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In this paper, we report on a study of the spectral features associated with dipole resonances
in medium mass nuclei (E ≤ 12 MeV), as revealed in the framework of the spd -interacting boson
model. The effect of pairing correlations on the theory follows from solutions obtained through
an application of the Bethe Ansatz Equation. In general, calculated spectra around the critical
point of the vibrational to γ-soft transitions appears to approach that of a Gaussian Orthogonal
Ensemble, while near the rotational and vibrational limits of the theory the spectra show more
regular behavior. Specifically, the results reveal that the statistical features of the spectra are
sensitive to the vector boson pairing strength, cp, in the transition region; that is, when cp is
zero, or when the system approaches one of its dynamical symmetries limits the spectrum display
regular features, while for stronger cp values, or when near to the critical phase transition region,
the spectral feature show more chaotic behavior. Overall, our results indicate that the statistical
features are governed by the interplay between dipole resonant energies, pairing correlations, and
interactions between and among the single and vector bosons modes of the theory. As part of this
work we also found out that chaoticity occurs when results were fit to a Berry-Robnik distribution.
Throughout our analyses, we used experimentally known information about both positive and
negative parity states. Our findings suggest that dipole resonances appear to be best-described by
Poisson statistics for A ≈ 32-138 nuclei.
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I. INTRODUCTION

High-resolution photo-nuclear experiments have been
used for many years to explore special features of nu-
clear structure. Most recently they have been used to
examine spectral statistics of dipole resonances, which
in turn has provided a unique opportunity to investigate
physical realizations of Gaussian Orthogonal Ensembles
(GOE) and Poisson distributions. These special features,
as understood within the general framework of Random
Matrix Theory (RMT) [1–3], can, in turn, be used to de-
cipher whether a system displays chaotic or regular be-
havior by comparing nearest-neighbor spacing distribu-
tion (NNSD) to Poisson and Wigner [1–5] distributions,
respectively. In this paper, building froward on the work
of Maino et al. [6] on the spd -Interacting Boson Approx-
imation (IBA) model, we use an extended version of the
theory to study dipole resonances. Properties of giant
dipole resonance (GDR) have also been explored by other
authors [7–10]. Specifically, resonances of this type have
also been examined using Hartree-Fock-Bogoliubov ap-
proaches [11], the Random Phase Approximation [12, 13],
as well as various other IBA-based theories [6, 14–27].
The IBA, as proposed by Arima and Iachello, in-

cludes two types of bosons with angular momentum L=0
(s bosons) and L=2 (d -bosons) [28–30]. Building for-
ward from this, and following the work of Maino et al.
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[6, 17], in this paper we consider the spectral statis-
tics of GDR with an apparent Berry-Robnik Distribution
(BRD). Specifically, the scope of the present work is to
describe dipole spectra by coupling a p-boson to the IBA
sd -boson system for a theory with three pairing control
parameters (cs, cd and cp), and study the spectral statis-
tics of the resultant high-lying dipole states. A focus
on dipole states within such a framework started with
the initial work of Morrison and Weise’s in 1982 [16] and
independently, by Scholtz and Hahne in 1983 [21] Subse-
quently, Rowe and Iachello in 1983 [8] proposed analytic
results by extension of the IBA for energies and transi-
tion matrix elements. Maino et al. [6, 17, 23, 25, 27]
have advanced such investigation from different points of
view, such as dipole resonances in the light and odd-even
nuclei. Recently, other authors have profferred that the
presence of vibrational and low-lying rotational modes
coupled to high-lying giant resonances in nuclei could be
studied within the (spd -IBA)[8, 16, 21, 31].

This integration of the IBA and GDR modes - espe-
cially for transitional nuclei - has also been discussed in
Refs. [6, 14, 16, 18–27]. An important additional advan-
tage of using a mixed-mode spd -IBA system of this type
is that it allows one to re-examine resultant level spac-
ings in terms of their regularity and/or chaoticity. Ac-
cordingly, in what follows we report on results for ground
and excited states of dipole resonance within this frame-
work. In short, we find different degrees of chaoticity
with a variation in the pairing strength by performing
finite-size scaling up to N=10 bosons.
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Our approach is distinct from others that build directly
on the work of Iachello and co-workers ([29, 30, 32–35]).
Specifically, we utilize exact solutions of the IBA as ad-
vanced by Pan and co-workers [36–42]; and further, we
use an affine SU(1,1) algebraic technique to determine the
properties of nuclei in the U(5) ⊗ U(3) → SO(9) transi-
tional region of IBA. The latter requires the Hamiltonian
be diagonalized numerically, as in Refs. [36, 43–45].
The remainder of this paper is organized as follows:

In Sec. II (Theoretical Framework), the dipole mode’s
coupling to the sd boson model is expressed within the
SU(1,1) framework. Sec. III (Numerical Results) focuses
on comparisons with exact results in spd -IBA for different
sets of parameters. Also, to describe the NNSD, all level
sequences of dipole resonance are prepared from the pair-
ing model and classified based on their pairing strength.
Sec. IV (Summary and Conclusion) is a brief recap of
essential results. And Sec. V (Acknowledgments) recog-
nizes the various funding sources that enabled this work.

II. THEORETICAL FRAMEWORK

The problem of missing levels hampers most statistical
analyses of nuclear data. To address this issue, we ana-
lyze dipole states within the framework of an extended
spd -IBA theory, where a comprehensive analysis of the
GDR uses IBA methodologies for same-parity states and
a dual pairing mode construction as realized through a
SU(1,1) Lie algebra construction for opposite parity con-
figurations. We tested this methodology for a spdf boson
system [46] by analyzing the affine SU(1,1) Lie algebra
within an IBA framework, focusing on low-lying dipole
and octupole strengths. The results of that study sug-
gested that some properties of GDR in collective states
could be used as indicators of chaos and/or regularity in
the mass region of shape phase transitions. If we restrict
ourselves to a study of positive parity and low-lying col-
lective states, s and d bosons are sufficient for a complete
accounting of spectra excitations (no missing levels) and
at the same time, within this framework, the sd -IBA can
account for collective monopole and quadrupole modes.
The present work is focused on the spectral statistics of
p bosons and GDR structures.
In recent years, the use of the Richardson model

[47, 48] has gained prominence, and extensions to it
based on the use of the Bethe Ansatz have been ad-
vanced [49, 50]. For these infinite-dimensional algebraic
Bethe Ansatz approaches, the pairing Hamiltonian so-
lutions are provided through a set of highly nonlinear
Bethe Ansatz Equations (BAE) [51–53]. By exploiting a
dual algebraic structure [54, 55] for a multi-level pairing
model within an affine SU(1,1) Lie algebra, we can gen-
erate exact solutions of the three-level (spd -IBA) model
for eigenvalues of dipole resonances in the transitional re-
gion of medium mass nuclei. And in addition, we can use
the spd -IBA to determine level spacings and their statis-
tical behavior. So in summary, in this paper we report

on results of an application of the algebraic Bethe Ansatz
method, within the framework of an infinite-dimensional
SU(1,1) Lie algebra [36, 39], to generate the spectrum of
the dipole states and use the results to examine the sta-
tistical behavior (chaotic and regular) of the dipole states
so generated.

A. spd Model

To investigate the properties of GDR, similar to that
of the two-level system in sd boson system, a three-level
system in s, p, and d boson model is considered here.
In order to analyze the QPT between the spherical and
rotational shapes, similar to Refs. [36, 39], the SU(1,1)
pairing algebra is produced by Sρ(l), ρ = 0, and ±, which
satisfies the following commutation relations:

[S+
(l), S

−
(l)] = −2S0

(l), [S0
(l), S

±
(l)] = ±S±

(l), (1)

where l represents s, p and d boson with the angular
momentum of 0, 1, and 2, respectively.
The creation operators of SU(1,1) quasi-spin pairing

algebras for s, p and d bosons are

S+
s = (S−

s )† =
1

2
s†

2

, S0
s =

1

4
(s†.s+ s.s†) =

1

2
ns +

1

4
,

(2)

S+
p = (S−

p )† =
1

2
p†.p, S0

p =
1

4

∑

λ

(p†λ.pλ+pλ.p
†
λ) =

1

2
np+

3

4
,

(3)

S+
d = (S−

d )† =
1

2
d†.d, S0

d =
1

4

∑

λ

(d†λ.dλ+dλ.d
†
λ) =

1

2
nd+

5

4
,

(4)
where ns, np, and nd are the number operators for s, p
and d bosons.
The Casimir operator of SU(1,1) for each l boson can

be expressed as

Ĉ2(SU(1,1)) = S0(l)(S0(l)− 1)− S+(l)S−(l). (5)

And basis states of an irreducible representation of
SU(1,1), |κµ〉 for spd -IBA, are determined by a single
positive real number κ, where µ = κ, κ+ 1, ....
Therefore,

Ĉ2(SU(1,1))|κµ〉 = κ(κ− 1)|κµ〉 S0|κµ〉 = µ|κµ〉.
(6)

Since the basis vector of U(2l+1) ⊃ O(2l+1) ⊃ O(3)

is simultaneously the basis vector of SU(1,1)
l
⊃ U(1)

l
s,

their complementary relation can be expressed as

|N ;nνLM〉 =

|N, κl =
1

2
ν +

1

4
(2l+ 1), µl =

1

2
n+

1

4
(2l + 1), LM〉,

(7)
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where N,n, ν, L and M is the quantum numbers of
U(N),U(2l+1),SO(2l+1),SO(3) and SO(2), respectively.
κl and µl the quantum numbers of U(2l+1) and U(1),
respectively. From Eq. (7), it is known that the allowed
quantum number n for fixed ν is n = ν, ν + 2, ν + 4, ...,
where ν is called the seniority number [56].
The branching rules for the irreps of the algebras of

U(n) → SO(n), which has been discussed by Hammer-
mesh [57], provide the classification of states for the giant
dipole spd -IBA model. And pairing models of multi-level
configurations are likewise characterized by an overlaid
U(n1 + n2 + · · ·) algebraic structure[54], which is

Uspd(9) ⊃

{

SOspd(9)
Ud(5)⊗Up(3)⊗Us(1)

}

⊃

SOd(5)⊗ SOp(3) ⊃ SOd(3)⊗ SOp(3) ⊃ SOpd(3). (8)

The operators of infinite dimensional SUspd(1, 1) alge-
bra [36, 39] for GDR are as following.

S±
m(spd) = c2m+1

s S±(s) + c2m+1
p S±(p) + c2m+1

d S±(d),
(9)

and

S0
m(spd) = c2ms S0(s) + c2mp S0(p) + c2md S0(d), (10)

where cs, cp and cd are the strengths of the different pair-
ings, and m can be taken to be 0,±1,±2, ....
The lowest weight states of GDR for SUspd(1, 1) alge-

bra can be defined as

|lw〉spd =|Nspd, κs =
1

2
(νs +

1

2
), µs =

1

2
(ns +

1

2
),

κp =
1

2
(νp +

3

2
), µp =

1

2
(np +

3

2
),

κd =
1

2
(νd +

5

2
), µd =

1

2
(nd +

5

2
), L,M〉, (11)

where Nspd = ν + νp + νs, nd = ν, ns = νs = 0 or 1 for
spd -IBA. Then we have

S−(s)|lw〉 = 0,

S−(p)|lw〉 = 0,

S−(d)|lw〉 = 0,

S0
m(spd)|lw〉 = Λspd

m |lw〉, (12)

where

Λspd
m = c2ms

1

2
(ns +

1

2
) + c2mp

1

2
(np +

3

2
) + c2md

1

2
(nd +

5

2
).

(13)
The interaction of the vector boson with the low-energy

s and d modes of the GDR can be introduced into the
system in the form a duality relation for the spd Hamilto-
nian with a number-conserving unitary part and number-
nonconserving quasispin made by using the generators

of the SUspd(1, 1) algebra for the transitional region be-
tween the two limits. The pairing part of such a model
is given as for the sd -IBA. Specifically, the Hamiltonian
used to explain the spectral structure of the sd -IBA can
be written as

Ĥ = εsns + εpnp + εdnd −G
∑

j=s,d

cjS
+
j

∑

j′=s,d

cj′S
−

j′
+

βpνp(νp + 1) + βdνd(νd + 3) + γpLp(Lp + 1)+

γdLd(Ld + 1) + γL(L+ 1). (14)

Since the energy of the p-boson is higher than those
of the s and d bosons, only the two simplest cases with
np = 0 and np = 1 are considered in this study, from
which it follows that p-boson pairs do not need to be
considered, and Eq. (14) can accordingly be reduced to
the following:

Ĥ = c2sS
0
s + c2dS

0
d −G

∑

j=s,d

cjS
+
j

∑

j′=s,d

cj′S
−

j′
+ αpνp+

βdνd(νd + 3) + γdLd(Ld + 1) + γL(L+ 1), (15)

where αp, βd, γd and γ are real parameters. For sim-
plicity, some of the weak couplings to Casimir operators
are not included in this result.
To find the non-zero energy eigenstates with k-pairs,

we exploit a Fourier-Laurent expansion of the eigenstates.
And the eigenvectors of the Hamiltonian for excitations
can be written as

|k; νsνdνpn∆LM〉 =
∑

ni∈Z

an1n2....nk
xn1

1 xn2

2 xn3

3 ...xnk

k S+
n1
S+
n2
S+
n3
...S+

nk
|lw〉.

(16)

By using the commutation relations of Eq. (1), it can be
verified that all coefficients an1n2....nk

in Eq. (16) can be
taken to be 1, then the wave functions can be expressed
simply as

|k; νsνdνpn
s
∆Lsn

d
∆Ldn

p
∆LpM〉 =

∑

ni∈Z

N ′xn1

1 xn2

2 xn3

3 ...xnk

k S+
n1
S+
n2
S+
n3
...S+

nk
|lw〉,

S+
xi

=
cs

1− c2sxi
S+(s) +

cd
1− c2dxi

S+(d) +
cp

1− c2pxi
S+(p),

(17)

where N ′ is a normalization constant.
In dealing with the seeming complexity of this last ex-

pression, a very useful identity known as the BAE [36]
can be employed,

α

xi
=

2
∑

l=0

c2l (νl +
2l+1
2 )

1− c2l xi
−
∑

j 6=i

2

xi − xj
, (18)
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where νs, νp, and νd are seniority number of s-, p- and d-
bosons, respectively. And from this, it follows that the
eigenvalues E(k) of Hamiltonian Eq. (15) can be written
as

E(k) =h(k) + αpνp + βdνd(νd + 3) + γdLd(Ld + 1)+

γL(L+ 1) + αΛl
1,

h(k) =

k
∑

i=1

α

xi
. (19)

III. NUMERICAL RESULTS

A. Calculation of dipole resonances

In what follows we report on outcomes of our use of the
vector boson concept to create excited dipole states and
our analyzes of various aspects of the associated spectra.
The pairing model for the Lp⊗Ld coupling enables these
GDR’s calculations to be carried out in large configura-
tion spaces. The values of the parameters in the spd -IBA
Hamiltonian were determined using Least Square Fitting
(LSF) methodologies [36]. Numerical results for negative
parity states of even-even systems with N=6-10 were de-
termined by solving the associated BAEs.
As shown in [36, 58–66], there are many nuclei in

the medium mass region that display spherical to γ-soft
phase transition characteristics. Our results for the GDR
behavior, calculated for each boson number within the
framework the algebraic sd -IBA, were studied as a func-
tion of the pairing strength. The results were then used
to analyzed the dipole resonance properties of the ground
and excited state spectra within the spd framework. In
short, we computed the theoretical dipole spectra for the
transitional region via Hamiltonian (15). In Table I we
list the set of Eq. (15) solutions, which were extracted
by solving the BAE for different k pairing with cs=[0.1-
0.63] and cp=0. Due to similar correspondences, we do
not present BAE calculations for other pairings.
One of the main challenges is to get the position of the

dipole states correct, especially answering the question:
‘What is the position of the lowest 1− in our calculation?’
One must keep in mind that it should be lower in energy
than the coupling 1⊗0, where 0 is the ground state’s an-
gular momentum in sd -IBA. For excited states of dipole
resonance, we have Lp⊗Ld, where Lp and Ld are the an-
gular momentum of the vector and excited state bosons
in sd -IBA, respectively. In the past we have used the
spd -IBA model with up to 1p-boson to describe dipole-
excitation states, as 1p-boson is enough to get the GDR
with the coupling of Ld. In this paper, we have selected
Ld’s coupling from 0 to 12 to get a far better fix on the
GDR. It should be mention that to produce 1+ states,
we need at least 2p-bosons. But here we only focus on
GDR, which is related to 1− states.
As the examples of our present technique suggest,

the level spacing of the GDR, determined within the

TABLE I. Solutions of (15) with cs=[0.1-0.63], cp=0, α=1100
and G=1.

N νs νd k x
ζ
i (i = 1, 2, ..., k; ζ = 1, 2, ..., k + 1)

6 0 1 2 (1) 99.5016, 99.8388
(2) 99.7541, 0.996828
(3) 0.991105, 0.995648

6 1 2 1 (1) 99.3669
(2) 0.995926

6 0 3 1 (1) 99.5025
(2) 0.995025

7 1 1 1 (1) 15.9412, 15.9867
(2) 15.9784, 0.997845
(3) 0.995648, 0.998348

7 0 2 2 (1) 15.9607, 15.996
(2) 15.9928, 0.997144
(3) 0.99777, 0.994746

7 1 3 1 (1) 15.9413
(2) 0.995023

7 0 4 1 (1) 15.9608
(2) 0.994124

8 0 1 3 (1) 6.90819, 6.92349, 6.92209
(2) 6.89071, 6.91405, 0.996826
(3) 6.89071, 0.995648, 0.998348
(4) 0.991105, 0.997844, 0.994011

8 1 2 2 (1) 6.89978, 6.91947
(2) 6.91586, 0.997143
(3) 0.99291, 0.994745

8 0 3 2 (1) 6.90823, 6.92349
(2) 6.92209, 0.996426
(3) 0.991832, 0.991832

8 1 4 1 (1) 6.89983
(2) 0.994121

8 0 5 1 (1) 6.90827
(2) 0.993223

9 1 1 3 (1) 4.32433, 4.33668, 4.33442
(2) 4.3128, 4.32931, 0.996824

(3) 4.32433, 0.997843, 0.994008
(4) 0.995646, 0.998347, 0.991102

9 0 2 3 (1) 4.32963, 4.3392, 4.33833
(2) 4.33329, 4.33953, 0.994745
(3) 4.33953, 0.989891, 0.99777

(4) 0.995921, 0.997143, 0.992909
9 1 3 2 (1) 4.32437, 4.33669

(2) 4.33443, 0.996424
(3) 0.991827, 0.995017

9 0 4 2 (1) 4.32966, 4.3392
(2) 4.33833, 0.990765
(3) 0.995695, 0.994119

9 1 5 1 (1) 4.32441
(2) 0.993218

10 0 1 4 (1) 2.51335, 2.5189, 2.51839, 2.50699
(2) 2.51909, 2.51547, 2.5189, 0.99682

(3) 2.50699, 2.51909, 0.998348, 0.991103
(4) 2.51335, 0.99682, 0.994005, 0.997842
(5) 0.991103, 0.998348, 0.995647, 0.99682

10 1 2 3 (1) 2.5103, 2.51745, 2.51614
(2) 2.50362, 2.51318, 0.995912
(3) 2.50362, 0.997139, 0.9929

(4) 0.994741, 0.997768, 0.989884
10 0 3 3 (1) 2.51337, 2.5189, 2.5184

(2) 0.507031, 2.51548, 0.996422
(3) 2.5191, 0.991823, 0.995012

(4) 0.988704, 0.993844, 0.997167
10 1 4 2 (1) 2.51033, 2.51745

(2) 2.51615, 0.994106
(3) 0.987532, 0.992942

10 0 5 2 (1) 2.51339, 2.51891
(2) 2.5184, 0.99321

(3) 0.986393, 0.992051
10 1 6 1 (1) 2.51036

(2) 0.992307
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spd -IBA framework, is given for different boson num-
bers. Specifically, we have taken 876 level spacings for
1− states, and determined eigenenergies of GDR with
cs=[0.1-0.63] with different pairings for all boson num-
bers from N=[6-10]. For the sd -IBA parameters we used
those given in Ref. [36], but for p-boson parameters,
we fit the results to the first experimental Jp = 1−

ground state for each case considered. Specifically we
fixed the parameters of the theory using the following in-
put values: αp = 885e−0.09NkeV , βd = 500e−0.78NkeV ,
γd = −8.0e−0.07NkeV and γ = 23.5e−0.16NkeV .
Throughout what follows, the three-level pairing model

underpins our consideration of GDR excitations. How-
ever, the nuclei included in the analysis also exhibit
changes from vibrational to γ-soft spectral features as N
increases. So while the dipole energy spectra are promi-
nent, the analysis also includes a consideration of the
associated spectral statistics.

B. Spectral statistics of dipole resonances

To characterize spectral behavior, we use the standard
measure of the probability density P (s) of adjacent levels;
that is, we use the nearest-neighbor spacing distribution
(NNSD, which is the probability of two nearest-neighbor
energy levels with the same spin and parity of having a
spacing s, see [67]) as captured by P (s) from the unfolded
spectrum. Or stated more simply and succinctly, P (s) is
a smoothed approximation to the NNSD that is defined
as the energy difference (si = Ẽi+1−Ẽi) for two adjacent
levels of the same spin and parity.
In the unfolding process, we normalized the average

level spacing by d =< s >, so data with different average
level spacing have different chaoticity. As is commonly
accepted, the Poisson distribution is defined by

P (s) = e−s, (20)

which is almost identical to the regular dynamics [68–
70]. While the GOE distribution generically represents
the NNSD of systems with Wigner dynamics.

P (s) =
1

2
πse−πs2/4. (21)

The criteria of chaoticity in energies level distributions
is defined in terms of departures from these standard
Poisson and Wigner distributions [69–71].

Depending on the details of the chaoticity, some sim-
ple distributions have been proposed for describing the
spectral statistics of nuclei [72–78] with less fitting pa-
rameters. For example, in what follows we use the so-
called Berry-Robnik Distribution (BRD), which interpo-
lates between Poisson statistics with q=1 and GOE with
q=0, respectively. In the transition from one limit to
another limit for the spd -IBA, values of the chaoticity
range between 0 and 1 with intermediate statistics show-
ing more or less regular behavior as one departs from the

two limits. Specifically, In what follows, our use of BRD
is defined as advance in [73, 79]

P (s, q) = [q+
1

2
π(1− q)s] exp(−qs−

1

4
π(1− q)s2), (22)

which exhibits Poisson and GOE limits by q=1 and 0. (In
studying spectral statistics of energy sequences, a com-
parison of sets of histograms of sequences with the BRD
is made to extract a best overall value for q.)
Another distribution that can used to simplify NNSD

data is the so-called cumulative distribution [69, 71, 80].
To further validate and complement our BRD analysis,
we have also employed the cumulative distribution, which
is defined in terms of the following:

I(s) =

s
∫

0

P (s
′

)ds
′

. (23)

For the Poisson cumulative distribution, we have

IP (s) = 1− exp(−s). (24)

For the corresponding Wigner cumulative distribution,
we have

IW (s) = 1− exp(−πs2/4). (25)

Our analysis of the statistical properties of the dipole
spectrum includes all states from the ground state up to
states at 6 MeV. To ensure convergence within this range,
the model spaces for states in the separate p space, solved
using BAE results, and in the sd spaces, solved using
sd -IBA, had to include all spin and parity states from
the BAE results of the sd -IBA ranging from N=6 up to
N=10. The total angular momentum of specific states
is of course determined by the coupling Lp ⊗ Ld, where
Lp and Ld are the angular momenta of the vector and
excited state bosons. The first sets of results are shown
in Fig. 1, where we group energy spectra of all boson
numbers for cp=0, 0.3, 0.6, and 0.9 pairing strength.
In what follows, we examine spectra results calculated

first in the absence (cp=0) of vector boson pairing, and
secondly in the presence of several selected (cp 6=0) values
of the vector boson pairing. Although the detailed results
of these calculations are not included in this paper, the
fact that the NNSDs of dipole resonances are strongly
dependent upon pairing strength is illustrated through
the statistical measures noted above and the results that
are provided below. This approach allows us to focus
on the statistical properties of the spectra of the dipole
states calculated based on the BAE and pairing models
as systematic explored across the full 0-6 MeV energy
range, and which in turn, allows us to achieve a more
compact and yet comprehensive understanding of level
spacing and spectral features of dipole resonances which
is the primary purpose of this paper.
First, we consider the sd pairing model, cs, and cd, for

an even-even system (with different seniority numbers)
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FIG. 1. Spectral statistics of dipole states for different pairing strengths using the RMT and BRD methodologies. Shown
are the NNSD of P (s) and histograms obtained from the unfolded energy levels. The green curves show the RMT of BRD
interpolating between regular and chaotic patterns. The parameter q was determined by fitting the GDR results for the NNSD
for each level sequence of pairing. We compared the different sequences, and each set of GDRs has converted into a set of
normalized spacing. Due to the few numbers of levels for N=6 and N = 7 bosons, they are not shown.

up to k=5 pairs. The pairing strength for cs and cd are
similar to those used in Ref. [36] for sd -IBM. In the
dipole sector, we calculated theoretical dipole states by
varying the vector boson cp pairing strength. Overall, we
chose to consider sequences with 220 spacings for each
pairing group, including all levels below 6 MeV. In the
sd-sector, bosons from N=6 to N=10 were included in
the analyses.

The value of the chaoticity measure q, as shown in Fig.
1, was deduced from an analysis of the corresponding
NNSD. By increasing the cp values, we obtained a GOE-
like distribution around cp=0.6; specifically, our results
show that level statistics obey a GOE distribution in the
QPT (critical) region [81]. Changing the values of cs and
cp between 0 and 1 causes the system to transition from
one dynamical symmetry U(5) to the other SO(9). The
pairing strengths also play an essential role in determin-
ing the position of the dipole resonance. As illustrated
in the Figures, the P (s) without extra pairing (cp=0)
looks like the sd -IBM spectrum, but with cs=0.1 and
cs=0.63, P (s) tends to be of the Poisson type. When
the model space is expanded to N=8 and N=9, the
nearest-neighbor level spacing distribution looks like a
GOE distribution. In a complementary alternative anal-
ysis, we also examined the effect of pairing correlations on
chaoticity by varying vector boson pairing away from 0.3

to 0.6 with the ratio of cp/cs=0.83 and 1.25, the nearest-
neighbor level spacing distribution P (s) evolved in the
direction that is consistent with GOE statistics. When
the pairing interaction is even stronger, at around cp=0.9,
a Poisson-type behavior emerges with the ratio of cs to
cp being cp/cs=1.42.

Spectral statistics have been computed for all energy
spectra by increasing the pairing strength. Spectral
statistics of the dipole states computed by spd -IBA for
different pairings are displayed in Figs. 2-5.

The spd -IBA calculations provide interesting results.
Near those two limits, the system displays a regular pat-
tern. However, by increasing the pairing strength in the
transition region, we observe the onset of chaos, which is
compatible with the prediction of Alhassid et al. [82, 83].
As the number of states for N=6 and N=7 are relatively
less, we can extend and work out the level number vari-
ance up to N=10. The strongest correlations with three
different control parameters for the spd -IBA model are
found for N=8 and N=9 nuclei. We can conclude that
the coupling between the vector and d boson components
modifies the spectrum, and the NNSD becomes the in-
termediate surmise.

The nuclear dipole states are well separated, as those
of cp = 0.0 and cp = 0.9 in the average level spacing
< d >≈ 248.8 and 154.2 keV, respectively. In compari-
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FIG. 2. Spectral statistics of dipole states for different pair-
ing strengths using the RMT and BRD methodologies. Shown
are the NNSD of P (s) and integrated NNSD of I(s) and his-
tograms obtained from the unfolded energy levels for cp=0.
The green curves show the RMT of BRD interpolating be-
tween regular and chaotic patterns. Fitting the BRD to the
data, we obtain q=0.82. With this strength of pairing, we are
near to the dynamical symmetry of vibrational limit.

FIG. 3. Spectral statistics of dipole states for different pair-
ing strengths using the RMT and BRD methodologies. Shown
are the NNSD of P (s) and integrated NNSD of I(s) and his-
tograms obtained from the unfolded energy levels for cp=0.3.
The green curves show the RMT of BRD interpolating be-
tween regular and chaotic patterns. Fitting the BRD to the
data, we obtain q=0.70. With this strength of pairing, we are
in the transition region of vibrational and γ-soft limit.

FIG. 4. Spectral statistics of the dipole states computed by
spd -IBA. Shown are the NNSD of P (s) and integrated NNSD
of I(s). Histograms were obtained from the unfolded energy
levels for the pairing of cp=0.6, and the green curves show
the RMT of BRD interpolating between regular and chaotic
patterns. Fitting the BRD to the data, we obtain values for
q=0.26. With this strength of pairing, we are in the transition
region of vibrational and γ-soft limit.

FIG. 5. Spectral statistics of dipole states for different pair-
ing strengths using the RMT and BRDmethodologies. Shown
are the NNSD of P (s) and integrated NNSD of I(s) and his-
tograms obtained from the unfolded energy levels for cp=0.9.
The green curves show the RMT of BRD interpolating be-
tween regular and chaotic patterns. Fitting the BRD to the
data, we obtain q=0.88. With this strength of pairing, we are
near to the dynamical symmetry of the γ-soft limit.

son with well-separated levels, illustrated by the closely
spaced levels for the cp = 0.3 and cp = 0.6 pairing, the
average level spacings are in < d >≈ 111.7 and 16.7 keV,
respectively. We can learn that in transition region for
closely spaced levels < d >≈16.7, neighboring states con-
tain information about the chaoticity, and the spectrum
for this region is chaotic. These properties and trends are
consistent with the nuclear system’s chaoticity in closely
spaced levels [84] that may cause strongly mixed wave
function and modify the nuclear structure of many-body
systems [85–87]. These neighboring states with strongly
mixed wave functions with the same spin and parity are
prevalent in the closely spaced levels.
Now we group neighboring states with the same angu-

lar momentum quantum numbers. If we group levels with
symmetry representation’s angular momentum contents,
the neighboring levels of coupling (Lp

⊗

Ld) belong to
different classes. In this condition, we expect the NNSD
sequence of level spacings to be similar to the GOE dis-
tribution. This distribution reveals some short-range or-
der levels as well as significant gaps. In the neighboring
states with the same quantum numbers cases, when we
have a coupling group for all set of pairing, one can see
the onset of spectral chaos at excitation energy in Fig.
6. These energy spectra belong to all cp=0, 0.3, 0.6, and
0.9 pairing strengths.
The optimal probability of our distribution result is

formulated in terms of a Cramer-Rao Lower Bound
(CRLB) minimization problem [88]. One of the first
aims of estimation theory is the expansion of bounds on
the best feasible operation. Such bounds prepare criteria
against which we can correlate the carrying out of any
proposed estimator. This criterion is the Cramer-Rao
bound, which denotes the smallest possible total variance
of chaoticity, i.e., an estimator of q. CRLB is the method
for obtaining the accuracy of the estimator parameters.
If the estimator is a minimum variance estimator, then
its parameter variance achieves the lower bound, that
is, the Cramer-Rao bound. Thus, to further decrease
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FIG. 6. Spectral statistics of the neighboring levels of cou-
pling (Lp

⊗
Ld). They are compared to the Poisson (red line)

and the GOE (blue line) distribution. Histograms obtained
from the unfolded energy levels for all pairing. The corre-
sponding values of the chaoticity parameter q and the num-
ber of level spacing n′ are given for each coupling. Due to
similar correspondences, we do not present the level statistics
for those with larger Ld couplings.

the variance of the minimum variance estimator, one can
only optimize the distribution so that the corresponding
Cramer-Rao bound is decreased. We have to minimize
the errors by CRLB. First, we introduce the Fisher in-
formation F (q), and this Fisher information is defined as
an optimization problem.

F (q) = E

[

(

∂ ln P (s; q)

∂q

)2
]

, (26)

where a system in which a quantized version of observa-
tion s is used to estimate an underlying parameter q and
E denotes the expected value (over s). As the estimation
of CRLB is the inverse of the F (q), the variance of the
estimator is defined as follows:

var(q) ≥
1

MF (q)
, (27)

where M is the sample size. By calculating F (q), the
scalar quantity 1

MF (q) is the CRLB on the variances of

unbiased estimators. The minimum CRLB corresponds
to the final value in the iteration procedure. The Newton-
Raphson procedure can be used to approximate the so-

FIG. 7. The variations of CRLBs in the iteration processes
for different pairing strength of cp.

lution q, giving an approximation to the CRLB. This al-
gorithm converges to the exact solution q in τ iterations.
The variance estimates of the estimators are obtained by
repeating the Newton-Raphson procedure for τ=1000 to
get the minimum variance for CRLB. The process is re-
peated until a sufficiently precise value is reached. How-
ever, when carried to termination, it is not computation-
ally competitive with the least square fitting. We have
used the least square fitting results as an initial guess for
a root of distribution in iterative root-finding procedures.

Finally, to find the efficiencies of considered distribu-
tion via fitting, we determined the CRLB, right-hand
side of Cramer-Rao inequality (27), as CRLB ≡ 1

MF (q) .

For the final value, q is obtained from fitting processes.
We have evaluated the NNSD for different pairing. To
compare the efficiencies of BRD in different sequences of
dipole resonance by the iteration processes, we have cal-
culated CRLB for different pairing strength of cp where
cs=0.1 and cp=0 has the least CRLB by comparison with
other pairing strength. The variations of CRLBs in the
iteration processes for different pairing strength of cp are
displayed in Fig. 7.

To get further insight into the nature of GDR’s in the
medium mass region, we also inspected the sequences of
NNSD for the 342 states with Jp = 1− and for the 97
states with Jp = 1+. In addition to the references cited
herein for the pygmy and giant dipole resonances, several
workers investigated experimental features in somewhat
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FIG. 8. Spectral statistics of the experimental dipole states
Jp = 1−. Shown are the NNSD of P (s) and integrated NNSD
of I(s). Histograms obtained from the unfolded energy levels
for the Jp = 1− states. Fitting the BRD to the data, we
obtain q=0.81.

FIG. 9. Spectral statistics of the experimental dipole states
Jp = 1+. Shown are the NNSD of P (s) and integrated NNSD
of I(s). Histograms obtained from the unfolded energy levels
for the Jp = 1+ states. Fitting the BRD to the data, we
obtain q=0.87.

light and medium nuclei. These include from 32S to 138Ba
[89–102]. The lowest and highest experimental dipole
states with the number of selected levels are listed in
Tables II and III.

The calculated chaoticity values together with NNSD
displayed in Figs. 8 and 9 reveal some regularity in
dipole resonances. We analyzed the NNSD for the posi-
tive Jp = 1+ and negative Jp = 1− parity states to clarify
the chaotic and regular spectral properties on validated
GDR. For these modes, we find a tendency towards Pois-
son behavior. Our spd -IBA and spectral statistics calcu-
lations facilitate a satisfactory description of the GDR’s
properties in the proposed nuclei. All ground and excited
states are included in the calculation of NNSD. Again,
variations of CRLBs are shown in Fig. 10 for experimen-
tal Jp = 1− and Jp = 1+ states. In the variations of
CRLBs curves, the meaning of the scales on the verti-
cal axis is that it allows the assessment of how close a
given estimation method is to optimality. In particular,
if the variance of an unbiased estimate is equal to the
Cramer-Rao bound, then it has minimum variance. The
estimated parameters display a reduction of uncertain-
ties and yield estimator’s variances very close to CRLBs,
as shown in Figs. 7 and 10. It means that the difference
between the left and right sides of Eq. (27) can be used

TABLE II. A description of the available data of dipole nega-
tive parity state in the analysis whereM describes the number
of selected levels and Ei and Ef represents the lowest and the
highest level contributed to each nucleus.

Nuclei M Ei(keV ) Ef (keV ) Reference

32S 5 7480 11710 [89]
40Ca 5 6612.2 9545.7 [90]
52Cr 20 5098.6 9236.6 [91]
56Fe 9 6925.4 9287.6 [92]
58Ni 11 7048.2 9723.0 [92]
60Ni 48 6180.6 9892.6 [93]
70Ge 11 4356.6 7753.0 [94]
72Ge 7 5849.5 8441.2 [94]
74Ge 11 4224.9 7652.1 [94]
76Ge 12 5698.9 9013.2 [94]
76Se 76 4601.6 7093.1 [95]
86Kr 23 4867.4 9085.6 [96]
88Sr 48 4742.7 10644.1 [97]
90Zr 15 6295.8 10042.9 [98]
116Sn 32 4547.1 8361.3 [99]
124Sn 35 5842.5 8376.2 [99]
138Ba 9 4025.2 6102.7 [100]

TABLE III. A description of the available data of dipole posi-
tive parity state in the analysis whereM describes the number
of selected levels and Ei and Ef represents the lowest and the
highest level contributed to each nucleus.

Nuclei M Ei(keV ) Ef (keV ) Reference

50Cr 15 3628.2 9719.1 [101]
52Cr 25 5098.6 9429.0 [91]
56Fe 7 3448.6 8908.9 [92]
58Ni 8 5905.3 9156.9 [92]
60Ni 32 3193.6 9830 [93]
74Ge 6 3093.4 5 6733.4 [102]
76Se 11 4055.2 7110.1 [95]

to describe the variation (decreasing) of uncertainties for
estimated parameters during the iterations. From these
curves, it is obvious that the CRLB serves as a good ap-
proximation to the estimator’s variance, particularly for
spherical symmetry with cp=0.
We have seen from the estimated values of the BRD

parameter q shown in Figs. 8 and 9 that level energies
near dynamical U(5) and SO(9) symmetries in the spd -
IBA model seem more regular. Similar to the predictions
made by J. Enders in [103], the spectra of medium mass
nuclei for dipole states seem almost regular, while for
the predictions in light nuclei made by B. Dietz in [72],
the spectra for negative and positive parity states are
almost regular and chaotic, respectively. It is verified
that the NNSD is governed by the interplay between the
GDR and the pairing interaction for BAE calculated from
the spd -IBA model. From theory, based on the spectral
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FIG. 10. The variations of CRLBs in the iteration processes
for dipole Jp = 1− and Jp = 1+ states.

statistics for most spectra in spd -IBA around dynamical
symmetries, vibrational and γ-soft, the NNSDs for dipole
states show similar behavior as experiment.

Finally, we conclude that a phenomenological collective
model for IBA is the best tool to investigate the spectra
for dipole states. This collective model estimates dipole
resonances to calculate the level spacing distribution with
the pairing model. In addition to its consistency, our spd -
IBA model in GDR is computationally so simple that it
can be easily applied to large sets of collective models, as
sdg and sdf -IBA.

IV. SUMMARY AND CONCLUSION

We conclude that the spd -IBA can reproduce dipole
states in a wide variety of nuclei. The proposed model
and properties of the GDR are investigated in medium
mass nuclei (E ≤ 12 MeV). It has been demonstrated
that the spd -IBA is a quite powerful tool to investigate
nuclear structures. In this paper, We have studied the
GDRs within an extended pairing model with a focus on
spectral statistics. The next case is the energy spectra
that have been analyzed using both the spd -IBA and
BAE. The effect of pairing correlations on spectral
statistics is the primary result of this paper. We have
found that varying the pairing interaction strength for
vector boson cp is likely to alter the statistical properties
of the spectra. The spd -IBA undergoes vibrational to
the γ-unstable shape phase transition. We have seen
that the dipole spectrum obeyed GOE statistics for
boson numbers, which was near the critical point. In
contrast, the spectra become regular for those nuclei
near either vibrational or γ-unstable points. Because
of the appropriate success of the spd -IBA in chaos
and regularity of nuclei, the investigation of another
extension of the IBA in sdf, sdg, and spdf boson systems
should be feasible.
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