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The A = 4 nuclei, i.e., 4H, 4He and 4Li, establish an interesting isospin T = 1 isobaric system. 4H
and 4Li are unbound broad resonances, whereas 4He is deeply bound in its ground state but unbound
in all its excited states. The present situation is that experiments so far have not given consistent
data on the resonances. Few-body calculations have well studied the scatterings of the 4N systems.
In the present work, we provide many-body calculations of the broad resonance structures, in an
ab initio framework with modern realistic interactions. It occurs that, indeed, 4H, 4Li and excited
4He are broad resonances, which is in accordance with experimental observations. The calculations
also show that the first 1� excited state almost degenerates with the 2� ground state in the pair of
mirror isobars of 4H and 4Li, which may suggest that the experimental data on energy and width
are the mixture of the ground state and the first excited state. The T = 1 isospin triplet formed
with an excited state of 4He and ground states of 4H and 4Li is studied, focusing on the e↵ect of
isospin symmetry breaking.

I. INTRODUCTION

Four-nucleon (4N) systems are the lightest nuclear sys-
tems to exhibit resonances at low energies [1–20]. With
the highest isospin quantum number of |Tz| = T = 2, the
possible tetraneutron resonance has attracted consider-
able attention due to its pure neutron character. The re-
cent experiment [21] has moved forward significantly on
this matter, though the experiment, due to large experi-
mental uncertainty, still cannot definitely answer whether
the tetraneutron resonance really exists. By reducing the
isospin quantum number, 4H, 4He and 4Li form a unique
T = 1 isospin triplet of 4N resonances with many exper-
imental data available [1–21]. However, the data provid-
ing the energies and widths of the A = 4 resonances are
neither conclusive nor even consistent with each other [3–
18]. In the experiments where the missing mass method
is used, the resonance positions in energy distributions
depend on the resonance parameters [22]. Theoretical
calculations are thus useful as they can provide sugges-
tions for the parameters and constrain experimental re-
sults so as to derive the demanded resonance energies.
In theoretical studies, a relatively small number of nu-

cleons allows theories to probe the underlying dynam-
ics directly with enough accuracy and, therefore, to ver-
ify nuclear models as well as interactions [23]. As com-
mented in [24], 3N systems remain relatively simple due
to the absence of resonance structures in the continuum,
while 4N systems present several resonance states and
therefore provide better laboratories for the underlying
theoretical tests. The isospin symmetry in A = 4 T = 1
multiplet states is expected to be broken, which is due in
particular to the Coulomb force [1, 10, 25]. For the pair of
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isospin mirror isobars, both proton-proton and Coulomb
forces are absent in 4H, while 4Li has no neutron-neutron
interaction. Therefore, the A = 4 nuclei provide a unique
isospin multiplet for the study of the isospin symmetry
breaking, and also serve as a good testing ground to as-
sess many-body correlations, continuum coupling and the
influence of the Coulomb force in dripline regions.
Furthermore, for 4N resonances, both few-body and

many-body methods are feasible. Resonance states pro-
vide richer structure information than bound states.
However, the resonance is much di�cult to be described
due to the complex-energy characteristics, and contin-
uum channels must be considered. Indeed, the nuclear
complexity really starts at A = 4 [9, 24], and A = 4 nuclei
are of special interest [26]. The scatterings of the 4N sys-
tems have been well studied by the Faddeev-Yakubovsky
(FY) [24, 27–34], Alt-Grassberger-Sandhas (AGS) [35–
40] and hyperspherical harmonics (HH) calculations [40–
43]. However, the theoretical calculations of the

energies and decay widths of the A = 4 resonance

systems are still missing. In fact, besides men-

tioned reaction cross sections, only the FY calcu-

lation has assessed the
4
H resonance width using

an indirect method of extrapolation [29]. Thus,

other direct theoretical calculations (particularly

for the resonance width) should be useful to un-

derstand the A = 4 resonances.

Currently, there are a number of reliable many-body
methods for the ab initio description of nuclear states
[44]. Prominent frameworks consist of the Greens func-
tion Monte Carlo (GFMC) [45], no-core shell model
(NCSM) [46], coupled cluster [47] and in-medium sim-
ilarity renormalization group [48]. However, current ab
initio calculations are performed mainly in real-energy
space without considering the resonance and continuum.
The no-core Gamow shell model (NCGSM) [49] within
the complex-energy Berggren ensemble [50] is an exten-
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sion of the NCSM for open quantum systems, and has
been applied to the 5He broad resonance [49] and multi-
neutron systems [51, 52]. In the present work, we will
provide many-body ab initio structure calculations of
the A = 4 broad resonances of 4H, 4Li and 4He. To
probe the isospin symmetry breaking e↵ect in the T = 1
isospin triplet of the resonances is another motivation of
the present paper. Our calculations may provide further
understandings of the existing data on the broad reso-
nances.

II. METHOD

The Berggren basis comprises bound, resonance and
scattering single-particle (s.p.) states [50]. The ob-
tained Hamiltonian matrix in this representation is non-
Hermitian but complex symmetric, and its eigenenergies
are complex. Energy and width are then provided by the
real and imaginary parts of the Hamiltonian eigenvalues,
respectively [50].

The completeness relation of the Berggren basis reads
for a given partial wave:

X

n

|�nih�n|+
Z

L+

|�(k)ih�(k)|dk = 1, (1)

where |�(k)i are the scattering states belonging to a L
+

contour of complex momenta, and |�ni are the bound
and resonance states situated between the real k axis and
the L

+ contour. In practical calculations, the integral in
Eq. (1) is discretized utilizing the Gauss-Legendre rule
[53–55].

Many-body eigenstates are built from a linear combi-
nation of the Slater determinants |SDni = |u1, ..., uAi,
where |uki, with k 2 1, . . . , A, is a s.p. state of the
Berggren basis, of bound, resonance or scattering char-
acter. Coupling to the continuum is present at basis
level, whereas many-body internucleon correlations oc-
cur via configuration mixing in the NCGSM framework
[53, 54, 56]. Note that the width of a resonance eigen-
state obtained in NCGSM takes into account all possible
particle-emission channels.

The used Hamiltonian reads:

H =
1

A

AX

i

(pi � pj)2

2m
+

AX

i<j

V
i<j
NN , (2)

where V
i<j
NN is a realistic nucleon-nucleon interaction.

There is no restriction on the type of interaction in the
NCGSM calculation, contrary to the GFMC approach for
example, where only local potentials can be used [45].
One can then use a local interaction, such as the Ar-
gonne v18 potential [57], or a non-local interaction, such
as CD-Bonn [58] or chiral interaction [59] in the NCGSM.
Details about the numerical calculations of the two-body
matrix elements in the NCGSM can be found in [54, 55].
The overlap method is utilized in order to identify the

low-lying physical resonance states out of the numerous
many-body eigenstates (see [54] for details). To improve
the convergence of calculations, the similarity renormal-
ization group (SRG) [60] is employed to soften the inter-
action.
Though our Hamiltonian (2) is intrinsic, the center

of mass (CoM) degree of freedom is not removed in the
NCGSM wave functions. In the Berggren basis, one can-
not exactly factorize the many-body wave functions into
the CoM and relative parts. However, as one is inter-
ested in the lowest energy states of fixed quantum num-
bers, their eigenenergies converge to the exact energies
according to the generalized variational principle if the
model space is su�ciently large, and that even in the ab-
sence of an exact treatment of the CoM motion [49, 52].
In [49], it was assessed that the CoM e↵ect on the 3H
energy is only 7 keV in the NCGSM calculation with the
N3LO interaction. In the present calculations, we eventu-
ally use complex-momentum natural orbitals which are
generated with the Berggren basis. Each of the natu-
ral orbitals is a combination of many di↵erent Berggren
basis states, which expedites the convergence of the cal-
culations. Therefore, our model space is large enough.

III. RESULTS AND DISCUSSIONS

The s.p. Berggren basis is generated by a finite-depth
Wood-Saxon (WS) potential including a spin-orbit cou-
pling. The parameters of the WS potential read R0 = 2.0
fm for its radius, a = 0.67 fm for the di↵useness, Vls = 7.5
MeV for its spin-orbit strength, and V0 = �25 MeV for
the central depth. With these parameters, the 0s1/2 and
0p3/2 poles in the Berggren basis are bound and res-
onance states, respectively. The single proton is well
bound in 4H, so that we use the harmonic oscillator (HO)
basis for proton, while the Berggren basis is used for neu-
tron partial waves. Alternatively, for the 4Li calculation,
the HO basis is used for neutron, and the Berggren basis
generates the proton part of the NCGSM model space.
Because proton and neutron emissions are both present in
the excited states of 4He [10], the Berggren basis is used
for both protons and neutrons therein. As the continuum
coupling induced by high partial waves is very weak, it
can be neglected in NCGSM calculations. Thus, we take
a NCGSM model space generated by the s1/2, p3/2 and
p1/2 partial waves using the Berggren basis, while other
partial waves, i.e., d, f and g, are represented by HO ba-
sis states. All HO one-body orbitals satisfy 2n + l 
Nmax = 14. The L

+ contour is defined by the coordi-
nate points (0, 0), (0.2,�0.15), (0.4, 0.0) and (3.0, 0.0) (all
in fm�1) for neutrons, and (0, 0), (0.35,�0.15), (0.7, 0.0)
and (3.0, 0.0) (all in fm�1) for protons. Each segment
of the contour L

+ is discretized with 12 points, so that
36 discretization points are used in total for each partial
wave. NCGSM calculations are almost independent of
the length parameter b of the HO basis [49, 51, 52], so
that b = 2 fm is used in this work. We have checked



3

FIG. 1. Energy (red diamond) and width (yellow shadow) of the 2� ground state of 4H calculated with NCGSM (central)
using CD-Bonn-SRG2.0 (CD), AV18-SRG2.0 (AV), N3LO-SRG2.0 (N2.0), N3LO-SRG1.5 (N1.5) and Daejeon16 (DJ) (see text
for definitions). Associated data with error bars (left) are denoted by (a-e), (f-n) and (o,p) from [3–7], [11–17] and [17, 18],
respectively. The FY calculations [29] with N3LO, INOY and MT13 interactions are shown (right) for comparison.

that, for a given interaction, the g.s. energies of the well-
bound 3H, 3He and 4He obtained with NCGSM are the
same as those issued from NCSM calculations where the
HO basis is used.

A complete diagonalization of the continuum NCGSM
Hamiltonian is not possible because of the huge model
space dimensions. Consequently, we firstly calculated
NCGSM eigenstates of A = 4 systems with the Berggren
basis in a truncated space where three particles at most
can occupy scattering states, to generate natural or-
bitals [61]. As the natural orbitals are generated by the
s.p. density matrix associated with the targeted Hamil-
tonian eigenstates, they recapture a large part of the nu-
clear structure of many-body states [61]. One can then
do NCGSM calculations without truncations using the
basis of natural orbitals, as they are in a much smaller
number than Berggren basis states. Each of natural or-
bitals is a combination of many di↵erent Berggren basis
states. It was checked in [52] that the use of the complex-
momentum natural orbitals provides virtually the same
results as with the Berggren basis in NCGSM calcula-
tions. Therefore, natural orbitals o↵er an e�cient basis
to get calculations converged fast.

In our applications, the Argonne v18 [57], CD-Bonn
[58] and chiral N3LO [59] potentials are renormalized
using the SRG method with � = 2.0 fm�1, providing
the softened interactions denoted by AV18-SRG2.0, CD-
Bonn-SRG2.0 and N3LO-SRG2.0, respectively. We also
employed the Daejeon16 potential [62] which reproduces
well various observables of light nuclei. The Daejeon16
potential parameters are adjusted [62] from the results
arising from the use of the N3LO potential, which is

renormalized by SRG using � = 1.5 fm�1. The lat-
ter renormalized N3LO interaction, denoted by N3LO-
SRG1.5, is also used in the present calculations.

The obtained energy and resonance width of the 4H
ground state using NCGSM are presented in Fig. 1, along
with experimental data [3–7, 11–18] and the FY calcu-
lations [29]. Several interactions are employed in the
NCGSM calculations (indicated in Fig. 1). The calcu-
lations show that the N3LO-SRG2.0, CD-Bonn-SRG2.0
and AV18-SRG2.0 interactions give similar results for
the ground state of 4H, with an energy of about 1.7
MeV above the 3H+n threshold and a width close to 0.9
MeV. Similar energies and widths are obtained when us-
ing N3LO-SRG1.5 and Daejeon16 potentials. Compared
to the above calculations with � = 2.0 fm�1, however,
the energies obtained with N3LO-SRG1.5 and Daejeon16
are more bound by about 0.4 MeV and the widths are
smaller by about 0.2 MeV. Experimental data on the 4H
resonance have been constantly emerging since 1960s [3–
7, 11–18], but the data do not agree with each other. The
experimental energy can vary from 1.6 MeV to 3.8 MeV,
from one experiment to another, while the experimen-
tal width is even more uncertain (see Fig. 1). However,
a recent experiment [18] provides relatively small values
for both energy and width with small experimental er-
rors, which are close to our results. The FY calculations
with analytic continuation to the continuum [29] are also
given in Fig. 1, showing a lower energy position and a
broader width of the 4H resonance. In the analytic

continuation method, the resonance observables

cannot be determined directly, but are obtained

with an extrapolation by artificially binding the
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system with an ”external field” driven by an ad-

ditional strength parameter [29]. The resonance

width thus obtained may depend on the extrap-

olation with the analytic continuation method or

on the angle with the complex scaling method. As

the results obtained in NCGSM arise from a di-

rect diagonalization of the complex Hamiltonian,

represented by the Berggren basis, they neither

depend on any additional parameter nor invoke

any extrapolation approximation.

Both experimental data and our calculations suggest a
first 1� excited state which is very close to the 2� ground
state in energy for 4H. The splitting of these two states
is about 50 keV in our NCGSM calculations, and the
obtained width of the 1� excited state is about 1 MeV,
which is comparable to that of the 4H ground state. Our
calculation indicates that both the ground state and first
excited state of 4H are mainly dominated by the unbound
single neutron in the p3/2 partial wave. It seems to be
quite probable that the experimental width of the 4H
ground state appears like a mixture of the two resonances
of the ground state and the first excited state. In fact,
the small splitting between the ground state and the first
excited state in 4H raises many di�culties in experiment
to distinguish these two states.

The calculations of the 4Li ground state are shown in
Fig. 2, along with experimental data [1, 8–10]. The 4Li
g.s. energy is about 2.7 MeV above the 3He+p threshold,
and the resonance width is about 2 MeV, in the NCGSM
calculations using AV18-SRG2.0, CD-Bonn-SRG2.0 and
N3LO-SRG2.0. The NCGSM calculations using N3LO-
SRG1.5 and Daejeon16 provide an energy of about 2.2
MeV and a width of about 1.8 MeV. Four di↵erent ex-
periments [1, 8–10] gave di↵erent data on the 4Li energy,
from 3 MeV to 4 MeV, and the data on width are much
more uncertain, varying from 0.8 MeV to 6 MeV, from
one experiment to another. As seen in the mirror nucleus
4H, the calculated first excited state is a 1� state located
about 100 keV above the ground state in 4Li, which is
comparable with the value obtained with an R-matrix
analysis [10]. Similar to the situation in

4
H, both

the ground and 1� excited states of
4
Li have the

p3/2 character of the unbound single particle. The
calculated width of the 1� excited state is close to 2 MeV.
Thus, it is also di�cult to detect and distinguish exper-
imentally the ground state and the first excited state in
4Li.

The calculated ground states of 4H and 4Li are both
unbound, with large particle-emission widths. Together
with the first T = 1 J

⇡ = 2� excited state of 4He, they
form the T = 1 isospin triplet states of A = 4 systems.
Figure 3 presents the states in A = 3, 4 nuclei, with
the isospin triplet states calculated with NCGSM using
N3LO-SRG2.0. The results are also compared with ex-
perimental data [10, 63]. As the data on 4H and 4Li are
not consistent with each other, they are not shown in
Fig. 3. Our calculations provide good descriptions of
the eigenstates of A = 3, 4 nuclei. The calculated en-

FIG. 2. Similar to Fig.1, but for 4Li, with experimental data:
(a) [1], (b) [8], (c) [9], (d) [10]. Energy is given with respect
to the 3He+p threshold.

ergy of the T = 1 J
⇡ = 2� excited state in 4He is close

to the experimental datum extracted from an R-matrix
analysis [10]. However, the decay width of this state,
arising from the R-matrix analysis [10], is about three
times larger than ours. Our calculation gives the 4He 2�

excited state at 22.03 MeV above the 4He ground state.
The result then agrees with the experimental datum in
[1], which reported that this state is located at 22.5 ± 0.3
MeV. The present calculations with N3LO-SRG2.0 pro-
vide that the T = 1 isospin triplet states of A = 4 nuclei
are all unbound and bear broad decay widths, which is
consistent with the early experimental observations [1].

Isospin symmetry breaking of the T = 1 isospin triplet
states in A = 4 nuclei, mainly caused by the repulsive
Coulomb force, can be clearly seen in our calculations
depicted in Fig. 3. The 2� ground state of 4H, where
the Coulomb force is absent, is the lowest state in the
T = 1 isospin triplet. 4H is more bound by about 0.5 and
1.7 MeV, compared to the 2� analog states in 4He and
4Li, respectively. The resonance width of the 2� excited
state in 4He is about 1.5 MeV, which lies between the
widths of 4H and 4Li. Furthermore, to have an estimate
of the isospin mixing in the T = 1 triplet states, we have
calculated the isospin expectation values of the states in
the A = 4 isobars. The results show that the isospins
in 4Li and 4H ground states are equal to 1, and that of
the 4He ground state is equal to 0. However, the value is
about 0.71 for the 2� excited state of 4He, which suggests
that a large isospin mixing occurs in this state. The
calculated isospin mixing in the 2� excited state of 4He
is consistent with the values obtained experimentally in
[19, 20]. The A = 4 isospin triplet states have been
investigated by the FY method [28]. In that approach,
the FY equations are solved using a basis of L2 states
to calculate artificially bound four-body states, whose
energy is then extrapolated to the negative separation
energy region [28]. The extrapolated energies [28] are
close to those evaluated in the present NCGSM. However,
the method used in [28] does not allow to calculate the
resonance width.
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FIG. 3. Calculated level structures of A = 3, 4 nuclei using
NCGSM with the N3LO-SRG2.0 interaction, and available
experimental data [10, 63]. The T = 1 isobaric triplet states of
A = 4 nuclei are connected by dotted lines. The experimental
energy of the T = 1 J⇡ = 2� state in 4He is deduced from
the R-matrix analysis in [10].

In the present calculations, the three-nucleon force
(3NF) is not included. It has been realized that the 3NF
e↵ect becomes more and more significant with increasing
the mass number of nucleus. However, the inclusion of
3NF increases greatly the complexity of calculations, par-
ticularly in the many-body NCGSM calculation where
the complex-energy plane is used with including reso-
nance and continuum partial waves. In practical calcu-
lations, the 3NF e↵ect depends on the form of the two-
nucleon (2NF) interaction taken. For example, the non-
local 2NF INOY potential without making an explicit use
of 3NF can provide the excellent calculations of A = 3, 4
binding energies in the framework of the FY equations
[32, 40] and the 4N scatterings within the AGS equations
[37]. The o↵-shell behavior in nonlocal potentials seems
to play a role similar to 3NF. It was shown that the nonlo-
cal N3LO interaction [59] without invoking 3NF can well
describe the n-3H scatterings near the resonance peak
[40]. In [28], the authors, using the FY method with the
Argonne potential, have investigated the A = 4 nuclear
systems, finding that the T = 3/2 3NF e↵ect is very weak
in 4H, 4He and 4Li. Nevertheless, the nonlocality in the
CD-Bonn or chiral EFT potential cannot fully replace the
role of 3NF, though the calculations can be considerably
improved with the nonlocal interactions [26, 32]. How-
ever, nonlocal potentials require relatively weak 3NF in
calculations [26, 32]. From the present calculations, all
the interactions used can provide good descriptions of
the A = 3, 4 systems. Therefore, we may assume

that the 3NF e↵ect can be relatively small in the

A = 4 resonance states which have n(p)-
3
H(

3
He)

resonance structures. However, the 3NF e↵ect in

the tightly bound
4
He ground state can be no-

ticeably larger, and increases the binding energy

of the ground state, indicating a lower position

of the calculated
4
He ground state in the level

scheme shown in Fig. 3. The calculated energy of

the T = 1 J
⇡ = 2� isobaric analog in

4
He is about

1 MeV lower than the datum [10]. However, as

discussed, the calculation of the excitation energy

of the isobaric analog can be improved by a lower

ground-state energy. The excitation energy plays

a more direct role in describing excited states.

Added to that, the experimental energy of the

isobaric analog in
4
He was extracted using the

R-matrix approximation [10], and hence a large

experimental uncertainty may be expected. As a
whole, the exclusion of 3NF should not change the dis-
cussions of physics problems related to the A = 4 reso-
nances.

IV. SUMMARY

A = 4 isobars are challenging from both theoretical
and experimental points of view. Due to their small num-
ber of nucleons, A = 4 nuclear states can be calculated
with ab initio NCGSM, so that their structure can be pre-
cisely evaluated. The internucleon correlations and con-
tinuum coupling are both taken into account in NCGSM
calculations. However, experimental data involving the
A = 4 isobars do not agree with each other, especially
for the resonance width which can vary by several MeV
from one experiment to another.
Consequently, ab initio NCGSM calculations of un-

bound A = 4 nuclear states have been done in order
to theoretically clarify the situation. For this, the un-
bound 2� ground states of 4H and 4Li, as well as the
T = 1 J

⇡ = 2� isobaric analog state in 4He, have been
calculated with NCGSM using di↵erent modern realistic
forces. Due to their proximity to the 2� ground states,
the unbound 1� excited states of 4H and 4Li have been
calculated as well. Our calculations tend to favor the
small widths provided by experimental data. The first
excited state in 4H and 4Li is a broad 1� state in our cal-
culations, whose energy is about 50 and 100 keV above
that of the 4H and 4Li ground states, respectively, and
whose width is close to 1 and 2 MeV, respectively. This is
also in accordance with experimental observations. The
T = 1 isospin triplet in A = 4 nuclei has been studied.
It consists of the 2�ground states of 4H and 4Li and of
the 2� excited state of 4He. We have shown that the 2�

excited state of 4He is located in energy in the middle of
the 2� ground states of 4H and 4Li, and its width is also
between those of 4H and 4Li. Consequently, our calcu-
lations clearly exhibit isospin symmetry breaking in the
T = 1 isospin triplet of the 2� states in A = 4 nuclei,
whose origin can be attributed to both the presences of
the Coulomb interaction and continuum coupling. Their
e↵ects are, however, di�cult to disentangle. The present
ab initio calculations provide promising information for
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further experimental studies of the unbound resonance
systems of A = 4 T = 1 isobaric nuclei.
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