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Both the incompressibility KA of a finite nucleus of mass A and that (K∞) of infinite nuclear
matter are fundamentally important for many critical issues in nuclear physics and astrophysics.
While some consensus has been reached about the K∞, accurate theoretical predictions and ex-
perimental extractions of Kτ characterizing the isospin dependence of KA have been very difficult.
We propose a differential approach to extract the Kτ and K∞ independently from the KA data of
any two nuclei in a given isotope chain. Applying this new method to the KA data from isoscalar
giant monopole resonances (ISGMR) in even-even Pb, Sn, Cd and Ca isotopes taken by U. Garg et

al. at the Research Center for Nuclear Physics (RCNP), Osaka University, Japan, we find that the
106Cd-116Cd and 112Sn-124Sn pairs having the largest differences in isospin asymmetries in their re-
spective isotope chains measured so far provide consistently the most accurate up-to-date Kτ value
of Kτ = −616 ± 59 MeV and Kτ = −623 ± 86 MeV, respectively, largely independent of the re-
maining uncertainties of the surface and Coulomb terms in expanding the KA, while the K∞ values
extracted from different isotopes chains are all well within the current uncertainty range of the
community consensus for K∞. Moreover, the size and origin of the “Soft Sn Puzzle” is studied with
respect to the “Stiff Pb Phenomenon”. It is found that the latter is favored due to a much larger
(by ∼ 380 MeV) Kτ for Pb isotopes than for Sn isotopes, while the K∞ from analyzing the KA data
of Sn isotopes is only about 5 MeV less than that from analyzing the Pb data.

I. INTRODUCTION.

Because of its fundamental importance in nuclear
physics and broad impacts on astrophysics, the incom-
pressibility K∞ of infinite nuclear matter has been a long
standing and major scientific goal of many experimental
and theoretical researches. Since the pioneering work of
Blaizot who determined K∞ = (210 ± 30) MeV from
analyzing the experimental data on giant monopole res-
onance (GMR) energies in 40Ca, 90Zr and 208Pb [1], ex-
tensive theoretical studies and systematic experiments on
the incompressibility KA of finite nuclei extracted from
GMR energies over the last four decades [1–6] have led
to the community consensus that the K∞ is in the range
of 220 MeV to 260 MeV [3, 6, 7] or around 235 ± 30
MeV [8, 9]. Thanks to the new advancement in exper-
iments especially at rare isotope beam facilities, GMR
energies of neutron-rich nuclei along long isotope chains
have become possible recently, facilitating more accurate
and extensive explorations of the isospin dependence of
KA.

The incompressibility KA of finite nuclei is usually pa-
rameterized in the form of a leptodermous expansion in
powers of A−1/3 in typical macroscopic models as [1]

KA ≈ K∞(1 + cA−1/3) +Kτδ
2 +KCouZ

2A−4/3 (1)

for a nucleus of mass number A, charge number Z and
isospin asymmetry δ = N−Z

A , with c ≈ −1.2 ± 0.12 [10]
and KCou ≈ −5.2 ± 0.7 MeV [11] being the surface and
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Coulomb parameters, respectively. The Kτ character-
izing the isospin dependence of KA has been the main
focus of many recent experimental and theoretical inves-
tigations. By moving the Coulomb term to the left side
of the above equation, for all practical purposes [3] in ex-
tracting the Kτ from the experimental KA data [12–17],
the KA−KCouZ

2A−4/3 was fitted with a quadratic func-
tion of the form a+Kτδ

2 assuming a = K∞(1+cA−1/3) is
a constant. This approach resulted in an “experimental”
value of Kτ = -550±100 MeV from the KA data of Sn
isotopes and Kτ = -555±75 MeV from the Ca isotopes,
respectively. The mass dependence of a and the known
correlation between K∞ and Kτ neglected in the above
approach were found to affect significantly the extracted
Kτ values [5, 18]. For example, using the same c and
KCou parameters but preserving the mass dependence
of a and considering the correlation between K∞ and
Kτ in the error minimization of a multivariate χ2 fit,
Kτ = -595±177 MeV, K∞ =209 ± 6 MeV from Sn iso-
topes, and Kτ = -463±405 MeV, K∞ =211 ± 11 MeV
from the Cd isotopes were found [5]. As it was stressed
already [3, 5, 18, 19], the state of affairs in understanding
and extracting the Kτ has been very unsatisfactory for a
long time.
While it is well known that the K∞ is a fundamen-

tal quantify critical for solving many interesting issues
in both nuclear physics and astrophysics, to our best
knowledge, impacts of Kτ on astrophysical observables,
e.g., radii of neutron stars, are only indirect through the
shared underlying isovector interactions. Nevertheless,
an accurate value ofKτ is useful for predicting the incom-
pressibilities and thus the collective excitations of heavy
neutron-rich nuclei that have not been measured or can
not be measured directly because of their instabilities. It
is thus imperative to find more robust methods to extract
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accurately both the K∞ and especially the Kτ from the
KA data. Such methods are also expected to play impor-
tant roles in analyzing the coming new data from mea-
suring the KA of exotic, more neutron-rich nuclei in long
isotopic chains at advanced radioactive beam facilities.
In some earlier studies, see, e.g., Ref. [3] for a recent

review, the leptodermous expansion of Eq. (1) was used
to extract its coefficients by performing χ2 fittings to
the experimental KA data. We regard this approach as
the integral approach in our following discussions. It has
been shown in numerous works, see, e.g., [20], that such
approach is not very accurate. It was concluded that
these leptodermus coefficients are not well constrained
by the experimental data. Later, some sort of commu-
nity “consensus” was reached that the model to ana-
lyze K∞ must contain microscopic effects, reproduce the
GMR and also other observables before one extrapolates
to the infinite system. In reality, in analyzing the GMR
data from RCNP, for instance, the “consensus” approach
was used in extracting only the K∞ and indeed much
interesting physics was obtained. However, the “exper-
imental” Kτ value was always extracted from the same
KA data using the Eq. (1) [12–17] because the Kτ is only
defined through this equation for the incompressibility of
finite nuclei. Thus, regardless of whatever criticisms peo-
ple may have for using the Eq. (1) to extract the K∞,
the same “consensus” approach does not apply to the ex-
traction of Kτ which can only be extracted by using the
Eq. (1). Moreover, given the still very large dependences
on both the many-body theories and interactions used in
the “consensus” approach in studying the K∞ for infinite
nuclear matter, some of the same techniques can not be
used in calculating the Kτ for finite nuclei and the rele-
vant isovector interactions are much less known than the
isoscalar interactions.
Indeed, shell and pairing effects are not considered in

the Eq. (1). These effects may play some roles in extract-
ing the incompressibility from ISGMR data [22], but their
effects are still much smaller than the current uncertainty
range of the fiducial value ofK∞ not to mention the huge
uncertainty of Kτ discussed above when these effects are
neglected. We notice that it was already pointed out
that shell effects are not important for ISGMR [15] as
giant resonances are basically collective phenomena. Ob-
viously, more researches are necessary to quantify more
precisely the shell and pairing effects on ISGMR.
The well-known problems mentioned above about the

reliability of the leptodermus coefficients extracted from
the χ2 fitting do not necessarily mean that the Eq. (1)
itself is wrong or inaccurate, they may indicate instead

that the χ2 fitting approach is not appropriate for ex-
tracting the K∞ and Kτ values. Thus, they do not pre-
vent people from using the same Eq. (1) in better or
more appropriate ways to extract accurately the K∞ and
Kτ from the same KA data.

In this work, we propose a differential approach to ex-
tract exactly the values of K∞ and Kτ independently
from the KA data of two nuclei in any isotopic chain.
The nucleus-nucleus pair having the largest difference in
their isospin asymmetries is found to give the most accu-
rate Kτ and K∞ values simultaneously. Effects of vary-
ing the c and KCou parameters by ±20% around their
known most probable values on extracting both Kτ and
K∞ are also examined. While the variations of c and
KCou lead the extracted K∞ values to vary within its
current consensus range, they have almost no effect on
extracting the Kτ , indicating the robustness of the dif-
ferential approach. We found that both the mean value
and uncertainty we extracted forK∞ are compatible with
those from using the state-of-the-art microscopic theories
in the “consensus” approach, while the accuracy of the
extractedKτ in our approach is much higher than what is
available in the literature. Finally, it has been known for
about a decade that the KA values extracted experimen-
tally from Sn isotopes are apparently smaller compared
to predictions of non-relativistic mean-field or relativistic
mean-field + Random Phase Approximation (RPA) cal-
culations that can successfully describe the ISGMR data
of Pb isotopes [13]. However, the origin of this so-called
“Soft Sn Puzzle” [3, 21] or “Stiff Pb Phenomenon” [22]
is still unclear. We shall investigate if the differential
analysis can shed new light on this issue.

The rest of the paper is organized as follows. In the
next section, we present details of the proposed differ-
ential analyses. In section III, we perform a differen-
tial analysis for the KA data [12–17] from isoscalar giant
monopole resonances in even-even Pb, Sn, Cd and Ca
isotopes taken by U. Garg et al. at RCNP. In section IV,
we study effects of the remaining uncertainties of the sur-
face and Coulomb parameters on extracting the K∞ and
Kτ values. Finally, we summarize and draw conclusions
of our work.

II. THE DIFFERENTIAL APPROACH

Applying the Eq.(1) to any two isospin asymmetric
(δ 6= 0) nuclei of mass and charge (A1, Z1) and (A2, Z2)
separately, the Kτ and K∞ can be expressed exactly as
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[
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(
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1
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(3)

where Si = 1 + cA
−1/3
i for the nucleus-i with i=1 or

2. One can understand intuitively the physical mean-
ings of the above expressions by using the mathematical
definitions of Kτ and K∞ based on Eq. (1). Namely, ne-
glecting the Coulomb correction, Kτ ≡

(

∂KA/∂δ
2
)

S
≈

∆(KA/S)/∆(δ2/S) = (
KA1

S1
− KA2

S2
)/(

δ2
1

S1
− δ2

2

S2
) gives the

leading term of Kτ in Eq. (2). It is simply the changing
rate ofKA with respect to δ2 evaluated by using the ratio
of their finite changes. Similarly, K∞ ≡ (∂KA/∂S)δ ≈
∆(KA/δ

2)/∆(S/δ2) = (
KA1

δ2
1

− KA2

δ2
2

)/(S1

δ2
1

− S2

δ2
2

) gives the

leading term of K∞ in Eq. (3).
We notice that while the Kτ and K∞ are determined

independently by the KA data themselves of any two
nuclei used, they satisfy the constraint given by Eq.
(1). Therefore, there is an intrinsic correlation between
Kτ and K∞ when they are varied using the KA data of
many different nucleus-nucleus pairs in a given isotopic
chain as we shall demonstrate.
The corresponding uncertainties of Kτ and K∞ can be

calculated exactly according to the rules of error prop-
agation using the experimental errors of KA data, i.e.,
σKA1

and σKA2
in the nucleus-1 and nucleus-2 considered.

Nevertheless, to see analytically what nucleus-nucleus
pairs may give the most accurate Kτ and K∞ values, we
notice that for heavy nuclei in the same isotope chain,
S1 ≈ S2 ≈ 1, the error bars are reduced to

σKτ
≈
√

σ2
KA1

+ σ2
KA2

/
∣

∣

∣

∣

δ21 − δ22

∣

∣

∣

∣

, (4)

σK∞
≈
√

(δ2
2
· σKA1

)2 + (δ2
1
· σKA2

)2
/∣

∣

∣

∣

δ21 − δ22

∣

∣

∣

∣

. (5)

They both are inversely proportional to |δ21−δ22 |, thus nu-
clear pairs having the largest difference in their isospin
asymmetries will give the most accurate Kτ and K∞ val-
ues simultaneously. Moreover, because of the weighting
of σKA

by δ2 ≪ 1 in evaluating the σK∞
, the K∞ can

be more precisely evaluated than the Kτ , explaining the
relatively larger errors of the extracted Kτ values.
While in principle the above formalisms can be applied

to any two nuclei, we shall restrict their applications to
nuclei in the same isotopic chain. This will reduce not
only effects of systematic experimental errors as what
is being used is the difference in KA scaled by either
the surface factor S or isospin asymmetry δ of the two
nuclei in the same isotopic chain, but also effects of the
higher-order terms neglected in expanding the KA in Eq.

(1). This is also one of the reasons why the differential
approach can more precisely extract both the Kτ and
K∞ compared to typical integral approaches normally
used in the literature.
In cases where one of the nuclei is isospin-symmetric,

say δ1 = 0, its KA alone can be used to evaluate the

K∞ according to K∞ = KA1
/S1 − KCouZ

2
1A

−4/3
1

/S1

while the Kτ can be evaluated from the Eq. (2) by choos-
ing the nucleus-2 as neutron-rich as possible to get the
most accurate result, indicating the importance of using
exotic heavy isotopes. As noticed already in the litera-
ture, see, e.g., Ref. [19], the leptodermous expansion in
Eq. (1) itself may not be a good approximation for light
nuclei, the differential approach is thus expected to work
better for more heavy nuclei.

III. DIFFERENTIAL ANALYSES OF THE

KA DATA FROM EXPERIMENTS AT RCNP

Shown in Fig. 1 are the results of our differ-
ential analyses of the KA data in 204,206,208Pb,
112,114,116,118,120,122,124Sn, 106,110,112,114,116Cd and
40,42,44,48Ca from the GMR experiments at RCNP
[12–17] using c = −1.2 and KCou = −5.2 MeV. The
extracted Kτ and K∞ values are shown as functions of
the difference (δ2 − δ1) in isospin asymmetries of the
two nuclei involved in each isotope chain. Except for
the Pb isotopes, we took the KA data directly from the
experimental publications as listed in Table I. They
derived the KA values using the moment ratios for the
ISGMR energies EISGMR and the experimental charge
radii

√
< r2 > from Ref. [23] according to the relation

KA =

(

EISGMR

~c

)2

Mc2 < r2 > (6)

where M is the average nucleon mass. They did not pub-
lish the KA values for the three Pb isotopes. We de-
rived their KA values using the published ISGMR ener-
gies (from

√

m1/m−1) [15] and their charge radii from
Ref. [23]. More quantitatively, we found that KA is
136.93± 1.99 MeV, 137.44± 1.99 MeV and 136.44± 1.99
MeV, respectively, for 204Pb, 206Pb and 208Pb.
Several interesting observations can be made: (1) The

uncertainties of both Kτ and K∞ generally decreases
while their mean values remain approximately constants
with the increasing (δ2 − δ1) for each isotope chain. (2)
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FIG. 1: (Color online) The Kτ (lower window) and K∞ (upper window) from differential analyses of the incompressibilities
in finite nuclei as functions of the difference (δ2 − δ1) in isospin asymmetries of the isotope pairs used. The solid lines are the
mean values of Kτ and K∞ for the respective isotope chains. The arrows indicate the Cd and Sn isotope pairs giving the most
accurate Kτ and K∞ values.

The 106Cd-116Cd and 112Sn-124Sn pairs give the most ac-
curate and consistent values of Kτ = −616±59 MeV and
Kτ = −623 ± 86 MeV, respectively. (3) The Kτ values
from analyzing the relatively light 40,42,44,48Ca isotopes
have larger error bars and scatter around broadly at small
isospin separations. However, they seem to converge at
large isospin separations and become generally consistent
with the means from analyzing the Sn and Cd isotopes
within error bars. We notice that among all data avail-
able from the RCNP experiments, the 40−48Ca pair has
the highest isospin separation (δ2−δ1) = 0.167. This pair
gives Kτ = −756 ± 149 MeV. As mentioned earlier, the
KA expansion of Eq. (1) is not expected to work well
for light nuclei. The scattering of the Kτ values from
analyzing the Ca data may thus indicate that our differ-
ential approach based on Eq. (1) has reached its validity
limit. (4) The 106Cd-116Cd and 112Sn-124Sn pairs also
give the most accurate K∞ values of K∞ =213± 2 MeV

and K∞ =220± 3 MeV, respectively. (5) The extracted
K∞ shows the well-known isotope dependence found ear-
lier when the Eq. (1) was used previously in χ2 fittings
of the KA data [1, 3–6, 19] although our differential ap-
proach does not use any fitting at all. Nevertheless, the
variation of the K∞ from Cd to Ca isotopes is well within
the uncertainty range of the currently reached consensus
value for K∞.

While the three Pb isotopes pairs have very small
isospin separations of 0.00765, 0.00781 and 0.0155, re-
spectively, the results from the differential analyses of
their KA values set a useful reference for comparisons
and favor a “Stiff Pb Phenomenon” [22] instead of the
so-called “Soft Sn Puzzle” existing in the literature. The
Pb data give an average value of K∞ = 223.1 ± 39.5
MeV and Kτ = −245 ± 753 MeV, respectively. Their
means are indicated by the horizontal magenta bars for
comparisons. Two important indications are worth em-
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TABLE I: The incompressibility data of finite nuclei analyzed.

Nucleus KA (MeV) Reference
40Ca 144.46 ± 0.33 [17]
42Ca 139.00 ± 1.09
44Ca 137.36 ± 0.66
48Ca 131.90 ± 4.13

106Cd 127.84 ± 0.86 [14]
110Cd 124.59 ± 0.86
112Cd 123.59 ± 0.77
114Cd 120.95 ± 1.24
116Cd 118.96 ± 0.86

112Sn 131.86 ± 1.53 [12, 13]
114Sn 129.45 ± 1.64
116Sn 127.11 ± 1.53
118Sn 126.39 ± 1.54
120Sn 125.45 ± 1.63
122Sn 121.33 ± 1.54
124Sn 120.17 ± 1.62

204Pb 136.93 ± 1.99 [15]
206Pb 137.44 ± 1.99
208Pb 136.44 ± 1.99

phasizing. Firstly, it was not known before what is the
cause of the “Soft Sn Puzzle”. Our analysis here indi-
cates that the mean value of K∞ from Sn isotopes (218
MeV) is only 5 MeV below that from Pb isotopes (223
MeV) well within the experimental uncertainties. This
finding happens to be the same as that found in a very
recent Bayesian uncertainty quantification of the nuclear
matter incompressibility using the original GMR data of
the same sets of isotopes analyzed within the Skyrme
Hartree-Fock plus RPA approach [24]. On the other
hand, the mean value of Kτ from Sn isotopes (-626 MeV)
is significantly below that (-245 MeV) from the Pb iso-
topes although the latter also has a large error bar. It
indicates that the “Soft Sn Puzzle” is mainly due to the
significantly smaller Kτ value for Sn isotopes or larger
Kτ value for Pb isotopes. The overpredictions of the
KA values by the state-of-the-art microscopic theories are
most likely due to the model ingredients controlling the
Kτ instead of theK∞ values. Secondly, it is interesting to
note that the Kτ values from Sn, Cd and Ca isotopes all
converged asymptotically at large isospin separations to
relatively precise values with less than about 20% errors.
However, the average Kτ value for Pb isotopes is signif-
icantly higher than these asymptotic values although it
is only slightly higher than the Kτ values for Sn and Cd
isotopes at the same small isospin separations. These
findings may give us some hints about whether there is
a “Soft Sn Puzzle” or a “Stiff Pb Phenomenon”. Our
results seem to indicate that it is probably more mean-
ingful to speak about a ‘Stiff Pb Phenomenon”. To verify

the latter experimentally, more KA data for Pb isotopes
are obviously necessary.

205 210 215 220 225
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FIG. 2: (Color online) The correlation between Kτ and
K∞ with each point representing one nucleus-nucleus pair in
the Cd or Sn isotope chain corresponding to the results shown
in Fig. 1. The solid lines are results of a χ2 fit to all points
in each isotope chain.

It is interesting and necessary to check in more de-
tail the consistency between the results of our differential
analyses and those from the traditional integral analyses.
Shown in Fig. 2 are the correlations between Kτ and
K∞ with each point representing one nucleus-nucleus
pair in the Cd or Sn isotope chain corresponding to the
results shown in Fig. 1. Averaging over these results is
equivalent to performing a typical integral analysis, e.g.,
a multivariate χ2 fitting or Bayesian analysis. The solid
lines are results of a χ2 fit to all points in the two isotope
chains, separately. The mean of the Kτ is −625 ± 100
MeV for the Cd isotopes and −626±188 MeV for the Sn
isotopes, respectively. The corresponding mean of K∞ is
213 ± 3 MeV for the Cd isotopes and 218 ± 6 MeV for
the Sn isotopes, respectively. These mean values are in
general agreement with the results of earlier χ2 analy-
ses [3, 5] of the same KA data using essentially identical
surface and Coulomb parameters within error bars.
Interestingly, within the error bars of the mean values

there is a clear anti-correlation between Kτ and K∞. It
can be understood easily. With the surface and Coulomb
parameters fixed, for a givenKA value, the Kτ andK∞ is
expected to be anti-correlated according to their relation-
ship given in Eq. (1). Notice that the Kτ vs K∞ correla-
tions for the Cd and Sn isotopes are almost in parallel in
the direction of K∞ as they give approximately the same
Kτ values but slightly different (about 5 MeV) K∞ val-
ues (notice the fine K∞ scale used).
We emphasize that the error bars of the mean values

of both Kτ and K∞ in the integral approaches, i.e., by
averaging over all isotope pairs, are all much larger than
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FIG. 3: (Color online) Variations of the Kτ (lower windows) and K∞ (upper windows) due to the variations of the surface
parameter c (left windows) and Coulomb parameter KCou (right windows), respectively, for the Sn isotopes.

those we found in the differential analyses of 106Cd-116Cd
and 112Sn-124Sn pairs. Besides the advantage of largely
cancelling the systematic errors in the differential anal-
yses, another reason is that the Kτδ

2 contribution to
KA is very small even for the most neutron-rich nuclei
available. For instance, with δ = 0.2,Kτ = −600 MeV,
Kτδ

2 = −24 MeV that is still only about 10% of the
acceptable K∞ values around 240 MeV. It is actually
significantly less than the current uncertainty of about
40 MeV of the consensus value for K∞. A global χ2

fit to the KA data or Bayesian analysis of all KA data
available thus can not reliably extract the value of Kτ

from its small contribution relative to K∞ to the KA.
In turn, the uncertainty of extracting the K∞ can not
be better than Kτδ

2/K∞ in the integral analyses of the
KA data. On the contrary, the differential approach de-
couples completely the extractions of Kτ and K∞ for
each isotope pair used. Only the Kτ and K∞ extracted
independently for different isotope pairs along an isotope
chain show an expected intrinsic correlation within their
respective error bars.

IV. EFFECTS OF THE SURFACE AND

COULOMB PARAMETERS

We have used above the known most probable values
of c = −1.2 [10] and KCou = −5.2 MeV [11]. It is also
known that the Coulomb parameter is rather model in-
dependent [11, 25] while the calculations [1, 26–30] of
the surface parameter c show somewhat larger variations
around c ∼ −1. It is generally accepted that both the c
andKCou parameters have less than about (10−20)% un-
certainties [3, 5]. How do theses uncertainties affect the
accuracies of extracting the Kτ and K∞ in the differen-
tial analyses? To answer this question, we have carried
out systematic calculations by varying the two parame-
ters independently by ±20% around their most probable
values.
As an example, shown in Fig. 3 are the variations of

the Kτ (lower windows) and K∞ (upper windows) due
to the variation of the surface parameter c (left windows)
and Coulomb parameterKCou (right windows) for the Sn
isotopes. Qualitatively, effects of varying the KCou and
especially the parameter c are much smaller on Kτ than
on K∞. Quantitatively, for the 112Sn-124Sn pair, chang-
ing the c parameter by 40% from −1.2×0.8 to −1.2×1.2
makes the Kτ change by about 6% from −624± 84 MeV
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to −663± 87 MeV, while the K∞ changes by about 13%
from 205±29 MeV to 236±34 MeV, respectively. On the
other hand, by changing theKCou by 40% from −5.2×0.8
to −5.2×1.2, the Kτ change by about 8% from −616±87
MeV to −669±87 MeV, while the K∞ changes by about
6% from 213± 31 MeV to 227± 31 MeV. Thus, the (6-
8)% uncertainty of Kτ due to the ±20% uncertainty of
the surface parameter is much smaller than the approx-
imately 14% uncertainty due to the experimental errors
of KA . While the (8-13)% uncertainty of K∞ due to
the ±20% uncertainty in the Coulomb parameter is com-
patible with that due to the experimental errors of the
KA data. Thus, the remaining uncertainties of the sur-
face and Coulomb parameters of about (10-20)% have
essentially no effect on the extraction of Kτ .
The observed dependences of Kτ and K∞ on the vari-

ations of the surface and Coulomb parameters can be
understood analytically by further examining the expres-
sions of Kτ and K∞ in Eq. (2) and Eq. (3), respectively.
Firstly, we examine effects of the parameter c. The c-
dependent part of Kτ is

Kτ ∝ (1 + cA
−1/3
2

)KA1
− (1 + cA

−1/3
1

)KA2

(1 + cA
−1/3
2

)δ2
1
− (1 + cA

−1/3
1

)δ2
2

. (7)

Because the parameter c appears in all terms, its ef-
fect largely cancels out. In particular, for heavy nuclei
c/A1/3 ≈ 0, the Kτ then becomes independent of c, i.e.,

Kτ → KA1
−KA2

δ2
1
− δ2

2

. (8)

While the c-dependent part of K∞ is

K∞ ∝ δ22KA1
− δ21KA2

c · (δ2
2
A

−1/3
1

− δ2
1
A

−1/3
2

) + δ2
2
− δ2

1

. (9)

The parameter c only appears in the first term of the
denominator. Since both terms in the denominator are
very small, a very small change in the parameter c can
thus lead to a large change in the value of K∞. This
also implies that the surface properties of different nuclei
may affect significantly the extraction of K∞ from the
KA data as already noticed in the χ2 analyses in Ref.
[5].
Similar analyses can be done to understand effects of

the Coulomb parameter KCou. More specifically,

Kτ ∝ −KCouZ
2 (1 + cA

−1/3
2

)A
−4/3
1

− (1 + cA
−1/3
1

)A
−4/3
2

(1 + cA
−1/3
2

)δ2
1
− (1 + cA

−1/3
1

)δ2
2

.

(10)
Again, the parameter c has little effect as it appears in
all terms. Considering cA−1/3 ≈ 0 for heavy nuclei, the
above expression reduces to

Kτ → −KCouZ
2 × A

−4/3
1

−A
−4/3
2

δ2
1
− δ2

2

. (11)

As heavy nuclei are more neutron rich in a given chain
of isotopes, i.e., for A2 > A1, δ2 > δ1, the fraction in

the above equation is always negative. Thus, one obtains
Kτ ∝ KCou. While the KCou itself is negative, thus a
larger negative KCou decreases the value of Kτ as seen in
our numerical calculations. As the overall contribution
of the Coulomb term to the Kτ is small, its variation
causes little change in the final Kτ value. While for the
Coulomb effect on K∞, a similar analysis leads to

K∞ ∝ −KCou

Z2

A
4/3
1

A
4/3
2

× δ22A
4/3
2

− δ21A
4/3
1

δ2
2
− δ2

1

. (12)

Since the last fraction is always positive, thus Kτ ∝
−KCou. Therefore, a larger negative KCou increases the
value of K∞. Moreover, the above analysis clearly ex-
plains why the Coulomb parameter has opposite effects
on extracting the Kτ and K∞ values.

V. SUMMARY AND CONCLUSIONS

In summary, we emphasize the following aspects of our
work

• To our best knowledge, the differential approach
we proposed here is original. The analytical ex-
pressions for K∞ and Kτ are derived from solving
exactly two linear equations for two unknowns us-
ing the KA data as the only input. While the ap-
proach is very simple, its physics is sound. It also
has no dependence on any nuclear many-body the-
ories nor interactions. There is absolutely no fitting
procedure involved, thus it does not suffer from the
well-known problems in fitting the KA data using
the Eq. (1).

• The K∞ and Kτ are directly extracted from the
experimental KA data of any two nuclei in a given
isotope chain. Besides showing that the new ap-
proach gives a K∞ consistent with its fiducial value
from the “consensus” approach, and a Kτ that is
much more accurate than what is available in the
literature, we also ask for the first time the question
which isotope pairs are most useful for extracting
especially the Kτ at rare isotope beam facilities.
Our answer to this question is expected to be useful
for future experiments using rare isotopes to study
the equation of state of neutron-rich matter.

• The so-called “Soft Sn puzzle” (when one uses
the interactions that correctly reproduce the GMR
strength in 208Pb to calculate the GMR strengths
in the Sn and Cd isotopes within the “consensus”
approach, the experimental values are always over-
estimated) has been alive for over 10 years. How-
ever, people have not really understood the under-
lying cause of the puzzle, leading to the conclusion
that it is not feasible to simultaneously reproduce
both the 208Pb and Sn’s GMR data by the same
interaction [21] using the state-of-the-art theories
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within the “consensus” approach. While we did not
solve this puzzle in this work, we showed for the
first time that the K∞ from analyzing the GMR
data of Pb, Sn, Gd isotopes are not much differ-
ent within the experimental error bars to indicate
strongly a “Soft Sn Puzzle”. Quantitatively, the
K∞ from Sn isotopes is only about 5 MeV smaller
than that from the Pb isotopes. On the other hand,
the Kτ from analyzing the 204,206,208Pb data is sig-
nificantly higher (by ∼ 380 MeV) than the con-
verged asymptotic Kτ value at large isospin sepa-
rations in analyzing the Sn and Gd isotopes, indi-
cating strongly a “Stiff Pb Phenomenon” [22]. To
verify this further, differential analyses of future
GMR data of more Pb isotopes will be very use-
ful. The suggestion of having more Pb data was
also made for addressing the same puzzle from a
different perspective in Ref. [22].

• There are several caveats in our work. Firstly, if
the leptodermous expansion of Eq. (1) is perfect,
one expects the K∞ and Kτ extracted from all
pairs of nuclei to be identical. In reality, this is
of course not the case. As mentioned earlier, we
expect the differential approach to work better for
heavy nuclei along the same isotope chains. Indeed,
the Kτ from most isotopes fall approximately on
the same line at large isospin separations within
still relatively large error bars, while the K∞ from
different isotope chains especially the light nuclei
scatter more broadly due to mostly the remaining
(approximately ±20%) uncertainty of the surface
parameter c. Secondly, to avoid introducing any
model dependence in presenting their KA data, the
experimentalists translated their original GMR ob-
servables to the “experimental” KA data by using
the experimentally measured charge radii instead
of the matter radii which are inherently model de-
pendent. This probably introduced a systematic
error in the “experimental” KA data and its ef-
fects have not been evaluated yet. We used the
“experimental” KA data as in all previous analyses
in the literature. Thus, all results presented here
should be understood within the context and with
the cautions discussed above. Nevertheless, the im-
portance and new physics revealed in our work can

be clearly seen from comparing our approach and
results with the traditional ones in the literature.
We also emphasize that the focus of this work is a
more accurate determination ofKτ for finite nuclei,
while the K∞ for infinite nuclear matter just came
out naturally consistent with its fiducial value that
has not changed much since 1980.

In conclusion, we proposed a differential approach to
analyze the incompressibilities of neutron-rich nuclei and
investigated which nuclear pairs give the most accurate
results using both the KA data and analytically. The
nucleus-nucleus pair having the largest difference in their
isospin asymmetries in a given isotope chain is found to
give the most accurate values of both Kτ and K∞ simul-
taneously. Applying this new approach to the KA data
from RCNP, we found that the 106Cd-116Cd and 112Sn-
124Sn pairs give consistently the most accurate up-to-
date Kτ values of −616± 59 MeV and −623± 86 MeV,
respectively, largely independent of the remaining uncer-
tainties of the surface and Coulomb parameters. These
results can exclude many predictions based on various mi-
croscopic and/or phenomenological nuclear many-body
theories in the literature. We also studied the “Stiff Pb
Phenomenon” versus the “Soft Sn Puzzle” and found that
the former is favored. Thus, compared to the integral ap-
proach widely used in the literature, the differential anal-
ysis can reveal some interesting new physics underlying
the incompressibilities of finite nuclei.
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