would be essentially a more com-
plicated and advanced solution at finite temperature, which
goes beyond the scope of the present article, but which will
be considered in the future.

To avoid such complications, in this work we did not in-
clude pairing correlations on the first two steps, and, in-
stead, ran thermal RMF and finite-temperature relativistic
RPA to obtain the mean-field and phonon characteristics.
On one hand, this reduces the accuracy of the phonon calcu-
lations at T = 0, but, on the other hand, allows us to avoid
the inconsistency between the denominators of the dynami-
cal kernel, which would contain the energies and frequencies
obtained in the quasiparticle picture, and exponential fac-
tors with the temperature dependence, which are not yet
adopted to superfluid pairing.

These differences in the calculation schemes, which are
both approximate and may be replaced by a more accurate
one in the future, are responsible for somewhat different be-
havior of the resulting pairing gaps obtained in this work at
T = 0, as compared to Ref. [31]. However, their enhance-
ments for the states surrounding the Fermi energy and the
general trends in nickel and calcium nuclei remain similar,
although in the Ref. [31] the peaks of the pairing gaps are
not always centered at the Fermi surface. This may be be-
cause of only partial self-consistency described above, which
modifies the location of the poles of the dynamical kernel.
Slightly weaker PVC effects in Ref. [31] are observed mainly
due to the reduction of the PVC vertices, as they are mul-
tiplied with the combinations of the occupation factors in
RQRPA [47].

IV. SUMMARY AND OUTLOOK

The equation of motion for the two-time two-fermion cor-
relation function in a strongly coupled many-body system
at finite temperature is considered. We show that, as in
the case of zero temperature, the EOM for this propaga-
tor takes the form of the Dyson-Bethe-Salpeter equation
with the interaction kernel, which is split into the static
and dynamical components. This kernel includes, in prin-
ciple, all the in-medium physics derived from the underly-
ing bare two-fermion interaction. While the static compo-
nent of the kernel depends on the correlated two-fermionic
density, the dynamical component contains a higher-rank
fermionic propagator. The latter, in the case of the sym-
metric form of the kernel, is represented by the propagator
of four fermions. Factorization of this propagator allows
for the truncation of the many-body problem at the level of
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two-body correlation functions whose EOM’s, together with
those for the one-fermion correlation function discussed in
Ref. [35] form a closed system of integral equations. The
equation for the temperature-dependent pairing gap, which
is related to the residue of the two-time particle-particle
propagator, is formulated as a static limit of the EOM for
this propagator. To extract the pairing gap, which is one of
the most common characteristics of superfluidity, we adopt
the BCS-like variational ansatz for the ground state wave
function. The resulting equation allows for an extension of
the BCS approximation to correlations of higher complex-
ity, which introduce an additional non-trivial temperature
dependence of the pairing gap.

The effects of the dynamical kernel at finite temperature
are illustrated in the calculations of the neutron pairing
gaps for 68Ni and two calcium isotopes, 44Ca and 46Ca. The
pole character of this kernel gives rise to the peak of the
pairing gap around the Fermi surface at all temperatures
when the pairing gap has non-zero values. We find that the
time dependence, mostly the retardation, present in this
kernel translates to a different temperature dependence of
the pairing gap than the one of the BCS approximation.

In particular, the presence of the dynamical term leads to
noticeably higher values of the critical temperature. This
finding may be important for numerous applications. For
instance, in applications to nuclear astrophysics, such as
the r-process nucleosynthesis in the neutron star mergers
and the supernovae explosion, the nuclear input for tem-
peratures below 1-2 MeV is involved. Crossing the critical
temperature, i.e., the superfluid phase transition can affect
considerably the excitation spectra snd, thus, various reac-
tion rates. An example of the electron capture is discussed
in Ref. [51]. Therefore, the form of the dynamical kernel
and its temperature dependence has to be computed as ac-
curate as possible. Self-consistent calculations of this kernel
as well as the static one, desirably in an ab-initio framework,
thus, remain an important topic for future research.
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A. Vdovin, Annals of Physics 307, 308 (2003).
[26] M. L. Tiago, P. Kent, R. Q. Hood, and F. A. Reboredo,

Journal of Chemical Physics 129, 084311 (2008).
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