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Within the transport model evaluation project (TMEP) of simulations for heavy-ion collisions,
the mean-field response is examined here. Specifically, zero-sound propagation is considered for
neutron-proton symmetric matter enclosed in a periodic box, at zero temperature and around normal
density. The results of several transport codes belonging to two families (BUU-like and QMD-like)
are compared among each other and to exact calculations. For BUU-like codes, employing the
test particle method, the results depend on the combination of the number of test particles and
the spread of the profile functions that weight integration over space. These parameters can be
properly adapted to give a good reproduction of the analytical zero-sound features. QMD-like codes,
using molecular dynamics methods, are characterized by large damping effects, attributable to the
fluctuations inherent in their phase-space representation. Moreover, for a given nuclear effective
interaction, they generally lead to slower density oscillations, as compared to BUU-like codes. The
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latter problem is mitigated in the more recent lattice formulation of some of the QMD codes. The
significance of these results for the description of real heavy-ion collisions is discussed.

PACS numbers: 05.20.Dd, 25.70.-z, 21.30.Fe

I. INTRODUCTION

A large variety of phenomena, ranging from the struc-
ture of nuclei and their decay modes up to the life and the
properties of massive stars, are governed by the nuclear
Equation of State (EoS), thus giving great importance
to dedicated studies. In particular, the understanding of
the properties of exotic nuclei, as well as neutron stars
and supernova dynamics, entails the knowledge of the
behavior of nuclear symmetry energy, on which several
investigations are concentrating nowadays [1–9].

In the laboratory, heavy-ion collisions are the primary
way to investigate nuclear matter away from saturation
conditions. States of high density and excitation can be
created on short time scales. However, these are complex
non-equilibrium processes. The challenge is to connect
nuclear matter states of interest to the final observables,
so that information on the EoS can be extracted. Trans-
port approaches are the main tool to extract this infor-
mation. Therefore, the reliability of transport studies of
heavy-ion collisions and the robustness of their predic-
tions is important in heavy-ion research.

It has recently become apparent that different conclu-
sions could be drawn from the same data by relying on
transport simulations, e.g., in the investigations of isospin
equilibration in peripheral collisions (isospin diffusion)
[10–15], or in the interpretation of ratios of charged pions
[16–21]. These discrepancies could naturally derive from
the different approximation schemes, adopted in the dif-
ferent transport models, to deal with the quantum many-
body problem or from differences in various technical as-
sumptions. Indeed, because of the complexity of trans-
port equations, and in particular of their dimensionality,
they are solved by simulations, which requires the use of
sophisticated algorithms that invoke statistical sampling
and finite phase-space resolutions. The impacts of these
numerical details on predictions and conclusions are of-
ten difficult to discern. This situation led to the idea
of a systematic comparison and evaluation of transport
codes under controlled conditions, to eventually provide
benchmark calculations and thus to improve the ability
to reach robust conclusions from the comparison of trans-
port simulations with experimental data.
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Previous studies along this direction were dedicated
to the comparison of transport model predictions for Au
+ Au collisions [22, 23]. The compared aspects mainly
included the stability of the initialized nuclei, the effec-
tiveness of Pauli blocking for the final states of nucleon-
nucleon (N-N) collisions, and predicted flow observables.
There were indications that a large part of the observed
differences in the predicted reaction path and correspond-
ing observables (such as collective flows) resulted from
differences in the initialization of the systems and in the
treatment of the collision integral (mainly Pauli blocking
effects). The mean-field dynamics also seemed to play a
role. However, the origins of the differences were often
difficult to pin down unambiguously, since various effects
interplay and propagate.
Significant progress in understanding the behavior of

the different transport codes was made with subsequent
studies, based on box calculations, i.e., simulations of
nuclear matter enclosed in a box with imposed periodic
boundary conditions. In particular, the box calculations
have the advantage that the different aspects of heavy-ion
collisions can be isolated and tested separately, e.g., the
description of N-N scattering processes (i.e., two-body
correlations) and the mean-field dynamics. Whereas fea-
tures of the collision integral, such as Pauli blocking ef-
fects and meson (pion) production, have been the object
of our recent studies [24, 25], the investigation of the
mean-field dynamics is the aim of the present paper.
To test the mean-field dynamics in a box in this work,

we investigate a typical example of collective motion,
namely the zero-sound propagation, i.e. the mean-field
propagation of a disturbance of the single-particle dis-
tribution in nuclear matter. We initialize a disturbance
by setting up a standing wave in density, and by assign-
ing the momenta of the particles randomly in the local
Fermi sphere, as commonly done in transport codes. This
wave is then propagated by the Vlasov part of the differ-
ent transport models using density functionals that give
identical EoS features, and the corresponding results are
compared with each other. This will allow to see charac-
teristic differences between the different types of trans-
port codes, as well as the dependence on calculational
parameters.
One should notice that, for box calculations, there are

in some cases exact limits available from kinetic theory
or Landau theory, against which the performance of the
codes can be judged, instead of against each other.
However, in comparing the different codes against

each other and against any known limits, one should
keep in mind that: (1) there are different families of
transport theories: Boltzmann-Vlasov-type codes (usu-
ally referred to under the name of Boltzmann-Uehling-
Uhlenbeck (BUU)) and molecular dynamics-type codes
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(usually Quantum Molecular Dynamics (QMD)). The
two families of codes start from different theoretical
frameworks and/or different philosophies in modeling
heavy-ion collisions. Thus, one cannot expect that they
completely agree with each other; (2) basic differences
may be present between exact limits from kinetic theory
and simulations, implying that the exact limit cannot
actually be reached. These may lie, e.g., in unavoidable
fluctuations in a concrete simulation strategy. The ef-
fects of numerical fluctuations were already explored in
Ref.[24]. However, differences between codes of the same
type and differences with the exact limits in many cases
can suggest improvements of the codes.

While the zero-sound motion is here a specific exam-
ple for our investigation of transport codes, it is by it-
self an interesting phenomenon, which we are able to
study in detail. In the limit of small amplitudes, ex-
act results for the frequency can be derived from Landau
theory, where relativistic effects, or more generally ef-
fects of the effective mass, can be studied. We also note
that mean-field studies have been devoted in the past to
investigate collective motion in finite nuclei, both with
semi-classical transport theories as here and with time-
dependent Hartree-Fock (TDHF) theory [26–30].

Since small amplitudes are not typical for a numerical
study appropriate to heavy ion collisions, we use a large
amplitude of the initial perturbation. This then leads to
non-linear effects due to the non-linear terms in the force
and to mode-mixing. Furthermore, the damping of the
wave is an important question, which here is not only
due to Landau damping, i.e. mode mixing, but also due
to fluctuations that may arise from the numerical reso-
lution of the phase space. Thus, the mean-field analysis
presented in this work can be considered as a valuable
test also for the general case of the mean-field dynamics
involved in heavy-ion collisions at intermediate energies,
which is largely influenced by the emergence of collective
phenomena.

For the simulations presented in this work, we em-
ployed the same main protocol as developed in the con-
text of Refs.[23–25]. Contributors of the participating
codes performed specified “homework” calculations. The
resulting files were sent to the writing group for evalua-
tion and preparation of publication. The results were
then discussed in several meetings (see, for instance,
the NuSym series of conferences, and in particular in
Ref.[31]).

The article is organized as follows: a short description
of the two families of transport approaches is given in
Sect. II, to state the main differences between the ap-
proaches and clarify the terminology. The homework
specifications pertaining to this paper are described in
Sect. III. Analytical and reference results relating to the
present comparison are presented in Sects. IV and V.
The results of the comparison are described in following
three srctions: In Sect. VI, we discuss the coordinate
space evolution, and questions of the global momentum
and energy distributions. We then explore the evolution

in wave number and frequency space via spatial and tem-
poral Fourier transforms, for selected codes in each of the
two families in Sect. VII, and for all codes in Sect. VIII.
Finally, a discussion of the results, conclusions and an
outlook can be found in Sect. IX.
The participating codes and their contributors are

listed in Table I. The major codes used presently in
the interpretation of heavy-ion collisions are represented,
with nine of the BUU-type and five of the QMD-type.
The codes can be classified according to their treat-
ment of relativity: non-relativistic codes, codes with rel-
ativistic kinematics, and codes with relativistic dynamics
in a relativistic mean-field (RMF) formulation (labelled
”cov” in Table I). We note that the well-known antisym-
metrized molecular dynamics (AMD) code [32] is not in-
cluded in the present comparison, since a box condition
in this code is not comparable to the treatment in the
semi-classical codes.

II. TRANSPORT APPROACHES

The primary methodology for the dynamics of nu-
clear collisions at Fermi/intermediate energy are semi-
classical transport theories, such as the Nordheim ap-
proach, in which the Vlasov equation for the one-body
phase space distribution, f(~r, ~p; t), is extended with a
Pauli-blocked Boltzmann collision term [51, 52], which
accounts for the average effect of the two-body resid-
ual interaction. The thus resulting transport equation,
often called Boltzmann-Uehling-Uhlenbeck (BUU) equa-
tion, contains two main ingredients: the self-consistent
mean-field potential and the two-body scattering cross
sections. In order to introduce fluctuations and fur-
ther (many-body) correlations in the treatment of the
reaction dynamics, a number of different avenues have
been undertaken, which can be differentiated into two
classes (see Refs.[9, 53, 54] for recent reviews). One is the
class of molecular dynamics (MD) models [55–61], while
the other kind is represented by stochastic extensions of
mean-field approaches of the BUU type [62–66].

A. BUU-like models

In BUU-like approaches, the time evolution of the one-
body phase space distribution function, f(~r, ~p; t), follows
the equation

( ∂

∂t
+ ~∇pǫ · ~∇r − ~∇rǫ · ~∇p

)

f(~r, ~p; t) = Icoll(~r, ~p; t) , (1)

where ǫ[f ] is the single-particle energy, usually derived
from a density functional, and Icoll is the two-body
collision integral, specified by an in-medium cross sec-
tion dσmed/dΩ. Fluctuations of the one-particle density,
which should account for the effect of the neglected many-
body correlations, can be introduced by adding to the
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TABLE I: The acronyms, code correspondents for the calculations shown in this paper, dynamical treatment (nonrelativis-
tic/relativistic kinematics/covariant), (test) particle features and representative references of the nine BUU-type and five
QMD-type codes participating in the present comparison.

Type Acronym Code Correspondents Rel/Non-Rel Particle profiles
(∆x)2 [fm2]a

or l [fm]b
Reference

BUU BUU-VMc S. Mallik non-rel triangle 1 [34]

DJBUU Y. Kim cov [1− (|~r|/∆x)2]3 6.25 [35]

GiBUU J. Weil cov Gaussian 1 [36]

IBUUd J. Xu rel triangle 1 [38]

LHV R. Wang rel triangle 2 [39]

pBUU P. Danielewicz cov trapezoid 0.92 [40]

RVUU Z. Zhang cov point 0 [21, 41]

SMASH A. Sorensen cov triangle 2 [42]

SMF M. Colonna non-rel triangle 2 [43]

QMD ImQMDe Y. X. Zhang rel Gaussian 2 [44]

IQMD-BNU J. Su rel Gaussian 2 [46]

IQMD-IMPf Z. Q. Feng rel Gaussian 2 [47]

TuQMD D. Cozma rel Gaussian 2 [48]

UrQMD Y. J. Wang rel Gaussian 2 [49, 50]

a∆x is the width of the Gaussian wavepacket as in Eq.(12).
b
l is the half base for test particles with triangular or trapezoid

profile. See Refs.[33] and [40] for more details.
cBUU code developted jointly at VECC and McGill.
dThere is also a new version of this code (IBUU-L) in the com-

parison [37], explained in Sect. II C.
eImQMD-CIAE in Ref.[23]. There exists also a Lattice version of

the code, ImQMD-L [45], see Sect. II C.
fAlso known as LQMD in literature.

r.h.s. of Eq.(1) a stochastic term, representing the fluc-
tuating part of the collision integral [62–64]. This leads
to the Boltzmann-Langevin (BL) equation, in close anal-
ogy with the Langevin equation for a Brownian motion.
In the present study, we focus on the mean-field prop-

agation, thus we neglect the r.h.s. of Eq.(1) and any
fluctuation terms. It should be noticed that the BUU
theory can more generally be formulated in a relativistic
framework, and actually most codes in this comparison
use a relativistic formulation. In the relativistic covari-
ant approach, the nucleons are coupled to momentum-
independent scalar and vector fields.
Let us introduce the kinetic momentum p∗µ = pµ −

Aµ and the energy E∗ ≡ p∗0 =

√

~p∗
2
+m∗2. Here Aµ

represents the vector field; the Dirac mass, m∗, is given
by m∗ = M − Φ, with Φ denoting the scalar field and
M the nucleon mass. The vector field depends on the
baryon four-current jµ(~r; t), which, in the local density
approximation, is given self-consistently by:

~j = 4

∫

d3p

(2π)3

~p∗

E∗
f(~r, ~p; t) (2)

and

j0 ≡ ρ = 4

∫

d3p

(2π)3
f(~r, ~p; t) , (3)

where ρ(~r; t) is the nucleon density and the factor 4
is due to the spin and isospin degeneracies of nucleons
in symmetric nuclear matter considered here. Similarly,
the scalar field Φ depends on the scalar density ρS(~r; t),
which is defined as:

ρS = 4

∫

d3p

(2π)3
m∗

E∗
f(~r, ~p; t). (4)

The single-particle energy in Eq.(1) simply reads: ǫ =
p0 = E∗ + A0. The specific dependence of the fields on
the densities is detailed in Sect.II A 1.
It is of interest to introduce the energy density, e(ρ, T ),

for nuclear matter at rest, from which the nuclear matter
EoS at the temperature T is directly derived. Consider-
ing that the current ~j vanishes, e(ρ) can be expressed
as:

e(ρ, T ) = 4

∫

d3p

(2π)3

√

~p2 +m∗2 fFD(p, T )+

∫ ρS

0

dρ′Sρ
′
S

dΦ

dρ′S

+

∫ ρ

0

dρ′A0(ρ′). (5)

Here, the function fFD(p, T ) denotes the local Fermi-
Dirac distribution at the temperature considered.
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As was mentioned, the transport codes that we con-
sider in the following can be assigned to three main cat-
egories:
(a) Non-relativistic codes (labelled as “non-rel” in Ta-

ble I).
These codes can be framed into the general scheme

illustrated above, if one considers only vector fields,
and neglects the spatial components of the baryon four-
current (~j = 0). Thus the energy E∗ becomes E∗ → E =
√

~p2 +M2. Moreover, in this case, the non-relativistic
limit is taken for E. Thus the single-particle energy can

be written as: ǫ = ~p2

2M + U(ρ) + M , where U(ρ) is the
mean-field potential, which is introduced phenomenolog-
ically. A simple Skyrme-like form will be employed here:
U(ρ) = a(ρ/ρ0)+ b(ρ/ρ0)

σ, where ρ0 denotes the satura-
tion density and the non-linear term takes into account
the effect of many-body forces.
(b) Codes with relativistic kinematics (labelled as “rel”

in Table I).
The same ingredients as in the “non-rel” case are

considered, but in this case the kinematics is relativis-
tic. Hence, the single-particle energy is expressed as:
ǫ = E + U(ρ).
(c) Covariant codes (labelled as “cov” in Table I).
We place into this category all codes that employ scalar

fields and/or vector fields depending on the baryon four-
current jµ.

1. Ingredients of the covariant codes

In this section, we give more details about the codes
of the latter category, namely the codes labelled as “cov”
in Table I.
RVUU: This code follows the scheme of the standard
(non-linear) Walecka model. Denoting by mσ,mω and
gσ, gω the masses and coupling constants of the σ (scalar)
and ω (vector) mesons, respectively, the following rela-
tions hold for scalar and vector fields:

ρS =
m2

σ

g2σ
Φ+

A

g3σ
Φ2 +

B

g4σ
Φ3 ; Aµ =

g2ω
m2

ω

jµ. (6)

The corresponding energy density, for nuclear matter at
rest, is (see Eq.(5)):

e(ρ, T ) = 4

∫

d3p

(2π)3

√

~p2 +m∗2fFD(p, T ) +
m2

σ

2 g2σ
Φ2+

+
A

3 g3σ
Φ3 +

B

4 g4σ
Φ4 +

g2ω
2 m2

ω

ρ2. (7)

DJBUU: This code adopts the approximation of neglect-
ing the spatial components of the baryon four-current
(~j = 0), so that the single-particle energy is given by

ǫ =
√

~p2 +m∗2 +A0, whereas the nuclear matter energy
density keeps the same expression as in RVUU.

pBUU: In the version of the pBUU model employed for
the homework, only a scalar field is considered, so that

the single-particle energy simply reads: ǫ =
√

~p2 +m∗2.
The scalar field Φ is defined as:

−Φ(ρS) ≡ U(ρS) =
a(ρS/ρ0) + b(ρS/ρ0)

σ

1 + (ρS/ρ0

2.5 )σ−1
(8)

The role of the denomimator in Eq.(8) is to prevent
supraluminous behavior at high densities. The energy
density is calculated from Eq.(5). We notice that the
scalar field adopted here is quite close to the Skyrme
parametrization used for the mean-field potential of cat-
egories “non-rel” and “rel”.
SMASH: In the SMASH code, no scalar field is con-
sidered, but a more complex vector field, Aµ =
∑

i A
µ
i (~r; t) =

∑

i Ci(jνj
ν)

βi
2
−1 jµ, is introduced, leading

to an overall attractive potential. Thus the single-particle

energy is given as: ǫ =

√

~p∗
2
+M2+

∑

i Ci(jνj
ν)

βi
2
−1 ρ.

For nuclear matter at rest, the corresponding energy den-
sity reads:

e(ρ, T ) = 4

∫

d3p

(2π)3

√

~p2 +M2fFD(p, T ) +
∑

i

Ci

βi
ρβi .

(9)
We note that, contrary to SMASH, in RVUU and DJBUU
the linear vector field is repulsive (as in the standard
Walecka model), whereas the scalar field leads to an at-
tractive potential.

2. Numerical solution of the transport equations

The integro-differential non-linear BUU equation is
solved numerically. To this end, the distribution func-
tion is represented in terms of finite elements, so-called
test particles (TP) [67], as

f(~r, ~p; t) =
(2π)3

4NTP

ANTP
∑

i=1

G(~r − ~Ri(t)) G̃(~p− ~Pi(t)) , (10)

where NTP is the number of TP per nucleon (set to 100

in this work), ~Ri and ~Pi are the time-dependent centroid

coordinates and momenta of the TPs, and G and G̃ are
the profile functions in coordinate and momentum space,
respectively, with a unit norm (e.g. δ functions or normal-
ized Gaussians). In particular, δ functions are generally
adopted in momentum space. We remind the reader that
the degeneracy factor 4 (in the denominator of Eq.(10))
is to define f(~r, ~p, t) as the spin-isospin averaged phase
space occupation probability, which is well suited to the
case considered here (symmetric matter). It is also pos-
sible to express the distribution function for each isospin
(or spin) state in a similar way. Upon inserting the ansatz
Eq. (10) into the left-hand side of Eq. (1), i.e., without
the collision integral, Hamiltonian equations of motion
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for the TP centroid propagation follow:

d~Ri

dt
= ~∇Pi

ǫ and
d~Pi

dt
= −~∇Ri

ǫ . (11)

The treatment of the collision integral is discussed in de-
tail in Ref.[24], but this is not of relevance in the present
study of only Vlasov dynamics.

B. QMD models

In quantum molecular dynamics (QMD) models, the
many-body state is represented by a simple product wave
function of single-particle states with or without antisym-
metrization [55, 56]. The single-particle wave functions
are usually assumed to have a fixed Gaussian shape. In
this way, though the nucleon wave functions are inde-
pendent (mean-field approximation), the use of localised
wave packets induces classical many-body correlations
both in the mean-field propagation and two-body in-
medium scattering (collision integral), where the latter
is treated stochastically. Hence, this way to introduce
many-body correlations and produce a possible trajec-
tory branching is essentially based on the use of local-
ized nucleon wave packets. It has been proven to be
particularly efficient for the description of fragmentation
events, where nucleons are well localized inside separate
fragments in the final state [56]. The time evolution of
nuclear dynamics is formulated in terms of the changes
in nucleon coordinates and momenta, similar to classi-
cal molecular dynamics, which are the centroids of the
wave packets. They move under the influence of nucleon-
nucleon interactions, which are usually consistently ac-
counted for by density functionals. The method can also
be viewed as derived from the time-dependent Hartree
method with a product trial wave function of single-
particle states in Gaussian form

Ψ(~r1, . . . , ~rA; t) =

A
∏

i=1

φi(~ri; t), (12)

φi(~ri; t) =
1

[2π(∆x)2
]

3

4

exp

[

− [~ri − ~Ri(t)]
2

4(∆x)2

]

e(i/~)
~Pi(t)·~ri .

The centroid positions ~Ri(t) and momenta ~Pi(t) are
treated as variational parameters within the variational
principle for the time-dependent Hartree equation. The
widths ∆x are kept fixed and thus are not variational
parameters, in order for the wave function to be able
to describe finite distance structures, as observed in the
fragmentation of colliding nuclei. This strategy yields
equations of motion for the coordinates of the wave pack-
ets of similar form as obtained for the TPs in BUU.
The QMD codes that we will consider here employ rel-
ativistic kinematics, thus they fall into the “rel” cate-
gory. This method has been extended to include anti-
symmetrization in the wave function in the AMD method

[32], which makes the equations of motion more compli-
cated but with similar principles.
The main difference between the two methods lies in

the amount of fluctuations and correlations in the repre-
sentation of the phase space distribution. In the standard
BUU approach, the phase space distribution function is
seen as a one-body quantity and a smooth function of
coordinates and momenta, which can be approximated
increasingly better by increasing the number of TPs in
the representation. In the limit of NTP → ∞, the BUU
equation is solved exactly. In this limit the solution is de-
terministic and does not contain fluctuations. However,
as mentioned above, if fluctuations are considered to be
important, suitable stochastic extensions can be formu-
lated. Of course, numerical fluctuations are present in
practical BUU calculations with a finite number of TPs.
In QMD, nucleon correlations arise from the represen-

tation in terms of a finite number of wave packets of finite
width, leading to enhanced fluctuations of the one-body
density. Thus, in the philosophy of QMD one wants to
go beyond the mean-field approach and include corre-
lations and fluctuations from the beginning. However,
these fluctuations, which are essentially of classical na-
ture, can lead to a loss of the fermionic character of the
system more rapidly than in BUU, as it was studied in
Ref.[24]. The fluctuations in QMD-type codes are regu-
lated and smoothed by choosing the parameter ∆x, the
width of the wave packet, cf. Eq. (12). QMD can be
seen as an event generator, where the time evolution of
different events is solved independently and therefore the
fluctuations among events are not suppressed even in the
limit of an infinite number of events.
The effects of this difference in the amount of fluctua-

tions between the two approaches will clearly be seen in
the comparisons that will follow.

C. Lattice Hamiltonian and particle propagation

The solution of the (test) particle equations of mo-
tion, Eq.(11), requires the calculation of the local single-
particle energy, which also depends on the local den-
sity ρ(Ri, t). The latter can be evaluated starting from
Eq.(10), with NTP = 1 in the QMD case. Some of
the codes (of type “non-rel” or “rel”) involved in our
comparison employ the Lattice Hamiltonian framework
[33]. This method has been proven to be particularly
effective for the numerical solution of the Vlasov equa-
tion, especially as far as energy conservation is concerned.
Namely, the coordinate space is divided into cubic cells
(typically of volume ∆l3 = 1 fm3) and the spatial density
is evaluated at each cell site coordinates, ~rα, and given
as ρα = ρ( ~rα). Then, the potential part of the total
Hamiltonian of the system is written as

Hpot = ∆l3
∑

α

epot(ρα), (13)

where epot denotes the potential part of the energy den-
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sity and ρα = ρ( ~rα). We remind that the density ρα, and
thus the Hamiltonian Hpot, depend on the (test) parti-

cle centroids, ~Ri(t), according to Eq.(10). With ~Pi(t)
representing the momentum of the ith test particle, the
equation of motion from the Hamiltonian is then

d~Pi

dt
= −∆l3

∑

α

depot
dρα

~∇Ri
Gα = −∆l3

∑

α

ǫpot(ρα)~∇Ri
Gα,

(14)
where ǫpot denotes the potential part of the single-particle

energy and Gα = G( ~rα − ~Ri). The Lattice Hamiltonian
framework is adopted in BUU-VM, SMF, LHV, and in
the Lattice version of IBUU (IBUU-L). In IBUU-L, a
triangle profile function with l = 2 fm is used for the
test particles [37]. For ImQMD, we will also consider
a Lattice version (ImQMD-L) that employs a mesh with
non-regular intervals, better suited to deal with Gaussian
particle profile functions [45].

III. HOMEWORK DESCRIPTION

The understanding of mean-field effects is essential to
reach a reliable description of the dynamics of nuclear
reactions. A dedicated homework has been devised to
test the mean-field propagation under controlled situa-
tions in the different transport codes. To that purpose,
we consider uniform nuclear matter at zero temperature
in a box with periodic boundary conditions. The sys-
tem is perturbed by building up the density profile along
one direction (the z axis, in our case). The initial den-
sity perturbation is then propagated by motion in the
nuclear mean-field and the time evolution of the system
is followed until the time tfin. The collision integral is
turned off and rather simple mean-field parametrizations
are adopted, giving the correct saturation properties and
a selected value of the compressibility modulus, K0. This
then corresponds to a pure Vlasov mode for the transport
codes. Thus BUU-like trajectories should be fully deter-
ministic (apart from numerical fluctuations), whereas in
the QMD case the presence of fluctuations is intrinsic to
the model.
As already noticed for the box comparisons involving

the collision integral [24, 25], differences are expected in
the results of QMD-like and BUU-like codes, mainly due
to the larger amount of fluctuations and the larger width
of the particle wave packet employed in QMD codes. In-
deed, fluctuations influence the damping of the density
oscillations, whereas the packet width affects the calcula-
tions of the mean-field potential and thus the oscillation
frequency.
The goal of the homework is to understand the prop-

agation of initial sinusoidal perturbations by the nuclear
mean-field, and thus to check the dispersion relation for
the mean-field propagation of density fluctuations (zero-
sound propagation). Thus, the average density in z-
direction at different times, 〈ρ(z, t)〉, represents one of
the main quantities to be extracted from the calculations

and analysed. The calculations are averaged over many
events to try to understand the average mean-field be-
havior, which is the quantity of interest in a heavy-ion
collision. A rather compact and effective representation
of the behavior of the system is provided by the time evo-
lution of the spatial Fourier transform, ρk(t). Additional
insight can be obtained by a further Fourier transform in
time, leading to the response function ρk(ω).
The box calculations are performed with periodic

boundary conditions [24, 25]. Reflecting boundary con-
ditions are not used because they could give rise to
edge effects, negligible only in the limit of very large
boxes. In contrast, with periodic boundary conditions
the box can be kept relatively small with no significant
finite-size effects. The dimensions of the cubic box are
Lα = 20 fm, α ≡ x, y, z. The position of the center of
box is (Lx/2, Ly/2, Lz/2). In a periodic box, a parti-
cle that leaves the box on one side should enter it from
the opposite side with the same momentum. Once a co-
ordinate α ventures outside of the box, it may be reset
with rα → modulo(rα, Lα). Similarly, the separation be-
tween two points ∆rij,α = ri,α − rj,α must be redefined
as ∆rij,α → modulo(∆rij,α + Lα/2, Lα) − Lα/2. This
method is completely sufficient and will cope with all
structures, as long as the characteristic lengths are short
relative to Lα/2.
This periodic box condition applies only to classical

or semiclassical approaches. In quantum mechanical ap-
proaches such as in AMD [32], the implementation of
a periodic box calculation is more involved, since now
the wave functions have to satisfy the boundary condi-
tion, implying that the momenta become discretized in
steps of the order of ∆p = 2π/Lα ≈ 62 MeV/c, which is
not so much smaller than the Fermi momentum. A spe-
cial code would have to be written for this, which would
not be comparable to the semi-classical codes, and would
also be very different from the code used for heavy-ion
collisions. However, in this box comparison we want to
change the codes as little as possible from those used for
heavy-ion collisions. Thus results from the AMD code
are not included in this comparison.

A. Details of the homework

We consider symmetric nuclear matter at saturation
density ρ0 = 0.16 fm−3 and zero temperature. For the
cubic box employed (of size Lα = 20 fm), this corresponds
to A = 1280 nucleons. The simulations are followed until
tfin= 500 fm/c, with a recommended time step of ei-
ther ∆t=0.5 or 1.0 fm/c. A detailed description of the
homework is as follows.

1. Initialization

The system is initialized by impressing a sinusoidal
distortion with wave number k and amplitude aρ on
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the density in the box, along the z direction: ρ(z, t =
0) = ρ0 + aρ sin(kz). It should be noticed that for
QMD-type models, which employ Gaussian functions of
sizeable width for the nucleon wave packets (such as

G(~r) ≈ exp[−(~r − ~Ri)
2/(2(∆x)2)], see Eq.(12)), the

specified density distribution can be obtained by sam-

pling the centroids ~Ri of the wave packets according
to the following density distribution: ρ(z, t = 0)MD =
ρ0 + aρ exp[((∆x)2k2)/2] sin(kz) [68]. Because of the pe-
riodic boundary conditions imposed to the system, the
wave number k may take the values k = n 2π/Lα, with
n = 1, ..., Lα/(2 ∆z), where ∆z is the spatial step along
the z direction. In the homework, we will test small wave
numbers (n = 1), which are less affected by the surface
effects induced by the finite width of the particle pro-
file functions, and we adopt aρ = 0.2 ρ0. We note that
the amplitude is not small relative to the non-linearities
of the mean-field, so the sinusoidal wave is therefore dis-
torted already after a short time of about 10 fm/c, as seen
later. The particle momenta are initialized randomly in
a local Fermi sphere, with the Fermi momentum defined
as a function of the local density of the initialized density
profile.

2. The nuclear interaction

The Coulomb interaction and the nuclear symmetry
force are turned off. The following simplified isoscalar
nuclear force is employed: For the codes of type ”rel” and
”non-rel” a standard Skyrme parametrization (without
momentum-dependence) for the single-particle potential
is used,

U(ρ) = a(ρ/ρ0) + b(ρ/ρ0)
σ, (15)

with the following parameters: a = −105.716 MeV, b =
52.836 MeV, σ = 2.587. The nucleon mass is taken to be
M = 938 MeV. This parameterization leads to the follow-
ing nuclear matter properties: compressibility K0 = 500
MeV, saturation density ρ0 = 0.16 fm−3 and the bind-
ing energy at saturation density E0 = −16 MeV. For the
relativistic ”cov” codes RVUU and DJBUU, we employ
a non-linear σ − ω Relativistic Mean Field (RMF) pa-
rameterization, with M = 938.0 MeV, mω = 783.0 MeV,
mσ = 550.0 MeV, and the parameters gσ, gω, A and B
given in Table II. Since there are four free parameters, in
addition to saturation density (ρ0), energy per nucleon
and compressibility at ρ0, one can also fix the value of
the Dirac mass m∗ at ρ0. The parameterizations listed in
Table II lead to the same values for compressibility, sat-
uration density and binding energy as above, but with
different values of the Dirac mass m∗.
In the SMASH code, two contributions to the vector

field are considered: an attractive linear field (β1 = 2)
with C1 = −105.716/ρ0 MeV fm3 and a stiffer repul-

sive field with β2 = 3.587 and C2 = 52.836/ρβ2−1
0 MeV

fm3(β2−1). Finally, in pBUU the following parametriza-
tion is employed for the potential U(ρS): a = −104.444

TABLE II: Examples of RMF parameterization sets that give
the required nuclear matter properties (see text).

Set m∗/M gσ gω A(fm−1) B

1 0.6 10.047638 12.247145 -1.147188 12.396194

2 0.7 8.652969 10.346869 -10.825788 75.221535

3 0.8 6.645764 7.953129 -43.850479 277.549711

4 0.85 4.884545 6.411573 -85.063619 461.632842

5 0.9 1.609514 4.340011 -74.404620 172.583219

MeV, b = 43.0838 MeV and σ = 3.07326. In both
SMASH and pBUU, the model parameters have been se-
lected to give the same compressibility, saturation density
and binding energy as indicated above.
In Fig.1 (panel (a)), we show the energy per nucleon,

E/N , for nuclear matter at zero temperature, as given
by the adopted Skyrme parametrization (non-relativistic
kinematics is considered, but very similar results are
obtained in the relativistic case and for SMASH), the
parametrization employed in pBUU and three RMF
parametrizations, namely set 1, 4 and 5 of Table II.
One can see that all the curves shown in the panel ex-
hibit the same trend around saturation density, as ex-
pected. Moreover, the pBUU curve is very close to
the Skyrme one in the whole density range considered.
This is also the case for the RMF parametrization with
m∗/M(ρ = ρ0) = 0.6. For larger m∗ values, the curves
deviate increasingly more from the Skyrme parametriza-
tion away from saturation density. However, for density
variations of about 20%, as considered here, the differ-
ences are not large.
The Dirac mass, m∗/M , is shown as a function of the

density in panel (b), whereas panel (c) shows the density
dependence of the scalar density, ρS . Results are shown
for all parametrizations considered in panel (a), except
the Skyrme interaction, which has no scalar field. One
can see that the Dirac mass remains quite close to the nu-
cleon mass, M , over the whole density region considered,
in the case of pBUU and of the RMF parametrization
with m∗/M(ρ = ρ0) = 0.9.
Figure 2 shows the corresponding gradients of the

mean-field potential, namely the quantity −F (z) =
∂ǫ/∂z, with ǫ being the single-particle energy, calculated
analytically for the initial standing wave impressed on
the density profile. We note that according to the gen-
eral definition of the single-particle energy, the quantity
F also depends on the momentum (for models including
a scalar field), thus we take the average of F over the
initial Fermi-Dirac momentum distribution in this case.
Namely, for the RMF parametrizations, we consider the
quantity:

−F (z) =
[〈 m∗

√

~p2 +m∗2

〉dm∗

dρS

dρS
dρ

+
dA0

dρ

]dρ

dz
, (16)

where the average is over momentum space and dρ
dz is

the derivative of the initial sinusoidal perturbation. The
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same expression holds for pBUU, but with A0 = 0. In
the case of the Skyrme interaction, namely for codes of
type “rel” and “non-rel”, and for SMASH, one can simply
write −F (z) = dU

dρ · dρ
dz , where U(ρ) is the correspond-

ing mean-field potential. As one can see in the figure,
though all parametrizations give the same trend for the
EoS around saturation density, quite interesting differ-
ences exist for the gradient of the mean-field potential.
This simply stems from the fact that different effective
interactions may lead to the same EoS.
Let us comment first the behavior associated with the

Skyrme interaction, which is simpler to interpret. Within
the linear regime, i.e., for very small amplitude density
perturbations, one can write −F (z) = dU

dρ |ρ=ρ0
· dρdz , and a

cosinusoidal trend would be obtained (see the dotted line
in the figure). Thus, the behavior observed (full (black)
line) can be ascribed to the amplitude of the initial per-
turbation considered, which is not small and will induce
non-linear effects in the Vlasov dynamics. As it will be
discussed in the following, mode coupling effects are ex-
pected to appear. The behavior of the pBUU curve is
very similar to the Skyrme one. Turning to the behav-
ior of the RMF parametrizations, we observe significant
differences with respect to the Skyrme interaction. It
is interesting to notice that the parametrizations with
large values of m∗/M exhibit a trend close to the cos-
inusoidal one, indicating that the non-linearities intro-
duced by the scalar field parametrization do not have
large effects on the gradients. It follows that, within the
linear regime, these parametrizations (especially the one
with m∗/M(ρ = ρ0) = 0.9) are close to the behavior
of the Skyrme interaction. The same does not hold for
the parametrization with m∗/M = 0.6. We will show
that in spite of the presence of non-linear effects, the os-
cillation frequency of the initial density perturbation is
mainly determined by the features connected to the lin-
ear regime and the pure zero-sound propagation; thus we
expect close results between the covariant codes employ-
ing m∗/M(ρ = ρ0) = 0.9 and the other codes. This point
will be better illustrated in the following section.
We note that in the first formulation of the present

homework, a mean-field parametrization corresponding
to the more realistic compressibility K0 = 240 MeV was
employed, as in the earlier comparisons of Au+Au col-
lisions in Ref.[23]. The quite large damping effects ob-
served in this case, especially in QMD codes, made the
analysis of the results not very transparent. In order to
get more persistent density oscillations, the homework
was reformulated with the use of a nuclear potential cor-
responding to the larger, although unphysical, compress-
ibility value, K0 = 500 MeV.

3. Details of the simulations and output of the codes

We have considered 10 runs for BUU-like codes, em-
ploying 100 TPs per nucleon and 200 runs for QMD-
type codes. However, we should mention that to im-
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FIG. 1: Panel (a): Energy per nucleon, as obtained for the
adopted Skyrme-like parametrization (full (black) line), three
RMF parametrizations adopted for RVUU and DJBUU mod-
els and for the pBUU model (thick full (red) line). The
lines for the Skyrme, pBUU and RMF m∗/M = 0.6 mod-
els strongly overlap. Panel (b): The Dirac mass m∗ as a
function of the baryon density for pBUU and the three RMF
parametrizations. Panel (c): The scalar density ρS as a func-
tion of the nucleon density.

prove the quality of energy conservation and momentum
distribution features, the TP number was increased for
the codes that use point-like TPs, or triangles with l =
1 fm, namely BUU-VM, IBUU and RVUU (see Table I).
In particular, NTP = 1000 was adopted for IBUU and
pBUU, and NTP = 2000 for BUU-VM and RVUU. For
a reduced number of events, we output the (test) par-
ticle coordinates and momenta at certain times in the
evolution. The main outputs of these calculations are ta-
bles of the average density 〈ρ(z, t)〉 and of the associated
variance, reported as a function of the z coordinate.

More precisely, a grid along the z direction, of size ∆z,
is introduced inside the box. We adopt ∆z = 1 fm. For
each event, the density ρ(z, t), averaged over the (x, y)
plane, is evaluated on the grid at each time step. Then
the density is further averaged over all events and the
associated variance is also evaluated. In the following,
we omit the notation of the average. For each event,
we also calculate the gradient −F (z) of the mean-field
potential along the z direction, but only at the initial
time t = 0.

We will see in the following that the evaluation of the
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FIG. 2: The gradient of the mean-field potential, correspond-
ing to the initial density standing wave (see text), as a func-
tion of the z position, as obtained for the adopted Skyrme-like
parametrization (full (black) line), three parametrizations for
RVUU and DJBUU models and for the pBUU model (full
(red) line). The dotted line corresponds to the Skyrme inter-
action taken at frozen density (ρ0 = 0.16 fm−3), see text for
details. The short-dashed vertical line indicates the central
position of the box, where the density is equal to ρ0 and the
two Skyrme curves cross.

gradient of the mean-field potential is very helpful to
understand the possible sources of discrepancies for the
propagation of the density oscillations among the differ-
ent codes. We also emphasize that from such a detailed
output, it is possible to perform a Fourier analysis of the
density oscillations, in space and in time, with sufficient
accuracy.
The participating codes in this homework were given

in Table I. The GiBUU code only contributed to the cal-
culations with K0 = 240 MeV (not shown here), and the
DJBUU code only with K0 = 500 MeV.

4. Fourier transforms

To characterize the density perturbation introduced in
the initial conditions and its time evolution, it is useful
to perform a Fourier analysis of the density oscillations.
We define the Fourier transform of the averaged spatial
density as

ρk(t) =

∫ Lz

0

dz ρ(z, t) sin(kz), (17)

which gives a more compact representation of the spa-
tial density oscillations and can be called the strength
function of the mode k. One generally observes damped
oscillations as a function of time for the latter quantity.
Ideally at the initial time, t = 0, only the k value cor-
responding to the initial perturbation, kini = n 2π/Lα

(with n = 1 ), leads to non-zero ρk(t = 0). However,
due to fluctuations in the initial configuration, small ad-
mixtures of other modes can already appear at t = 0.
As time evolves, other k components appear significantly.
This can be called mode-mixing, which is due to the non-
linear character of the Vlasov equation, but also to fluc-
tuations. For this reason, it is interesting to introduce
also the Fourier transform of the type:

ρ′k(t) =

∫ Lz

0

dz ρ(z, t) cos(kz), (18)

and finally the quantity: ρk,tot(t) =
√

ρ2k(t) + ρ′k
2(t).

A deeper insight into the frequency and the damping of
the density oscillations is obtained from a further Fourier
analysis of ρk(t) with respect to time, i.e., the response
function. Hence we introduce the quantity

ρk(ω) =

∫ tfin

tin

dt ρk(t) cos(ω(t− tin)), (19)

where the integration is extended over a time interval
∆tfi = tfin−tin, with a suitable choice of the initial time
tin (see Sect. VIII B). It is convenient to parametrize the
frequency ω as ω = nω π/∆tfi, where nω is an integer.

IV. ANALYTICAL EXPECTATIONS FOR

ZERO-SOUND PROPAGATION

In the idealized situation of a box calculation, it is pos-
sible to make analytical predictions for the density oscil-
lation frequency in the small-amplitude limit, according
to the Landau theory of Fermi Liquids as applied to the
linearized Vlasov equation [69]. Within the general rela-
tivistic framework introduced above, at zero temperature
and density ρ, the zero-sound dispersion relation, which
allows one to determine the oscillation frequency ωk for
the wave number k, reads [70, 71]:

1 + F̃0φ(s) = 0, (20)

where an effective Landau parameter, F̃0, has been in-
troduced and φ(s) is the Lindhard function: φ(s) =
1− (s/2) ln[(s+1)/(s− 1)]. The quantity s = ωk/(kv

∗
F )

represents the sound velocity (vs(k) = ωk/k) in terms
of the Fermi velocity v∗F = pF /E

∗
F . The energy E∗

F =
√

p2F +m∗2, where pF represents the Fermi momentum,

coincides with the Landau effective mass. Extending the
results derived in [70, 71] to the more general case of
non-linear scalar and vector fields, the Landau parame-
ter takes the following expression:

F̃0 =
E∗

F

3p2F
[Kpot − 9Ajρv

2
s ]. (21)

Here, Kpot = 9ρ[fω − fσ
m∗2

E∗

F
2 (1 + fσÃ)

−1], with Ã =

3(ρS/m
∗ − ρ/E∗

F ), is the potential part of the nuclear
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matter compressibility, and we have defined fω = dA0(ρ)
dρ

and fσ = dΦ
dρS

. The term
(

9Ajρv
2
s

)

inside the square

bracket in Eq.(21) originates from the spatial components
of the nucleon four-current, and it is written in terms of
Aj = A0(ρ)/ρ for RVUU and SMASH, and Aj = 0 for
all the other models. Making the approximation vs ≈
v∗F , the frequency ωk only appears inside the Lindhard
function, thus simplifying the solution of the dispersion
relation.
Eq.(20) can be solved for all the models considered

here. In particular, we note that for the models of
the type “non-rel”, i.e., in the non-relativistic limit
(v∗F = pF /E

∗
F → pF /M), the Landau parameter is writ-

ten as F̃0 = F0 = 3ρ
2ǫF

dU(ρ)
dρ , where the Fermi energy

ǫF = p2F /(2M) has been introduced.
Corresponding parameters and solutions for the sound

velocity are reported in Table III for the different models.
In the case of RVUU and DJBUU, several possibilities for
the Dirac mass m∗ are included in the table.

TABLE III: The Dirac mass m∗ (normalized to the nucleon

mass M), the Landau parameter F̃0, the solution of the dis-
persion relation, s, the quantity (Mv∗F )/pF = M/E∗

F (see
text), and the sound velocity, vs = ωk/k, for the models con-
sidered in the present work.

Type m∗/M F̃0 s M/E∗
F vs

“non-rel” 1 1.259 1.073 1 0.301

“rel” 1 1.308 1.079 0.963 0.291

“cov”

SMASH 1 1.471 1.099 0.963 0.297

pBUU 0.942 1.208 1.067 1.017 0.304

RVUU 0.6 -0.956 - 1.510 -

DJBUU 0.6 0.496 1.005 1.510 0.425

RVUU 0.7 -0.207 - 1.326 -

DJBUU 0.7 0.704 1.017 1.326 0.378

RVUU 0.8 0.437 1.003 1.180 0.332

DJBUU 0.8 0.915 1.036 1.180 0.343

RVUU 0.85 0.728 1.019 1.117 0.319

DJBUU 0.85 1.022 1.047 1.117 0.328

RVUU 0.9 1.002 1.044 1.061 0.311

DJBUU 0.9 1.130 1.058 1.061 0.315

The results obtained for the sound velocity, vs = ωk/k,
are closely related to the value of the Landau parameter
F̃0 and also of the Landau effective mass E∗

F = pF /v
∗
F .

For instance, for the models of type “non-rel” and for the
mode that we are considering (n = 1, k = 0.314 fm−1),
we have ~ωk = 18.65 MeV.
Zero-sound solutions are found only for F0 > 0. The

robustness of the solution, s = ωk/(kv
∗
F ), of the disper-

sion relation increases with F0, i.e., for larger compress-
ibility values, as expected. Moreover, for a given solution
s, a larger sound velocity is obtained for larger values of
the Fermi velocity v∗F , i.e., smaller Landau effective mass.

From Table III one can see that for the considered com-
pressibility value, K0 = 500 MeV , in the case of RVUU,
zero-sound solutions are obtained only if the Dirac effec-
tive mass exceeds a threshold value, which is in the range
m∗/M = 0.7− 0.8. Moreover, the Landau parameter F̃0

is always larger in DJBUU than in RVUU. This behavior
originates from the second term inside the square bracket
of Eq.(21), which vanishes in the DJBUU case due to its

neglect of the spatial current ~j and is negative in the
RVUU case (A0(ρ) = fωρ there). However, the sound
velocity is similar in the two models and approaches the
values associated with the other models, if one consid-
ers large Dirac mass values, see in particular the results
obtained for m∗/M = 0.9. This reflects the findings,
illustrated in Fig.2, that for the choice m∗/M = 0.9,
the gradient of the mean-field potential is close to the
trend given by the Skyrme interaction within the linear
regime. Thus, in the following we will mainly consider
this parametrization (set number 5 in Table II).
In the case of SMASH, the second term inside the

square bracket of Eq.(21) is positive (because A0(ρ) is
negative), leading to the large F0 value reported in the
Table. However, since the Landau effective mass is larger
than the nucleon mass in this case (E∗

F /M = 1.038), the
sound velocity turns out close to the one associated with
the other models.
To summarize our findings about the sound velocity vs,

one can say that relative to the models of type “non-rel”,
the largest negative deviation is given by the “rel” mod-
els (about -3 %), whereas the largest positive deviation
corresponds to the DJBUU model (about 4 %, taking the
parametrization with m∗/M = 0.9).

A. Structure of zero-sound modes

In the following, we give more details about the struc-
ture of the zero-sound modes, which can be deduced from
the linearized Vlasov equation. For the sake of simplic-
ity, we present the formalism corresponding to the models
of type “non-rel” and “rel”, for which the derivation is
straightforward. After performing a Fourier transform in
space and time, the linearized Vlasov equation can be
expressed as [72]:

fk(~p, ω) =
∂fFD(p, T )

∂p

dU

dρ

cos(θp)ρk(ω)

v cos(θp)− ω/k
, (22)

where fk(~p, ω) represents the perturbation of the distri-
bution function associated with the wave number k and
the frequency ω. The angle θp refers to the angle between
the wave propagation direction (namely the z axis) and
the momentum ~p, and v = ∂E/∂p. The self-consistent
condition

4

∫

d3p

(2π)3
fk(~p, ω) = ρk(ω) (23)

leads to the dispersion relation discussed in the previous
section, from which the collective solutions, ω = ±ωk, are
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derived. The corresponding zero-sound amplitude for a
standing-wave solution of the distribution function at the
initial time can be written as

fk(~p, t = 0) =
1

2
[fk(~p, ωk) + fk(~p,−ωk)]. (24)

On the other hand, in the homework calculations (per-
formed at zero temperature), a spherical local Fermi sur-
face is chosen for the initial condition of the phase-space
distribution, which can be expressed as:

f(z, p, t = 0) = (25)

θ(pF − p) + f sph(p, t = 0) sin(kz) ≡ θ
(

psphk (z)− p
)

.

Here the zero temperature Fermi-Dirac distribution has
been introduced implicitly, fFD(p, T = 0) ≡ θ(pF − p),

and the function psphk (z) = pF [1 + (ρk sin(kz))/ρ0]
1/3 ≈

pF [1 + (ρk sin(kz))/(3ρ0)] describes the local spherical
Fermi surface. By Taylor expanding the r.h.s. of Eq.(25),
we obtain:

f sph(p) = −∂fFD(p, T = 0)

∂p
· pF
3ρ0

· ρk (26)

In this case, the amplitude, ρ̃k, of the resonant den-
sity oscillations, associated with the collective zero-sound
mode, can be recovered by projecting the perturbation
f sph(p) onto the auxiliary function,

Qk(~p, ω) ≡
ω/k

v cos(θp)− ω/k
, (27)

which is recognized as the usual RPA amplitude [72].
Hence, we get

ρ̃k
ρk

=
〈Qk(ωk)|f sph〉
〈Qk(ωk)|fk(ωk)〉

+
〈Qk(−ωk)|f sph〉

〈Qk(−ωk)|fk(−ωk)〉
, (28)

where the inner product stands for an integration over ~p.
At zero temperature, the integrals appearing in Eq.(28)
can be solved analytically. We obtain

〈Qk(±ωk)|fk(±ωk)〉 = ρk

( F0

s2 − 1
− 1

)

(29)

and

〈Qk(±ωk)|f sph〉 = ρk(1/F0 + 1). (30)

Exploiting the values of F0 and s listed in Table III, we
find

ρ̃k
ρk

= 2 · 1/F0 + 1

F0/(s2 − 1)− 1
= 0.49 (31)

for the models of type “non-rel” and 0.51 for the models
of type “rel”. This means that only about half of the
initialized perturbation is actually a pure n = 1 zero-
sound mode.

V. EXACT SOLUTION OF THE VLASOV

EQUATION: LOCALLY DEFORMED FERMI

SURFACE

While we were able to derive exact limits for the oscil-
lation frequency of the zero-sound mode in the small am-
plitude limit in the previous section, the further evolution
of the wave is not analytic because of the non-linearity
of the Vlasov equation, even when no fluctuations are
present. Hence, it is useful to have a direct (numerical)
exact solution of the kinetic equation, for the general
case of finite amplitude and for the initial conditions of
the homework, which are more general than a pure zero-
sound mode. These calculations are explained in this
section and will be compared, in the following, to the
simulations of the transport codes. Owing to the axial
symmetry of the simplified system that we are consider-
ing, and the Liouville theorem for the given initial condi-
tion, the nucleon distribution function can be represented
in terms of axially symmetric deformations of the local
Fermi sphere, which will be referred to as the Deformed
Fermi Surface (DFS) model in the following. From the
Vlasov equation, a kinetic equation can be derived for the
radius of the deformed Fermi sphere as described below.
For the sake of simplicity, we will limit our considerations
to the case where the single particle energy is given as

ǫ =
√

~p2 +M2 + U(ρ) (as in the codes of type “rel”),
which also allows a straightforward extension to the non-
relativistic approximation in the “non-rel” case.
Similar to the expression given by Eq.(25) for the

initial distribution function, the time-dependent phase-
space distribution is written as

f(z, pz, p⊥, t) = θ
(

psurf(z, θp, t)− p
)

, (32)

with tan θp = p⊥/pz and p =
√

p2z + p2⊥. The function
psurf(z, θp, t), which describes the deformed Fermi sur-
face, remains single-valued at least for a while from the
initial time. From the Vlasov equation, the equation is
obtained as

∂psurf
∂t

+
psurf cos θp
E(psurf)

∂psurf
∂z

−F (z, t)

[

sin θp
psurf

∂psurf
∂θp

+cos θp

]

= 0,

(33)
which can be easily solved numerically. In the above,
E(psurf) =

√

M2 + p2surf reduces to M in the non-
relativistic approximation. The force is expressed as

F (z, t) = −dU

dρ

∂ρ(z, t)

∂z
. (34)

In the case of the homework condition, the Fermi sur-
face psurf(z, θp) becomes multi-valued after t ≈ 50 fm/c.
To handle such cases, test particles with positive and
negative weights are introduced, so that the phase-space
distribution is now written as

f(z, pz, p⊥, t) = θ
(

psurf(z, θp, t)− p
)

+ (35)
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+
1

4

∑

k

Wkδ(z − Zk(t))δ(pz − Pz,k(t))
δ(p⊥ − P⊥,k(t))

2πp⊥

with the weights chosen to be

Wk = ± 1

NTP

(2π)3

L2
, (36)

and NTP = 5000. Thus a test particle corresponds to
a small fraction, ± 1

NTP

of a full nucleon, which spreads
uniformly on a plane perpendicular to the z axis and
on an axially symmetric ring in the momentum space.
At every time step of ∆t = 0.25 fm/c, after considering
the evolution from Eq.(33) for the single-valued function
psurf and the classical equation of motion for the existing
test particles (Zk, Pz,k, P⊥,k), the surface is replaced by
its smoothed version, psurf → p̃surf, and a suitable num-
ber of test particles are newly created to compensate for
the change θ(p̃surf − p) − θ(psurf − p). For each value
of θp, the smoothed version is defined by replacing the
function in the region of z ∈ [z−, z+] (z± = z0 ± 15

32 fm)
around the point z0 of the maximum of |∂psurf/∂z| with
a polynomial fit using the three points at z−, z0 and z+.
In a similar way, the function is further smoothed for
the variable θp for each z. Results for the time evolu-
tion of the Fermi surface deformations, as obtained in
the homework conditions, for the Skyrme interaction,
are represented in Fig.3. The figure shows the phase
space distribution f(z, pz, p⊥, t) in the plane determined
by z and p = |~p|, averaged for the forward angle region
0 < θp < π/16. One clearly observes that the Fermi
surface is multivalued, corresponding to breaking waves,
and eventually takes a “millefeuille” shape.

VI. DENSITY OSCILLATIONS IN A BOX:

RESULTS FROM TRANSPORT CODES

After the standing wave has been initialized, it is prop-
agated using the Vlasov part of the various transport
codes. Here we will see significant differences, which to a
large part tie to the fluctuations introduced by the cho-
sen representation of phase space. As will be seen below,
although the system is initialized as a Fermi system, its
character changes in the evolution, with the degree of the
change depending on the code family and the individual
codes. The consequences of these effects will be studied
in the following sections in terms of Fourier transform
coefficients.

A. Coordinate space

The initial average profiles in z-direction for all par-
ticipating codes are shown in Fig.4. Both BUU-like and
QMD-like codes give a faithful initialization. In the case
of QMD-like codes, the figure also shows the standard
deviation of the density ρ(z, t = 0), as obtained from the
sample of the 200 events considered. The average agrees

very well with the average trend associated with the BUU
codes. The standard deviation is reduced by about a fac-
tor 10 for the BUU-like codes and is not shown on the
figure. The evolution of the standing wave profile with
time is shown in Fig.5, for some representative codes and
the DFS model. In particular, the results of DFS calcula-
tions (with relativistic kinematics) are compared to the
evolution of the density profile predicted by a selected
BUU-like model (LHV) and a selected QMD-like model
(ImQMD). In the case of LHV, in addition to the calcu-
lations corresponding to the homework conditions (100
TP per nucleon), we also consider results obtained with
a larger TP number, namely NTP = 2500.
According to the features characterizing zero-sound

propagation in nuclear matter, we expect damping ef-
fects in the density oscillations, related to the interplay
between the collective response induced by the initial per-
turbation, the mode-coupling due to the non-linearity of
the Vlasov equation, and the disordered particle Fermi
motion (Landau damping). One can appreciate the non-
linearity of the system evolution from the distortion of
the original sinusoidal wave form. Moreover, in each
of the simulated events, owing to the finite phase space
mapping, numerical density fluctuations are present on
top of the standing wave initially introduced. These fluc-
tuations act as an additional (numerical) source of damp-
ing. We recall that the smaller the number of TPs used,
the larger the amplitude of the density fluctuations. In-
deed, for a given event, the density fluctuation variance
can be expressed as

σ2
ρ = ρ̄z/(NTPV ), (37)

with the volume V typically associated with the exten-
sion of the nucleon (or TP) wave packet. In Eq.(37), ρ̄z
represents the density averaged over the cells having po-
sition z. The particles momentum distribution presents
a similar kind of statistical fluctuation.
A quite good agreement is observed between DFS and

LHV calculations with 2500 TP per nucleon (for which
numerical fluctuations are negligible), up to the final time
considered (t = 500 fm/c). A reasonable agreement is
seen also with the calculation adopting 100 TP, though in
this case a quenching of the oscillation amplitude appears
at large times, clearly visible at tfin = 500 fm/c. As
expected, damping effects of the density oscillations are
more pronounced in ImQMD calculations; in this case,
the density profile starts to exhibit a random character
already around t = 200 fm/c. As anticipated above, we
conclude that the damping effects observed in LHV and
in ImQMD, relative to DFS calculations, are connected
to the amount of fluctuations inherent to the transport
code family.

B. Momentum distribution and energy

conservation

In Fig.6 we show the distribution of the absolute value
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FIG. 3: The phase space distribution f in the plane of z and p = |~p|, averaged over the forward angle region 0 < θp < π/16,
is respresented at several time instants indicated in the different panels. The distribution f is the sum of the two terms on the
right hand side of Eq. (35), and the function psurf (z, t) in the first term is represented by the (red) solid line (for θp = 0).
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FIG. 4: Initial profiles of the standing wave as initialized by
the BUU-type codes (panel (a)) and the QMD-type codes
(panel (b)). The result corresponding to a selected BUU-
like code (LHV) is also shown on panel (b) (full line) for
comparison.

of the particle momentum, f(p) = (2π)3n(p)/(4Vps),
where n(p) is the number of nucleons with momentum
p and Vps represents the phase-space volume: Vps =
Vbox · (4πp2)∆p. Vbox = L3

α denotes the volume of the
box and we adopt ∆p = 5 MeV/c. Results are shown
in panels (a) and (b) for BUU codes and in panels (c)
and (d) for QMD codes. The distribution is shown for

the initialized configuration in panels (a) and (c), and
for the final configuration in panels (b) and (d). At the
initial time, for homogenous matter at saturation density
this would be a step function at the Fermi momentum of
about 265 MeV/c. As observed for the BUU-like codes,
there is a slight smearing, due to the impressed stand-
ing wave. For the QMD-like codes, a considerably larger
smearing is observed, corresponding to the larger intrin-
sic initial density fluctuations (generating a wider range
of local Fermi momenta). It should be noticed that all
QMD codes have employed exactly the same input for
the initialization.

The results obtained by adopting the extreme choice of
NTP = 10000 in LHV calculations show that the initial
momentum distribution should be approximately pre-
served in time. Indeed the final configuration is very
close to the initial one. However, it is seen that in gen-
eral the momentum distribution changes by amounts that
depend on the code. Most BUU codes reasonably well
preserve the quantum-statistical behaviour. The QMD-
like codes in panel (d) are seen to deviate significantly
from the Fermi statistics at the final time, approaching
the classical Maxwell-Boltzmann distribution. This be-
havior can be ascribed to the larger fluctuations inherent
to the QMD approach.

These features are better illustrated in Fig.7, which
shows the results of selected BUU- and QMD-like codes,
compared to DFS calculations and to the trend associ-
ated with the Fermi-Dirac and Boltzmann distributions
at the temperature value corresponding to the system
total energy, in the fermionic (T = 2.9 MeV) and the
classical (T = 15.3 MeV) case, respectively. As shown
by the exact DFS calculations, and also by LHV calcu-
lations employing NTP = 10000, the Vlasov dynamics
does not bring the system towards the finite tempera-
ture Fermi-Dirac distribution, as one would instead ob-
serve in the presence of two-body collisions. Features
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FIG. 5: Density for the initialized standing wave at several instants of time, indicated in the panels in fm/c. The results are
shown for DFS calculations ((black) full line), LHV calculations with 2500 TP per nucleon (dot-dashed (magenta) line) and
100 TP per nucleon ((blue) dashed line), and ImQMD calculations (full line with dots).

connected to the multi-valued structure of the Fermi sur-
face psurf (z, θp, t) induced by non-linearities (see the dis-
cussion of DFS calculations in Sect.V and Fig.3) appear
in the high momentum tail of f(p). The signatures of the
“millefeuille” structure shown in Fig.3 are clearly visible
also in LHV calculations employing NTP = 10000, which
indeed exhibit noticeable similarities with the DFS cal-
culations. In LHV calculations with NTP = 100, the
system moves slightly towards a classical behavior, as in-
dicated by the fact that the distribution function takes
values slightly larger than f(p) = 1 (see also Fig.6), with
the overall shape of the momentum distribution reason-
ably well preserved. The high momentum structures are
smeared out in this case.

On the other hand, as already discussed above, signifi-
cant deviations from the fermionic behavior are observed
for the QMD codes, which tends to approach the Boltz-
mann distribution.

Finally, we mention that the total energy is conserved
in all codes, within 1% in the worst case. The violation
of energy conservation results from the numerical solu-
tion of Eq.(11) in the coding process. Mostly, the Eu-
ler’s method, the fourth order Runge Kutta method, and
the leapfrog method are applied in the different trans-
port codes. In principle, the numerical error is reduced

when employing a higher-order method. To investigate
the impact of the aforementioned numerical methods on
the calculations considered in this work, the fourth or-
der Runge Kutta method (default method) and the Eu-
ler’s method have been tested within the UrQMD model.
It is found that UrQMD with the default method and
UrQMD-Euler lead to convergent predictions, which are
almost completely overlapping and thus not shown in the
figures. However, it should be noticed that the excellent
agreement between the two methods is favored by the
quite low excitation energy charactering the system con-
sidered.

VII. ILLUSTRATIVE RESULTS FOR

SELECTED CODES

As discussed in Sect.III A 4, the damping and fre-
quency effects can be more compactly seen in the Fourier
transform coefficients with respect to coordinate space,
called the strength function, and with respect to time,
called the response function. These depend not only on
the dynamical features of the Vlasov equation but also on
the implementation in the specific codes, as we already
saw in Sect.VI . To illustrate these effects and their de-
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FIG. 6: Momentum distributions in the different codes at initial ((a) and (c) panels) and final ((b) and (d) panels) times:
BUU-like in panels (a) and (b) and QMD-like in panels (c) and (d). The QMD codes have used an identical initialization of
the nucleon positions and momenta.

pendence on the type of transport code, we will in this
chapter compare in detail results of a selected BUU code
of type “non-rel”, namely SMF, a selected BUU code of
type “rel”, namely LHV, and a selected QMD-type code,
namely ImQMD. As a reference, DFS results will also
be shown. We will, in particular, study how the results
depend on approximations and calculational parameters
of the codes. In the following section, we will then make
this comparison for all participating codes.

A. Strength function

The frequency of the oscillation and the damping of the
amplitude can be compactly seen in the behaviour of the
first Fourier transform coefficient, ρk(t), i.e., of the mode
strength (Eq.(17)). This is shown in Fig.8, where DFS
calculations (with and without relativistic kinematics)
are compared to SMF and LHV calculations. In order to
simulate the behavior of transport codes, in DFS the den-
sity ρ(z, t), calculated by integrating f(z, pz, p⊥, t) over
the momentum, is smeared by a triangular distribution
(extending to ±2 fm) and the derivative ∂

∂z is replaced
by a finite difference (of the two points at ±1 fm).

We note that the value of the Fourier transform co-
efficient ρk(t) at the initial time t = 0 is equal to
ρk(t = 0) = (Lz/2) aρ= 0.32 fm−2. The early strong
reduction of the oscillation amplitude seen in Fig.8 corre-
sponds to the projection of the momentum distribution of
the initial perturbation on the zero-sound mode, as dis-
cussed in Sect. IVA. The subsequent behavior reflects
damping and mode-coupling effects, as discussed below.

An excellent agreement with the density oscillation
trend predicted by DFS, both for the non-relativistic and
the relativistic version, is observed until t≈250 fm/c. At
later times more pronounced damping effects, of numer-
ical origin, are seen in the simulations. However, it is
interesting to notice that, when 2500 TP are employed
in LHV, the simulations are very close to the DFS-rel
results up to the final considered time of t = 500 fm/c.

Now we move to discuss in more detail the impact of
the main numerical ingredients of BUU- and QMD-like
codes on the Vlasov dynamics. In Fig.9, we show in the
upper panel results obtained from SMF calculations with
different TP numbers and in the lower one from ImQMD
calculations with different wave packet widths.

When employing 100 TPs in the SMF calculation, the
statistical fluctuations according to Eq.(37) are quite sup-
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FIG. 7: Momentum distributions, in log scale, at the final
time t = 500 fm/c, as obtained in LHV calculations with
NTP = 100 (homework conditions, dashed (blue) line) and
NTP = 10000 (dot-dashed (magenta) line), DFS (full (black)
line) and ImQMD calculations (full line with dots). The lines
with (green) crosses and (red) open dots represent the Fermi-
Dirac and Boltzmann distributions, respectively, at the tem-
perature value corresponding to the system total energy.
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FIG. 8: The Fourier transform coefficient, ρk(t), for the node
number n=1 is displayed as a function of time. LHV and SMF
results are compared to DFS calculations with and without
relativistic kinematics.

pressed, and the numerical damping remains limited. On
the other hand, one can nicely observe that owing to fluc-
tuations, the damping increases strongly when using a
smaller number NTP in the calculations (see the behav-
ior for NTP = 10 and NTP = 2). At the same time,
the oscillation frequency is seen to slightly increase. It
is also interesting to observe that SMF results with NTP

= 1 are different from molecular dynamics calculations,
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FIG. 9: The first Fourier transform coefficient, ρk(t), as ob-
tained for an initial sinusoidal perturbation with node number
n=1, as a function of time. In panel (a) , SMF calculations
are shown employing different numbers of TPs, as indicated in
the legend. Moreover, standard ImQMD calculations are rep-
resented. In panel (b), ImQMD and ImQMD-L calculations
are shown employing different Gaussian wave packet widths,
and for comparison the SMF calculations with 100 and 1 TP
per nucleon.

as reported in the figure for the ImQMD results. In the
following, we will explore the reasons for this behavior in
more detail.

The influence of fluctuations in the context of QMD-
like models is investigated by considering ImQMD cal-
culations that employ, in addition to the standard value
of the Gaussian width (∆x =

√
2 fm), another choice,

namely ∆x = 0.9 fm. This Gaussian width has been se-
lected to fit the width of the triangular profile employed
in SMF (see Table I). Moreover, also the Lattice version
of ImQMD (ImQMD-L) is considered. The correspond-
ing results are shown in the lower panel of Fig.9.

Comparing the (black) dot-dashed and full (with cir-
cles) lines, one can see that reducing the Gaussian width



18

in ImQMD (approaching the width value employed in
SMF) leads to quite quenched oscillations, thus increas-
ing the discrepancy with the corresponding SMF results
with 1 TP, contrary to what might have been expected.
On the other hand, quite interesting results are seen for
ImQMD-L: in this case, calculations with the reduced
width, ∆x = 0.9 fm, are quite close to SMF results with
NTP = 1. Moreover, employing the standard value of ∆x
= 1.4 fm, the strength function exhibits an oscillation fre-
quency similar to standard SMF calculations (i.e., with
NTP = 100), though with more pronounced damping ef-
fects. The results presented so far demand clarifications
concerning the relation between the oscillation frequency
and the wave packet width in QMD-like approaches, or
the test particle number in BUU-like approaches, which
will be given in the next subsection.

B. Gradients of mean-field potential

The oscillation frequency crucially depends on the gra-
dients of the mean-field potential that the particles feel,
and on the interplay with fluctuations. Indeed, the gra-
dients determine the change of the momenta of nucleons
(or TPs) according to the equation (for codes of type
“non-rel” and “rel”)

∂

∂t
Pz,i = −∂ǫ/∂Zi = −∂U/∂Zi, (38)

where ǫ is the single-particle energy. As already discussed
in Sect. III A 2, the gradient can be calculated analyti-
cally at the initial time according to the perturbation
impressed on the system:

(∂U/∂z)t=0 = 1/ρ [a(ρ/ρ0) + bσ(ρ/ρ0)
σ](aρk cos(kz)).

(39)
In the simulations, we have evaluated, for each event, the
gradient, ∂U/∂z, of the mean-field potential along the z
direction at the initial time t = 0. The codes calculate
this quantity for each TP or nucleon. Then, for each
cell of the z grid (with side equal to 1 fm), this quan-
tity is averaged over all nucleons (or TPs) having the
z coordinate inside the grid (i.e., within 1 fm of inter-
val) for any value of the (x, y) coordinates. Finally, we
average over all events considered. A plot of these gradi-
ents is shown in Fig.10: in panels (a-c) for SMF for the
two- and many-body parts and the total gradients with
different TP numbers, respectively, and in panel (d) for
ImQMD for the two versions of the code and for different
wave packet widths. One clearly observes that the gradi-
ents depend on the number of TPs employed (for SMF)
and on the Gaussian width (for ImQMD). In particular,
as shown by the first two panels of Fig.10, the gradient
associated with the linear (aρ) term of the mean-field
potential is not influenced by the TP number adopted,
whereas a dependence on the number of TPs is seen for
the stiffer (many-body) bρσ term. This can be under-
stood as follows: the gradient ∂U/∂Zi can be written as

∂U

∂Zi
≈

∫

d3r U(ρ)
∂G(~r − ~Ri)

∂Zi
=

∂Hpot

∂Zi
, (40)

where

Hpot =

∫

d3r [
a

2
(ρ2/ρ0) +

b

σ + 1
(ρσ+1/ρσ0 )]. (41)

We consider the average of the middle part of Eq.(40), by
summing over the different cells with the same position
on the z axis. Starting from the definition of the mean-
field potential, U(ρ), it is easy to realize that one has to
deal with the average value of ρ and ρσ. Thus, the linear
(aρ) term of the potential is not affected by the fluctu-
ations, whereas for the second (bρσ) term one can write

〈ρσ〉 = ρ̄σz + σ(σ−1)
2 ρ̄σ−2

z σ2
ρ. Exploiting the expression of

the variance, Eq.(37), this quantity can be rewritten as
〈ρσ〉 = ρ̄σz [1 + σ(σ − 1)/(2ρ̄zV NTP )]. Thus the average
gradient of the many-body term is affected by the pres-
ence of fluctuations, which affect the repulsive part of
the nuclear effective interaction. In particular, the pres-
ence of fluctuations induces larger gradients (in absolute
value) with respect to the analytical predictions. This ef-
fect clearly appears in SMF calculations when decreasing
the number of TPs, as shown in Fig.10(b).
In particular, when using NTP = 100 or even NTP =

10, fluctuations are quite reduced and the average gra-
dient follows the analytical predictions. On the other
hand, considering just one TP per nucleon, the gradi-
ent gets larger values. Similarly, in the case of ImQMD
(panel (d)), smaller values of the Gaussian width (i.e.
larger fluctuations) lead to larger density gradients. Con-
fronting SMF calculations with NTP = 1 with ImQMD
results of similar width (∆x = 0.9 fm), one can see that
the latter gives a smaller gradient (which is accidentally
close to the analytical curve).
This result can be connected to an approximation, of-

ten employed in QMD-like codes, to evaluate the gradi-
ents associated with the many-body term of the Skyrme
interaction. Within QMD-like approaches and employ-
ing Gaussian functions for the nucleon wave packet, the
first term of the nucleon potential energy can be written
as

H2body,QMD
pot =

a

2ρ0

∑

i

ρ̃i, (42)

where ρ̃i is defined as

ρ̃i = [4π(∆x)2]−3/2
∑

j

exp[−(~Ri− ~Rj)
2/(4(∆x)2)] (43)

Whereas the combination of Eq.(42) and Eq.(43) yields
the exact two-body contribution to the Hamiltonian, a
similar combination,

H3body,QMD
pot =

b

(σ + 1)ρσ0

∑

i

ρ̃σi , (44)
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FIG. 10: Gradient of the mean-field potential. Panels (a)-(c) correspond to SMF calculations, with several options for the TP
number, from two-body (2-b), many-body (m-b) and total contributions, respectively, with the legend given by the left panel on
top of the figure. Panel (d) corresponds to ImQMD and ImQMD-L calculations using several options for the Gaussian width,
with the legend given by the right panel on top of the figure. The analytical curve corresponds to the dashed (green) line.

does not yield the exact result for the stiffer repulsive
term of the potential energy.

The approximation Eq.(44) leads to a reduction of the
strength of the latter term and seems to be the ori-
gin of the results observed in Fig.10(d) for ImQMD.
It will be seen below that this is also the case for the
other QMD-like codes involved in the comparison. How-
ever, it should be noticed that the Lattice formulation of
ImQMD (ImQMD-L) is free from this problem, thanks
to the exact calculation of the many-body term [45].

This explains the results shown in Fig.10(d) that “stan-

dard” ImQMD calculations, with ∆x =
√
2 ≈ 1.4 fm,

give a smaller gradient than the analytical predictions.
This is due to the approximation discussed above for the
gradient and to the Gaussian width amplitude, which
introduces smearing effects. Reducing the width to ∆x
= 0.9 fm, the gradient increases (dot-dashed curve on
the figure) and becomes (accidentally) closer to the an-

alytical value. In the case of ImQMD-L, owing to the
different treatment of the stiff term of the nuclear po-
tential, the choice of ∆x = 1.4 fm yields results that
coincide with the analytical curve. On the other hand,
with ∆x = 0.9 fm, the trend approaches SMF results
with 1 TP, as expected. These findings explain why, as
seen in Fig.9, ImQMD-L calculations with ∆x = 0.9 fm
give density oscillations pretty close to the SMF results
with 1 TP, whereas ImQMD-L calculations with ∆x =
1.4 fm yield results close to the SMF calculations with
100 TP. Indeed, the gradient of the mean-field potential
in the latter case is similar to the analytical prediction.
On the other hand, the smaller gradient corresponding
to ImQMD with ∆x = 1.4 fm explains the lower oscil-
lation frequency observed in this case. However, it is
interesting to notice that, in spite of the fact that a gra-
dient close to the analytical value is recovered in ImQMD
for ∆x = 0.9 fm, oscillations are quite quenched in this
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case. This trend can be attributed to the dominance of
the damping effects associated with the large fluctuation
amplitude steming from the smaller Gaussian width. In
SMF calculations with 1 TP and in ImQMD-L, this effect
is counterbalanced by the larger value of the potential
gradient (see Fig.10(c) and (d)).

C. Mode coupling

To understand the behavior observed for the strength
of the initialized mode (n = 1) already seen in Fig.5, one
has to consider the important coupling effects with other
modes (with n > 1), inducing anharmonicities. These
effects are connected to the non-linear character of the
Vlasov equation. This is shown in Fig.11, which displays
the absolute value of the strength of different modes as
a function of time. DFS calculations in the relativistic
formulation are represented in panel (a). In particular,
the figure shows the oscillations of the modes with n = 3
and n = 5, which are not present in the initial conditions
but arise over time from the coupling to the n = 1 mode.
The amplitude of these oscillations and their time evo-
lution is quite sensitive to the details of the mean-field
potential and its gradient. We also observe that the cou-
pling to the other modes induces damping effects in the
n = 1 mode, as also evident in Fig.8. The DFS results
are compared to LHV calculations with 2500 and 100 TP
per nucleon in panels (b) and (c) of Fig.11, respectively.
A nice agreement is observed for the calculations with
2500 TP, especially for the dynamics of n = 1 and n = 3
modes. Employing 100 TP per nucleon, one can see that
the dynamics of the n = 1 mode is reasonably well pre-
served, whereas n = 3 and especially n = 5 oscillations
start to be dominated by a chaotic behavior attributable
to numerical fluctuations. The (c) panel of Fig.11 also
shows standard ImQMD calculations for the mode n = 1.
One can clearly appreciate the stronger damping and the
loss of harmonicity at late times, as already discussed
above. The modes with n = 3 and n = 5 (not shown)
are rather chaotic in this case.
A deeper insight into mode coupling effects is obtained

from Fig.12, which shows the quantity ρk,tot (see Sect.
III A 4), averaged over the time interval indicated on the
top of each panel, as a function of the node number n.
We recall that the system is initialized with n = 1. The
decreasing trend with mode number n exhibited by DFS
calculations is well reproduced by LHV calculations with
2500 TP. When employing 100 TP, damping effects are
visible at late times for the lower n numbers. The over-
estimation, with respect to DFS results, observed for the
mode numbers n ≥ 4− 5 can be connected to numerical
fluctuations already present in the initial conditions (see
the inset in the first panel). In ImQMD calculations, the
amplitude of the modes n ≥ 2 remains similar to the ini-
tial value represented in the inset of the first panel, which
is due to numerical density fluctuations. The quenching
of the modes with large n can be attributed to the den-

sity smearing effects associated with the Gaussian width.
The mode n = 1, which is excited in the initial condi-
tions, is considerably damped, and approaches the ampli-
tude associated with statistical density fluctuations (see
Eq.(37)) already at t ≈ 200 fm/c.

VIII. RESULTS OF ALL PARTICIPATING

CODES

In this section we compare results of all the participat-
ing codes, using the numerical parameters recommended
in the homework specification or chosen by the code own-
ers. The focus is therefore on the more systematical
similarities and differences between the different types
of codes and within each family.
According to arguments given above, we expect that

the oscillation strongly depends on the behavior of the
potential gradients as calculated in the codes. We there-
fore first show in Fig.13 the average gradients in z-
direction for all the codes, at time t = 0. The BUU
codes give gradients close to the respective analytical re-
sults (note the different analytical prediction in the case
of RVUU and DJBUU, as already explained in Sect.
III A 2). The QMD codes also give consistent results
within this family, since they are using a common ini-
tialization, but generally lower than the analytical ex-
pectation. As discussed in Sec. VII B, this is due to the
approximation used in evaluating the non-linear repul-
sive term of the force. This gives rise to generally lower
frequencies of the oscillation for the QMD codes. In the
case of ImQMD-L, which is free from this approxima-
tion, the potential gradient is larger (in absolute value)
and becomes close to the analytical prediction.

A. Strength function

The time evolution of the n = 1 mode of the Fourier
transform of the density oscillations, namely the strength
function ρk(t), is displayed in Fig.14 for all BUU-like
(panel (a)) and QMD-like (panel (b)) codes participat-
ing in the comparison. For the BUU-like codes, three
main groups can be discerned (best visible around t =
400 fm/c): slower oscillations are seen for the codes of
type “rel”, namely IBUU, IBUU-L and LHV, compared
to the codes of type “non-rel” (SMF and BUU-VM), in
line with the analytical expectations. The covariant code
SMASH exhibits similar oscillation frequencies, as com-
pared to the codes of type “non-rel”, whereas a slightly
larger frequency is seen for pBUU, RVUU and DJBUU.
These features also reflect the analytical predictions of
Table III, as it will be better illustrated in the next sub-
section. The amplitude of the oscillations at late times
reflects the damping effects associated with the number of
test particles (NTP = 100) employed in the calculations.
The oscillations are less quenched for the codes which
employed a larger number of test particles in order to
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FIG. 11: Absolute strength |ρk(t)| of different modes n as a function of time: n = 1 ((black) full line), n = 3 ((red) dashed
line), n = 5 ((green) line with shading below). Results are shown for DFS calculations with relativitic kinematics (panel (a))
and LHV calculations with 2500 TP (panel (b)) and 100 TP (panel (c)) per nucleon, initialized with mode n = 1. The (c)
panel also shows results from standard ImQMD calculations for n = 1 ((black) line with dots).

preserve a good quality for the momentum distribution
(such as, for instance, BUU-VM, IBUU and pBUU).

As a general feature, the QMD-like codes in the lower
panel show a stronger damping, which is consistent with
the larger fluctuations in these codes, and also generally
a smaller frequency, with respect to the analytical ex-
pectation (codes of type “rel”), especially at early times,
which is consistent with the reduced gradients in QMD,
as seen in Fig.13. The frequency is higher for ImQMD-L,
which is free from the approximation employed to eval-
uate the many-body term of the force in QMD. In this
case, the early behavior of the Fourier transform coeffi-
cient is close to the results of the BUU-like codes, as one
can appreciate from panel (a), where ImQMD-L results
are also included.

B. Response function

A compact presentation of the dynamical properties
of the mean-field propagation is given by the response
function, ρk(ω), which was introduced in Sect. III A 4 as
the Fourier transform of the strength function with re-
spect to time. This quantity is shown in Fig.15 for all
the codes participating in the comparison. As the ini-
tial time, tin, we consider the time instant of the first
minimum of the Fourier transform coefficient ρk(t) for
each code. This choice is motivated by the fact that, as
explained above, the amplitude of the initial density per-
turbation impressed to the system is quickly quenched,
by about a factor two, to reach the amplitude of the zero-
sound collective mode. Thus zero-sound oscillations are
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more properly investigated starting from the second peak
in the time evolution (i.e., the first minumum). To make
the Fourier transform with respect to time more mean-
ingful, the function ρk(t) is multiplied by the smearing
function cos2[π(t−tin)/(2(tfin−tin))], so that at the final
time the resulting product function goes to zero. More
details about the sensitivity of the response function to
tin, and to smearing effects, are given in the Appendix
A.

The response function should have a peak centered at
the energy of the mode, and the width of the peak is a
measure of the damping. Here the three groups of BUU-
like codes already evidenced in Fig.14 are nicely visible:
for the codes of type “non-rel”, i.e., BUU-VM and SMF,
the peak energy is close to the one of pBUU and SMASH
(these four codes are denoted by full lines); the codes
of type “rel”, namely LHV, IBUU-L and IBUU, have
smaller frequency (dashed lines); the covariant codes

RVUU and DJBUU (dot-dashed lines) exhibit a larger
peak energy. This trend is in agreement with the an-
alytical predictions given in Table III, though the peak
energies extracted from Fig.15 are slightly smaller than
the zero-sound energies. For instance, for codes of type
“non-rel” one would expect a peak at the energy E = ~ω
= 18.65 MeV, which is slightly larger than the results of
SMF (18.32 MeV) and BUU-VM (18.17 MeV). In the fig-
ure, this is evidenced by the four vertical segments, which
indicate the analytical zero-sound solutions correspond-
ing (from the left to the right) to codes of type “rel”,
codes of type “non-rel”, RVUU and DJBUU. The lines
have been shifted down by 2% (to fit the DFS peak en-
ergy). This effect is mainly due to mode coupling; indeed
it is observed also in the case of the exact DFS calcula-
tions. The larger difference seen for RVUU could origi-
nate from the more significant deviation from the Fermi
statistics, with respect to the other BUU-like codes, as
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shown in Fig.6.

The width of the response function reflects mode cou-
pling and damping effects already discussed in the pre-
vious section. In some cases, a shoulder is observed at
energies larger than the peak energy, which can be at-
tributed to the presence of non-linearities. Indeed, the
latter effects tend to increase the oscillation frequency,
because of the coupling to modes with larger wave num-
bers. However, it should be noticed that the width is
also affected by numerical ingredients, such as the final
time considered and the smearing function introduced to
evaluate the response function (see the Appendix A).

Since all QMD codes lead to an almost identical behav-
ior for the time evolution of ρk(t), we show here only the
results obtained for ImQMD and ImQMD-L. We clearly
observe the quite large damping effects associated with
the QMD-like codes. The strength is larger in the case
of ImQMD-L, owing to the stronger driving force in this
case (i.e., to the larger gradient of the mean-field po-
tential), that also leads to a higher peak energy, as com-
pared to ImQMD. The peak energy observed for ImQMD
is close to the BUU codes of type “non-rel”, indicating
that the reduced mean-field gradient values (see Fig.13)
mainly affect the early evolution of the system, that is
excluded in our evaluation of the response function.

IX. DISCUSSIONS AND CONCLUSION

This paper continues evaluations of the robustness of
transport-model predictions for heavy-ion collisions. One
direction of these studies have been calculations in a pe-
riodic box, where ingredients of transport codes can be
studied in separation and against results that are exact or
that can be calculated more accurately with other meth-
ods. After box investigations of elastic collisions with
Pauli blocking [24] and inelastic collisions without Pauli
blocking [25], yielding Delta resonances and pions, we
study here mean-field dynamics in a box, without col-
lisions. The system is initialized in terms of a stand-
ing density wave and the system evolution is followed
with different participating codes using energy function-
als that are made identical or similar. Major transport
codes from the two basic families, BUU and QMD, are
included in this study, which also partly account for rel-
ativistic effects in different approximations. We compare
outcomes between the codes and to exact results in the
small-amplitude limit and to numerical results for the
evolution obtained in a more direct and accurate man-
ner. The comparisons include those of the strength func-
tion characterizing mode evolution and response function
revealing how frequencies are tied to the modes.

We find that we can generally understand consistencies
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calculations (panel (a), including ImQMD-L calculations for comparison) and QMD-like calculations (panel (b)).

and differences between the results of the codes. The dif-
ferences among the codes and relative to near-exact re-
sults that persist include: (1) relativistic effects that yield
observable effects in the frequency of collisionless mode;
(2) approximations to the calculation of the non-linear
terms of the force used in QMD codes that lead to no-
ticeable differences in the frequency of the density oscilla-
tions even at early times, which can, however, be avoided
in a lattice evaluation scheme; and (3) the importance of
damping effects generated by statistical or numerical fluc-
tuations. Indeed, the most noticeable differences in the
results of the codes arise from the fluctuations inherent in
the coarse phase space representation, which are charac-
teristically different in BUU and QMD codes. They lead
to a considerable damping of the modes, and in extreme
cases also to frequency changes. We could show that

by extremely extending the test particle number in BUU
codes, we can come close to the near-exact results, as is to
be expected. But already with more moderate numbers
of test particle, as commonly used in heavy-ion calcu-
lations, the results compare well against the near-exact
results. In QMD codes the damping is much stronger
than in BUU, affecting also slightly the frequency. These
findings do not make a statement about the validity of
the two approaches, since the physical modeling is dif-
ferent: QMD codes attempt to put a reasonable amount
of fluctuation already into the ansatz for the representa-
tion, while in BUU these would have to be included by
an extra fluctuation term in the Langevin framework.

The findings for the long-term behavior are relevant to
the uses of semiclassical transport in the studies of os-
cillations of isolated finite nuclei, including comparisons
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to quantum-mechanical calculations in TDHF and RPA
[26, 29]. Most of these studies have been carried out on
a case by case basis, rather than systematically.

In the context of heavy-ion collisions, it should be
noted that we employ here unrealistically stiff equations-
of-state (K=500 MeV), overemphasizing the strength of
mean-field back-reacting forces and yielding more robust
oscillations. For more realistic incompressibilities, the os-
cillations would have been slower and far more strongly
damped. Here we have investigated the oscillations for
the rather long time span of 500 fm/c, which contains
many cycles. For a realistic heavy-ion collision, probably
the time interval where the maximal density is reached,
of the order of a quarter or half of the cycle in Fig.14
is relevant at intermediate energies. Over such times,
the results of the different codes are not so much dif-
ferent, as seen in Fig.14, and thus not too large effects
from differences in mean-field integration are expected.
Perhaps the stronger damping, and, in most cases, also
the weaker forces of the QMD codes could lead to a
weaker response and to systematically reduced flow ef-
fects, see for instance the comparative heavy-ion study
of Ref.[23]. However, in realistic studies of heavy-ion

collisions momentum-dependent forces have to be used,
unlike the forces used here, which could lead to larger
differences in the mean-field propagation [73, 74]. The
impact of momentum-dependent forces is presently in-
vestigated in comparative studies of box calculations and
heavy-ion collisions.
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Appendix A: Details of Calculation of Response

Function

Here we want to illustrate the sensitivity of calculation
of the response function to some technical choices men-
tioned in Sect.VIII B: the time integration interval and
the use of a “smearing function”. In Fig. 16 we show the
results for the response function for the DFS calculation
with relativistic kinematics, in panel (b) for tfin=500
fm/c (the standard choice) and in panel (a) for tfin=1000
fm/c. In each panel we plot the results for our standard
choice for tin (first minimum in the time evolution of
ρk(t) ((black) solid curves) and for tin=0 ((red) dashed
curves), and with smearing (standard choice, thin lines
with shading below) or without smearing (thick lines, no-
tation “w/o s” in the legend). Thus the thin (black) line
corresponds to our standard choice, and the one in panel

(b) is the same curve as the one shown in Fig. 15 for
DFS-rel.

One sees that all curves have a main peak, which is
the peak of interest in Fig. 15 and can be compared
to the frequency of the zero-sound oscillation. The po-
sition of the main peak is essentially unaffected by the
various choices of the time interval and the smearing.
Thus the conclusions of our response function analysis in
Sect.VIII B are robust against the choices for these tech-
nical parameters. However, it may still be of interest to
investigate the consequences of these choices on the shape
of the response function, which is done in this appendix.

Without the smearing function the time-dependence of
the strength function is cut off abruptly at the final time.
Then we expect the appearance of structures at frequen-
cies ωn = nπ/(tfin − tin), with n an integer. Indeed, we
see these structures in the thick curves, which have half
the spacing for the doubled time interval. Including the
smearing function, the strength function smoothly goes
to zero at the final time. Correspondingly these struc-
tures are smoothed out in the thin curves.

As discussed in Sec. IVA, with our choice of the ini-
tial momenta of the (test) particles, namely randomly
in the local spherical Fermi surface, we do not initialize
the proper momentum distribution of the physical zero-
sound mode. Then the initial evolution of the system
is characterized by a fast quenching (by about a factor
2) of the initial density perturbation, which feeds low-
frequency components. Indeed we see in both panels,
that low-frequency modes are excited when taking tin=0,
and this is the more so if the total time interval is shorter,
i.e., the fewer modes there are.

Finally one can observe that the asymmetry of the re-
sponse function is due to the admixture of higher modes,
which is mainly due to the non-linearity of the mean-field
potential. These higher mode admixtures are clearly re-
solved without the smearing, and are mostly smoothed
out with the standard choice of tfin=500 fm/c in panel
(b).
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