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One of the main challenges for ab initio nuclear many-body theory in the coming decade is the
growth of computational and storage costs as calculations are extended to increasingly heavy, exotic,
and structurally complex nuclei. Here, we investigate the factorization of nuclear interactions as a
means to address this issue. We perform Singular Value Decompositions (SVD) of current nucleon-
nucleon interactions in partial wave representation and study the dependence of the singular value
spectrum on interaction characteristics like regularization schemes and resolution scales.

Next, we develop and implement the Similarity Renormalization Group (SRG) evolution of the
interaction in terms of the relevant singular vectors, and demonstrate that this SVD-SRG approach
accurately preserves two-nucleon observables.

We find that low-resolution interactions naturally allow the truncation of the SVD at low rank,
and that a small number of relevant components is sufficient to capture the nuclear interaction and
perform an accurate SRG evolution, while the Coulomb interaction requires special consideration.
The rank is uniform across all partial waves and almost independent of the basis choice in the tested
cases. This suggests an interpretation of the relevant singular components as mere representations
of a small set of abstract operators that can describe the interaction and its SRG flow.

Following the traditional workflow for nuclear interactions, we discuss how the transformation
between the center-of-mass and laboratory frames creates redundant copies of the partial wave
components when implemented in matrix representation, and we discuss strategies for mitigation.

Finally, we test the low-rank approximation to the SRG-evolved interactions in many-body cal-
culations using the In-Medium SRG. By including nuclear radii in our analysis, we verify that the
implementation of the SRG using the singular vectors of the interaction does not spoil the evolution
of other observables.

I. INTRODUCTION

Over the past decade, the reach of ab initio nuclear
many-body methods across the nuclear landscape has
grown dramatically (see, e.g., [1] and references therein).
A new generation of methods that solve the many-
body Schrödinger equation with controlled approxima-
tions have made routine calculations for nuclei up to the
tin region possible, and recent progress in the handling of
the input three-nucleon interactions [2] will pave the way
for applications to even heavier nuclei. As the ab initio
nuclear structure community heads into a new decade,
we are facing a number of challenges. The description
of doubly open-shell and exotic nuclei require the use of
single-particle bases that can naturally account for nu-
clear deformation as a means to capture strong collec-
tive correlations, as well as the coupling to the contin-
uum. Both types of physics typically entail a ten- to
hundredfold increase of the basis size compared to exist-
ing applications for (semi-)closed shell nuclei. In this way,
the computational effort for current “workhorse” versions
of methods like the In-Medium Similarity Renormaliza-
tion Group (IMSRG) [3–6], Coupled Cluster (CC) [7–10],
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self-consistent Green’s Function theory (SCGF) [11, 12]
or even finite-order Many-Body Perturbation Theories
(MBPT) [13–15] increases by several orders of magni-
tude, turning them from problems that are tractable
with capacity resources like small computing clusters to
problems that require (or exceed) the capabilities of the
largest available supercomputers.

Another important effort is the proper quantification of
errors incurred by the approximations inherent to these
methods. This requires access to (at least) the next order
of truncation so that the convergence (or lack thereof) to-
wards the exact result can be established, and this implies
additional order-of-magnitude increases of the computa-
tional cost even for closed-shell nuclei. For example, the
commonly used IMSRG(2) truncation has a (naive) com-
putational scaling of O(N6) with the single-particle basis
size N , which increases to O(N7) or O(N9) for approx-
imate or complete versions of the next-order IMSRG(3)
truncation, respectively [16, 17].

Last but not least, the propagation of the theoretical
uncertainties of the input interactions and many-body
methods to the final results for observables, and the re-
lated task of studying the sensitivity of observables to the
theoretical parameters both rely on the capability to per-
form large ensembles of many-body calculations. There
have been recent breakthroughs in the use of emulators to
tackle this problem [18–20], but the construction of accu-
rate surrogate models still requires a substantial amount
of expensive many-body calculations to provide training
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data.

A major factor in the computational and storage costs
of modern many-body methods is an incompatibility be-
tween the representations that are best suited for the
input interactions and the treatment of the many-body
system, respectively. Our starting two- and three-nucleon
Hamiltonians consists of a few tens of operator structures
that are built from the spins, isospins and Jacobi mo-
mentum or position vectors of the interacting particles,
reflecting the fundamental symmetries of space(time) as
well as the intrinsic symmetries of the strong interaction
(see, e.g., [21, 22]).

Ideally, these operators would be represented in states
that directly incorporate the same symmetries, but un-
fortunately, the construction of such bases is only feasi-
ble in few-body systems due to the high cost of prop-
erly implementing their antisymmetry under permuta-
tions (see, e.g., [23–28]). For many-body systems, one
therefore uses a basis of Slater determinants, which are
antisymmetrized by construction. Of course, the draw-
back of these states is that they describe independent-
particle systems and are therefore ill-suited for capturing
the correlations that are induced by nuclear interactions.

Consequently, a typical workflow increases the num-
ber of interaction matrix elements by several orders of
magnitude as they are transformed from their initial rep-
resentation in Jacobi coordinates to the laboratory-frame
representation used by the many-body method. For in-
stance, two nucleon force matrix elements grow from a
few to hundreds of megabytes. For three-nucleon forces,
the growth is even worse, and typically only manageable
by imposing severe truncations on the laboratory-frame
matrix elements [2, 29, 30].

The transformation between the center-of-mass and
laboratory frames consists of the construction of a tensor
product of the interaction in relative partial waves with
an identity operator acting on the center-of-mass wave
function of the particles, and a subsequent basis change
(see Sec. IV). At no point do we introduce new, physi-
cally relevant information to the matrix elements, hence
the aforementioned growth of the matrix element sets is
entirely owed to the inefficiencies of the laboratory-frame
representation. This observation strongly suggests that it
would be fruitful to perform a principal component anal-
ysis (PCA) of the interaction matrix elements in order to
recover the essential components in each representation.
Naively, one could expect their number to be close to the
number of operator structures and other pieces of phys-
ical information in the nuclear interactions, e.g., LECs,
cutoffs, and characteristics of the radial or momentum de-
pendencies. However, we wish to maintain a connection
to the aforementioned working bases, so that the princi-
pal components of the interaction can be integrated effi-
ciently into existing nuclear many-body methods, hence
some amount of inefficiency is unavoidable.

In this work, we initiate a larger program for the PCA
of modern nuclear interactions by focusing on nucleon-
nucleon (NN) interactions, specifically. Our central tool

is the singular value decomposition (SVD). The SVD al-
lows us to uncover the low-rank structure of the NN
interaction, which will be carried forward through a free-
space SRG evolution that dials the resolution scale (Sec.
II) and the transformation to the laboratory frame (Sec.
IV). We show that these procedures can be implemented
efficiently and accurately using the factors obtained by
the low-rank decomposition of the interaction (Sec. III),
setting the stage for applying the same techniques to
three-nucleon forces.

In Sec. V, we test the rank-reduced interactions — and
associated SRG transformations — in IMSRG(2) calcu-
lations of energies and radii. At present, we reconstruct
the laboratory-frame matrix elements from the factors of
the interaction, but we eventually intend to exploit the
factorized structure to reduce the computational cost of
many-body methods for medium-mass and heavy nuclei,
along the lines of [31] as well as successful application
of factorization methods in quantum chemistry [32–37].
This could provide a means for addressing the challenges
discussed earlier in this section, and enable the use of
efficient rank-reduced ab initio calculations in the day-
to-day analysis of experimental data.

II. SIMILARITY RENORMALIZATION GROUP
EVOLUTION OF FACTORIZED INTERACTIONS

In this section, we briefly recapitulate the essential as-
pects of the SVD and the SRG evolution before merg-
ing the two techniques. We introduce some terminology
along the way.

A. Singular Value Decomposition

The SVD can be understood as a generalization of
the eigenvalue decomposition to rectangular and non-
normal1 matrices. A general complex m × n matrix M
can be uniquely decomposed as (see, e.g., [38])

M = UΣV † (1)

where U ∈ Cm×m and V ∈ Cn×n are both unitary, and

Σ = diag(σ1, . . . , σR, 0, . . .) ∈ Rm×n (2)

is a diagonal matrix whose entries are non-negative in de-
scending order. The number of non-zero singular values
defines the rank R ≤ min(m,n) of the matrix M .

A truncated SVD is obtained by approximating

M ≈
r∑

i=1

uiσiv
†
i , (3)

1 A matrix M is normal if and only if it commutes with its Her-
mitian conjugate, [M,M†] = 0. Examples are Hermitian and
unitary matrices.
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where r < R and ui, vi are the singular vectors, i.e., the
columns of the matrices U and V .

B. Similarity Renormalization Group

The (free-space) SRG is a continuous unitary transfor-
mation that is designed to decouple the low and high-
momentum components of the Hamiltonian and other
observables of interest (see, e.g., [39, 40]). The transfor-
mation, or SRG flow, is parameterized with a continuous
flow parameter s, and implemented through the operator
flow equation

d

ds
H(s) = [η(s), H(s)] , (4)

starting from the initial Hamiltonian H(s = 0).
The SRG framework gives us a great degree of freedom

in selecting an ansatz for the anti-Hermitian generator
η(s). Here, we will use the standard ansatz for perform-
ing momentum decoupling in nuclear interactions (see
[39, 41] and references therein):

η(s) ≡ [T,H(s)] , (5)

where T is the relative (or intrinsic) kinetic energy. We
keep the kinetic energy constant during the flow, hence all
s dependent contributions from evolving T are absorbed
into the interaction V (s):

H(s) = T + δT (s) + V (s) ≡ T + V (s) , (6)

with

δT (0) = 0 , V (0) = V (0) . (7)

This partitioning will become relevant in the subsequent
discussion. Plugging Eqs. (5) and (6) into the flow equa-
tion (4) and using dT/ds = 0, we obtain the following
flow equation for V (s):

d

ds
V (s) = [η(s), T ] + [η(s), V (s)]

= [[T, V (s)], T ] + [[T, V (s)], V (s)] . (8)

This equation is conveniently implemented in momentum
space, where T will be diagonal [39].

In principle, general observables can be computed by
evolving them alongside the Hamiltonian according to

d

ds
O(s) = [η(s), O(s)] . (9)

In the free-space SRG, the ensuing growth of the system
of flow equations can be avoided in several ways: Since
the initial and final Hamiltonian matrices are available,
one can solve their respective eigenvalue problems and
directly construct U(s) as [42–44]

U(s) =
∑
n

|ψn(s)〉〈ψn(0)| . (10)

In fact, any complete basis could be used to express U(s)
in this way if all initial and evolved basis vectors are
readily available. One can also determine U(s) directly
by solving

d

ds
U(s) = η(s)U(s) , U(s = 0) = 1 . (11)

A third alternative is the use of the Magnus expansion,
although this method is potentially susceptible to con-
vergence issues [40].

For future use, we introduce the resolution scale of
SRG-evolved interactions [39] through the definition

λ ≡ s−1/4 , (12)

which has the dimensions of a momentum if we work
with the generator (5). It can be understood as a smooth
regulator on the momentum transfer between incoming
and outgoing states, e.g.,

Q = |~qout − ~qin| . λ (13)

in the two-body system, which suggests that the matrix
representation of the interaction in momentum space is
a (slightly diffuse) band with width λ [39].

C. SRG Evolution of SVD Factors

Let us now assume that we have performed an SVD
decomposition of an initial operator O(0), and consider
its SRG evolution. Writing

O(0) =
∑
i

|ui(0)〉σi 〈vi(0)| , (14)

we see that the evolved operator can be written as

O(s) =
∑
i

U(s)|ui(0)〉σi 〈vi(0)|U†(s) ,

≡
∑
i

|ui(s)〉σi 〈vi(s)| (15)

where we have used that singular values are invariant
under unitary evolutions, and defined the evolved singu-
lar vectors |ui(s)〉 and |vi(s)〉. We can immediately use
Eq. (11) to obtain flow equations for these states:

d

ds
|ui(s)〉 = η(s)|ui(s)〉 , (16a)

d

ds
|vi(s)〉 = η(s)|vi(s)〉 . (16b)

If we attempt to implement this form of the SRG flow
for the Hamiltonian, we encounter a major issue: Due to
the presence of the kinetic energy, which is unbounded
from above, there is no natural point at which we can
truncate the SVD of H(0), as illustrated in Fig. 1. Thus,
we would not gain any numerical advantage from imple-
menting Eqs. (16) over Eqs. (4) or (11). The solution
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to this problem is to consider the SVD of the evolving
part of the Hamiltonian, namely the interaction V (s) as
defined in the partitioning (6).

At s = 0, the SVD of the interaction is given by

V (0) =
∑
ij

|ui(0)〉σij 〈vj(0)| , σij = σiδij , (17)

where we have used that the interaction will be repre-
sented as a square Hermitian matrix. As an example,
Fig. 1 shows the singular value spectrum of the proton-
proton and neutron-proton 1S0 partial waves of a realistic
chiral N3LO interaction [45], which reveals the interac-
tion’s low-rank structure. As discussed in more detail
below, the presence of the Coulomb interaction increases
the rank of the interaction in the pp channels, but not to
the point where truncations would become unfeasible. A
crucial observation is that the singular values of the inter-
action decay exponentially, while the kinetic term in the
Hamiltonian grows only quadratically. This means that
the singular value spectrum of the generator (5) will also
decay exponentially, and the SRG evolution via Eq. (8)
cannot spoil the low-rank structure of the interaction,
barring truncation artifacts.

For s > 0, we have

V (s) =
∑
ij

|ui(s)〉 (σij + δσij(s)) 〈vj(s)| . (18)

where σij , which contains the singular values of the ini-
tial interaction, remains constant under unitary evolu-
tion, while δσij(s) contains the contributions from the
absorbed s-dependent part of the kinetic energy.

We can derive a flow equation for δσij(s) by consid-
ering the left- and right-hand sides of Eq. (8). Plugging
Eq. (18) into the LHS and using the flow equations (16),
we obtain

d

ds
V (s) = [η(s), V (s)] +

∑
ij

|ui(s)〉
(
d

ds
δσij(s)

)
〈vj(s)| .

(19)

Comparing with the RHS and using the orthogonality of
the singular vectors, we obtain

d

ds
δσij(s) = 〈ui(s)| [η(s), T ] |vj(s)〉 . (20)

In principle, this flow equation would have to be solved
alongside with Eq. (16), but it turns out that it can be
integrated analytically. Expanding the right-hand side
and using Eq. (16) to switch to derivatives of the singular
vectors, we quickly obtain the closed solution

δσij(s) = 〈ui(0)|T |vj(0)〉 − 〈ui(s)|T |vj(s)〉 , (21)

i.e., we merely need to compute the matrix elements of
the kinetic energy in the representation spanned by the
initial and final singular vectors. As a consistency check,
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FIG. 1. Singular value spectra of H and V in the proton-
proton (solid curves) and neutron-proton 1S0 partial waves
(dashed curves), for a chiral N3LO two-nucleon interaction
(EM, cutoff Λ = 500 MeV/c, see text and Ref. [45]). The
units of the singular vectors result from adopting scattering
units ~c/mc2 = 1 as well as momentum-space discretization
discussed in Sec. III A.

we note that the first term in this equation can be written
as

〈ui(0)|T |vj(0)〉 = 〈ui(0)|U†(s)U(s)TU†(s)U(s) |vj(0)〉
= 〈ui(s)|T + δT (s) |vj(s)〉 , (22)

so Eq. (21) is the representation of the induced, s-
dependent part of the kinetic energy in the (possibly
truncated) basis of evolved singular vectors:

δσij(s) = 〈ui(s)| δT (s) |vj(s)〉 . (23)

At the desired endpoint of the evolution, we diagonalize
the matrix σ+δσ to obtain the final set of singular vectors
— to avoid clutter, we will also refer to them as |ui〉 and
|vi〉 in the following, and implicitly assume that a final
diagonalization has been carried out.

As discussed in Sec. II B, we can easily construct the
SRG transformation U(s) if we have access to the initial
and evolved versions of a complete basis set. Both the
|ui(s)〉 and |vi(s)〉 qualify as such bases, hence we have

U (L)(s) =
∑
i

|ui(s)〉〈ui(0)| , (24a)

U (R)(s) =
∑
i

|vi(s)〉〈vi(0)| , (24b)

if we need to distinguish left and right unitary evolu-
tions, and we can construct approximate unitaries from
the truncated basis sets. For Hermitian matrices, the left
and right singular vectors merely differ by a trivial phase
factor, and the two unitaries are identical. Using the
exact or approximate U(s), we can transform arbitrary
observables O according to

O(s) = U(s)O(0)U†(s) . (25)
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III. APPLICATIONS IN THE TWO-NUCLEON
SYSTEM

We are now ready to analyze SVD-factorized NN in-
teractions and their SRG evolution. In the present sec-
tion, we will focus on the two-nucleon system, which al-
lows us to work with partial waves in relative-momentum
and HO representations.

A. Momentum Space Discretization and Other
Conventions

A commonly used basis for exchanging momentum
space matrix elements and performing their SRG evo-
lution is built from states that satisfy the completeness
and orthogonality relations

1 =
∑

lsjTMT

∫ ∞
0

dq q2 |qlsjmTMT 〉〈qlsjmTMT | (26)

and

〈qlsjmTMT |q′l′s′j′m′T ′M ′T 〉 =

δ(q − q′)
qq′

δll′δss′δjj′δTT ′δMTM ′
T
, (27)

where s, l and j refer to the spin, orbital and total an-
gular momentum of the interacting nucleon pair, and T
is the coupled isospin. The quantum numbers m and
MT are the projections associated with j and T , respec-
tively. Suppressing the angular momentum and isospin
quantum numbers for brevity, the discretized versions of
these relations are

1 =
∑
i

wiq
2
i |qi〉〈qi| (28)

and

〈qi|qj〉 =
δij√

wiwjqiqj
, (29)

where wi are the weight factors of our chosen momentum
mesh. If we apply the SVD to a matrix represented in
this basis, the singular values will acquire an undesirable
dependence on the weights wi because the basis states
are not normalized to 1. Thus, we choose to introduce
the rescaled states

|qi〉 =
√
wiqi |qi〉 , (30)

which satisfy

〈qi|qj〉 = δij . (31)

The matrix elements of the interaction in the rescaled
and original bases are related by

〈qi|V |qj〉 =
√
wiwjqiqj〈qi|V |qj〉 . (32)
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np, q = 0.10 fm 1
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np, q = 0.05 fm 1, 6 dig.

FIG. 2. Singular value spectra of V in the proton-proton
and neutron-proton 1S0 partial waves, for the EM interac-
tion. The solid and dashed curves are obtained on equidistant
meshes with the same qmax = 7 fm−1, but different spacings
∆q. The dotted curve illustrates that the tail of the singular
value spectrum is related to the precision of the input data,
which is reduced from 10 digits for the other data sets to 6
digits after the decimal. All conventions are the same as in
Fig. 1 (also cf. Sec. III A).

An immediate benefit of the basis change is that the
discretized integration measure — i.e., the weights and
q2i factors — no longer appear explicitly in our working
equations, e.g., the flow equations (16) [39]. Furthermore,
it makes it easier to relate the truncated SVD across dif-
ferent mesh and basis choices, which might make it easier
in the future to interpret its components as mere rep-
resentations of the relevant operators in the interaction
(cf. Sec. III D). To compare with the existing literature on
the SRG evolution of matrix elements (see, e.g., [39, 41]
and references therein), we will simply revert to the orig-
inal basis.

In Figure 2, we demonstrate the desired independence
of the singular values on the chosen mesh for the proton-
proton and neutron-proton partial waves of the nuclear
interaction. The calculations are based on the chiral
N3LO interaction with cutoff Λ = 500 MeV/c by En-
tem and Machleidt [45], which we will refer to as the
EM interaction in the following. The singular value
spectra for two equidistant meshes with the same max-
imum momentum qmax = 7 fm−1 but different spacings
∆q = 0.05 fm−1 and 0.1 fm−1 are practically identical
for σi ≥ 10−10 fm−2. The precision with which the input
matrix elements are stored has an impact on the exten-
sion of the singular value spectrum: If we reduce the num-
ber of decimal digits from 10 (for the solid and dashed
curves) to 6, we obtain an elongated tail of unphysical
singular values of order σi ≈ 10−6 fm−2. In practice,
of course, we would not consider these contributions to
the interaction anyway, and introduce a threshold like
σt ≈ 10−3 fm−2 which emerges naturally for the proton-
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proton 1S0 partial wave (see Sec. III B).

B. Singular Value Spectra of Nucleon-Nucleon
Interactions

With the technical discussion out of the way, we
can now analyze the SVDs of NN interactions like the
EM [45] and Argonne V18 [21] potentials. Both rep-
resent nucleon-nucleon scattering data with high accu-
racy, while having quite different characteristics: As men-
tioned before, EM is derived within the framework of
chiral Effective Field Theory (EFT) (see, e.g., [46] and
references therein) and as a result, has a moderate initial
cutoff. Due to the adopted regularization scheme, the
interaction is nonlocal, and best represented in momen-
tum space. In contrast, AV18 is designed for applications
in coordinate-space Quantum Monte Carlo (QMC) cal-
culations [47, 48], and therefore as local as possible by
construction. This results in a strong, repulsive core in
the interaction that makes its use problematic in many-
body methods that rely on basis expansions. Both EM
and AV18 have been superseded by younger cousins from
their respective development tracks, but they still repre-
sent a useful case study because they contain all essential
features that are also present in more recently developed
interactions (see, e.g., the recent reviews [46, 49, 50]).

In Figs. 1 and 2, we have already seen the 1S0 partial
waves of the EM interaction. The singular value spec-
tra clearly indicate that the interaction is inherently of
low rank in these channels. In the proton-proton (pp)
channel, we observe a “kink” that suggests a threshold
value of σt = 10−3 fm−2 as a natural threshold value for
truncating the SVD. This σt is about three to four or-
ders of magnitude smaller than the largest singular val-
ues in the proton-proton and neutron-proton (np) chan-
nels across all partial waves up to j = 9, which are
σmax(pp) ≈ σmax(np) ≈ 3 fm−2.

In the pp channel, about 35 components of the inter-
action have singular values above the threshold. In con-
trast, only about 10 components are above threshold in
the np channel. The cause of this difference is readily ap-
parent: It is the inclusion of the Coulomb interaction in
the initial matrix elements, which is long-ranged and has
no inherent scale. Without imposing a cutoff or some
other kind of regulator, (VC)ij ∼ (qi − q′j)−2 would be
represented by a matrix with a divergence on the diago-
nal, which would completely spoil our capability to trun-
cate the SVD in the pp channels. In the present study,
we impose a hard cutoff at RC = 15 fm, which serves a
twofold purpose: In phase-shift calculations, it provides
the matching scale between the momentum-space wave
function obtained from the matrix elements of the nu-
clear and cutoff Coulomb potentials VN + VC and the
asymptotic Coulomb wave function (see [51, 52]). In nu-
clear structure calculations, the effect of imposing this
cutoff on Hartree-Fock and IMSRG ground-state ener-
gies is below 1 keV.
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j

0

5

10

15

20

25

30

35
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np
pp

FIG. 3. Truncated SVD rank r of partial waves up
to j = 9 for the EM interaction, using a singu-
lar value threshold σt = 10−3 fm−1 (cf. Fig. 1 and
Sec. III A). Points for partial waves with different l and
s can overlap. The maximal singular values for the in-
teraction channels are {σmax(nn), σmax(np), σmax(pp)} =
{3.00 fm−1, 2.97 fm−1, 3.06 fm−1}, respectively.

It is clear that a variation ofRC will impact the number
of components that will exceed any pre-selected singular-
value threshold. If we are willing to tolerate a slightly
larger effect on the ground-state energies that still re-
mains small compared to other sources of uncertainty, we
could lower the cutoff to RC ≈ 10 fm, which reduces the
rank of the truncated interactions we studied to r ≈ 20 in
the pp partial waves. Any further reduction of RC will
lead to a rapid deterioration of the energies and phase
shifts.

The relative simplicity of VC compared to nuclear in-
teractions could make it possible to include it efficiently
by means other than a truncated SVD in a chosen config-
uration space. In the context of the present work, we have
to note that we cannot completely separate the treatment
of VC because it couples to the other terms in the Hamil-
tonian during the SRG evolution, even if VC only evolves
weakly [39]. One could attempt to construct an SRG evo-
lution from T and the nuclear interaction VN and apply
it to VC after the fact, just like other observables, but
this leads to effects on the order of several percent on
the ground-state energies of medium-mass nuclei, which
is comparable or greater than other theoretical uncer-
tainties for these quantities. This subject deserves more
detailed exploration in the future.

Moving to higher partial waves, a consistent picture
emerges: As shown in Fig. 3, the number of singular
values above the threshold σt = 10−3 fm−2 is between 5
and 10 for np and neutron-neutron partial waves (nn) up
to j = 9, while pp partial waves contain about 35 singular
values above the threshold due to the presence of the
Coulomb interaction. For off-diagonal pp partial waves
like 3P2−3F2, we note that the number of components is
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FIG. 4. Singular values of the neutron-proton 1S0 partial
wave for the SRG-evolved EM (panel a) and AV18 interactions
(panel b) at different resolution scales λ.

comparable to that in the np and nn channels. Since the
Coulomb interaction cannot contribute to partial waves
with l 6= l′, this is further evidence that VC is the cause
for the increased number of relevant components in the
l = l′ partial waves.

Next, we consider the effects of a free-space SRG evolu-
tion on the singular value spectrum. Figure 4a shows the
singular values in the neutron-proton 1S0 partial wave for
the EM and AV18 interactions, evolved to different reso-
lution scales λ. Focusing on the former, we note that the
number of singular values above the threshold σt changes
only weakly as we evolve from the initial interaction to
λ = 1.8 fm−1. Evolving even further to λ = 1.5 fm−1

and λ = 1.2 fm−1, the growth of the rank accelerates,
and r reaches twice the value of the original interaction.

At these low resolution scales, momentum transfers
(cf. Eq. (13)) that are associated with the dynamics of
one-pion exchange start to become suppressed by the de-
coupling. In a projective RG scheme , we would say that
we start to “integrate out” the pion [39, 53], but since the
SRG is unitary, it cannot destroy interaction strength
but only redistribute it. In the two-body sector, the
SRG makes V (s) increasingly band-diagonal by sweep-
ing interaction strength towards the diagonal. Eventu-
ally, the width of the band becomes small enough that
strength starts to push along the diagonal up to higher
momenta [39], rendering previously unimportant compo-
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FIG. 5. Detail view of the dominant singular values in selected
S waves of the EM and AV18 interactions at different SRG
resolution scales λ.

nents of the flowing interaction relevant.
The growth of the rank is important to keep in mind

when we implement the SRG evolution of the SVD fac-
tors as described in Sec. II. We are typically evolving the
interaction to resolution scales λ ≈ 2.0 fm−1, which have
proven to be a sweet spot for nuclear many-body calcula-
tions, so we should be able to avoid a dramatic increase
in rank. Nevertheless, it seems prudent to “over-sample”
and include a few extra components in the procedure, so
that we can capture the RG flow and do not suffer a loss
of unitarity in the two-body system.

The unevolved AV18 interaction, shown in Fig. 4b,
starts out at a much greater rank than the EM inter-
action due to its much greater extension in momentum
space: Due to the hard core of the interaction, AV18
can readily couple incoming and outgoing momenta that
differ by as much 20 fm−1 [39]. The effect of an SRG
evolution on the interaction is dramatic: While the most
dominant singular values are reduced in size, the rank
rapidly expands and the spectrum becomes so flat that
possible truncation points for the SVD are between 150
and 200 components.

In Fig. 5, we show a detailed view of the dominant
singular values in the neutron-proton S waves of our in-
teractions. For the EM interaction, in particular, we no-
tice that there are just 2–3 particularly dominant singu-
lar values before the spectrum drops off rapidly. As we
evolve to lower λ, the relative dominance of just one of
these values is enhanced compared to the others, before
the growth of the rank eventually becomes a concern be-
yond λ = 1.8 fm−1. This observation is in line with the
analysis of Bogner et al. [54], who found that low-rank
separable approximations to the NN interaction become
more accurate as the resolution of an interaction is low-
ered, since the SVD can be viewed as a generalization of
such techniques.

Curiously, however, the analysis of Ref. [54] reached
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this conclusion also for a low-resolution Vlow-k interaction
that was constructed from AV18 by means of a projec-
tive RG decimation [39, 53]. While just a few singular
values dominate the spectrum at the beginning of our
SRG evolution, the rapid flattening of the spectrum and
simultaneous growth of the rank appears to be at odds
with the Vlow-k result.

To resolve this issue, we first point out that the size of
the singular value is, in general, not a sufficient criterion
for deciding whether a component of the interaction is
relevant for the physics we want to describe or not. Con-
sider a local interaction, whose momentum space matrix
elements we can write schematically as

Vreg(q, q′) = V (q, q′)f

(
q − q′

λ

)
, (33)

where f is a local regulator. In momentum space, the
interaction matrix will be band diagonal, and the sugges-
tively named λ controls the width of the band. However,f
and λ do not limit (q + q′). Indeed, AV18 is a local
potential with a strong repulsive core, and it has large
positive matrix elements at high momenta q (see, e.g.,
Fig. 2 in Ref. [39]). Its eigenvalues that are dominated
by the high-momentum region exceed the magnitude of
the negative eigenvalues from the attractive region at low
momentum. The two types of eigenvalues get mixed in
the singular value spectrum, which only reflects their ab-
solute value.2

Additional information that can help us decide whether
a component of the interaction is relevant or not resides
in the structure of the associated singular vectors. Since
we are primarily interested in their behavior under a
component-wise SRG evolution, it is useful to consider
the expansion of one set of |ui(λ)〉 (or |vi(λ)〉) in terms
of the set at a different λ. The expansion coefficients
are the entries of the unitary evolution matrix (24) with-
out the restriction that one of the scales is λ = ∞ (or,
equivalently, s = 0 fm4).

In Fig. 6, we show these matrices for (λ1, λ2) =
(∞, 4.0 fm−1), (∞, 2.0 fm−1) and (4.0 fm−1, 2.0 fm−1).
Considering the transformation for the EM interaction
first, we notice that the matrices all look very similar:
There is a somewhat washed out diagonal band in the
upper left corner, a large central block, and a very sharp
diagonal in the lower right corner. It is rather straight-
forward to relate them to our observations for the inter-
action’s truncated SVD. Based on Fig. 4, the upper left
and central blocks contain the |ui〉 of the singular values
σi & 10−6 and σi . 10−6, respectively. The particular
value at which the separation between the blocks occurs
is most likely controlled by the accuracy settings of the
ODE solver we use. The lower right block contains the

2 Since we are usually working with real symmetric matrices, we
can identify what type of eigenvalue a σi corresponds to by check-
ing whether |ui〉 and |vi〉 differ by a phase or not.
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FIG. 6. Matrix representation of the unitary transformation
U(λ1, λ2) = 〈uj(λ1)|ui(λ2)〉 between the initial and final res-
olution scales λ1, λ2 ∈ {2 fm−1, 4 fm−1,∞} (cf. (24)). Here,
we specifically focus on the 1S0(np) partial wave. The basis
vectors are ordered by decreasing singular value. Note the
logarithmic color scale.

singular vectors that do not evolve, which implies that
we have V = 0 and H = T . The block structure is a con-
sequence of the nonlocal regularization of the interaction,
which suppresses the momentum space matrix elements
independently in the incoming and outgoing momenta as

Vreg(q, q′) = V (q, q′)e−( q
Λ )

2n

e
−
(

q′
Λ

)2n

(34)

where n = 2 or n = 3 and Λ = 2.5 fm−1 [45]. Because
of the structure of the matrix, the first r singular vec-
tors remain almost completely decoupled from the rest
of the spectrum when we evolve, although we note that
the central block stretches out to the lower indices in the
U(∞, 2.0) matrix, which is in line with the slight growth
of the rank. This effect is slightly less pronounced in
U(4.0, 2.0) because the two evolved bases are more simi-
lar to each other.

For AV18, the structure of the unitary transformations
is much more complex. The components that will even-
tually be most relevant for the low-momentum sector are
scattered throughout the basis and difficult to identify
a priori. As we evolve, the matrices U(∞, λ) actually
become less structured, which reflects the growth of the
rank in Fig. 4. The matrices suggest that we can antici-
pate that between 160 and 170 out of 200 components of
the interaction are necessary to implement the SRG using
the factorized form of the interaction. There is, however,
a simplification in the structure of the matrix U(4.0, 2.0)
— i.e., if we perform the SVD at that λ = 4.0 fm−1, we
may be able to observe an improvement of the low-rank
structure because it would be safe to project out the high
momentum components that are already decoupled, as in
Vlow-k. We will see evidence of this in the next section,
when we discuss the impact of this factorized evolution
on the AV18 deuteron ground-state energy (cf. Fig. 12).
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The takeaway message from our investigation is that in
general, the size of the singular values is only a necessary
but not a sufficient criterion for deciding which singular
vectors are required for an accurate low-rank represen-
tation of the interaction in the low-momentum sector.
Additional criteria that reflect the momentum structure
of the singular vectors may have to be taken into account.
For chiral interactions with nonlocal regulators, the se-
lection based on the singular values works because we do
not have many strongly positive eigenvalues if the initial
cutoff is not too high.

As we have seen, the situation is more complex for

local interactions, because the behavior and regulariza-
tion of the potential at short and long distances affect
the rank of the interaction. The Coulomb interaction
is singular in S waves as r → 0, but its rank is pri-
marily driven by the regularization of its long-distance
behavior, and an accurate low-rank expansion is possi-
ble. For the AV18 interaction, on the other hand, we
were unable to achieve a significant rank reduction be-
cause (multi-)meson exchange interactions create highly
singular coordinate-space potentials (see, e.g., [55] and
references therein), and we are sensitive to their effects
because of AV18’s high resolution scale. We expect sim-
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ilar issues for local or semi-local chiral interactions (see
[46, 50] and references therein), although their lower res-
olution scale should be a mitigating factor.

C. SVD-Based SRG Evolution

Let us now implement the SRG evolution of an SVD-
factorized interaction — SVD-SRG, for short — using
the formalism developed in Sec. II. As a first example, we
evolve the SVD of the EM interaction to λ = 2.0 fm−1.
In Fig. 7, we show the momentum space matrix elements
in the deuteron channel for different SVD ranks. Using
only 15 components per partial wave, we still observe
some distortion, but for 30 components, the evolution
agrees with the result from the evolution of the full ma-
trix within absolute deviations on the order of 10−4 that
one can identify upon scrutiny. It is worth noting that
we did not attempt to fine-tune r using the information
from previous sections (e.g., Fig. 3) — the decision to
use the same rank for all partial waves was purely for
convenience.

In Fig. 8, we investigate the performance of the SVD-
SRG in other selected partial waves. The matrix ele-
ments for the neutron-neutron and neutron-proton par-
tial waves were obtained using 30 components, while 40
components had to be used for the 1S0 proton-proton
partial wave due to the presence of the Coulomb interac-
tion — note the Coulomb tail along the diagonal, which
is absent in the other isospin channels. We can again
note some very weak oscillations and “fraying” around
the edges of the main structures, but the absolute val-
ues of these deviations are again on the order of 10−4 or
below.

Since the SVD-SRG seems to work accurately on the
matrix element level, we now use the factorized inter-
actions to compute observables in the nucleon-nucleon
system, namely scattering phase shifts and the deuteron
binding energy. In Fig. 9, we show the neutron-proton
phase shifts and mixing parameter of the SVD-SRG
evolved EM interaction in the deuteron channel as well
as other selected partial waves. As we can see, between
5 and 10 components of the interaction are actually suf-
ficient to reach agreement with the conventional matrix-
based evolution, only the 3S1−3D1 mixing angle ε1 seems
to require a few additional components. These results
match our expectations based on the SVD of the ini-
tial interaction (cf. Fig. 3) and the need to accommo-
date a slight growth in the rank as we evolve, here to
λ = 2.0 fm−1.

In the proton-proton channel, the proper treatment of
the Coulomb interaction forces us to increase the number
of components to 30− 35, as we can see from the partial
wave and mixing angles in Fig. 10. At a first glance,
the convergence of the phase shift with the rank r of the
potential appears irregular. This is merely a consequence
of progressively including components based on the size
of the singular value alone, regardless of whether they

0 100 200 300 400
Elab [MeV]

20

0

20

40

60

 [d
eg

]

1S0
Full
r = 5
r = 10
r = 15
r = 20

0 100 200 300 400
Elab [MeV]

0

20

40

60

80

100

120

140

 [d
eg

]

3S1
Full
r = 5
r = 10
r = 15
r = 20

0 100 200 300 400
Elab [MeV]

20

15

10

5

0

 [d
eg

]

3D1
Full
r = 5
r = 10
r = 15
r = 20

0 100 200 300 400
Elab [MeV]

1

0

1

2

3

4

5

6

1 [
de

g]

3S1 3D1
Full
r = 5
r = 10
r = 15
r = 20

0 100 200 300 400
Elab [MeV]

25

20

15

10

5

0

5

10

 [d
eg

]

3P0
Full
r = 5
r = 10
r = 15
r = 20

0 100 200 300 400
Elab [MeV]

25

20

15

10

5

0

5

 [d
eg

]

3P1
Full
r = 5
r = 10
r = 15
r = 20

0 100 200 300 400
Elab [MeV]

0

5

10

15

20

 [d
eg

]

3P2
Full
r = 5
r = 10
r = 15
r = 20

0 100 200 300 400
Elab [MeV]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

2 [
de

g]

3P2 3F2
Full
r = 5
r = 10
r = 15
r = 20

FIG. 9. Selected neutron-proton phase shifts and mixing an-
gles of the EM interaction resolution λ = 2.0 fm−1. The SVD-
SRG evolution for different ranks is compared to the matrix-
based evolution, which exactly preserves the phase shifts of
the unevolved EM interaction by construction.

are dominated by the Coulomb or the nuclear interac-
tion. As the rank increases from 25 to 30, we add com-
ponents that are dominated by VC , and therefore they
primarily impact the phase shifts at low energy (long
distances). In the plot for the 1S0 phase shift, this effect
is obscured by the overall size of δ, but in the higher par-
tial waves it is clearly visible. Increasing the rank from
30 to 35, we add components that are dominated by nu-
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FIG. 10. Selected proton-proton phase shifts and mixing an-
gles of the EM interaction resolution λ = 2.0 fm−1. Note the
higher ranks for the SVD-SRG evolution compared to Fig. 9.

clear interactions, which have a significant impact on the
Elab = 100− 250 MeV region, and for r > 35, the phase
shift is essentially converged.

Next, we study the SVD-SRG evolution of the deuteron
ground-state energy Ed, which is shown as a function of
the rank (per partial wave) and the resolution scale in
Fig. 11. Since Ed must be invariant under unitary trans-
formations in the two-body system, the curves for dif-
ferent λ must collapse once we have included a sufficient
amount of components. At r = 12, the differences from
the exact result are in the single- keV range, which is ex-
pected based on our observation that the mixing angle
ε1 converges a bit more slowly in r than other neutron-
proton scattering quantities discussed above (cf. Fig. 9).
At lower ranks r, we note that the artifacts that spoil
the unitarity of the evolution get worse as λ decreases,
which is due to the accelerating growth of the interac-
tion’s rank as the SRG decouples the long-range pion
physics (cf. Sec. III B).

Overall, the results for the SVD-SRG evolution of the
EM interaction show that the method is well-behaved for
chiral NN interactions, or at least for those that employ
nonlocal regularization schemes. Based on our observa-
tions in Sec. III B, it does not come as a surprise that the
story is very different for a hard interaction like AV18. If
we truncate the SVD based on the size of AV18’s singular
values, we need to keep almost all components to repro-
duce the observables in the two-nucleon system. For illus-
tration, we show the AV18 deuteron ground-state energy
in Fig. 12: About 170 singular components are necessary
to ensure the invariance of Ed. At lower resolution λ,
there are plateaus that indicate that many components
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FIG. 12. Ground-state energy of the deuteron for the SRG-
evolved rank-r approximation of AV18 at different resolution
scales λ.

of the interaction no longer contribute to Ed due to the
decoupling of the momentum scales. The fact that these
plateaus become more pronounced as λ decreases means
that low-rank approximations to the evolved AV18 inter-
action become more accurate, as observed for the pro-
jective Vlow-k approach by Bogner et al. [54]. Unfortu-
nately, the structure of the unitary transformation (24)
(cf. Fig. 6) is too complex to allow a restriction of the
evolution to only these components early on in the flow.

D. Harmonic Oscillator Basis

At some stage in the preparation of nuclear interactions
for configuration space many-body methods, (spherical)
harmonic oscillator (HO) bases comes into play. This is
primarily due to the fact that it allows an exact separa-
tion of the center-of-mass and intrinsic degrees of freedom
in the many-body states if one works in a so-called Emax-
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FIG. 13. Deuteron ground-state energy of the SVD-SRG
evolved EM interaction at λ = 2 fm−1 as a function of the
rank. The SVD-SRG and subsequent diagonalization are per-
formed in relative HO bases with different ~ω.

complete Hilbert spaces3, where Emax =
∑

i(2ni + li)
characterizes the total energy of the oscillator state (see,
e.g., [3, 56]). In the context of the present work, we
can either change the basis of our singular vectors from
momentum to HO states via a unitary transformation,
or implement the SVD-SRG directly in HO representa-
tion. The latter option is of practical interest: The SRG
evolution of three-nucleon forces is easier to implement
in an Emax-complete Jacobi-HO representation than in
momentum representation because the antisymmetriza-
tion operator has a block-diagonal structure in the former
[25, 29, 41, 57–60].

In the present work, we have implemented both ap-
proaches and validated that they give consistent results
for the deuteron ground-state energy. This is demon-
strated for the SVD-SRG evolved EM interaction at
λ = 2.0 fm−1 in Fig. 13. Analogous to Fig. 11, Ed should
become invariant under SVD-SRG evolution once a suffi-
ciently high rank is reached. Similar to the momentum-
space SVD-SRG, that rank is r ≈ 15, independent of the
HO energy scale ~ω. For r < 15, the behavior of Ed

is also the same as for the momentum-space SVD-SRG,
which is shown for comparison (also cf. Fig. 11). We note
that the size of the deviations from the exact value has
a weak dependence on ~ω, and that the deviations from
the momentum space curve are greater for the lowest and
largest choices. These choices amount to a tuning of the
infrared and ultraviolet “cutoffs” of the finite HO basis
to the scales of the problem (here, the deuteron wave
function). This subject has been explored extensively in

3 Other authors use different symbols for the total oscillator en-
ergy quantum number, e.g., Nmax, and refer to the truncation
accordingly. The definition of the truncation is otherwise un-
changed.

the context of large-basis extrapolations in recent years
[61–66].

For our purposes, the main takeaway message is that
the SVD-SRG in HO representation seems to perform as
well as the momentum-space framework, and that the
conclusions regarding the rank of nuclear interactions re-
main valid, for better (EM) or worse (AV18). The rep-
resentations of V in the momentum and HO bases are
reasonably similar, and while T is tridiagonal rather than
diagonal in HO representation, it can still only connect
basis states that are energetically close. Consequently,
the structure and action of the generator will be very
similar as well.

IV. TRANSFORMATION TO THE
LABORATORY FRAME

Moving on from exploring the SVD and SVD-SRG in
the two-body system, our next goal is to apply the fac-
torized interactions in many-body calculations. To do so,
we need to consider the transformation of the interaction
from the center-of-mass frame to the laboratory frame.
This involves the Talmi-Moshinsky transformation from
the intrinsic (i.e., center-of-mass plus Jacobi HO) and
laboratory frames (see, e.g., [67, 68]). The singular vec-
tors are coupled to the center-of-mass HO states:

|NcmLcm, uiα; JM〉

≡
∑

Mcmm

〈LcmMcmjm|JM〉

× |NcmLcmMcm〉 ⊗ |nαjm〉 , (35)

where we have introduced the collective partial wave in-
dex α ≡ (lsTMT ) for brevity. The right singular vectors
are constructed accordingly, and all singular vectors can
be transformed separately by acting on them with the
(unitary) Talmi-Moshinsky transformation matrix.

It is clear from Eq. (35) that each singular vector and
singular value will be multiplied by the number of center-
of-mass states. In this expanded basis, the matrix repre-
sentation of V is given by the Kronecker product of the
identity matrix in the center-of-mass space with the fac-
torized interaction in the relative space. As an example,
we show the matrices obtained for the EM interaction
at λ = 2.0 fm−1 in the J, T,MT = (0, 1, 0) and (2, 1, 0)
channels in Fig. 14. As we can see, the size and struc-
ture of the matrix depends on the truncation we impose
on the oscillator basis: We can use the Emax truncation
briefly discussed in Sec. III D, which requires

E = 2Ncm + Lcm + 2n+ l

= 2n1 + l1 + 2n2 + l2 ≤ Emax (36)

(with single-particle oscillator quantum numbers ni, li in
the laboratory frame), or we can introduce independent
truncations Ncm, n ≤ Nmax and Lcm, l ≤ Lmax. For the
former, the size of the copies of the partial waves de-
creases as Ncm (left and center panels of Fig. 14), and
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green curves are obtained by compressing duplicate singular
values from the full (Nmax, Lmax) = (8, 16) sets.

the size of the singular values changes due to the pro-
jection into the smaller space. For the latter, we obtain
exact copies of the partial waves (right panel).

Figure 15 shows the singular value spectra of these
matrices. Unsurprisingly, the factorized matrix in
(Nmax, Lmax) truncation has many more relevant singu-
lar vectors than the Emax truncation, but it is readily
compressible because we only need to store one repre-
sentative for each group of identical copies of a given
partial wave. At least formally, the factorized matrix in

Emax truncation is not, because of the projection of the
singular vectors into a lower-dimensional HO basis and
the associated change of the singular values. While the
ranks of the Emax and (Nmax, Lmax) matrices are roughly
similar overall, a detailed view of the dominant singular
vectors gives the latter a slight advantage.

In the (Nmax, Lmax) case, the rank of the interaction
in each channel will be given by the sum of the ranks
of the partial waves that can contribute to each channel
under the usual selection rules for angular momentum
and parity: For the (J, T,MT ) = (0, 1, 0) channel, for
example, the rank will be the sum of the ranks of all T =
1 neutron-proton partial waves, since we can couple each
relative angular momentum j with the corresponding Lcm

to total angular momentum J = 0. In the (J, T,MT ) =
(2, 1, 0), all partial waves with |Lcm−2| ≤ j ≤ Lcm+2 are
allowed, and this amount of allowed coupling will grow
with the total J . This matches the observations of a
recent study that applied tensor factorization techniques
to nuclear interactions, which found an increase of their
rank with J [31].

To conclude, we saw how the embedding of the fac-
torized interactions into a larger space in the context of
the Talmi-Moshinsky transformation introduces copies of
the singular values that formally increase the rank of the
interaction. Based on our analysis here, it seems most
appropriate to tackle this issue by performing the trans-
formation in (Nmax, Lmax) truncation because then the
copies will be identical and one easily avoid the addi-
tional storage. An amplified version of this issue appears
in the implementation of the SVD-SRG for three-body
forces, because the two-body relative partial waves must
be embedded into the three-body relative partial waves to
track induced forces [41]. Research on how to overcome
this issue in the next stage of our project is in progress.
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FIG. 16. IMSRG(2) ground-state energies of selected closed-
shell nuclei as a function of the flow parameter s for the
EM1.8/2.0 NN + 3N interaction (see [69, 70] and text). The
SVD-SRG with different ranks (per partial wave) is used to
construct the evolved NN component of the interaction. The
results are obtained for a HO basis with emax = 8, E3max = 14
and ~ω = 20 MeV, which is sufficiently close to convergence
in these nuclei.

V. MANY-BODY CALCULATIONS

After our extensive discussion of how the SVD and
SVD-SRG can be integrated into the typical workflows
for processing nuclear NN and 3N interactions, we have
now reached the final stage, applications in actual many-
body calculations. Since it will be a formidable task to
re-formulate current many-body methods to leverage the
factorization for efficiency gains, we focus for now on
benchmarking the accuracy of the rank-r SVDs by per-
forming conventional many-body calculations with the
reconstructed interactions.

In Fig. 16, we show the results from ground-state en-
ergy calculations for closed-shell nuclei in the IMSRG(2)
approach [3, 4]. They are generated using the so-called
EM1.8/2.0, which consists of the EM interaction evolved
to λ = 1.8 fm−1 and an NNLO 3N interaction with cut-
off Λ = 2.0 fm−1 whose low-energy constants have been
fitted to the triton binding energy and 4He charge radius
[69, 70]. While not fully consistent from the view of chiral
EFT, this interaction has been empirically successful for
the description of ground-state energies of a wide range
of nuclei, although it underestimates radii by a few per-
cent (see [1] and references therein, in particular [71]). It
serves as a “realistic” complement to benchmark calcu-
lations that are based on the SVD-SRG evolved NN in-
teraction alone, which produce nuclei that are overbound
and much too small. The performance of the rank-r ap-
proximation and SVD-SRG is effectively the same in all
the cases we studied.

The SVD-SRG interaction accurately recovers the re-
sults obtained without factorization once we include be-
tween 30 and 40 components per partial wave, which is
consistent with our findings in the two-nucleon system.
This encompasses the Hartree-Fock calculation that is
used to prepare the reference state [3, 4], as well as the
details of the IMSRG(2) flow of the ground-state energy
as a function of the flow parameter s. As before, this
rank is primarily determined by the SVD of the Coulomb
interaction VC between the protons, while 5 to 10 com-
ponents provide a highly accurate reproduction if only
nuclear interactions are included in the calculation.

Looking in more detail, we observe that the con-
vergence is not uniform in all of the studied nuclei:
The ground-state energy of 4He, remains essentially un-
changed as the rank increases from r = 20 to 30, while
16O and 40Ca gain several hundred keV and a few MeV,
respectively. Moreover, we obtain a more substantial
change in the 4He and 16O ground-state energies as we
further increase the rank to 40, while this change is
smaller than the previous one in 40Ca. As noted in the
discussion of the phase shifts in Sec. III C, these obser-
vations can be understood by noting that we include
interaction components based on the size of the asso-
ciated singular values, which will cause an alternation
between components of the nuclear and Coulomb inter-
actions. In addition, 4He, 16O, and 40Ca are probing the
interaction at increasingly higher (laboratory-frame) an-
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emax = 8, E3max = 14 and ~ω = 20 MeV (cf. Fig. 16).

gular momenta, so it is not surprising that specific inter-
action components may only become relevant for heavier
masses.

We have verified that the ground-state energies of the
selected nuclei are indeed converged by increasing the
rank from 40 to the full rank in regular steps. We do
not include these curves in Fig. 16 to avoid clutter, but
refer the reader to Fig. 17 below, which shows that r = 40
yields an accurate and converged reproduction of not only
the ground-state energies but also the charge radii of the
studied nuclei.

To investigate the SVD-SRG evolution of general ob-
servables, we also construct the mean-square radius op-
erator

R2 =
1

A2

A∑
i=1

(ri −Rcm)2 (37)

using Eq. (24) to obtain the unitary transformation in
the two-body system from the singular vectors of the
truncated SVD. In Fig. 17, we illustrate the dependence
of the IMSRG(2) root-mean-square radii R ≡

√
〈R2〉 of

4He, 16O and 40Ca on the rank of the SVD. Just like in
the case of the energy, 30 to 40 components are sufficient
for an accurate reconstruction of the unitary transforma-
tion. For comparison, we also include the radii obtained
with the unevolved R2 operator, which differ by approxi-
mately 5%, 0.5%, and 0.1% in 4He, 16O and 40Ca, respec-
tively. Since the SRG evolution targets physics at high-
momentum or short-range, its effect on a long-ranged op-
erator like R2 is weak, and negligible compared to other
sources of uncertainty at present.

We conclude our discussion by remarking that while
R2 is certainly one of the simplest operators besides the
energy that can be investigated, we do not expect issues
in applying the factorized unitary transformation to more
complex operators, e.g., in studies of electroweak transi-
tions [44, 72, 73], since it is completely determined by the
properties of the Hamiltonian.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have used the Singular Value Decom-
position (SVD) to perform principal-component analy-
ses of two current nucleon-nucleon interactions, the fre-
quently used chiral N3LO interaction by Entem and
Machleidt [45] and the Argonne V18 interaction [21]. We
showed that the former readily allows the construction of
a low-rank representation by truncating the SVD based
on the size of the singular values, while the situation is
much more complicated for the latter because of its local
nature and the ensuing structure in momentum space,
and its high implicit resolution scale.

We have merged the SVD with Similarity Renormal-
ization Group (SRG) techniques, and shown that the
factorized representation can be accurately evolved to
lower resolution scales, although the rank of the initial
interaction ultimately determines whether it is signifi-
cantly more efficient than the traditional SRG. While the
SRG evolution of two-nucleon interactions is no challenge
nowadays, we intend to extend these techniques to three-
nucleon forces in the next stage of our project, where
more significant efficiency gains are possible. Looking
even further into the future, an additional extension to
the four-body system might make the consistent evolu-
tion of initial [74–76] and induced four-nucleon forces pos-
sible [41, 77, 78].

In the present work, we have carried the factorized
form of the nucleon-nucleon interactions through the ma-
jor steps of the workflows that are used to prepare them
for application in nuclear many-body calculation, but
the major task to formulate current many-body meth-
ods themselves to exploit the factorization remains for
the future. In combination with an SVD-SRG for three-
nucleon forces, it holds the potential for significant ef-
ficiency gains both in the storage requirements and the
computational cost. This is essential as calculations are
pushed to heavier, more exotic, and structurally more
complex nuclei.

While these developments are the main focus of our
own efforts, the present study suggests additional direc-
tions for future research. As we have seen throughout
our discussion, the consistent inclusion of the Coulomb
interaction in the SVD-SRG evolution adversely impacts
the rank compression that can be achieved in proton-
proton channels of the interaction, hence it is worthwhile
to explore alternative treatments. Next, the remarkable
similarity of the interaction’s rank across all partial waves
could suggests that we are merely seeing the projection
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of a few relevant operators into different channels, and
we will explore whether such a connection can indeed
be made. While the momentum and harmonic-oscillator
bases explored for the SVD-SRG in this work have some-
what similar characteristics, the observation that we ob-
tain nearly identical ranks both bases lends support to
this hypothesis. Additional evidence is provided by the
convergence behavior of nuclear ground-state energies,
which shows that the impact of certain interaction com-
ponents depends on whether we are studying s-, p-, or
sd-shell nuclei. Finally, the implementation of the Talmi-
Moshinsky transformation to the SVD factors was a pro-
totypical example for the artificial increase of how the em-
bedding of an operator in larger product Hilbert spaces
increases the rank of the operator’s matrix representa-
tions through redundant copies. Given that the many-
body Hilbert spaces themselves have a product structure,
tensor representations seem like a particularly suitable

candidate for handling the physical information encoded
in an operator in the most efficient way — indeed, this is
the reason for the success of tensor network methods in
other areas of many-body physics.
Note: While this work was in its late stages, a preprint

about low-rank decompositions of chiral nucleon-nucleon
interactions was published [79]. This study has some
overlap with our work and provides independent confir-
mation for part of the results presented here.
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