
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Application of machine learning in the determination of
impact parameter in the math

xmlns="http://www.w3.org/1998/Math/MathML">mrow>m
multiscripts>mi>Sn/mi>mprescripts>/mprescripts>none>/
none>mn>132/mn>/mmultiscripts>mo>+/mo>mmultiscri
pts>mi>Sn/mi>mprescripts>/mprescripts>none>/none>m

n>124/mn>/mmultiscripts>/mrow>/math> system
Fupeng Li, Yongjia Wang, Zepeng Gao, Pengcheng Li, Hongliang Lü, Qingfeng Li, C. Y.

Tsang, and M. B. Tsang
Phys. Rev. C 104, 034608 — Published  7 September 2021

DOI: 10.1103/PhysRevC.104.034608

https://dx.doi.org/10.1103/PhysRevC.104.034608


Application of machine learning in the determination of impact parameter in the
132Sn+124Sn system

Fupeng Li,1, 2 Yongjia Wang,1, ∗ Zepeng Gao,3, 1 Pengcheng Li,4, 1
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Background: 132Sn+124Sn collisions at the beam energy of 270 MeV/nucleon have been per-
formed at the Radioactive Isotope Beam Factory (RIBF) in RIKEN to investigate the nuclear
equation of state. Reconstructing impact parameter is one of the important tasks in the experiment
as it relates to many observables.
Purpose: In this work, we employ three commonly used algorithms in machine learning, the artifi-
cial neural network (ANN), the convolutional neural network (CNN) and the light gradient boosting
machine (LightGBM), to determine impact parameter by analyzing either the charged particles spec-
tra or several features simulated with events from the ultra-relativistic quantum molecular dynamics
(UrQMD) model.
Method: To closely imitate experimental data and investigate the generalizability of the trained
machine learning algorithms, incompressibility of nuclear equation of state and the in-medium
nucleon-nucleon cross sections are varied in the UrQMD model to generate the training data.
Results: The mean absolute error ∆b between the true and the predicted impact parameter is
smaller than 0.45 fm if training and testing sets are sampled from the UrQMD model with the same
parameter set. However, if training and testing sets are sampled with different parameter sets, ∆b
would increase to 0.8 fm.
Conclusion: The generalizability of the trained machine learning algorithms suggests that these
machine learning algorithms can be used reliably to reconstruct impact parameter in experiment.

I. INTRODUCTION

Heavy-ion collisions (HICs) provide a unique oppor-
tunity to explore the nuclear equation of state (EoS),
which remains a key requirement for understanding nu-
clear reaction, nuclear structure, as well as neutron star
properties [1–7]. In recent decades, both experimentalists
and theorists have made major efforts to obtain informa-
tion of EoS. These studies reveal that the uncertainty
of nuclear EoS is the largest in the density-dependent
term at high densities. For this purpose, 132Sn+124Sn,
112Sn+124Sn, and 108Sn+112Sn collisions at beam energy
of 270 MeV/nucleon have been performed at the Radioac-
tive Isotope Beam Factory (RIBF) in RIKEN [8].

Usually in an experiment, the centrality or impact pa-
rameter is reconstructed by using the relationship be-
tween observed quantities and the collision geometry
[9–13]. Recently, the field of artificial intelligence (AI)
has received unprecedented attention, and prodigious
progress has been made in the application of the AI tech-
niques, see e.g., Ref [14] and references therein. Machine
learning (ML), which is a subset of AI, is an interdisci-
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plinary subject, involving probability theory, statistics,
approximation theory, convex analysis, algorithm com-
plexity theory and other subjects. Due to the powerful
learning and induction ability, ML approaches are widely
employed in physical science [15–29]. Of particular rele-
vance to this work, there are several applications of ML
in reconstructing the impact parameter in HICs [30–34].
For example, in Refs. [30–33], the artificial neural net-
work (ANN) or support vector machine is used to re-
construct the impact parameter from final state observ-
ables or the particle momentum distributions. In our
previous work [35], we utilized the convolutional neural
network (CNN) and the light gradient boosting machine
(LightGBM) to determine impact parameter from two-
dimensional transverse momentum and rapidity spectra
of protons on event-by-event basis. It was found that
the average difference between the true impact parameter
and the estimated one obtained with modern ML algo-
rithms, i.e., CNN and LightGBM, is much smaller than
that obtained with simple neutral networks adopted in 25
years ago [35]. In addition, modern ML algorithms have
much stronger big data processing and learning capa-
bilities, as well as stronger generalizability and explain-
ability, which may help us to find new insight into the
existing data. All these aforementioned studies revealed
the capability of ML methods in reconstructing impact
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parameter. We note that in these studies, the training
data is usually generated with theoretical models. For ex-
ample, the quantum molecular dynamics (QMD) model
was used to generate data in Refs [30–32], and a classi-
cal molecular dynamics (CMD) model was used in Ref
[33]. When applying these ML methods to analyze real
experimental data, the reliability should be evaluated as
none of the theoretical models represent real experimen-
tal data perfectly. Using data generated from different
physical models or different model parameter sets from
the same model should give a good estimation of ML’s ca-
pability. For this purpose, the ultra-relativistic quantum
molecular dynamics (UrQMD) model with different nu-
clear EoS and different in-medium nucleon-nucleon cross
sections (two of the main ingredients in the transport
model) is used to generate data, and the generalizability
of ML methods is investigated by generating training and
testing sets with different model parameters.

The paper is organized as follows. In Sec.II, we
will briefly introduce the UrQMD model and different
datasets in this study. We continue with Sec.III in which
ANN, CNN and LightGBM algorithms will be described.
In Sec.IV, we discuss the results and generalizability of
the three algorithms in detail. We end with Sec.V, which
is dedicated to summary and outlook.

II. URQMD MODEL

The UrQMD model is a many-body microscopic trans-
port model which has been successfully extended to de-
scribe HICs with beam energy from tens of MeV per
nucleon up TeV per nucleon available at CERN Large
Hadron Collider (LHC) [36–41]. In the UrQMD model,
each nucleon is represented by a Gaussian wave packet
in phase space. The coordinates ri and momentum pi of
particles i are propagated according to Hamilton’s equa-
tion of motion:

ṙi =
∂〈H〉
∂ pi

, ṗi = −∂〈H〉
∂ri

. (1)

Here, 〈H〉 is the total Hamiltonian function. It consists
of the kinetic energy T and the potential energy U with
U =

∑
i6=j Vij . The following density and momentum

dependent potential has been widely employed in QMD-
like models, [42–47],

Vij = α

(
ρij
ρ0

)
+ β

(
ρij
ρ0

)η
+ tmd ln2[1 + amd(pi − pj)

2]
ρij
ρ0
.

(2)

In this work, the parameter sets which yield a soft (hard)
and momentum dependent equation of state with the in-
compressibility K0=200 MeV (K0=380 MeV) are consid-
ered. From now on we refer to the soft and hard EoS as
SM and HM respectively. Even though K0 has been con-
strained to a relatively narrow range [48–52]), SM and

HM are still considered in this work to generate data
with large differences. Further, although we know the
in-medium nucleon-nucleon elastic cross section (σNN )
is suppressed when compared to the free one, the degree
of this suppression is still not completely pinned down
[53, 54]. We use the FU3FP1 parametrization of σNN
as in our previous works [53, 54]. We also consider the
free σNN in this study. All together, four parameter sets
of the UrQMD model listed in Table I are used. Their
influence on five observable quantities, the nuclear stop-
ping power (vartl) from free protons, the directed flow

v1=〈pxpt 〉, the elliptic flow v2 = 〈p
2
x−p

2
y

p2x+p
2
y
〉, yield of free pro-

tons and multiplicity for central (0≤b≤2 fm) collisions
obtained with different model parameter sets are listed
in Table II. Clearly, observables are affected by model
parameters. For example, v1 increases by 70% if the
flow obtained from SM-I is compared to that from HM-
F. The isospin-dependent minimum span tree (iso-MST)
algorithm is used in UrQMD model to recognize clusters.
The yields of free protons and clusters are very sensitive
to cluster recognition parameters (i.e., the maximum dis-
tance and relative momentum between two nucleons). To
consider this issue, calculations with parameter sets dif-
ferent from the nominal ones (see caption for details) are
also presented as SM-I(MST)*. As listed in Table II, the
number of free protons and Mch also varies a lot with the
cluster recognition parameters.

Table I. Four parameter sets of the UrQMD model with dif-
ferent mean-field potential and nucleon-nucleon elastic cross
section.

EoS cross section mode
SM free SM-F
SM in-medium SM-I
HM free HM-F
HM in-medium HM-I

For each parameter set, 60 000 events of 132Sn+124Sn
collisions with a uniform impact parameter distribution
in 0≤b≤7 fm at 270 MeV/nucleon are simulated. Data
obtained from 50 000 of these events are classified as the
training data while the remaining 10,000 events are the
testing data. Normally, the bdb weighted distribution
(i.e., the number of events with an impact parameter b
being proportional to b) due to the collision geometry is
used in transport model simulations. In Refs. [31, 34, 35],
large bias between predicted and true impact parameter
has been observed for the central collisions because a very
small fraction of the total events is central collisions 1

[55–57]. To avoid this issue, events with flat distribution
of impact parameter are simulated.

Usually, the transverse momentum pt=
√
p2x + p2y and

1 Another possible reason is that physical fluctuation is larger in
central collisions than in peripheral ones.
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Table II. Observable quantities (i.e., v1 slope and v2 of free
protons at midrapidiy, the yield and vartl of free protons,
the total charged multiplicity Mch) obtained with different
UrQMD parameter sets. We note here that the results listed
in this table cannot be compared directly with experimen-
tal data, because events with flat b-dependent are simulated.
To compare with experimental results, calculations with b-
weighted events should be used.

mode v1 slope v2 yield vartl Mch

SM-F 0.14 -0.0046±0.0011 44.98 0.94 87.60
SM-I 0.11 -0.0024±0.0012 43.97 0.91 86.35

SM-I(MST)∗ 0.097 -0.0043±0.0013 36.95 0.92 81.84
HM-F 0.19 -0.0077±0.0010 50.07 0.97 90.51
HM-I 0.15 -0.0043±0.0010 49.14 0.89 89.24

* This is SM-I mode in combination with MST algorithm (two
nucleons with relative distance ∆r ≤ 4.8 fm and relative
momentum ∆p≤0.25 GeV/c are considered to belong the
same cluster) to recognition fragments. While in other cases,
the isospin dependent MST algorithm with ∆rpp≤2.8 fm,
∆rnn≤3.8 fm, ∆rnp≤3.8 fm, and ∆p≤0.25 Gev/c is used.

rapidity yz=
1
2 ln[E+pz

E−pz ] of charged particles2 can be mea-

sured in heavy-ion experiments. In Ref. [58], the reduced
rapidity y0=yz/ypro is used instead of yz. Here, ypro de-
notes the rapidity of the projectile in the c.o.m system.
In order to minimize preprocessing, the two-dimensional
pt and y0 spectra of all charged particles with 30×30 grid
is also used as the input dataset. pt ranges from 0 to 1
GeV/c and y0 ranges from -2 to 2. This two-dimensional
pt and y0 spectra of all charged particles is labelled as
DATASET1.

For DATASET2, we use 7 input features or observables
obtained from 132Sn+124Sn at 270 MeV/nucleon.

Five of the seven features are the number of deuteron,
triton, and helium isotopes N(d,t,He), the averaged
transverse momentum of deuteron, triton, and helium
isotopes N(d,t,He)pt, the number of free protons at mid-
rapidity (|y0|≤0.5) Np, the averaged transverse momen-
tum of free protons at mid-rapidity Npt. The remaining
two features are: ERAT for free protons, defined as

ERAT =

∑
i[p

2
ti/(2m+ Ei)]∑

i[p
2
zi/(2m+ Ei)]

, (3)

and the transverse kinetic energy E⊥ for light charged
particles with the charge number Z=1 and Z=2, defined
as

E⊥ =
∑
Z=1,2

p2t
2m

. (4)

The above variables are selected not only because they
are correlated to impact parameter but also because the
measurement of these variables in experiment on the

2 Throughout this manuscript, transverse momentum per nucleon
is used instead of transverse momentum for clusters.

event-by-event basis is feasible. In addition, for a fixed
impact parameter, variables with smaller event-by-event
fluctuations are also of benefit to ML algorithms. In this
context, variables like directed and elliptic flows are not
used because of their large event-by-event fluctuations.
From a theoretical point of view, the size of the spec-
tator fragments, or the largest fragment with projectile
(target) rapidity, is also a good candidate for determin-
ing the impact parameter. While in most experiments
that focus on central collisions, the large projectile-like
fragments are rejected to enhance the detection of cen-
tral collision events which has much less cross sections.
Therefore, the size of spectator fragments is not used as
well.

We use three different ML algorithms with dataset as
listed in Table. III. To assess the accuracy of the recon-
struction of the impact parameter, the performance of
different algorithms can be quantified by the mean abso-
lute error:

∆b =
1

Nevent

Nevents∑
i=1

|btruei − bpredi |. (5)

Here, btruei is the true impact parameter of each event

and bpredi is the predicted one from different algorithms.

Table III. Four different ML algorithms with dataset.

Algorithms dataset label
CNN DATASET1 CNNa

LightGBM DATASET1 LightGBMa
ANN1 DATASET2 ANNb

LightGBM DATASET2 LightGBMb
1 ANN is more suitable for data with 7 input

features than CNN. See details in Section
III.

III. ANN, CNN AND LIGHTGBM
ALGORITHMS

In this work, we use three most representative algo-
rithms, ANN, CNN and LightGBM, to determine the
impact parameter, the detailed parameter sets of these
methods are the same as that in our previous work [35].
When ANN solves a problem, it converts the input data
into a one-dimensional vector. The number of fitting
parameters increases with dimensions. Therefore much
more parameters are needed to handle input data with
larger dimension [59, 60]. For image data, ANN easily
losses its spatial characteristics resulting in unsatisfac-
tory training results. To avoid this problem, newer neural
networks (such as CNN) have been developed. CNN algo-
rithm is one of feedforward neural networks that includes
convolution calculations and has a deep structure [61–65].
Because of the introduction of local receptive fields and
shared weights, it requires much less parameters com-
pared with ANN. LightGBM is a new gradient boosting
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tree framework developed by Microsoft, it is highly ef-
ficient and scalable and can support many different al-
gorithms. Its advantages include (1) Faster training ef-
ficiency, (2) Low memory usage, (3) Higher accuracy,
and (4) Ability to tackle large-scale data [66, 67]. For
high-dimensional or weakly correlated input data, usu-
ally, the performance of decision tree-based algorithms is
not good as neural networks. However, for solving prob-
lems of physical scene, decision tree based algorithms are
usually favored because of its high interpretability. In
general, ANN is more suitable for tabular data such as
DATASET1, CNN is much more powerful for handling
image-like data (i.e., DATASET2 ), while LightGBM is
suitable for both DATASET1 and DATASET2.

IV. RESULTS AND DISCUSSIONS

A. Reconstruction results of DATASET1 and
DATASET2

The results of CNNa and LightGBMa in which
DATASET1 serves as the input training data are dis-
played in Fig. 1. As can be seen, ∆b is about 0.3-
0.4 fm (numbers along the diagonal) if both the train-
ing data and testing data are generated from the same
UrQMD model parameter set. By using training and
testing data obtained from different parameter sets (off
diagonal), e.g., the two-dimensional pt and y0 spectra of
all charged particles generated with SM-I serves as the
training data while simulation data generated with HM-
F serves as the testing data, ∆b is increased to about 0.8
fm. This is understandable due to parameters in both the
mean-field potential and collision terms (the two of main
ingredients of transport model) being different in SM-I
and HM-F modes. In addition, it can be found that ∆b
is affected much more by cross section than by K0. For
example, ∆b for testing data obtained from SM-F by us-
ing ML algorithms trained with data from SM-I mode is
about 0.7 fm, while by using ML algorithms trained with
data from HM-F are about 0.4 fm. This is due to the
fact that both b and σNN strongly affect the number of
collisions and the final observed particle spectra. Thus,
the fingerprint of impact parameter on particle spectra is
erased to some extent by varying σNN . Furthermore, ∆b
in most cases obtained with CNNa is slightly smaller than
that obtained with LightGBMa, indicating that CNN has
a better performance on DATASET1 than LightGBM.
However, considering the fact that LightGBM is at least
10 times faster than CNN and does not require a GPU,
LightGBM is a better choice for all practical purposes.

Fig. 2 shows ∆b obtained with ANNb and LightGBMb
algorithms by using DATASET2. For both training data
and testing data generated from the same parameter set,
∆b are about 0.4-0.45 fm which is slightly larger than the
corresponding values displayed in Fig. 1. We observe the
same trend that the diagonal numbers are smaller than
off diagonal. In addition, ∆b for training and testing data

Figure 1. The results of the CNNa and LightGBMa algo-
rithms when DATASET1 is used. The number in each cell
denotes ∆b for the testing data (generated with the verti-
cal labelled mode) by using the training data (generated with
the horizontal labelled mode). The statistical error due to the
randomness in the testing data was estimated to be smaller
than 1% by comparing parallel testing data, being therefore
negligible.

generated from parameter sets with the same mean-field
potential, but different σNN are also larger than other
cases, indicating again σNN has a stronger effect than
the mean-field potential. However, even for training data
and testing data generated from these different param-
eter sets, ∆b is still smaller than 0.8 fm obtained from
CNNa even in the worst case.

Regrading the influence of cluster algorithm, by us-
ing LightGBMb algorithm trained with data from SM-
F, SM-I, HM-F, and HM-I, the ∆b are 0.72, 0.50, 0.70,
and 0.51 fm for testing data obtained with SM-I(MST),
respectively. The observation is the same as discussed
above, which is simulation using FU3FP1 parametriza-
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Figure 2. The results of the ANNb and LightGBMb algo-
rithms by using DATASET2. The number in each cell denotes
∆b for the testing data (generated with the vertical labelled
mode) by using the training data (generated with the hori-
zontal labelled mode).

tion for σNN gives better ∆b. Overall, ∆b is smaller
than 0.8 fm regardless of the model parameters or clus-
ter recognition algorithms sets used to generate data.

B. Impact parameter dependence

It is observed that ∆b depends on the impact param-
eter, and ∆b is larger in central collisions [31, 34, 35].
Fig. 3 shows the distributions of the predicted impact
parameter obtained with LightGBMb (top panels) and
CNNa (Bottom panels) algorithms. Above 1 fm, the
averaged value of b̄pred is close to the true value. For
btrue=0 and 0.5 fm, b̄pred are about 1.0 fm, much larger
deviations from btrue. The random nucleon-nucleon col-
lision processes are much more abundant when b is small,

therefore fingerprint of impact parameter on various ob-
servables might be washed out by the stochastic process.
If the outcomes of collisions with b=0 and 1 fm are natu-
rally indistinguishable, but collisions with b>1 fm are dis-
tinguishable, the bpred for events with btrue<1 fm given
by the ML algorithm would close to 1 fm in order to get
the smallest global loss, because btrue varies from 0 to 7
fm. When b̄pred obtained from LightGBMb and CNNa
are compared, the latter performs much better in the
most central collisions.

C. Explanation of LightGBM algorithm

Table IV. The Pearson correlation coefficient among the 7
features and the impact parameter.

E⊥ Mch N(d,t,He) Np N(d,t,He)pt ERAT Npt
b 0.94 0.93 0.86 0.82 0.68 0.67 0.29

LightGBM is very explainable whereas CNN is often
treated as a black box. Explainable ML algorithms are
usually preferred, especially when they are applied to
solve physical problems [68, 69] because understanding
what happens when ML algorithms make predictions
could help us make better use of the outputs. To un-
derstand how the LightGBM algorithm gives a particu-
lar result and to develop insight into what ML algorithm
has learned, Feature importance technology of LightGBM
and SHapley Additive exPlanation (SHAP) [70] are ap-
plied to show which features have the greatest effect on
the determination of impact parameter.

Fig. 4 and Fig. 5 illustrate the ranking of importance of
the 7 features. In both figures, Mch and E⊥ are ranked as
the two most important features, while the importance of
the other five features are similar and very weak. To un-
derstand the feature importance, the correlation between
the impact parameter and the 7 input features are plotted
in Fig. 6. The impact parameter b are much more cor-
related with Mch and E⊥ than the others, which implies
that they can serve as good candidates for determining
b. In addition, we calculate their Pearson correlation co-
efficient (PCC). PCC is often used to measure the linear
correlation between two variables in statistics. PCC be-
tween b and Mch, as well as b and E⊥ are close to 1, imply-
ing a strong linear correlation between them. Meanwhile,
one may find some inconsistencies in Fig. 4−Fig. 6 and
Table IV. For example, PCC between b and N(d,t,He)
is the third largest one, but N(d,t,He) ranks as almost
the most irrelevant feature in Fig. 4 and Fig. 5. This
could occur if the ML algorithm learns not only the lin-
ear but also non-linear multifaceted relationship between
the output and the input features.

SHAP is a model interpretation package developed by
Python that interprets the output of ML model. For each
test sample, the predicted impact parameter for the i−th
sample can be obtained with bpred,i = bbase + f(xi1) +



6

0
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0 b t r u e  =  7  f mb t r u e  =  5  f mb t r u e  =  3  f mb t r u e  =  0 . 5  f mb t r u e  =  0  f m
b p r e d  =  1 . 0 8  f m
σ = 0 . 2 6  f m   
       L i g h t G B M b

( a ) ( b )

b p r e d  =  1 . 1 1  f m
σ = 0 . 2 8  f m

( c )

b p r e d  =  2 . 8 1  f m
σ = 0 . 6 8  f m

 G a u s s  f i t

( d )

b p r e d  =  4 . 9 9  f m
σ = 0 . 4 4  f m

( e )

b p r e d  =  6 . 5 8  f m
σ = 0 . 1 0  f m

0 2 4 60
2 0 0
4 0 0
6 0 0
8 0 0

( f )

b p r e d  =  0 . 9 4  f m
σ = 0 . 3 2  f m    
       C N N a

0 2 4 6

b p r e d  =  0 . 9 8  f m
σ = 0 . 3 3  f m

( g )
0 2 4 6

b p r e d  =  2 . 8 0  f m
σ = 0 . 5 7  f m

( h )

b  ( f m ) 0 2 4 6

b p r e d  =  4 . 9 9  f m  
σ = 0 . 4 3  f m

( i )

Co
un

ts

0 2 4 6 8

b p r e d  =  6 . 6 4  f m
σ = 0 . 2 3  f m

( j )

Figure 3. The distribution of the predicted impact parameter from LightGBMb and CNNa algorithms. Both the training data
and testing data are generated with SM-I mode. 5 000 132Sn+124Sn collision events for each impact parameter (from left panel

to right, b=0, 0.5, 3, 5, and 7 fm) are tested. The pink lines represent the Gaussian fitting (y = y0 + A

σ
√
2π
exp− (x−µ)2

2σ2 ) of the

distribution. b̄pred and σ represent the averaged value of the predicted b and its standard deviation, respectively.
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Figure 4. The importance of the 7 features obtained with
the Feature importance technology of LightGBM algorithm.

f(xi2) + . . .+ f(xik), where f(xik) is the SHAP value of
feature xik. Here xik represents the value of the k−th
input feature of the i−th sample, and bbase is the mean
value of the all samples. f(xik) represents the contri-
bution of feature xik to the prediction bpred,i, it tells us
how to fairly distribute the prediction among the fea-
tures. For a certain sample, the larger f(xik), the more
important is xik. In the present work, as the output b is
uniformly distributed from 0 to 7 fm, the bbase is about
3.49 fm. Fig. 7 displays the contribution of each fea-
ture to a certain prediction. The results for random five
samples for each impact parameter (b=1 and 7 fm) are
displayed. When the impact parameter is less (greater)
than bbase, the SHAP value of each feature is basically

Mch

E⊥

Np

N(d,t,He)pt

ERAT

N(d,t,He)

Npt

2.0

(fm)V

Figure 5. Importance ranking for the 7 input features ob-
tained with SHAP package. Each row represents a feature,
and the x-axis is the SHAP value which shows how important
a feature is for a particular prediction. Each point represents
a sample, and the color represents feature value (red is high,
blue is low).

negative (positive). As observed in Fig. 6, for a smaller
b, both values of Mch and E⊥ are larger. It is under-
standable as more particles and transverse energy maybe
produced from the more central collision. This is also
the reason why the SHAP value of the red dots (samples
with high values of Mch and E⊥) in the first two rows are
more negative in Fig. 5.

Overall, it can be found that Mch and E⊥ are the two
most important input features for reconstructing the im-
pact parameter while N(d,t,He) and Npt are listed as
being the most irrelevant features. Based on the rank-
ing importance, we can reduce the number of features
by taking a subset of the most important features. We
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(bpred) obtained with the SHAP algorithm, which pushes the
prediction of the model from the base value to the final value
(model output bpred). The base value is the mean value of the
model predicted value on the training data, here bbase =3.49
fm. Results from 5 random events for each tested impact
parameter (btest=1 and 7 fm) are illustrated as examples.

have checked that, the performance does not change if
N(d,t,He) and Npt are not included as features in the
training.

V. SUMMARY AND OUTLOOK

In this work, three popular ML algorithms, ANN, CNN
and LightGBM, are applied to determine the impact pa-

rameter by using either the proton spectra or 7 features
generated with the UrQMD model. To test the gener-
alizability of the trained ML algorithms, four different
UrQMD model parameter sets are applied to generate
the data. It is found that the mean absolute error be-
tween the true impact parameter and the estimated one
∆b can be smaller than 0.45 fm if training and test sets
are taken from the UrQMD model with the same param-
eter set, while ∆b increases to 0.8 fm if the training and
testing data are taken from different parameter sets in
the UrQMD model. Furthermore, the feature importance
is obtained with LightGBM algorithm based on Feature
importance technology and SHAP. The total number of
charged particles Mch and the transverse kinetic energy
E⊥ for light charged particles are the two most relevant
features for determining the impact parameter, and this
can be understood from the distribution of impact pa-
rameter as functions of Mch and E⊥.

The generalizability of the trained ML algorithms is
tested by using training and testing data generated from
different model parameter sets. Although observables are
strongly affected by the model parameters, the extracted
∆b is still smaller than 0.8 fm, implying the trained ML
algorithms are robust approaches. This gives us confi-
dence that the trained ML algorithms with data gener-
ated by theoretical models can be applied to determine
the impact parameter in real experimental data as shown
in Ref. [71].
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