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Level density ρ(E,A) is derived for a one-component nucleon system with a given energy E and
particle number A within the mean-field semiclassical periodic-orbit theory beyond the saddle-point
method of the Fermi gas model. We obtain ρ ∝ Iν(S)/S

ν , with Iν(S) being the modified Bessel
function of the entropy S. Within the micro-macro-canonical approximation (MMA), for a small
thermal excitation energy, U , with respect to rotational excitations, Erot, one obtains ν = 3/2 for
ρ(E,A). In the case of excitation energy U larger than Erot but smaller than the neutron separation
energy, one finds a larger value of ν = 5/2. A role of the fixed spin variables for rotating nuclei
is discussed. The MMA level density ρ reaches the well-known grand-canonical ensemble limit
(Fermi gas asymptotic) for large S related to large excitation energies, and also reaches the finite
micro-canonical limit for small combinatorial entropy S at low excitation energies (the constant
“temperature” model). Fitting the ρ(E,A) of the MMA to the experimental data for low excitation
energies, taking into account shell and, qualitatively, pairing effects, one obtains for the inverse level
density parameter K a value which differs essentially from that parameter derived from data on
neutron resonances.
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I. INTRODUCTION

Many properties of heavy nuclei can be described in terms of the statistical level density [1–23]. A well-known old
example is the description of neutron resonances using the level density. Usually, the level density ρ(E,A), where
E and A are the energy and nucleon number, respectively, is given by the inverse Laplace transformation of the
partition function Z(β, α). Within the grand canonical ensemble the standard saddle-point method (SPM) is used
for integration over all variables, including β, which is related to the total energy E [2, 4]. This method assumes
large excitation energies U , so that the temperature T is related to a well-determined saddle point in the integration
variable β for a finite Fermi system of large particle numbers. However, data from many experiments for energy levels
and spins also exist for regions of low excitation energy U , where such a saddle point does not exist. For presentation
of experimental data on nuclear spectra, the cumulative level-density distribution – cumulative number of quantum
levels below the excitation energy U – is conveniently often used for statistical analysis [24–26] of the experimental
data on collective excitations [26–29]. For calculations of this cumulative level density, one has to integrate the level
density over a large interval of the excitation energy U . This interval extends from small values of U , where there is
no thermodynamic equilibrium (and no meaning to the temperature), to large values of U , where the standard grand
canonical ensemble can be successfully applied in terms of the temperature T in a finite Fermi system. Therefore,
to simplify the calculations of the level density, ρ(E,A), we will, in the following, carry out the integration over the
Lagrange multiplier β in the inverse Laplace transformation of the partition function Z(β, α) more accurately beyond
the SPM [30–32]. However, for a nuclear system with large particle number A one can apply the SPM for the variable
α, related to A. The case of neutron-proton asymmetry of the Fermi system will be worked out separately. Thus,
for remaining integration over β we shall use approximately the micro-canonical ensemble which does not assume
a temperature and an existence of thermodynamic equilibrium. Notice that there are other methods to overcome
divergence of the full SPM for low excitation-energy limit U → 0, see Refs. [18, 21, 33–35]. The well-known method
suggested in Ref. [34] is applied successfully for the partition function of the extended Thomas-Fermi (ETF) theory
at finite temperature to obtain the smooth level density and free energy, see also Refs. [35], and [36], and references
therein.
For formulation of the unified microscopic canonical and macroscopic grand-canonical approximation (MMA) to the

level density, we will find a simple analytical approximation for the level density ρ which satisfies the two well-known
limits. One of them is the Fermi gas asymptotic, ρ ∝ exp(S), with the entropy S, for large entropy S. Another
limit is the combinatorics expansion in powers of S for a small entropy S or excitation energy U , always at large
particle numbers A, see Refs. [2, 37, 38]. The empiric formula, ρ ∝ exp[(U −E0)/T ] with free parameters E0, T , and
a pre-exponent factor, was suggested for the description of the excited low energy states (LES) in Ref. [3]. Later, this
formula was named the constant “temperature” model (CTM) where the “temperature” is considered an “effective
temperature” related to the excitation energy (with no direct physical meaning of temperature for LES’s), see also
Ref. [21]. We will show below that the MMA has the same power expansions as the CTM for LES at small excitation
energies U . We will also show that, within the MMA, the transition between these two limits is sufficiently rapid,
when considered over the dimensionless entropy variable S. Therefore, our aim is to derive approximately a simple
statistically averaged analytical expression for the level density ρ(S) with the correct two limits, mentioned above,
for small and large values of S.
Such an MMA for the level density ρ was suggested in Ref. [30, 31] in terms of the modified Bessel function of

the entropy variable in the case of small excitation energy U as compared to the rotational energy Erot. The so-
called a “classical rotation” of the spherical or axially-symmetric nucleus was considered alignment of nucleons along
the symmetry axis on the basis of the periodic orbit theory with a fixed angular momentum and its projection, see
Ref. [39], in contrast to the collective rotation around the perpendicular axis [40, 41]. The yrast line was defined to
be at zero excitation energy for a given angular momentum within the cranking model [42, 43]. One of the important
characteristics of the yrast line is the moment of inertia (MI). The Strutinsky shell-correction method (SCM) [44, 45],
extended by Pashkevich and Frauendorf [46] to the description of nuclear rotational bands, was applied [30, 31] for
studying the shell effects in the MI near the yrast line.
For a deeper understanding of the correspondence between the classical and the quantum approach, especially their

applications to high-spin physics, it is worthwhile to analyze the shell effects in the level density ρ, see Refs. [7, 8],
in particular, in the entropy S and MI, within the semiclassical periodic-orbit (PO) theory (POT) [36, 39–41, 47–
52]. This theory, based on the semiclassical time-dependent propagator, enables determining the total level-density,
energy, free-energy, and grand canonical ensemble potential in terms of the smooth ETF term and PO-shell corrections
[30, 31, 36, 40, 50–52].
We will extend the MMA approach [30], in order to consider the shell effects in the yrast line as a minimum of the

nuclear level density (minimum excitation energy), for the description of shell and collective effects in terms of the
level density itself for larger excitation energies U . The level density parameter a is one of the key quantities under
intensive experimental and theoretical investigations; see, e.g., Refs. [1–5, 7–9, 14, 23]. Mean values of a are largely
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proportional to the particle number A. The inverse level density parameter K = A/a is conveniently introduced to
exclude a basic mean A-dependence in a. Smooth properties of K as function of the nucleon number A have been
studied within the framework of the self-consistent ETF approach [9, 20]. However, for instance, shell effects in the
statistical level density are still an attractive subject. This is due to the major shell effects in the distribution of
single-particle (s.p.) states near the Fermi surface within the mean-field approach. The nuclear shell effects influence
the statistical level density of a heavy nucleus, which is especially important near magic numbers, see Refs. [7, 8]
and references therein. In the present study, for simplicity, we shall first work out the derivations of the level density
ρ(E,A) for a one-component nucleon system taking into account the shell, rotational and, qualitatively, pairing effects.
This work is concentrated on LES’s of nuclear excitation-energy spectra below the neutron resonances.
The paper is organized as the following. The level density ρ(E,A) is derived within the MMA by using the POT

in Sec. II. We extend the MMA to large excitation energies U , up to about the neutron separation energy, taking
essentially into account the shell effects. Several analytical approximations, in particular the spin dependence of
the level density are presented in Section III. Illustrations of the MMA for the level density ρ(E,A) and inverse
level density parameter K versus experimental data, discussed for typical heavy nuclei, are given in Section IV.
Our conclusions are presented in Section V. The semiclassical POT is described in Appendix A. The level density,
ρ(E,A,M), derived by accounting for the rotational excitations with the fixed projection of the angular momentum
M and spin I of nuclei in the case of a spherically symmetric or axially symmetric mean fields are given in Appendix
B. The full SPM level density derivations generalized by shell effects are described in Appendix C.

II. MICROSCOPIC-MACROSCOPIC APPROACH

For a statistical description of level density of a nucleus in terms of the conservation variables, the total energy, E,
and nucleon number, A, one can begin with the micro-canonical expression for the level density,

ρ(E,A) =
∑

i

δ(E − Ei) δ(A−Ai) ≡
∫

dβdα

(2πi)2
eS , (1)

where Ei and Ai present the system spectrum, and S = lnZ(β, α) + βE − αA is the entropy. Using the mean field
approximation for the partition function Z(β, α), one finds [4]

lnZ =
∑
i

ln [1 + exp (α− βεi)]

≈
∞∫
0

dε g(ε) ln [1 + exp (α− βε)] , (2)

where εi are the s.p. energies of the quantum states in the mean field. In the transformation from the sum to
an integral, we introduced the s.p. level density g(ε) as a sum of the smooth, g̃(ε), and oscillating shell, δg(ε),
components, using the SCM, see Refs. [44, 45],

g(ε) ∼= g̃(ε) + δg(ε) . (3)

Within the semiclassical POT [36, 50], the smooth and oscillating parts of the s.p. level density, g(ε), can be
approximated, with good accuracy, by the sum of the ETF level density, g̃ ≈ gETF, and the semiclassical PO
contribution, δg(ε) ≈ δgscl, Eq. (A.5). In integrating over α in Eq. (1) for a given β by the standard SPM, we
use the expansion for the entropy S(β, α) near the saddle point α = α∗ as:

S(β, α) = S(β, α∗) +
1

2

(
∂2S

∂α2

)∗
(α− α∗)2 + . . . . (4)

The first order term of this expansion disappears because the Lagrange multiplier, α∗, is defined by the saddle-point
condition,

(
∂S

∂α

)∗
≡

(
∂ lnZ

∂α

)∗
−A = 0 . (5)

Introducing, for convenience, the potential Ω = −lnZ/β, one can use its SCM decomposition in terms of the
smooth part and shell corrections for the level density g, see Eq. (3) and Ref. [30], through the partition function,
lnZ (Eq. (2)),

Ω (β, λ) ∼= Ω̃ (β, λ) + δΩ (β, λ) . (6)
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Here, Ω̃ ≈ ΩETF is the smooth ETF component [23, 30],

Ω̃ (β, λ) = Ẽ − λA − π2

6β2
g̃(λ) , (7)

where Ẽ ≈ EETF is the nuclear ETF energy (or the liquid-drop energy). For a given β, the chemical potential,

λ = α∗/β, is a function of the particle number A, according to Eq. (5), and λ ≈ λ̃ is approximately equal to the
SCM smooth chemical potential. With the help of the POT [36, 50, 51], one obtains [30] for the oscillating (shell)
component, δΩ, in Eq. (6),

δΩ = −β−1
∞∫
0

dε δg(ε) ln {1 + exp [β (λ− ε)]}

∼= δΩscl (β, λ) = δFscl . (8)

For the semiclassical free-energy shell correction, δFscl (see Appendix A), we incorporate the POT expression:

δFscl
∼=

∑

PO

FPO , (9)

where,

FPO = EPO
xPO

sinh (xPO)
, xPO =

πtPO

~β
, (10)

and

EPO =
~
2

t2PO

gPO(λ) . (11)

Here, tPO = M tM=1
PO (λ) is the period of particle motion along the PO (taking into account its repetition, or period

number M), and tM=1
PO is the period of the particle motion along the primitive (M = 1) PO. The period tPO (and tM=1

PO ),
and the partial oscillating level density component, gPO, given by Eq. (A.6), are taken at the chemical potential
ε = λ, see also Eqs. (A.5) and (A.6) for the semiclassical s.p. level-density shell correction δgscl(ε) (see Refs. [36, 50]).
Notice that equivalence of the variations of the grand-canonical- and canonical- ensemble potentials, Eq. (8), is valid
approximately in the corresponding variables, for large particle numbers A. This equivalence has to be valid in the
semiclassical POT.
Expanding, then, xPO/sinh(xPO), Eq. (10), in the shell correction δΩ (Eqs. (8) and (10)) in powers of 1/β2 up to

the quadratic terms, ∝ 1/β2, one obtains

Ω ≈ E0 − λA− a

β2
. (12)

Here E0 is the ground state energy, E0 = Ẽ+ δE, and δE is the energy shell correction of a cold nucleus, δE ≈ δEscl,
Eq. (A.14). In Eq. (12), a is the level density parameter a,

a = ã+ δa , (13)

where ã ≈ aETF and δa are the ETF and the shell correction components,

ã ≈ π2

6
g
ETF

(λ), δa =
π2

6
δgscl(λ) . (14)

Note that for the ETF components one commonly accounts for self-consistency using Skyrme interactions, see Refs. [20,
23, 32, 36, 53, 54]. For the semiclassical POT level density, δgscl(λ), one employs the method of Eqs. (A.5) and (A.6),
see Refs. [36, 40, 49–52]. Note that in the grand canonical ensemble, the level density parameter a, Eqs. (13) with (14),
is function of the chemical potential λ. We may include, generally speaking, the collective (rotational) component
into E0, see Subsection III E and Appendix B.
Substituting Eq. (4) into Eq. (1), and taking the error integral over α in the extended infinite limits including the

saddle point α∗, one obtains

ρ(E,A) ≈ 1
2πi

√
2π

∫
dβ β1/2J−1/2

× exp (βU + a/β) , (15)
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where U = E − E0 is the excitation energy, and a is the level density parameter, given by Eqs. (13) and (14). In
equation (15), J is the one-dimensional Jacobian determinant (c number, J (λ)) taken at the saddle point over α at
α = α∗ = λβ, Eq. (5),

J ≡ β
(

∂2S
∂α2

)∗
≡ β

(
∂2 lnZ
∂α2

)∗

= −
(

∂2Ω
∂λ2

)∗ ∼= J̃ + δJ . (16)

The asterisks mean the saddle point for integration over α for any β (here and in the following we omit the superscript
asterisk in J ). Differentiating the potential Ω, Eq. (6), over λ within the grand-canonical ensemble we obtain for

smooth part of the Jacobian, J̃ = −
(
∂2Ω

ETF
/∂λ2

)∗ ≈ g
ETF

(λ). We note that for not too large thermal excitations,
the main contribution from the oscillating potential component δΩ as function of λ is coming from the differentiation
of the sine function in the PO energy shell correction factor EPO, Eq. (11), through the PO action phase SPO(λ)/~
of the PO level density component gPO(λ), Eq. (A.6). The temperatures T = 1/β∗, when the saddle point β = β∗

exists, are assumed to be much smaller than the chemical potential λ. The reason is that for large particle numbers
A the semiclassical large parameter, ∼ SPO/~ ∼ A1/3, appears. This leads to a dominating contribution, much larger
than that coming from differentiation of other terms, the β-dependent function xPO(β), and the PO period tPO(λ).
Using Eqs. (8), (A.16), and (A.17), one approximately obtains for the oscillating Jacobian part δJ (λ), Eq. (16), the
expression:

δJ ≈
∑

PO

gPO

xPO

sinh (xPO)
, (17)

where xPO(β, λ) (through tPO(λ)) is the dimensionless quantity, Eq. (10), proportional to 1/β. The total Jacobian
J (λ) as function of λ can be presented as

J ∼= J̃
(
1 + δJ /J̃

)
= g(λ) (1 + ξ) , (18)

where ξ(β, λ) is defined by (see also Eqs. (16) and (12))

ξ =
a′′(λ)

β2g(λ)
≈

∑

PO

gPO(λ)

g(λ)

(
xPO

sinh (xPO)
− 1

)
. (19)

This approximation was derived for the case when a smooth (E)TF part can be neglected. Notice, that the rotational
excitations can be included into the ETF part of the potential Ω, see Subsection III E and Appendix B. In this case,
Eq. (18) will be similar but with more complicate expressions for the two-dimensional Jacobian J̃ , especially for its
shell component δJ .
Substituting now λ, found from Eq. (5), for a given particle number A, one can obtain relatively small thermal and

shell corrections to the smooth chemical potential in λ(A) of the SCM [45]. For simplicity, neglecting these correction
terms for large particle numbers, A1/3 ≫ 1, one can consider λ as a constant related to that of the particle number
density of nuclear matter. Therefore, λ is independent of the particle number A for large values of A.

III. MMA ANALYTICAL EXPRESSIONS

In linear approximation in 1/β2, one finds from Eq. (19) for ξ and Eq. (10) for xPO

ξ =
ξ

β2
≈ − π2

6~2β2

∑

PO

t2PO

gPO(λ)

g(λ)
, (20)

where

ξ =
a′′(λ)

g(λ)
≈ − π2

6~2

∑

PO

t2PO

gPO(λ)

g(λ)
≈ − 2π4

3D2
sh

δg(λ)

g(λ)
, (21)

see also Eq. (19). In Eq. (21), Dsh ≈ λ/A1/3 is the distance between major shells, see Eq. (A.15). For convenience,
introducing the dimensionless energy shell correction, Esh, in units of the smooth ETF energy per particle, EETF/A,
one can present Eq. (21) as:

ξ ≈ 4π6A1/3Esh
3λ2

, Esh = − δE

EETF

A . (22)
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In the applications below we will use ξ > 0 and Esh > 0 if δE < 0. The smooth ETF energy EETF in Eq. (22), see
Eq. (A.10), can be approximated as EETF ≈ g̃(λ)λ2/2. The energy shell correction, δE, was approximated, for a major
shell structure, with the semiclassical POT accuracy (see Eqs. (A.14) and (11), and Refs. [36, 50–52]) by,

δE ≈ δEscl ≈
(
Dsh

2π

)2

δgscl(λ) . (23)

The correction ∝ 1/β4 of the expansion of the Jacobian (18) in 1/β through the oscillating part δJ , Eq. (17), is
relatively small for β which, at the saddle point values T = 1/β∗, is related to the chemical potential λ as T ≪ λ.
The high order, ∝ 1/β4, term of this expansion can be neglected under the following condition:

1

g̃ ∼
< U ≪

√
90

7

A1/3λ2

2π4K
∼ λ . (24)

In these estimates, we used typical values for parameters λ = 40 MeV, A = 200, andK ∼ 10 MeV, 1/g̃ ∼ 0.1−0.2MeV,
see Ref. [20]. We now justify the coefficient in front of the chemical potential λ on very right hand side (r.h.s.) of
Eq. (24). For simplicity, small shell and temperature corrections to λ(A) from the conservation equation (5) are
neglected by using linear shell effects of the leading order [45] and constant particle number density of nuclear matter
ρ0. Taking ρ0 = 2k3F /3π

2 = 0.16 fm−3, one finds about constant λ = ~
2k2F /2µ ≈ 40 MeV, where µ is the nucleon

mass. In the derivations of the condition (24), we used the POT distance between major shells, Dsh, Eq. (A.15).
Evaluation of the upper limit for the excitation energy at the saddle point β = β∗ = 1/T is justified because; this
upper limit is always so large that this point does certainly exist. Therefore, for consistence, one can neglect the
quadratic, 1/β2 (temperature T 2), corrections to the Fermi energy εF in the chemical potential, λ ≈ εF , for large
particle numbers A.
Under the condition of Eq. (24), one can obtain simple analytical expressions for the level density ρ(E,A) from

the integral representation (15), because the Jacobian factor J −1/2 in its integrand can be simplified by expanding
in small values of ξ or of 1/ξ (see Eq. (20)). Notice that one has two terms in the Jacobian J , Eq. (18). One of
them is independent of the integration variable β and the other one is proportional to 1/β2. These two terms are
connected to those of the potential Ω, Eq. (12), by the inverse Laplace transformation (1) of the partition function
(2) and the corresponding direct operation transformation. Expanding the square root J −1/2 in the integrand of the
integral representation (15), for small and large ξ at linear order in ξ and 1/ξ, respectively, one arrives at two different
approximations marked below by (i) and (ii) cases, respectively. At each finite order of these expansions, one can
exactly take the inverse Laplace transformation. Convergence of the corresponding corrections to the level density,
Eq. (15), after applying the inverse transformation, Eq. (B.12), will be considered in the next subsections.

A. (i) Small shell effects

Using Eq. (18), one can write for small ξ, Eq. (20),

1

J 1/2
=

1√
g(λ) (1 + ξ)

≈ 1√
g(λ)

(
1− ξ

2β2

)
. (25)

Substituting this expression for the Jacobian factor, J −1/2, into Eq. (15) one obtains two terms, which are related
to those of the last equation in Eq. (25). Due to the transformation of the integration variable β to τ = 1/β in
the first term and using β directly as the integration variable in the second term, they are reduced to the analytical
inverse-Laplace form (B.12) for the transformation from τ to a variables [55]. Thus, one can approximately represent
the level density ρ(E,A) as a superposition of the two Bessel functions of the orders of 3/2 and 1/2,

ρ(E,A) ≈ ρ3/2
(
S−3/2I3/2(S)− r1S

−1/2I1/2(S)
)
,

with ρ3/2 = a
√

2π
3 . (26)

Here

r1 =
ξU1/2

4a3/2
≈ π6K3/2U1/2

3λ2A7/6
Esh , (27)

where, ξ is given in Eq. (21), K = A/a, a is the level density parameter, Eq. (13), and

S = 2
√
aU . (28)
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FIG. 1. MMA level density ρ (Eq. (42) in units of MeV−1) as function of the excitation energy U (in units of MeV) at the
inverse level density parameter K = 10 MeV (a,b), and at 20 MeV (c,d) for the relative energy shell corrections Esh = 1.7 (a,c)
and 0.6 (b,d) values. The black solids (n = 0) and dots (n = 1) lines are of MMA2, without (Eqs. (34)) and with (Eq. (31))
the second term, respectively. The magenta dashed line (n = 2) (numerical, Eq. (15)) with the next leading correction term

presents good convergence to the MMA2 results owing to the expansion of the Jacobian factor, J−1/2, Eq. (18) for the Jacobian
J , in the integrand of Eq. (15), over 1/ξ (see text). Heavy dashed red (n = 0) and blue dots (n = 1), and dashed cyan (n = 2),
see Eqs. (29) (MMA1) and (26), and (15), respectively, show the convergence to the MMA1 results due to the expansion of
this Jacobian J , over ξ. The particle number A = 200 was used.

This expression is associated with an entropy in the mean field approximation because of its clear two asymptotic
limits for large and small excitation energies, U (both asymptotic limits in terms of the level density, ρ(E,A), will
be discussed below). The relative contribution of the second term in Eq. (26) decreases with the shell effects, Esh,
inverse level density parameter, K, and excitation energy, U . In the case (i), named below as the MMA1 approach,
up to these corrections (small r1), one arrives approximately at expression (11) of Ref. [32]:

ρ(E,A) ≈ ρ3/2 S−3/2I3/2(S) , (i) . (29)

B. (ii) Dominating shell effects

In this case, expanding the Jacobian factor J −1/2, see Eq. (25), over small 1/ξ, one finds

1

J 1/2
≈ 1√

g(λ)ξ

(
1− 1

2ξ

)
, (30)

where ξ > 0, Eq. (20) (for δE < 0). Substituting this approximate expression for the Jacobian factor into Eq. (15)
and transforming the integration variable β to τ = 1/β in the integral representation for the level density ρ(E,A), we
obtain by using the inverse Laplace transformation (B.12) from τ to a variable:

ρ(E,A) ≈ ρ5/2
(
S−5/2I5/2(S) + r2S

−9/2I9/2(S)
)
, (31)

with ρ5/2 = 4a2
(
π/6ξ

)1/2
, (32)

where, ξ is given by Eqs. (21) and (22), and

r2 =
2a2

ξ
≈ 3λ2A5/3

2π6K2Esh
. (33)
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In contrast to case (i), the relative contribution of the second term in the r.h.s. of Eq. (31) (case (ii)) has the opposite
behavior in the values of parameters Esh and K, and is almost independent of U . Up to small contribution of the
second term in Eq. (31), one arrives approximately at

ρ(E,A) ≈ ρ5/2 S−5/2I5/2(S) , (ii) , (34)

where ρ5/2 is given by Eq. (32). This approximation is named below as the MMA2 approach.

Fig. 1 shows good convergence of different approximations to their main term (n = 0) for ρ(E,A). Here we
accounted for the first (n = 1), analytical, and second (n = 2) numerical corrections in expansion of the Jacobian
factor J−1/2, Eq. (18) for the Jacobian J , over 1/ξ (MMA2) and over ξ (MMA1) as functions of the excitation energy
U . Calculations are carried out for typical values of the parameters: the inverse level density K, the relative energy
shell corrections Esh, and a large particle number A. The results of the analytical MMA1, Eq. (26), and MMA2,
Eq. (31), with the first correction terms, are compared with those of Eqs. (34) and (29) without first correction
terms, respectively, using different values of these parameters. The contributions of these corrections to the simplest
analytical expressions, Eq. (29) and (34), are smaller the smaller excitation energies U for the MMA1 and the larger
U for the MMA2 such that a transition between the approaches, Eq. (26) and (31), takes place with increasing
value of U , see Fig. 1. We also demonstrate good convergence to the leading terms (n = 0) by taking into account
numerically the next order (n = 2 in this figure) corrections in the direct calculations of the integral representation
(15). Such a convergence occurs for the MMA1 the better the smaller U with increasing inverse density parameter
K and decreasing relative energy shell correction Esh. An opposite behavior takes place for the MMA2 approach.
Especially, a good convergence with increasing excitation energy U is seen clearly with n = 1 and 2 for the MMA1 in
(a,c) panels; see, e.g., the panel (c) for larger values of both K and Esh.
Notice that for the case (ii) when the shell effects are dominating, the derivatives are relatively large, a′′(λ)λ2/a ≫ 1,

but at the same time the shell corrections, Esh, can be small. In this case, named below as the MMA2b approach, we
have for the coefficient ρ5/2,

ρ5/2 ≈ 2
√
2/πλa2. (35)

Here, in the calculation of ρ5/2 given by Eq. (32), we used the TF evaluation of the level density, g̃ ∝ A/λ, and its

derivatives over λ in the first equation of Eq. (21) for ξ.

C. Disappearance of shell effects with temperature

As well-known, see for instance Refs. [30, 36, 40, 50], with increasing temperatures T , the shell component δΩ,
Eq. (8), disappears exponentially as exp(−2π2T/Dsh) in the potential Ω or free energy F , see also Eqs. (9) and (10).
This occurs at temperatures T ≈ Dsh/π = 2− 3 MeV (Dsh = λ/A1/3 = 7− 10 MeV in heavy nuclei, A ∼ 100− 200).
For such large temperatures with excitation energies U , near or larger than neutron resonances energies, one can
approximate the Jacobian factor J−1/2 in Eq. (15) as

J −1/2 ≈ J̃−1/2
(
1− δJ /(2J̃ )

)
, (36)

where, J̃ ≈ g̃, and

δJ ≈ 2
∑

PO

gPOxPO exp (−xPO) , (37)

and xPO = πtPO/~β, Eq. (10). With this approximation, using the transformation of the integration variable β to
τ = 1/β in Eq. (15), one can analytically take the inverse Laplace integral (Eq. (B.12)) for the level density. Finally,
one obtains ρ = ρ̃+ δρ, where

δρ(E,A) =
√

π
2g̃3

∑
PO gPO

t
PO

~

∫
dτ

2πiτ3/2 exp
(
ashτ + U

τ

)

=
√

π
2g̃3

∑
PO gPO

t
PO

~
(4a ash)

1/4
S
−1/2
sh I1/2 (Ssh) . (38)

Here, ash = ã−πtPO/~ is the shifted level density parameter due to the shell effects, and Ssh = 2
√
ashU is the shifted

entropy. For a major shell structure, one arrives at

δρ(E,A) ≈
√

π
2g̃3

2π
Dsh

(4a ash)
1/4 δg(λ) S

−1/2
sh I1/2 (Ssh)

≈
√

π
2g̃3

(
2π
Dsh

)3

(4a ash)
1/4

δE S
−1/2
sh I1/2 (Ssh) , (39)
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see Eq. (23), and

ash ≈ ã− 2π2

Dsh
. (40)

Hence, the shifted inverse level-density parameter is K = A/a = K̃
(
1 + ∆K/K̃

)
, where the dimensionless shift is

given by

∆K

K̃
≈ 2π2K̃

ADsh
≈ 2π2K̃

λA2/3
. (41)

This is approximately equal to ∆K ∼ 1 − 2 MeV for K̃ = 10 MeV (see Refs. [20, 23, 56, 57]) at typical parameters

λ = 40 MeV and A = 100− 200 (∆K ∼ 6− 9 MeV for K̃ = 20 MeV). We note that an important shift in the inverse
level density parameter K for double magic nuclei near the neutron resonances is due to a strong shell effect.

D. General MMA

All final results for the level density ρ(E,A) discussed in the previous subsections of this Section can be approxi-
mately summarized as

ρ ≈ ρ
MMA

(S) = ρν fν(S) , fν(S) = S−νIν(S) , (42)

with corresponding expressions for the coefficient ρν (see above). For large entropy S, one finds

fν(S) =
exp(S)

Sν
√
2πS

[
1 +

1− 4ν2

8S
+O

(
1

S2

)]
. (43)

At small entropy, S ≪ 1, one obtains also from Eq. (42) the finite combinatorics power expansion [2, 37, 38]:

fν(S) =
2−ν

Γ(ν + 1)

[
1 +

S2

4(ν + 1)
+ O

(
S4

)]
, (44)

where Γ(x) is the Gamma function. This expansion over powers of S2 ∝ U is the same as that of the “constant
temperature model” (CTM) [3, 21], used often for the level density calculations at small excitation energies U , but
here we have it without free parameters.
In order to clarify Eq. (43) for the MMA level density at a large entropy, one can directly obtain a more general full

SPM asymptotic, including the shell effects, by taking the integral over β in Eq. (15) using the SPM (see Appendix
C). We have,

ρ(E,A) =
exp(2

√
aU)√

48 U
√
1 + ξ∗

, (45)

where, ξ∗ is ξ of Eq. (19) at the saddle point, β = β∗, which is, in turn, determined by Eq. (C.2);

ξ∗ ≈ −π2T 2

6~2

∑

PO

t2PO

gPO(λ)

g(λ)
≈ 4π6UKEsh

3λ2A2/3
. (46)

We took the factor J −1/2, obtained from the Jacobian J of Eq. (18), off the integral (15) at β = β∗ = 1/T . The

Jacobian ratio ξ∗ of δJ /J̃ at the saddle point, β = β∗, (λ = λ∗ = α∗T is the standard chemical potential of the
grand-canonical ensemble), Eq. (46), is the critical quantity for these derivations. The quantity ξ∗ is approximately
proportional to the semiclassical POT energy shell correction, δE, Eq. (23), through Esh, see Eq. (22), the excitation
energy, U = aT 2, and to a small semiclassical parameter A−1/3 squared for heavy nuclei (see Ref. [32] and Appendix
A). For typical values of parameters, λ = 40 MeV, A ∼ 200, and Esh = |δE A/EETF| ≈ 2.0 [45, 58], one finds the
approximate values of ξ∗ ∼ 0.1 − 10 for temperatures T ∼ 0.1 − 1 MeV. This corresponds approximately to rather
wide excitation energies U = 0.2− 20 MeV for K = 10 MeV [20] (and U = 0.1− 10 MeV for K = 20 MeV). These
values of U overlap the interval of energies of the low-energy states with that of the energies of states significantly
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FIG. 2. Level density ρ [Eq. (42)], in units of ρν , with the accurate result “1” (solids), Eq. (29), (a) for ν = 3/2 (MMA1 (i)),
and (b), Eq. (34), for ν = 5/2 (MMA2 (ii)), are shown as functions of the entropy S for different approximations: 1) S ≪ 1
(dashed lines) Eq. (44) at the second order, and 2) S ≫ 1 (dotted lines and thin solids), Eq. (43); “3” is the main term of
the expansion in powers of 1/S, and “4” is the expansion over 1/S up to first [in (a)], and second [in (b)] order terms in square
brackets of Eq. (43), respectively.

above the neutron resonances. In line with the SCM [45] and ETF approaches [36], these values are given by the
realistic smooth energy EETF for which the binding energy approximately equals BE ≈ EETF + δE [58].
Accounting for the shell effects, Eq. (45) is more general large-excitation energy asymptotic with respect to the

well-known Bethe expression [1],

ρ(E,A) =
exp (S)√

48U
, (47)

where such effects were neglected, see also Refs. [2–4]. This expression can be alternatively obtained as the limit of
Eq. (45) at large excitation energy, U → ∞, up to shell effects (small ξ∗ of the case (i)). This asymptotic result is the
same as that of expression (29), proportional to the Bessel function Iν of the order ν = 3/2 (the case (i)), at the main
zero order expansion in 1/S, see Eq. (43). For large-entropy S asymptotic, we find also that the Bessel solution (34)
with ν = 5/2 in the case (ii) (ξ∗ ≫ 1), at zero order expansion in 1/S coincides with that of the general asymptotic
(45). The asymptotic expressions, Eqs. (43), (45) and, in particular, (47), for the level density are obviously divergent
at U → 0, in contrast to the finite MMA limit (44) for the level density, see Eq. (42) and, e.g., Eqs. (29) and (34).
Our MMA results will be compared also with the popular Fermi-gas (FG) approximation to the level density

ρ(E,N,Z) as function of the neutron N and proton Z numbers near the β stability line, (N −Z)2/A2 ≪ 1 [2, 3, 14],

ρ(E,N,Z) =

√
π

12a1/4U5/4
exp

(
2
√
aU

)
. (48)

Notice that in all our calculations of the statistical level density, ρ(E,A) (also ρ(E,N,Z), Eq. (48)), we did not
use a popular assumption of small spins at large excitation energy which is valid for the neutron resonances. For
typical values of spin I∼> 10, moment of inertia Θ ≈ ΘTF ≈ 2µR2A/5, Eq. (A.12), radius R = r0A

1/3, with r0 = 1.14
fm, and particle number A∼< 200, one finds that, for large entropy, the applicability condition (B.10) is not strictly
speaking valid. In these estimates, the corresponding excitation energies U of LES’s are essentially smaller than
neutron resonance energies. However, near neutron resonances the excitation energies U are large, spins are small,
and Eq. (48) is well justified.
We should also emphasize that the MMA1 approximation for the level density, ρ(E,A), Eq. (29), and the Fermi gas

approximation, Eq.(47) can be also applied for large excitation energies, U , with respect to the collective rotational
excitations, if one can neglect shell effects, ξ∗ ≪ 1. Thus, with increasing temperature T ∼> 1 MeV (if exists), or
excitation energy U , where the shell effects are yet significant, one first obtains the asymptotical expression (45) at
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FIG. 3. MMA level density ρ [Eq. (42)] in units of MeV−1 as function of the entropy S, (a), and excitation energy U , in units
of MeV, (b). The black solids and dots are the MMA2 approach for Esh = 2.0 and 0.002, Eq. (34), respectively. Green dashed
and blue dots are the general Fermi gas (GFG) approach, Eq. (45), for the same values of Esh, respectively. Red dashed is the
MMA1, Eq. (29); in (b) K = 10 MeV, of the order of the ETF value of Ref. [20].

ξ∗ ≫ 1, i.e., the asymptotic of Eq. (34). Then, with further increasing temperature to about 2-3 MeV with the
disappearance of shell effects (section III C), one gets the transition to the Bethe formula, i.e., the large entropy
asymptotic (47) of Eq. (29).

In Fig. 2 we show the level density dependence ρ(S), Eq. (42), for ν = 3/2 in (a) and ν = 5/2 in (b), on the entropy
variable S with the corresponding asymptotic. In this figure, a small [S ≪ 1, Eq. (44)] and large [S ≫ 1, Eq. (43)]
entropy S behavior is presented. For small S ≪ 1 expansion we take into account the quadratic approximation “2”,
where S2 ∝ U , that is the same as in the linear expansion within the CTM [3, 21]. For large S ≫ 1 we neglected
the corrections of the inverse power entropy expansion of the pre-exponent factor in square brackets of Eq. (43), lines
“3”, and took into account the corrections of the first [ν = 3/2, (a)] and up to second [ν = 5/2, (b)] order in 1/S
(thin solids “4”) to show their slow convergence to the accurate MMA result “1” (42). It is interesting to find almost
a constant shift of the results of the simplest, ρ ∝ exp(S)/Sν+1/2, SPM asymptotic approximation at large S (dots
“3”) with respect to the accurate MMA results of Eq. (42) (solid “1”). This may clarify one of the phenomenological
models, e.g., the back-shifted Fermi-gas (BSFG) model for the level density [8, 14, 59].
Fig. 3 shows the shell effects in the main approximations derived in this Section, Eqs.(29), (34) and (45), taking

two essentially different values of finite Esh = 2.0 and much smaller 0.002, between which one can find basically those
given by Ref. [58]. For convenience, we show these results as functions of the entropy S in the panel (a), and the
excitation energy U in panel (b), taking the value of the averaged inverse density parameter K found in Ref. [20],
see also Ref. [23]. As expected, the shell effect is very strong for the MMA2 approach as can be seen from the
difference between solid and dotted black lines1 depending on the second derivatives of strong oscillating functions
of λ, a′′(λ) ≈ δa′′ ∝ δg′′(λ) (see Appendix A around Eq. (A.17) and Section III below Eq. (23)). This is not the
case for the full SPM asymptotic GFG, Eq. (45), for which this effect is very small. As seen from this figure, the
MMA1, Eq. (29), independent of Esh, converges rapidly to the GFG with increasing excitation energy U as well as
to the Bethe formula (47). They all coincide at small values of U , about 0.5 MeV, particularly for Esh = 0.002. The
Bethe approach is very close everywhere to the GFG line at Esh = 0.002 and therefore, it is not shown in this Figure.
Notice also, that MMA2 at this small Esh is also close to the MMA1 everywhere. Again, one can see that the MMA1
and MMA2 have no divergence at zero excitation energy limit, U → 0, while the full SPM asymptotic GFG, Eq. (45),
and, in particular, the Bethe approach, Eq. (47), both diverge at U → 0.

1 The dotted black line is very close to the explicit analytical limit (35) of ρ5/2, Eq. (32), for the MMA2 equation (34), see also Eq. (35).
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E. The spin-dependent level density

Assuming that there are no external forces acting on an axially-symmetrical nuclear system, the total angular
momentum, I, and its projection M on a space-fixed axis are conserved, and states with a given energy, E, and spin,
I, are 2I +1 degenerated. As shown in Appendix B, for the “parallel” rotation around the symmetry axis Oz, i.e., an
alignment of the individual angular momenta of the particle along Oz (see Ref. [30] for the spherical case), in contrast
to the “perpendicular-to-axis Oz” collective rotation (see, e.g., Ref. [41]), one can derive the level density ρ(E,A,M)
within the MMA approach in the same analytical form, as for the ρ(E,A), Eq. (42),

ρ
MMA

(E,A,M) ≈ ρνfν(S) , with ν = 2, 3 , (49)

where

ρ2 = ~

(
2a3

3Θ

)1/2

, ν = 2 (i) , (50)

and

ρ3 = ~λ

(
8a5

π2Θ

)1/2

, ν = 3 (ii) . (51)

In Eq. (49), the argument of the Bessel-like function, fν(S) ∝ Iν(S), Eq. (42), is the entropy S(E,A,M), Eq. (28),
with the M dependent excitation energy U . Indeed, in the adiabatic mean-field approximation, the level density
parameter a in Eq. (28) is given by Eq. (14). For the intrinsic excitation energy U in Eq. (28), one finds

U = E − E0 −
1

2
Θ ω2 , ω =

~M

Θ
, (52)

where, E0 = Ẽ + δE, is the same intrinsic (non-rotating) shell-structure energy, as in Eq. (12). With the help of the
conservation equation (B.3) for the saddle point, κ∗ = ~ωβ, we eliminated the rotation frequency ω, obtaining the
second equation in Eq. (52), see Appendix B. For the moment of inertia (MI) Θ one has a similar SCM decomposition:

Θ = Θ̃ + δΘ , (53)

where Θ̃ is the (E)TF MI component which can be approximated largely by the TF expression, Eq. (A.12), and δΘ
is the MI shell correction which can be presented finally for the spherically symmetric mean field by Eq. (B.5). As
mentioned above, Eqs. (49)-(53) are valid for the “parallel” rotation (an alignment of nucleons’ angular momenta
along the symmetry axis Oz); see Appendix B for the specific derivations by assuming a spherical symmetry of the
potential. In these derivations we used Eq. (52) for the excitation energy U , Eq. (A.1) for the partition function
and Eqs. (B.9) and (A.8) for the potential Ω(β, λ, ω). In the evaluations of the Jacobian, J , one can neglect shell
corrections, in contrast to the evaluations of the entropy S in the function fν(S). In the derivations of Eqs. (50) for

ρ2 and (51) for ρ3, we obtained the Jacobian components, J̃ for the case (i) and δJ for the case (ii), both for the
assumption of the axially symmetric mean field (see Appendix B). For the Jacobian calculations, one can finally use

the (E)TF approximation in the case (i), Θ ≈ Θ̃. The Jacobian J in the case (ii) can be approximated by Eq. (B.14).

As a result, one may accurately use the (E)TF approximation Θ ≈ Θ̃ in Eqs. (50) and (51) for the coefficients ρ2 and
ρ3.
Note that there is no divergence of the level density ρ(E,A,M) [Eq. (49)] in the limit U → 0, Eq. (44), in contrast

to the standard results of the full SPM within the Fermi gas model. The latter is associated with the leading term in
expansion (43) of the Bessel-like function fν(S).
Eq. (49), with M = K, if exists, can be used for the calculations of the level density ρ(E,A,K), where K is the

specific projection of the total angular momentum I on the symmetry axis of the axially symmetric potential [31]
(K in notations of Ref. [60]). We note that it is common to use in application [1, 2, 4] the level density dependence
on the spin I, ρ(E,A, I). We will consider here only the academic axially-symmetric potential case which can be
realized practically for the spherical or axial symmetry of a mean nuclear field for the “parallel” rotation mentioned
above. Using Eq. (49), under the same assumption of a closed rotating system and, therefore, with conservation of
the integrals of motion, the spin I and its projection M on the space-fixed axis, one can calculate the corresponding
spin-dependent level density ρ(E,A, I) for a given energy E, particle number A, and total angular momentum I by
employing the Bethe formula [1, 4, 7, 8],

ρ(E,A, I) = ρ(E,A,M = I)− ρ(E,A,M = I + 1)

≈ −
(
∂ρ(E,A,M)

∂M

)

M=I+1/2

. (54)
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For this level density, ρ(E,A, I), one obtains from Eqs. (49) and (52),

ρ
MMA

(E,A, I) ≈ aρν~
2(2I + 1)

Θ
fν+1(S) , (55)

where S is given by Eq. (28) with the excitation energy (52), and ν equals 2 and 3, in correspondence with Eq. (49).
The multiplier 2I + 1 in Eq. (55) appears because of the substitution M = I + 1/2 into the derivative in Eq. (54).
In order to obtain the approximate MMA total level density ρ(E,A) from the spin-dependent level density ρ(E,A, I)
we can multiply Eq. (55) by the spin degeneracy factor 2I + 1 and integrate (sum) over all spins I.
Using the expansion of the Bessel functions in Eq. (55) over the argument S for S ≪ 1 (Eq. (44)) one finds the

finite combinatorics expression. For large S (large excitation energy, aU ≫ 1, Eq. (43)), one obtains from Eq. (55)
the asymptotic Fermi gas expansion. Again, the main term in the expansion for large S, Eq. (43), coincides with the
full SPM limit to the inverse Laplace integrations in Eq. (B.2). For small angular momentum I and large excitation
energy U0 = E − E0, so that,

Erot

U0
≈ I(I + 1)~2

2Θ U0
≪ 1 , (56)

one finds the standard separation of the level density, ρ
MMA

(E,A, I), into the product of the dimensionless spin-
dependent Gaussian multiplier, R(I), and another spin-independent factor. Finally, for the case (i) (ν = 2), one
finds

ρ
MMA

(E,A, I) ≈ ρ2 R(I) exp
(
2
√
aU0

)

16
√
π (aU0)5/4

, (i) . (57)

The spin-dependent factor R(I) is given by

R(I) =
2I + 1

q2
exp

(
−I(I + 1)

2q2

)
, (58)

where q2 = Θ
√
U0/a/~

2 is the dimensionless spin dispersion. This dispersion q at the saddle point, β∗ = 1/T =√
a/U0, is the standard spin dispersion ΘT/~2, see Refs. [1, 2]. Similarly, for the ν = 3 (ii) case one obtains

ρ
MMA

(E,A, I) ≈ ρ3 R(I) exp
(
2
√
aU0

)

32
√
π (aU0)7/4

, (ii) . (59)

Note that the power dependence of the pre-exponent factor of the level density ρ(E,A, I) on the excitation energy, U0 =

E−E0, differs from that of ρ(E,A,M), see Eqs. (49) and (43). The exponential dependence, ρ ∝ exp(2
√
a(E − E0)),

for large excitation energy E − E0 is the same for ν = 2 (i) and 3 (ii), but the pre-exponent factor is different, cf.
Eqs. (57) and (59). A small angular momentum I means that the condition of Eq. (56) was applied. Eqs. (57) and
(59) with Eq. (58), are valid for excited states within approximately the condition 1/g̃ ≪ U ≪ λ, see Eq. (24). For
relatively small spins [Eq. (56)] we have the so-called small-spins Fermi-gas model (see, e.g., Refs. [1–4, 7, 8, 23]).
General derivations of equations applicable for axially symmetric systems (a “parallel” rotation) in this section are

specified in Appendix B by using the spherical potential to present explicitly the expressions for the shell correction
components of several POT quantities. However, the results for the spin-dependent level density, ρ(E,A, I) in this
section, Eqs. (55)-(59), cannot be immediately applied for comparison with the available experimental data on
rotational bands in the collective rotation of a deformed nucleus. They are presented within the unified rotation
model [60] in terms of the spin I and its projection K to the internal symmetry axis for the deformed nuclei. We
are going to use the ideas of Refs. [60–64], see also Refs. [7, 8], concerning another definition of the spin-dependent
level density ρ(E,A, I) in terms of the intrinsic level density and collective rotation (and vibration) enhancement in
a forthcoming work. The level density ρ(E,A,K), e.g., Eq. (49) at M = K, depending on the spin projection K on
the symmetry axis of an axially-symmetric deformed nucleus, can be helpful in this work.

IV. DISCUSSION OF THE RESULTS

In Fig. 4 and Table I we present results of theoretical calculations of the statistical level density ρ(E,A) (in
logarithms) within the MMA, Eq. (42), and Bethe, Eq. (47), approaches as functions of the excitation energy U
and compared with experimental data. The results of the popular FG approach, Eq. (48), and our GFG, Eq. (45),
are very close to those of the Bethe approximation and, therefore, they are presented only in Table I. All of the
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FIG. 4. Level density, lnρ(E,A), is obtained for low energy states in 144Sm (a), 166Ho (b), 208Pb (c) and 230Th (d) within
different approximations: The MMA dashed green “1”, Eq. (29); the MMA solid black “2a”, Eq. (34), at the relative realistic
shell correction Esh [58]; the MMA dash-dotted red “2b”, Eq. (34) at an extremely small Esh, Eq. (34) with (35); and; the
Fermi-gas Bethe3 rare blue dots, Eq. (47), approaches are presented. The realistic values of Esh= 0.37 (a), 0.50 (b), 1.77
(c), and 0.55 (d) for MMA2 are taken from Ref. [58] (the chemical potential λ = 40 MeV, independent of particle numbers).
Rare dashed red lines test shifts of the excitation energies U for MMA1 and MMA2a by +1.1 and +2.2 MeV in 144Sm and
208Pb, respectively, which are due, presumably, to the pairing condensation energy shown by arrows in the panels (a) and (c),
as explained in the text and Table I. Experimental dots (with error bars, ∆ρi/ρi = 1/

√
Ni) are obtained directly from the

excitation states (with spins and their degeneracies) spectrum [65] in shown nuclei (Table I) by using the sample method where
the sample lengths Us = 0.45(a), 0.15(b), 0.34(c), and 0.17(d) MeV are found on the plateau condition over the inverse level
density parameter K, respectively.

presented results are calculated by using the values of the inverse level density parameter K obtained from their least
mean-square fits (LMSF) to experimental data for several nuclei. The data shown by dots with error bars in Figure
4 are obtained for the statistical level density ρ(E,A) from the experimental data for the excitation energies U and
spins I of the states spectra [65] by using the sample method; ρexpi = Ni/Us, where Ni is the number of states in
the i-th sample, i = 1, 2, ..., Ntot; see, e.g., Refs. [6, 8]. The dots are plotted at mean positions Ui of the excitation
energies for each ith sample. Convergence of the sample method over the equivalent sample-length parameter Us of
the statistical averaging was studied under statistical plateau conditions, for all plots in Fig. 4. The sample lengths
Us play a role which is similar to that of averaging parameters in the Strutinsky smoothing procedure for the SCM
calculations of the averaged s.p. level density [44, 45]. This plateau means almost constant value of the physical
parameter K within large enough energy intervals Us. Sufficiently good plateau was obtained in a wide range around
the values near Us for nuclei presented in Fig. 4 and Table I [19, 65]. Some values of Us are given in the caption of
Fig. 4. Therefore, the results of Table I, calculated at the same values of the found plateau, do not depend, with the
statistical accuracy, on the averaging parameter Us within the plateau. This is similar to the results that the energy
and density shell corrections are independent of the smoothing parameters in the SCM. The statistical condition,

Ni ≫ 1 at Ntot ≫ 1, determines the accuracy of our calculations. Microscopic details are neglected under these
conditions, but one obtains more simple, general and analytical results, in contrast to a micro-canonical approach. As
in the SCM, in our calculations by the sample method with good plateau values for the sample lengths, Us, see the
caption of the figure 4, one obtains a sufficiently smooth statistical level density as function of the excitation energy
U . We require such a smooth function because the statistical fluctuations are neglected in our theoretical derivations.

The relative quantity σ of the standard LMSF (see Table I), which determines the applicability of the theoretical
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Nuclei 〈∆ρi/ρi〉 Esh Version K [MeV] σ Version K [MeV] σ

Sm-144 0.18 0.37 MMA2b 40.3 5.1 MMA1∗ 22.7 (16.7∗) 3.6 (3.3∗)

GFG 21.8 3.8 MMA2a 22.1 3.9

Bethe 23.2 3.7 FG 19.7 3.6

Sm-148 0.17 0.12 MMA2b 32.5 5.2 MMA1 16.8 1.5

GFG 16.9 1.7 MMA2a 19.3 3.0

Bethe 17.2 1.7 FG 14.6 1.6

Ho-166 0.09 0.50 MMA2b 17.5 1.6 MMA1 5.4 12.3

GFG 5.5 11.1 MMA2a 7.1 7.0

Bethe 5.6 11.2 FG 4.7 11.5

Pb-208 0.20 1.77 MMA2b 70.1 3.8 MMA1 43.9 3.1

GFG 36.5 3.1 MMA2a∗ 34.9 (21.9∗) 3.0 (2.4∗)

Bethe 45.1 3.2 FG 38.2 3.1

Th-230 0.24 0.55 MMA2b 36.8 2.6 MMA1 12.3 2.1

GFG 12.7 1.3 MMA2a 14.9 0.9

Bethe 12.9 1.3 FG 10.8 1.3

TABLE I. The maximal mean errors (2nd column) in the statistical distribution of the states over the samples, 〈∆ρi/ρi〉 =
〈1/

√
Ni〉, in nuclei (1st column) from Ref. [65]; the relative energy shell corrections, Esh, Eq. (22) (3rd column, from Ref. [58]);

the inverse level density parameter K (5th and 8th), found by the LMSF with the precision of the standard expression for
σ, Eq. (60), (6th and 9th) by using the sample method and experimental data from Ref. [65], are shown for the version of
the approximation, presented in 4th and 7th columns at the relative shell corrections Esh of the 3rd column, in these nuclei,
respectively. The MMA1 and MMA2b (with the same notations for different MMA as in Fig. 4) are MMA approaches (29)
(ν = 3/2) and (34) (ν = 5/2 at extremely small Esh); GFG is the general full Fermi-gas asymptotic (45). The MMA2a is a more
general MMA, Eq. (34), at different relative shell corrections Esh (Ref. [58]). The asterisks denote the MMA1 and MMA2a
approaches which are shifted along the excitation energy U axis by the assumed pairing condensation energy Econd ≈ 1.1 and
2.2 MeV, U → U − Econd, for

144Sm and 208Pb as shown in parentheses, respectively (see Section IV). Bethe (Eq. (47)) and
FG (Eq. (48)) approaches are the same as in Refs. [1–3].

approximations, ρ(Ui) (Sec. III) for the description of the experimental data [65], ρexpi , is given by

σ2 =
χ2

Ntot − 1
, χ2 =

Ntot∑

i=1

(y(Ui)− yexpi )2

(∆yi)2
, (60)

where, y = ln ρ, and ∆yi ≈ 1/
√
Ni. For the theoretical approaches one has the conditions of the applicability assumed

in their derivations. We consider the commonly accepted Fermi gas asymptotic [1, 2, 4, 6–8] for large excitation energies
U , see the Bethe, Eq. (47), and the FG, Eq. (48), approaches, cf. with Eq. (43) and our GFG (with shell effects)
expression (45). In a forthcoming work we will use the asymptotic of Eq. (43) and Eq. (45), and the sample method
for evaluations of the statistical accuracy of the experimental data at relatively large excitation energies (near and
higher than neutron resonances). It is especially helpful in the case of low-resolution dense states at sufficiently large
excitation energies. The examination using the value of σ obtained by the LMSF is an additional procedure for
examining these theoretical conditions, using the available experimental data. Notice also that application of the
sample method in determining the experimental statistically averaged level density from the nuclear spectra in terms
of σ2 differs essentially from the methods employed in previous works, see e.g. Ref. [14], by using the statistical
averaging of the nuclear level density and accounting for the spin degeneracies of the excited states. We do not use
empiric free parameters in all of our calculations, in particular, for the FG results shown in Table I. The commonly
accepted non-linear FG asymptotic (43) could be a critical (necessary but, of course, not sufficient) theoretical guide
which, with a given statistical accuracy, is helpful for understanding a spectrum completeness of the experimental
data at large excitation energies where the spectrum is very dense.
Fig. 4 shows the two opposite situations concerning the states distributions as functions of the excitation energy

U . We show results for the spherical magic 144Sm (a) and double magic 208Pb (c) nuclei with maximal (in absolute
value but negative) shell correction energies, in terms of the positive, Esh , see Table I and Ref. [58]. In these nuclei,
there are almost no states with extremely low excitation energies in the range of U∼< 1− 2 MeV [65]. In Table I, we
present also results for a deformed nucleus 148Sm where only a few levels exist in such a range which yields entropies
S∼< 1. For the significantly deformed nucleus 166Ho, with intermediate values of Esh between minimum and maximum,
Fig. 4(b), one finds the opposite situation when there are many such LES’s. An intermediate number of LES’s is



16

observed, e.g., in another deformed nucleus 230Th (Fig. 4(d)), which has a complicate strong shell structure including
subshell effects [58]. Thus, we also present the results for two deformed nuclei, 166Ho and 230Th, from both sides of
the desired heavy particle-number interval A ≈ 140− 240.
In Fig. 4, the results of the MMA approaches (1 and 2) are compared with those of the well-known Bethe”3” [1]

(Eq. (47)) asymptotic; see also Table I for these and a few other asymptotical approaches, the FG (Eq. (48)) and,
with a focus on shell effects, GFG (Eq. (45)). Results for the MMA2a, the MMA2, Eq. (34), at the dominating shell
effect case (ii) (ξ∗ ≫ 1, Eq. (46), in the saddle point β = β∗ for large excitation energies U) and for those with
realistic relative shell correction, Esh (Ref. [58]), are shown versus the results of a small shell effects approach MMA1
(i), Eq. (29), (ξ∗ ≪ 1 at β = β∗). For a very small value of Esh, but still within the values of the case (ii), Eq. (34)
with (35) (in particular, large ξ∗), we have the approach named MMA2b. Results for the MMA2b approach are also
shown in Fig. 4. Results of calculations within the full SPM GFG asymptotical approach, Eq. (45), and within the
popular FG, Eq. (48), approximation, which are in good agreement with the standard Bethe3 approximation, are
only presented in Table I. For finite realistic values of Esh, the results of the MMA2a approach are closer to those of
the MMA1 approach. Therefore, since the MMA2b approach, Eqs. (34) with (35), is the limit of the MMA2 one at
a very small Esh within the case (ii), we conclude that the MMA2 approach is a more general shell-structure MMA
formulation of the statistical level-density problem.
In all panels of Fig. 4, one can see the divergence of the level densities of the Bethe formula (also, the FG, Eq. (48),

and the GFG, Eq. (45), and Eq. (43)), near the zero excitation energy, U → 0. This is, obviously, in contrast to
any MMAs, combinatorics expressions (44) in the limit of zero excitation energy; see Eqs. (42), (29), and (34). The
MMA1 results are close to the Bethe, FG and GFG approaches everywhere, for all presented nuclei. The reason is
that their differences are essential only for extremely small excitation energies U where MMA1 is finite while other
(Bethe, FG and GFG) approaches are divergent. However, there are almost no excited states in the range of their
differences in the nuclei under consideration.
The results of the MMA2b approach (the same as MMA2 approach, Eq. (34) but with Eq. (35) for the coefficient

ρ5/2, at relatively very small shell correction, Esh) within the case (ii), for 166Ho (see Fig. 4(b)) with σ ∼ 1 are

significantly better in agreement with experimental data as compared to the results of all other approaches (for the
same nucleus). The MMA1 (Eq. (29)), Bethe (Eq. (47)), FG (Eq. (48)), and full SPM GFG (Eq. (45)) approaches are
characterized by values of σ ≫ 1, which are largely of the order of 10 (see Table I). In contrast to the 166Ho excitation
energy spectrum with many of very LES’s below about 1 MeV, for 144Sm (a) and 208Pb (c) one finds no such states.
For the MMA2b (MMA2 for very small Esh, but within the (ii)) approach we have larger values of σ, σ ≫ 1 for
144,148Sm and little larger for 208Pb, versus those of other approximations. In particular, for MMA1 (i), and other
asymptotic approaches, of Bethe, FG and GFG, one finds almost the same σ ∼ 1, that is better in agreement with
data [19, 65]. We obtain basically the same for MMA2a (ii) with realistic values of Esh. Notice that for 144,148Sm and
208Pb nuclei, the MMA2a (Eq. (34)), at the realistic Esh, is close to the MMA1 (i), Bethe, FG and GFG approaches.
The MMA1 and MMA2a (at realistic values of Esh) as well as Bethe, FG and GFG approaches are obviously much
better in agreement with experimental data [65] for 144Sm (or 148Sm) and 208Pb (Fig. 4(a) and (c)) for which one
has the opposite situation – very small states number in the LES range.
We note that the results of the MMA1 and MMA2a with shifted excitation energies, U → Ueff = U −Econd > 0, by

constant condensation energies, Econd ≈ 1.1 and 2.2 MeV, shown by arrows in Fig. 4, for 144Sm and 208Pb, respectively,
may indicate the pairing phase transition effect because of disappearance of the pairing correlations [7, 8, 69]. With
increasing U , one can see a sharp jump in the level density for the double magic 208Pb nucleus within the shown
spectrum range. In 144Sm, one finds such a phase transition a little above the presented range of the excitation
energies. This effect could be related to the pairing phase transition2 near the critical temperature Tcr = 0.47 MeV
in 208Pb (0.57 MeV in 144Sm), i.e. at the critical effective excitation energy, Ueff = U − Econd ≈ 3.3 MeV (4.1 MeV
in 144Sm), respectively, resulting in a level density jump. These simple estimates show a qualitative agreement, by
order of magnitude, with the condensation energy, Econd ≈ 1 MeV. This procedure is a self-consistent calculation.
Starting from a value of the condensation energy, Econd, one can obtain the inverse level density parameter K. Then,
one evaluates a new Econd and reiterate till convergence in the values of K and Econd is achieved, at least in order of
the magnitudes. This can be realized for the MMA1 for 144Sm and MMA2a for 208Pb, see Table I and Fig. 4(a,c).
The phase transition jump is well seen in the plot (c) and, however, is not seen in plot (a) being above the excitation
energy range, both at the effective excitation energies Ueff mentioned above.
One of the reasons for the exclusive properties of 166Ho (Fig. 4(b)) as compared to both 144Sm (a) and 208Pb

(c) might be assumed to be the nature of the excitation energy in these nuclei. Our MMAs (i) or (ii) approaches

2 For temperature dependence of the pairing gap in the simplest BCS theory, one can evaluate ∆(T )−∆0 = −
√
2π∆0T exp(−∆0/T ), where

∆0 ≈ 12/A1/2 MeV at T = 0, see Refs. [7, 8, 66–69]. Therefore, for disappearance of pairing gap, the critical temperature, Tcr = γ∆0/π,
where γ is defined by the Euler constant, ln γ = 0.577.... Evaluating the condensation energy, Econd = g∆2

0
/4 = 3A∆2

0
/(2π2K), one

arrives at the effective excitation energy, Ueff = U −Econd.
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could clarify the excitation nature (see Subsection III E and Appendix B for rotational contribution which can be
included into E0 of Eq. (12) as done in Eq. (B.6)). Since the results of the MMA2b (ii) approach is much better in
agreement with experimental data than those of the MMA1 (i) approach for 166Ho, one could presumably conclude
that for 166Ho one finds more clear thermal excitations, U ≫ Erot, Eq. (24), for LES’s. For 144Sm and 208Pb one
observes more regular (large spins owing to the alignment) excitation contributions for dominating rotational energy
Erot, Eq. (B.10), see Ref. [30]. The latter effect is much less pronounced in 208Pb than in 144Sm, but all the inverse
level density parameters K are significantly for states below neutron resonances, see Table I. However, taking into
account the pairing effects, even qualitatively, the thermal contribution (ii) is also important for 208Pb while the
regular non-thermal motions might be dominating in 144Sm. In any case, the shell effects are important, especially
for the (ii) case which does not even exist without taking them into account.
For 230Th (Fig. 4(d)), one has the experimental LES’s data in the middle of two limiting cases MMA1 (i) and

MMA2b (ii). This agrees also with an intermediate number of very LES’s in this nucleus. As shown in Fig. 4(d) and
Table I, the MMA2a approach at realistic values of Esh is in good agreement with the data. The shell structure is,
of course, not so strong in 230Th as compared to that of the double magic nucleus, 208Pb, but it is of the same order
as in other presented nuclei. Also notice that, in contrast to the spherical nuclei in Figure 4 (a,c), the nuclei 166Ho
(b) and 230Th (d) are significantly deformed, which is also important, in particular, because of their large angular
momenta of the LES excitation spectrum states.
We do not use free empiric parameters of the BSFG, spin cut-off FG, and of the empiric CTM approaches [14]. As

an advantage, one has only the parameter K with the physical meaning as the inverse level density parameter. The
variations in K are related, e.g., to those of the mean field parameters through Eq. (28). All the densities ρ(E,A)
compared in Fig. 4 and Table I do not depend on the cut-off spin factor and moment of inertia because of summation
(integrations) over all spins (however, with accounting for the degeneracy 2I + 1 factor).
In line with the results of Ref. [18], the obtained values of K for the MMA2 approach can be essentially different

from the MMA1 ones and those (e.g., FG) found, mainly, for the neutron resonances (NRs). However, the level
densities with the excitation energy shifted by constant condensation energies, due to pairing, for 208Pb (c) and 144Sm
(a) in Figure 4, notably improve the comparison with data [65]. These densities correspond to inverse level-density
parameters K, smaller even than those obtained in the FG approach which agreed with NRs data. We note that
for the MMA1 approach, one finds values of K which are of the same order as those of the Bethe, FG and GFG
approaches. These values of K are mostly close to the NR values in order of magnitude. For the FG approach,
Eq. (48), in accordance with it’s another non-direct derivation through the spin-dependent level density ρ(E,A, I),
Eq. (57) (Subsection III E), it is obviously because the neutron resonances occur at large excitation energies U and
small spins, see Eqs. (24) and (56). Large deformations, neutron-proton asymmetry, spin dependence for deformed
nuclei, and pairing correlations [2, 7, 8, 12, 13, 21, 22] in rare earth and actinide nuclei should be also taken into
account to improve the comparison with experimental data.

V. CONCLUSIONS

We derived the statistical level density ρ(S) as function of the entropy S within the micro-macroscopic approximation
(MMA) using the mixed micro- and grand-canonical ensembles beyond the standard saddle point method of the Fermi
gas model. The obtained level density can be applied for small and relatively large entropies S or excitation energies
U of a nucleus. For a large entropy (excitation energy), one obtains the exponential asymptotic of the standard SPM
Fermi-gas model, but with significant powers of 1/S corrections. For small S one finds the usual finite combinatorics
expansion in powers of S2. Functionally, the MMA at linear approximation in S2 ∝ U expansion, at small excitation
energies U , coincides with the empiric constant “temperature” model except obtained without using free fitting
parameters. Thus, MMA unifies the commonly accepted Fermi-gas approximation with the empiric CTM for large
and small entropies S, respectively, in line with the suggestions in Refs. [3, 21]. The MMA clearly manifests an
advantage over the standard full SPM approaches at low excitation energies, because it does not diverge in the limit
of small excitation energies, in contrast to every full SPM approaches, e.g., Bethe asymptotic and FG asymptotic.
Another advantage applies when nuclei have many more states in the very low-energy state range. The values of the
inverse level density parameter K were compared with those of experimental data for LES’s below neutron resonances
(NRs) in spectra of several nuclei. The MMA results with only one physical parameter in the least mean-square fit,
the inverse level density parameter K, were usually better the larger the number of the extremely low energy states,
certainly much better than for the results for the FG model in this case. The MMA values of the inverse level density
parameter K for LES’s can be significantly different from those of the neutron resonances within the FG model.
We found significant shell effects in the MMA level density for the nuclear LES range within the semiclassical

periodic orbit theory. In particular, we generalized the known SPM results for the level density in terms of the full
SPM GFG approximation accounting for the shell effects using the POT. Exponential disappearance of shell effects
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with increasing temperature was analytically studied within the POT for the level density. Shifts in the entropy S and
in the inverse level density parameter K due to the shell effects were also obtained and given in the explicit analytical
forms. The shifts occur at temperatures much lower than the chemical potential, near the NRs excitation energies.
Simple estimates of pairing effects in spherical magic nuclei, by pairing condensation energy to the excitation

energies shift, significantly improve the comparison with experimental data. Pairing correlations essentially influence
the level density parameters at low excitation energies. We found an attractive description of the well-known jump
in the level density within our MMA approach using the pairing phase transition. Other analytical reasons for the
excitation energy shifts in the BSFG model are found by also using a more accurate expansion of the modified Bessel
expression for the MMA level density at large entropies S, taking into account high order terms in 1/S. This is
important in both the LES’s and NRs regions, especially for LES’s. We presented a reasonable description of the
LES experimental data for the statistical averaged level density obtained by the sampling method within the MMA
with the help of the semiclassical POT. We have emphasized the importance of the shell and pairing effects in these
calculations. We obtained values of the inverse level density parameter K for LES range which are essentially different
from those of NRs. These results are basically extended to the level density dependence on the spin variables for
nuclear rotations around the symmetry axis of the mean field due to alignment of the individual nucleon angular
momenta along the symmetry axis.
Our approach can be applied to statistical analysis of experimental data on collective nuclear states. As the

semiclassical POT MMA is the better the larger particle number in a Fermi system, one can also apply this method
to study metallic clusters and quantum dots in terms of the statistical level density, and to problems in nuclear
astrophysics. The neutron-proton asymmetry, large nuclear angular momenta and deformation for collective rotations,
additional consequences of pairing correlations, as well as other perspectives, will be taken into account in a future work
in order to improve the comparison of the theoretical results with experimental data on the level density parameter
significantly, in particular, below the neutron resonances.
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Appendix A: The semiclassical POT

So far we did not specify the model for the mean field. For nuclear rotation, it can be associated with alignment
of the individual angular momenta of nucleons called a “classical rotation” in Ref. [30] – rotation parallel to the
symmetry axis Oz, in contrast to the collective rotation perpendicular to Oz axis [41].
In particular, in the case of the “parallel” rotation, one has for a spherically and axially symmetric potential the

explicit partition function expression:

lnZ =
∑
i

ln {1 + exp [β (λ− εi + ~ωmi)]}

≈
∞∫
0

dε
∞∫
0

dm g(ε,m) ln {1+

+ exp [β (λ− ε+ ~ωm)]} . (A.1)

Here, εi and mi are the s.p. energies and projections of the angular momentum on the symmetry axis Oz of the
quantum states in the mean field. In the transformation from the sum to an integral, we introduced the s.p. level
density g(ε,m) as a sum of the smooth and oscillating shell components,

g(ε,m) ∼= g̃(ε,m) + δgscl(ε,m) . (A.2)

The Strutinsky smoothed s.p. level density g̃ can be well approximated by the ETF level density g
ETF

, g̃ ≈ g
ETF

. For
the spherical case, the s.p. level density in the TF approximation is given by [70]

g̃ ≈ g
TF

=
µds
π~

ℓ
0∫

|m|

dℓ

rmax∫

rmin

dr
[
2µ (ε− V (r)) − ~

2l2/r2
]−1

, (A.3)
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where µ is the nucleon mass, ds is the spin (spin-isospin) degeneracy, ℓ0 is the maximum of a possible angular
momentum of nucleon with energy ε in a spherical potential well V (r), and rmin and rmax are the turning points.
For the oscillating component δgscl(ε,m) of the s.p. level density g(ε,m), Eq. (A.2), we use, in the spherical case, the
following semiclassical expression [30] derived in Ref. [39]:

δgscl(ε,m) =
∑

PO

1

2ℓPO
θ (ℓPO − |m|) gPO(ε) . (A.4)

The sum is taken here over the classical periodic orbits (PO) with angular momenta ℓPO ≥ |m|. In this sum, gPO(ε)
is the partial contribution of the PO to the oscillating part gscl(ε) of the semiclassical s.p. level density g(ε) (without
limitations on the projection m of the particle angular momentum), see Eq. (3), with

δgscl(ε) =
∑

PO

gPO(ε) , (A.5)

where

gPO(ε) = APO(ε) cos

[
1

~
SPO(ε)−

π

2
µPO − φ0

]
. (A.6)

Here, SPO(ε) is the classical action along the PO, µPO is the so called Maslov index determined by the catastrophe
points (turning and caustic points) along the PO, and φ0 is an additional shift of the phase coming from the dimension
of the problem and degeneracy of the POs. The amplitude APO(ε) in Eq. (A.6) is a smooth function of the energy ε,
depending on the PO stability factors [36, 50, 52]. For the spherical cavity one has the famous explicitly analytical
formula [36, 45, 50]. The Gaussian local averaging of the level density shell correction δgscl(ε) (Eq. (A.5)) over the
s.p. energy spectrum εi near the Fermi surface εF can be done analytically by using the linear expansion of relatively
smooth PO action integral SPO(ε) near εF as function of ε with the Gaussian width parameter Γ [36, 50, 52],

δg
(Γ)
scl (ε)

∼=
∑

PO

gPO(ε) exp

[
−
(
ΓtPO

2~

)2
]

, (A.7)

where tPO = ∂SPO/∂ε is the period of particle motion along the PO. All the expressions presented above, except for
Eqs. (A.3) and (A.4), can be applied for the axially-symmetric potentials, e.g. for the spheroidal cavity [51, 52, 71]
and deformed harmonic oscillator [36, 72].
Let us use now the decomposition of Ω ≡ − lnZ/β with the corresponding variables within the SCM POT in terms

of its smooth part, Ω̃ ≈ Ω
ETF

, and shell correction δΩ,

Ω (β, λ, ω) ∼= Ω̃ (β, λ, ω) + δΩ (β, λ, ω) . (A.8)

Using the TF approximation for g̃(ε,m), Eq. (A.3), for a smooth TF component Ω
ETF

of the potential Ω, Eq. (A.8),
one has [30]

Ω̃ ≈ Ω
ETF

(β, λ, ω) = −β−1
∞∫
0

dε
∞∫

−∞
dm g̃(ε,m)

× ln {1 + exp [β (λ− ε+ ~ω m)]}
= Ẽ − λA− 1

2 Θ̃(λ) ω2 − π2

6 g̃(λ)β−2 . (A.9)

The smooth (in the sense of the SCM [44, 45]) ground-state energy of the nucleus is given by

Ẽ ≈ E
ETF

=

∫ λ̃

0

dε ε g̃(ε) ≈
∫ λ

0

dε ε g̃(ε) , (A.10)

where g̃(ε) is a smooth level density approximately equal to the s.p. ETF level density, g̃ ≈ g
ETF

. The smooth chemical

potential λ̃ in the SCM is the root of equation A =
∫ λ̃

0
dε g̃(ε), and λ ≈ λ̃ in the POT. The chemical potential λ (or

λ̃) is approximately the solution of the corresponding conservation particle number equation:

A =

∫ λ

0

dε g(ε) . (A.11)
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The quantity Θ
ETF

in Eq. (A.9) is the ETF (rigid-body) moment of inertia for the statistical equilibrium rotation,

Θ̃ ≈ Θ
ETF

= µ
∫
dr ρ̃(r) (x2 + y2)

≈ ~
2〈m̃2〉 g̃ (λ) , (A.12)

where ρ̃ ≈ ρ
ETF

(r) is the ETF particle density. For the “parallel” rotation, 〈m̃2〉 is the smooth component of the square
of the angular momentum projection of nucleon 〈m2〉. Here and below we neglect a small change in the chemical
potential λ, due to the internal nuclear thermal and rotational excitations, which can be approximated by the Fermi
energy εF , λ ≈ εF .
The oscillating semiclassical component δΩ (β, λ, ω) of the sum (A.8) corresponds to the oscillating part δgscl(ε,m)

of the s.p. level density (3) (see, e.g., Eq. (A.4) for the spherical case) [30, 39, 50]. In expanding the action SPO(ε) as
function of the s.p. energy ε near the chemical potential λ in powers of ε−λ up to linear term one can use Eqs. (A.5)
and (A.6); see also Eqs. (9), (10), and (11). Then, integrating by parts, one obtains from Eqs. (A.1), (A.8), and (A.9)
at the adiabatic approximation ~ℓ2Fω ≪ λ, where ~ℓF is the maximal s.p. spin at the Fermi surface, the result,

δΩ ∼= δΩscl (β, λ, ω) = δFscl (β, λ, ω)

= δFscl (β, λ)− ω2

6

∑
PO FPO t2PO l2PO , (A.13)

where δFscl (β, λ) is the semiclassical free-energy shell correction of non-rotating nucleus (ω = 0), see Eqs. (9) and
(10). In deriving the expressions for the free energy shell correction, δFscl, and the potential, δΩscl, the action
SPO(ε) in their integral representations over ε with the semiclassical level-density shell correction, δg(ε), Eqs. (A.5)
and (A.6), was expanded as function of ε near the chemical potential λ. Then, we integrated by parts over ε, as
in the semiclassical calculations of the energy shell correction, δEscl [36, 50]. We used the expansion of δΩ(β, λ, ω)
over a relatively small rotation frequency ω, ~ℓ2Fω/λ ≪ 1, up to quadratic terms. Non-adiabatic effects for large ω,
considered in Ref. [30] for the spherical case, are out of the scope of this work. In Eq. (A.13), the period of motion
along a PO, tPO(ε) = ∂SPO(ε)/∂ε, and the PO angular momentum of particle, ℓPO(ε), are taken at ε = λ. For large
excitation energies, β = β∗ = 1/T (T is the temperature), one arrives from Eqs. (9), (10), and (A.13) at the well-known
expression for the semiclassical free-energy shell correction of the POT [30, 36], δF = δΩ (in their specific variables),
see also Ref. [10] for the magnetic-susceptibility shell corrections. These shell corrections decrease exponentially with
increasing temperature T . For the opposite limit to the yrast line (zero excitation energy U , β−1 ∼ T → 0), one
obtains from δΩ, Eq. (A.13), the well-known POT approximation [36, 50] to the energy shell correction δE, modified
however by the frequency ω dependence.
The POT shell effect component of the free energy, δFscl, Eqs. (9), and (10), is related in the non-thermal and

non-rotational limit to the energy shell correction of a cold nucleus, δEscl, [36, 40, 50, 52]

δEscl =
∑

PO

EPO =
∑

PO

~
2

t2PO

gPO(λ) , (A.14)

where EPO is the partial PO component (Eq. (11)) of the energy shell correction δE. Within the POT, δEscl is
determined, in turn, by the oscillating level density δgscl(λ), see Eqs. (A.5) and (A.6).
The chemical potential λ can be approximated by the Fermi energy εF , up to small excitation-energy and rotational-

frequency corrections (T ≪ λ for the saddle point value T = 1/β∗ if exists, and ~ℓFω/λ ≪ 1). It is determined by
the particle-number conservation condition, Eq. (B.4), which can be written in the simple form (A.11) with the total
s.p. POT level density g(ε) ∼= gscl = g

ETF
+ δgscl. One now needs to solve equation (A.11) for a given particle number

A to determine the chemical potential λ as function of A, since λ is needed in Eq. (A.14) to obtain the semiclassical
energy shell correction δEscl. If one were to use in Eq. (A.11) the exact (SCM) level density g(ε) ≈ gSCM = g̃+δgΓ(ε),
where g̃ is the Strutinsky smooth s.p. level density, g̃ ≈ g

ETF
, and δgΓ is the averaged level-density shell correction

with Gaussian width Γ, one would obtain a step-like function of the needed chemical potential λ (Fermi energy εF )
as function of the particle number A. Using the semiclassical level density gscl(ε), Eq. (3), with δgscl(ε) given by
Eqs. (A.5) and (A.6), similar discontinuities would appear. To avoid such a behavior, one can apply the Gauss
averaging, e.g., Eq. (A.7), on the level density, gΓ(ε), in Eq. (A.11) or, what amounts to the same, on the quantum
SCM states density with, however, a width Γ = Γ0. This Gauss width should be much smaller than that obtained
in a shell-correction calculation, Γ = Γsh, with Γ0 ≪ Γsh ≪ Dsh, where Dsh is the distance between major shells.
Because of a slow convergence of the PO sum in Eq. (A.5), it is, however, more practical to use in Eq. (A.11) the
SCM quantum density, g(ε) ≈ gSCM(ε), averaged with Γ0 to determine the function λ(A).
For a major shell structure near the Fermi energy surface, ε ≈ λ, the POT shell correction, δEscl (Eq. (A.14)) is

in fact approximately proportional to that of δgscl(λ) (Eqs. (A.5) and (A.6)). Indeed, the rapid convergence of the
PO sum in Eqs. (A.14) and (11) is guaranteed by the factor in front of the density component gPO, Eq. (A.6), a
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factor which is inversely proportional to the period time tPO(λ) squared along the PO. Therefore, only POs with
short periods which occupy a significant phase-space volume near the Fermi surface will contribute. These orbits are
responsible for the major shell structure, that is related to a Gaussian averaging width, Γ ≈ Γsh, which is much larger
than the distance between neighboring s.p. states but much smaller than the distance Dsh between major shells near
the Fermi surface. According to the POT [36, 50, 52], the distance between major shells, Dsh, is determined by a
mean period of the shortest and most degenerate POs, 〈tPO〉, [36, 50]:

Dsh
∼= 2π~

〈tPO〉
≈ λ

A1/3
. (A.15)

Taking the factor in front of gPO in the energy shell correction δEscl, Eq. (A.14), off the sum over the POs, one arrives
at Eq. (23) for the semiclassical energy-shell correction [40, 50–52]. Differentiating Eq. (A.14) using (A.6) with respect
to λ and keeping only the dominating terms coming from differentiation of the sine of the action phase argument,
S/~ ∼ A1/3, one finds the useful relationship:

∂2δEPO

∂λ2
≈ −δgPO . (A.16)

By the same semiclassical arguments, the dominating contribution to g′′(λ) for major shell structure is given by

∂2g

∂λ2
≈

∑

PO

∂2δgPO

∂λ2
≈ −

(
2π

Dsh

)2

δg(λ) . (A.17)

Again, as in the derivation of Eqs. (23) and (A.16), for the major shell structure, we take the averaged smooth
characteristics for the main shortest POs which occupy the largest phase-space volume off the PO sum.

Appendix B: MMA spin-dependent level density

For statistical description of the level density of a nucleus in terms of the conservation variables, the total energy,
E, nucleon number A, and the angular momentum projection, M , to a space-fixed axis Oz, one can begin with the
micro-canonical expression for the level density,

ρ(E,A,M) =
∑

i

δ(E − Ei) δ(A−Ai) δ(M −Mi) , (B.1)

where Ei, Ai, and Mi, respectively, represent the system quantum energy spectrum. This level density can be
identically rewritten in terms of the inverse Laplace transformation of the partition function Z(β, α, κ) over the
corresponding Lagrange multipliers β, α and κ; see, e.g., Refs. [4, 7, 8],

ρ(E,A,M) = (2πi)−3
∫ ∫ ∫

dβdαdκ Z(β, α, κ)

× exp [βE −Aα−Mκ] . (B.2)

We will calculate by the SPM the integrals in this equation over the restricted set of Lagrange multipliers α, and κ,
related to A and M , respectively. However, as in Section II, the last integral in Eq. (B.2) over the variable β, related
to the energy E will be calculated more accurately beyond the SPM approach. The saddle points over other variables
(marked by asterisks, see below) are determined by saddle point equations:

A =

(
∂ lnZ
∂α

)∗
, M =

(
∂ lnZ
∂κ

)∗
. (B.3)

The asterisk mean that α = α∗ and κ = κ∗. These equations can be considered also as conservation laws for a given
set of M and A. The equations (B.3) for the saddle point values α∗ = λβ and κ∗ = ~ωβ in terms of the chemical
potential λ and rotation frequency ω in the case of axially symmetric (or spherical) mean fields for the “parallel”
rotation (Subsection III E) can be written in more explicit way:

M =

∞∫

0

dε

∞∫

−∞

dmm g(ε,m) n(ε,m) ,

A =

∞∫

0

dε

∞∫

−∞

dm g(ε,m) n(ε,m) . (B.4)
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Here, g(ε,m) and n(ε,m) are the s.p. level density [Eq. (3)] and occupation number, n = {1 + exp [β (ε− λ− ~m ω)]}−1
,

respectively. The relations shown in Eq. (B.4) are equations for the frequency ω and chemical potential λ as functions
of the integrals of motion, projection of the angular momentum M and particle number A, respectively.
The frequency ω can be eliminated with the help of the relations (B.3) and (A.1) (or Eq. (B.4), see Eq. (52)).

The moment of inertia (MI), Θ, given by Eq. (53), is decomposed in terms the smooth (Eq. (A.12)) and oscillating
components. For a spherical potential, one can specify the MI shell correction as

δΘ ∼= δΘscl =
1

3

∑

PO

t2POl
2
PO FPO , (B.5)

where FPO is given by Eqs. (10) and (11). In deriving Eq. (B.5) we used explicitly the spherical symmetry of the
mean field as in Eq. (A.4) for the oscillating level density δgscl(ε,m) and Eq. (A.13) for the potential shell correction
δΩscl. These components for small excitation energies and major shell-structure averaging, g̃−1 ≪ Γ ≪ Dsh, of δg are
much smaller than the average rigid body value Θ̃ [Eq. (A.12)], δΘ/Θ̃ ≈ δg/3g̃ ≈ 2π2Esh/3A1/3 ≪ 1, see Eqs. (22)
and (23). In the derivations of Eq. (A.13) we used the conservation conditions for the particle number and angular
momentum projection, Eq. (B.3) (or Eq. (B.4)). In the adiabatic approximation, one can simplify the decomposition
of the potential Ω (Eq. (A.8)) in terms of smooth and oscillating POT components, Eqs. (A.9) and (A.13) with (B.5),

Ω ≈ E0 −
a

β2
− λA− 1

2
Θ ω2 . (B.6)

This equation, which is valid for arbitrary axially-symmetric potential, contains shell effects through the ground-state
energy E0, the level density parameter a, Eq. (B.11), and MI, Eq. (53).
Similarly as in Eq. (4), expanding now lnZ(β, α, κ) in Eq. (B.2) over the variables α and κ for arbitrary β near

the saddle points α = α∗ and κ = κ∗, one can use equation (B.3) for the saddle points. Performing, then, the SPM
Gaussian integrations over α and κ, one finds

ρ(E,A,M) = (2π)−2i−1
∫
βdβ

[
J

(
∂Ω
∂λ ,

∂Ω
∂~ω ;λ, ~ω

)]−1/2

×exp [β(E −Ω−λA−~ωM)] . (B.7)

Here, λ ≡ α∗/β, ω ≡ κ∗/~β, and J is the two-dimensional Jacobian for the transformation between the two shown
sets of variables. Finally, at the saddle point of Eq. (B.3), one can recognize the entropy in the exponent argument:

S = β [E − Ω(β, λ, ω)− λA− ~ωM ] , (B.8)

see Sec. II for more explicit similar derivations. It was convenient also to introduce, instead of the partition function
Z , the potential:

Ω (β, λ, ω) = − lnZ (β, λβ, ~ωβ) /β (B.9)

for any value of the integration variable β (α = λβ and κ = ~ωβ). It is the well-known potential of the grand
canonical ensemble when taken at all the saddle points as Ω∗ = Ω(β∗, λ∗, ω∗), where β∗ = 1/T with T being the system
temperature, which, if exists, can be defined using, λ∗ = α∗T , ω∗ = κ∗T/~. We have also E = Ω∗+(β∂Ω/∂β)

∗
+λ∗A.

Note that within the grand canonical ensemble, the quantities λ∗ and ω∗ are the standard chemical potential and
rotational frequency, respectively. Below we consider λ = α∗/β and ω = κ∗/β~ (for any value of β) as the generalized
chemical potential and rotational frequency.
The potential Ω(β, λ, ω), Eq. (52), contains two contributions: the thermal intrinsic excitation energy, U(β∗) = aT 2,

related to the entropy production, and the rotational excitation energy, Erot(ω) = Θω2/2. Assuming a small thermal
excitation energy, U ∝ 1/β2 (i.e., aT 2 in the asymptotically large excitation energy limit), with respect to rotational
ones, Erot (i.e., Θω2/2 in the adiabatic approximation) but large as compared to a mean distance between neighbor
level energies for validness of the statistical and semiclassical arguments, one writes, at β ≈ β∗,

1

g̃ ∼
< U ≈ a

β2
≪ 1

2
Θω2 . (B.10)

The level density parameter a is given by Eq. (13) modified, however, by the rotational ω2 corrections:

a ≈ π2

6

[
g (λ) +

ω2

6

∑

PO

gPO (λ) t2PO l2PO

]
. (B.11)
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The second term in the square brackets is explicitly presented for the spherical potential. Note that the condition
(B.10) is satisfied for smaller nuclear excitation energies U∼< 3 MeV for typical rotational excitation energies ~ω∼< 1
MeV, cf. with Eq. (24). The same limit U∼> 1/g̃(λ) in Eqs. (42), (24) and the l.h.s. of Eq. (B.10) is due to the fact that,
in the calculation of the quantity Ω (β, λ, ω), Eqs. (B.9), and (A.1), the sum over the s.p. states was approximately
replaced by the integral, and the continuous s.p. level-density approximation for g(ε,m), Eqs. (A.2) – (A.6), was
used. In Eq. (B.10), for a typical rotation energy ~ω∼< 0.1 MeV, one has 0.2 MeV∼< U∼< 3 MeV (λ ≈ 40MeV).
Under the (i) condition (B.10) (see also Subsection IIIA), one takes the two-dimensional Jacobian J , Eq. (16),

J ≈ J̃ , as a smooth quantity, off the integral over β in Eq. (B.7). Then, in the calculations of this integral, we used
the transformation of the variables, β = 1/τ , to arrive at the integral representation for the modified Bessel functions
Iν of the order of ν, (e.g., ν = 2). This representation is the well-known inverse Laplace transformation [55],

1
2πi

∫ c+i∞
c−i∞ dτ τ−ν−1exp (xτ + y/τ)

=
(

x
y

)ν/2

Iν
(
2
√
xy

)
, ν > −1 , (B.12)

where Iν(z) is the same modified Bessel function of the order of ν as used in Eqs. (42) and (49). In these transformations
we assumed that the integrand in Eq. (B.7) is an analytical function of the integration variable τ = 1/β on the right
of the imaginary axis (c > 0). This means that there are no equilibrium states (poles) for the excitation energy U > 0.
Notice that the Jacobian J can be also taken off the integral over β at β = β∗ within the full SPM if the saddle
point β∗ exists, see Ref. [4] where the assumptions of constant s.p. level density near the Fermi surface was used.
In the following derivations, we will neglect small thermal and rotational corrections to the chemical potential, λ, as
compared to the Fermi energy εF . Excitation energies, of approximately U ≪ λ, Eq. (24), should also be smaller
than a distance between major shells, Dsh, Eq. (A.15), in the adiabatic approximation for rotational excitations. At
the same time, we neglect the oscillating β dependence of the Jacobian, δJ (Jacobian subscript is ∞ in Ref. [30]),
under the condition of case (i) (see Eq. (B.10) and Subsection III E for the typical rotational energy ~ω∼< 0.1 MeV.
Thus, one finally arrives at Eq. (49) for ν = 2 in the case (i). For the coefficient ρν in the case (i) but for arbitrary
ν, one finds

ρν =
2aν

πν−1
∣∣∣J̃ (2ν−2)

∣∣∣
1/2

. (B.13)

The superscript 2ν − 2 of the smooth part of the Jacobian, J̃ (2ν−2), Eq. (16), provides the number of the integrals of
motion beyond 1 (energy E). In the considered case of n = 3 integrals of motion, one has ν = (n+ 1)/2 = 2, and the

corresponding smooth Jacobian is given by J̃ (2) ≈ g
ETF

(λ)Θ/~2.
Note that the expressions (49) and (B.13), for the case (i), are presented in a general form for axially-symmetric

potentials and arbitrary number of integrals of motion n. They are valid under the condition (B.10), e.g., n = 3 and
ν = (n + 1)/2 = 2 in this Appendix and the same as in Ref. [30]. For the specific case n = 2, the case (i) (ν = 3/2)
in Subsection III A, one obtains Eq. (29) with Eq. (26) for the constant ρ3/2, and its Bethe asymptotic (47).

In the opposite case (ii) (subsection III B) for a small rotational energy, Erot, with respect to the thermal excitations,
U , Erot ≪ U (opposite to the condition (B.10)), for the Jacobian J in the integrand of Eq. (B.7), up to shell corrections,

one obtains approximately from Eqs. (A.8), (A.13), and taking finally Eq. (A.9) for Ω ≈ Ω̃, the expression:

J = J
(
∂Ω

∂λ
,
∂Ω

∂~ω
;λ, ~ω

)
≈ 2 a Θ̃

~2λ2β2
. (B.14)

This Jacobian was simplified by expanding the β depending factor in Eq. (10) over the variable xPO ∝ 1/β under
the condition of smallness of x4

PO ∝ 1/β4 term, see Eq. (24). The shell corrections in the Jacobian calculations in

the case (ii) were neglected finally, in Eq. (B.14), as compared to the smooth (E)TF part J̃ (see similar derivations
around Eq. (35)). As a result of the integration over β in Eq. (B.7) with Eq. (B.14) for the Jacobian J and the help
of Eq. (B.12) (after transformation of the integration variables, β = 1/τ), one obtains finally the same Eq. (49) but

with ν = 3. The coefficient ρ3 is given by Eq. (51) at Θ ≈ Θ̃.
For large and small entropy S, one obtains from Eq. (49), with the help of Eqs. (43) and (44), the asymptotic

Fermi-gas (at zero order in 1/S) and combinatorics expressions (in powers of S2 ∝ U), respectively. At small entropy,
S ≪ 1, one obtains from Eq. (49) (with Eq. (44)) the combinatorics power expansion starting from a constant, that is
finite in the limit S ≪ 1. This expansion in powers of S2 ∝ U is the same as that of the empiric CTM used often for
the level density calculations at small excitation energies U [3, 18], but here it is obtained without free parameters.
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Appendix C: Full SPM for a general Fermi gas (GFG) asymptotic

Taking the integral (15) over β by the standard SPM, one can expand, up to second order terms, the exponent
argument S(β) = βU + a/β near the saddle point β = β∗,

S(β) = β∗U + a/β∗ +
1

2

(
2a

β3

)∗
(β − β∗)2. (C.1)

The first derivative disappears because of the SPM condition:
(
∂S

∂β

)∗
≡ U − a

(β∗)2
= 0 , (C.2)

from which one finds the standard expression for the excitation energy U through the saddle point β∗ = 1/T , i.e.,
U = aT 2. Taking the pre-exponential Jacobian multiplier off the integral over β in Eq. (15) we substitute Eq. (C.1)
for S(β) into Eq. (15). Changing the integration variable β to the new variable z, z2 = (−∂2S/∂β2)∗(β−β∗)2/2, and
then, calculating the error integral over z by extending the integration range to infinity, one obtains Eq. (45). Here
we used a general expression (16) for the Jacobian at the saddle point condition (C.1) for β∗. The critical quantity
for these derivations is the ratio ξ∗, see Eq. (20) for ξ taken at β = β∗, ξ = ξ∗, which is approximately proportional
to the semiclassical POT energy shell correction, Eq. (23) (see Appendix A).
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