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In this paper we model low-lying states of atomic nuclei in the nucleon-pair approximation of

the shell model, using three approaches to select collective nucleon pairs: the generalized seniority

scheme, the conjugate gradient method, and the Hartree-Fock approach. We find the collective pairs

obtained from the generalized seniority scheme provides a good description for nearly spherical

nuclei, and those from the conjugate gradient method or the Hartree-Fock approach work well

for transitional and deformed nuclei. Our NPA calculations using collective pairs with angular

momenta 0, 2, and 4 (denoted by SDG pairs) reproduce the nuclear shape evolution in the N = 26

isotones, 46Ca, 48Ti, 50Cr, and 52Fe, and yield good agreement with full configuration-interaction

calculations of low-lying states in medium-heavy transitional and deformed nuclei: 44−48Ti, 48Cr,
50Cr, 52Fe, 60−64Zn, 64,66Ge, 84Mo, and 108−112Xe. Finally, using the SDGI-pair approximation

we describe low-lying states of 112,114Ba, cases difficult to reach by conventional configuration-

interaction methods.

I. INTRODUCTION

The atomic nucleus, a quantum many-body system,

can display a variety different modes of collective mo-

tions. Here we focus on nuclides with even numbers of

protons and of neutrons. A doubly magic or semimagic

nucleus is usually spherical in shape, with yrast states

described by the (generalized) seniority scheme [1–4].

Open-shell nuclides, that is, away from doubly closed

shells, behave like quantum vibrators or rotors. Rota-

tional motion is well described by the geometric collec-

tive model [5, 6] and the Nilsson model [7], by assum-

ing the nucleus has a quadrupole deformation in intrin-

sic states [8]. Rotation arising from intrinsic quadrupole

deformation can be embedded in a finite harmonic os-

cillator single-particle basis using Elliott’s theory built

upon SU(3) symmetry [9], providing us with a micro-

scopic description of rotational motion in the context of

the spherical shell model (SM).

Low-lying states of deformed nuclei in the medium-

mass region, e.g., 48Cr, are well described by the SM with

effective interactions [10]. Yet the full SM configuration

space for heavy-mass nuclides becomes too large to han-

dle. The hunt for truncation schemes is a key challenge.

An example of this is the quasi-SU(3) scheme where one

can obtain a significant fraction of quadrupole collectiv-

ity by taking the lower and larger j of spin-orbit part-

ner orbitals [11], leading to a much smaller many-body

model space. The quasi+pseudo-SU(3) estimate [12] pro-

vides a reasonable description for 8-particle-8-hole su-

perdeformed band of the doubly-magic nucleus 40Ca [13].

Another alternative for describing the quadrupole col-

lectivity of low-lying states is the interacting boson model

(IBM) [14, 15]. The building blocks of the IBM are

bosons with angular momenta 0 and 2, denoted by s and

d, which represent collective S and D pairs, similar to

the earlier broken-pair approximation [16]. The IBM

has been a great success in phenomenological descrip-

tion of vibrational and rotational motions [17, 18]. Refs.

[19, 20] reported the connection between the IBM and

the SM for nearly-spherical vibrational nuclei and γ-soft

nuclei, but such a relation has never been established for

well deformed nuclei.

The nucleon-pair approximation (NPA), an efficient

truncation scheme of the full SM configuration space

[21, 22], adopts the same idea of the IBM but treats

collective nucleon (fermion) pairs with good angular mo-

menta as the degrees of freedom. If all possible pairs are

considered, the NPA model space is precisely equivalent

to the full SM space; if, e.g., the building blocks are re-

stricted to SD pairs, the NPA space is reduced to the

SD-pair truncated space. The NPA has been extensively

used for the description of nearly spherical nuclei; see

Ref. [23] for a review. For example, low-lying states of

semi-magic nuclei are well described by one-dimensional

nucleon-pair basis states [24]; the SD pairs are responsi-

ble for very low-lying states of vibrational open-shell nu-

clei [25, 26]; and the overlap between the SD-pair wave

function and the SM wave function is larger than 0.9 for

low-lying states of nearly spherical nuclei [27].

On the other hand, the SD-pair approximation is inad-

equate to naively reproduce the quadrupole collectivity

of rotational nuclei. For example, for the system with

nucleon number Np = Nn = 6 in the pf and sdg shells

with a pure quadrupole-quadrupole interaction, the mo-

ment of inertia and the E2 transition strengths calcu-

lated by the SD-pair approximation is much smaller than

those obtained by the full SM calculation [28]. In recent
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work we found instead that SDG pairs derived from the

Hartree-Fock (HF) Slater determinant provide us good

descriptions of low-lying states of rotational bands [29].

For most of the past twenty-plus years, NPA calcu-

lations have been largely carried out in fully J-coupled

bases, which have small dimensions but take a long time

to compute. Recent implementations of M -scheme bases

for the NPA [30] have led, however, to enormously faster

codes, which in turn will allow one to systematically

tackle larger spaces. Inspired by these developments, we

turn here to a systematic study of deformed nuclei in

the medium-heavy mass region, using the nucleon-pair

approximation.

The paper is organized as follows. In Sec. II we

briefly introduce the framework of the NPA and three ap-

proaches (the generalized seniority-based approach, the

conjugate gradient approach, and the HF approach) to

determine the inner structure of collective pairs. In Secs.

III and IV we show that while the collective pairs ob-

tained by the generalized seniority-based approach work

for nearly spherical nuclei, those by the conjugate gra-

dient or HF approach provide us good descriptions for

low-lying states of transitional and rotational nuclei in

the pf , 1p0f5/20g9/2, and 2s1d0g7/20h11/2 shells. In Sec.

V we summarize our results.

II. FRAMEWORK

In this paper we use Greek letters α, β, . . . to denote

SM single-particle states labeled by n, l, j, jz, and we

write the creation operator of a nucleon as â†α. We use

Latin letters a, b, . . . to denote HF single-particle states,

and we write the creation operator as ĉ†a.

A. The NPA basis state

In the NPA of the shell model, the building blocks are

collective nucleon pairs with various spins J , which are

defined by

Â(J)† =
∑

jα≤jβ

yJ(jαjβ)
(

â†jα × â†jβ

)(J)

, (1)

where â†jα is the creation operator of a valence nucleon on

the SM single-particle orbit jα, and yJ(jαjβ) is the pair-

structure coefficient. For 2N valence protons or neutrons,

the NPA basis state with total spin I is constructed by

N collective pairs coupled successively, i.e.,

|ϕ(I)〉 =
(

· · · ((Â(J1)† × Â(J2)†)(I2) × Â(J3)†)(I3)

× · · · × Â(JN )†
)(I)

|0〉, (2)

where I2, I3, . . . , IN−1 are intermediate spins.

In the SD-pair approximation, for example, the basis

state for valence protons or neutrons is constructed by

SD pairs in Eq. (2). By choosing the intermediate and

total spins {Ii} in all possible ways, one usually gets an

overcomplete basis. From this we select a maximal lin-

early independent set of states {|ϕ(I)
i 〉}, which can be cho-

sen in several equivalent ways. For open-shell nuclei, the

basis state is coupled by the proton and neutron states,

|(ϕ(Iπ)
iπ

×ϕ
(Iν)
iπ

)(I)〉, where π and ν represent valence pro-

tons and neutrons, respectively. The space spanned by

these states is called the SD-pair subspace. Matrix el-

ements of overlaps, one-body operators, and two-body

operators in the NPA basis were derived based on the

Wick theorem of coupled operators [31]. Then the cal-

culated states are obtained by diagonalizing Hamiltonian

matrix in the SD-pair subspace. Recently, Ref. [30] re-

ported a code based on the Wick theorem derived in the

M scheme, allowing one to reach much larger subspaces.

B. The pair-structure coefficient

In previous work, the pair-structure coefficients,

yJ(jαjβ), of the collective pairs were usually determined

by the generalized seniority-like (GS) approach [32], rem-

iniscent of the earlier broken-pair approximation [16].

The detailed procedure is as follows. The coefficients

of the S pair are determined by minimizing the expec-

tation value of Hamiltonian in the S-pair-condensation

state, i.e.,

〈(S)Nτ |Ĥ |(S)Nτ 〉
〈(S)Nτ |(S)Nτ 〉 , with τ = π or ν. (3)

where the creation operator of the S pair can be written

as

Ŝ† =
∑

jα

y0(jαjα)
(

â†jα × â†jα

)(0)

, (4)

For the coefficients of non-S pairs, yJ(jαjβ), we diago-

nalize the Hamiltonian matrix in the space spanned by

the one-broken pair states [(Ŝ†)N−1 × (â†jα × â†jβ )
(J)]|0〉,

with jα and jβ running over all possible single-particle

orbits. The yrast-state wave function can be written by
∑

jα≤jβ

yJ(jαjβ) [(Ŝ
†)N−1 × (â†jα × â†jβ )

(J)]|0〉. (5)

The above procedure is done for protons and neutrons

independently. Thus proton-neutron correlations, impor-

tant for rotational nuclei, are not considered in the GS

approach.

In this work, we use another two approaches to deter-

mine the pair-structure coefficients for rotational nuclei:
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the conjugate gradient (CG) method and the Hartree-

Fock (HF) approach. In the CG approach, the pair-

structure coefficients of all pairs adopted in the basis

are simultaneously optimized by minimizing the ground-

state energy in iterative NPA calculations with a given

Hamiltonian. The advantage of the CG is that it yields

the numerically optimal solution.

In the HF approach we extract collective pairs from a

HF Slater determinant [29], as follows. We perform an

unconstrained HF calculation in the SM single-particle

space with a SM interactions [33]. The HF single-particle

states from our calculations are sorted by the HF single-

particle energies from the smallest to the largest, which

can be written as a transformation of the original SM

single-particle states:

ĉ†a =
∑

α

Uaαâ
†
α. (6)

In general, for even-even nuclei we obtain time-reversed

partners of HF single-particle orbits. A Slater determi-

nant for an even number of valence protons (or neutrons)

can be written as a pair condensate:

2N
∏

a=1

ĉ†a|0〉 = (N !)−1
(

ĉ†1ĉ
†
2 + · · ·+ ĉ†2N−1ĉ

†
2N

)N

|0〉

= (N !)−1

(

∑

ab

gab ĉ†aĉ
†
b

)N

|0〉, (7)

where g12 = g34 = . . . = g(2N−1)(2N) = 1 and other

gij = 0; the phase of each pair is arbitrary. One can

project out pairs of good spin from the deformed HF

pair,

B̂
(J)†
MK =

∑

jα≤jβ

yJK(jαjβ)
(

â†jα × â†jβ

)(J)

M
, (8)

where

yJK(jαjβ) =
∑

abkαkβ

gab(UaαUbβ − UbαUaβ)
CJK

jαkαjβkβ

1 + δjαjβ

.(9)

For a given angular momentum J , we diagonalize the

norm matrix

N
(JM)
KK′ = 〈0|B̂(J)

MKB̂
(J)†
MK′ |0〉. (10)

The number of nonzero eigenvalues is the number of

unique pairs, the nonzero eigenvalues are amplitudes of

the unique pairs, and the unique pairs are given by the

eigenvectors for the nonzero eigenvalues.

Recently Ref. [34] proposed a similar approach, the

so-called pair condensate variational (PCV) approach, to

determine pair-structure coefficients. The PCV approach

is somewhat the reverse of our CG approach: both opti-

mize pairs by minimizing the energy expectation value,

but in our CG approach we optimize pairs of good an-

gular momenta in the NPA basis, while the PCV opti-

mizes a condensate of a general pair, without enforcing

good angular momentum, and then afterwards projects

out pairs of good angular momenta. An NPA calcula-

tion using PCV pairs provides a good description for the

transitional nuclei 132−136Ba.

III. PAIR APPROXIMATIONS WITH THE CG

APPROACH

In this section, we focus on NPA calculations with the

GS and CG approaches.

A. Parameter-driven shape evolution

We investigate the validity of the pair approxima-

tion as the nuclear shape evolves from quadrupole de-

formation to spherical. Shape evolution can be realized

by changing the ratio of the strengths of the pairing

and quadrupole-quadrupole interactions in a schematic

Hamiltonian such as

H(x) = x





∑

jα

εjαnjα + gVP



+ κVQ. (11)

The first term is the single-particle energy. The second

term, VP , is the monopole pairing interaction,

VP = −A
(0)
π

†
A

(0)
π −A

(0)
ν

†
A

(0)
ν , (12)

A(0)† =
∑

jα

√
2jα + 1

2

(

a†jα × a†jα

)(0)

.

The third term VQ is the quadrupole-quadrupole inter-

action adopted in the Elliott’s SU(3) theory,

VQ = −(Qπ +Qν) · (Qπ +Qν). (13)

This Hamiltonian, or rather, family of Hamiltonians,

we apply in the pf shell with Np = Nn = 6. In Eq. (11),

the parameters of the single-particle energy are taken

from the KB3G effective interaction [35], i.e., ε0f7/2 = 0

MeV, ε1p3/2
= 2.0 MeV, ε0f5/2 = 6.5 MeV, ε1p1/2

= 4.0

MeV; the strength parameters of the monopole pairing

and quadrupole-quadrupole interactions are taken to be

g = 0.4 MeV and k = 0.1 MeV; and finally x is an ad-

justable parameter ranging from 0 to 1.5.

We calculate level energies and the B(E2) transition

strength (taking the standard effective charges eπ = 1.5

and eν = 0.5) both in the full SM space using the
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FIG. 1: The excitation energies Ex(I
+
1 ), the energy ratios RI+2 (where RI ≡ Ex(I

+
1 )/Ex(2

+
1 )), and the B(E2; I → I−2) values

for 6 protons and 6 neutrons in the pf shell with the schematic interaction H(x) = x
(

∑

jα
εjαnjα + gVP

)

+ κVQ [see Eq.

(11)]. Panel (a) is for I = 2 and panel (b) for I = 4. SM is the abbreviation for the shell model; SDGGS is for the SDG-pair

approximation with the generalized seniority-like approach approach; and SDGCG is for the SDG-pair approximation with the

conjugate gradient approach.

BIGSTICK code [37, 38], and in the NPA subspaces. In

Fig. 1 the excitation energies Ex(I
+
1 ), the energy ratios

RI+2 (where RI ≡ Ex(I
+
1 )/Ex(2

+
1 )), and the B(E2; I →

I − 2) values for I = 2 and 4, all exhibit evidence of

shape evolution, most strongly for the full SM calcu-

lations. For large x, that is, large pairing interaction

and single-particle splittings, the 2+1 excitation energy

is large, accompanied by small ratios R4 and R6, both

close to 1.4, and the B(E2) values are small. These are

typical features of spherical nuclei, well described by the

generalized seniority scheme. As x decreases, the 2+1 and

4+1 excitation energies decrease rapidly and the energy

ratios R4 and R6 as well as the B(E2)s increase. In the

case with a dominant quadrupole-quadrupole interaction

(where x is close to 0), we find R4 ≈ 3.33 and R6 ≈ 7,

typical of rotational behavior of deformed nuclei.

While our NPA results follow the SM trends, the de-

tails are illuminating. For large quadrupole-quadrupole

interaction (small x), the SDG-pair approximation with

the CG approach, denoted as SDGCG, provides a good

description (see in Fig. 1) for the low-lying rotational

states: the excitation energies, energy ratios, and B(E2)

values obtained by the SDGCG are in good agreement

with the full SM results. Although the energy ratios in

the SDCG-pair approximation are close to the SM results,

the SDCG underestimates both the B(E2) strengths and

the moments of inertia, i.e., the excitation energies are

too large. The G pair is clearly important in reproducing
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TABLE I: B(E2; I → I − 2) (in W.u.) for the yrast states

of the N = 26 isotones, 46Ca, 48Ti, 50Cr, and 52Fe. The

experimental data are taken from [39–43].

Nuclide Iπ Expt. SM NPA

46Ca

2+ 2.59(46) 0.79 0.75

4+ 0.88(21) 0.65 0.64

6+ 0.55(3) 0.31 0.32

48Ti
2+ 14.7(4) 8.5 8.1

4+ 18.4(17) 12.7 11.4

50Cr

2+ 19.3(6) 16.9 15.7

4+ 14.6(16) 24.0 21.9

6+ 22(5) 20.4 20.2

8+ 19(5) 17.6 16.6

52Fe

2+ 14.2(19) 16.0 12.5

4+ 26(6) 21.3 15.6

6+ 10(3) 11.8 11.2

8+ 9(4) 7.2 8.3

the collectivity of rotational nuclei. The SDGCG-pair ap-

proximation also provides a good description for the low-

lying states of transitional nuclei with R4 ∼ 2.2. The GS

approach, conversely, performs poorly for small x/strong

quadrupole-quadrupole, both in the SD- and SDG-pair

approximations, denoted as SDGS and SDGGS,

In the other limiting case, that is, large x / large pair-

ing interaction and single-particle splittings, the results

of the SDGCG are not good. In the CG approach, pair

structure coefficients are determined by minimizing the

ground-state energy, but in the limit of a strong pairing

interaction, the ground state energy is insensitive to non-

S pairs. Thus the CG approach fails to suitably constrain

collective D and G pairs. While the GS approach is not

suitable for the rotational cases, it works rather well for

the nearly-spherical cases.

B. Nuclear shape evolution in N = 26 isotones

Continuing our study of shape evolution, we use pro-

ton number as a driving parameter. Experimental data

[39–43] of the low-lying energy levels and the B(E2) val-

ues (see in Fig. 2 and Table I) show the evolution from

spherical to deformed shapes for N = 26 isotones in the

pf shell: 46Ca, 48Ti, 50Cr, and 52Fe. (Our primary pur-

pose in this paper is to test NPA as an approximation to

full shell-model diagonalization; we only show experimen-

tal data to assure the reader the shell-model interactions

we use are reasonably realistic.) We calculate level ener-

gies and B(E2) transition strengths using both the SM

and the NPA using a semi-realistic interaction, KB3G

[35]. In the previous subsection, we showed that SDGCG

pairs describe well rotational systems and SDGGS pairs

describe well nearly-spherical nuclides. Thus we expect

TABLE II: B(E2; I → I− 2) (in W.u.) for the yrast states of
44−48Ti. The experimental data are taken from [39, 40, 45].

Nuclide Iπ Expt. SM SDGHF SDGIHF

44Ti

2+ 13(4) 12.9 13.2 13.5

4+ 30(5) 17.0 17.6 18.6

6+ 17.0(24) 14.2 15.6 18.0

8+ - 10.1 11.8 16.0

46Ti

2+ 19.5(6) 13.2 13.7 14.1

4+ 20.2(13) 17.4 19.9 20.3

6+ 16.4(15) 17.6 19.7 21.4

8+ 11.3(14) 16.1 16.7 19.1

48Ti

2+ 14.7(4) 10.1 10.2 10.6

4+ 18.4(17) 15.0 15.7 16.2

6+ - 6.0 13.5 15.2

8+ - 6.9 11.6 11.0

that NPA calculations in the direct sum of the SDGCG

and SDGGS subspaces should reproduce shape evolution

in the N = 26 isotones (denoted by SDGCG

⊕

SDGGS).

For the yrast states of 46Ca, 48Ti, 50Cr, and 52Fe,

Fig. 2 and Table I compare experimental data and full

SM values to the SDGCG

⊕

SDGGS results. Both the

level energies and the B(E2) values obtained by the

SDGCG

⊕

SDGGS are in good agreement with exper-

iment and/or full SM results, although both the SM

and the SDGCG

⊕

SDGGS yield B(E2; 2+ → 0+) val-

ues smaller than experimental for the nearly spheri-

cal nuclei 46Ca and 48Ti. The small values likely sig-

nal inadequate accounting of collectivity arising from

multiparticle-multihole excitations out of the sd shell into

the pf shell [36], a problem of the underlying model space

and not of the method.

IV. PAIR APPROXIMATIONS WITH THE HF

APPROACH FOR NUCLEI IN THE

MEDIUM-HEAVY MASS REGION

So far, we have shown that the yrast states of rota-

tional nuclei in the pf shell are well reproduced by the

SDGCG-pair approximation. A downside of the CG ap-

proach is that hundreds and thousands of iterations of the

NPA calculation are needed to reach convergence. The

HF approach is much more practical, requiring signifi-

cantly less computing time. Here we show that the NPA

with pairs from the HF approach provides us with rea-

sonably good description for transitional and deformed

nuclei in the medium-heavy mass region.
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TABLE III: µ (in µN) for the yrast 2+ states of 44−48Ti. The

experimental data are taken from [46, 47].

Nuclide Expt. SM SDGHF SDGIHF

44Ti 1.04(30) 1.02 1.01 1.01
46Ti 0.992(54) 0.532 0.752 0.532
48Ti 0.784(38) 0.374 0.391 0.600

A. 44−48Ti, 48Cr, 50Cr, 52Fe in the pf shell

44−48Ti are transitional nuclei and 48Cr, 50Cr, and 52Fe

are typical deformed nuclei in the pf shell. For our cal-

culations we use the effective KB3G interaction [35], for

B(E2)s take the standard effective charges eπ = 1.5 and

eν = 0.5, and for magnetic dipole moments µs take the ef-

fective g factors glp = 1.1, gln = −0.1, gsp = 5.586×0.75,

gsn = −3.826 × 0.75. The collectivity of the low-lying
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TABLE IV: B(E2; I → I−2) (in W.u.) for the yrast states of
48Cr, 50Cr, and 52Fe. The experimental data are taken from

[40–42].

Nuclide Iπ Expt. SM SDGHF

48Cr

2+ 31(4) 20.6 19.6

4+ 27(3) 28.2 27.9

6+ 29(8) 28.3 29.9

8+ 24(7) 26.2 29.4

50Cr

2+ 19.3(6) 16.9 18.4

4+ 14.6(16) 24.0 26.8

6+ 22(5) 20.4 28.1

8+ 19(5) 17.6 26.9

52Fe

2+ 14.2(19) 16.0 12.9

4+ 26(6) 21.3 16.6

6+ 10(3) 11.8 13.4

8+ 9(4) 7.2 9.0

TABLE V: µ (in µN) for the yrast 2+ states of 48Cr, 50Cr,

and 52Fe. The experimental data are taken from [47].

Nuclide Expt. SM SDGHF

48Cr - 1.019 1.002
50Cr 1.238(62) 1.072 0.939
52Fe - 1.016 1.011

states are well reproduced by SM calculations, except for
44Ti.

We begin with transitional nuclei, 44−48Ti. For each

nuclide we perform the unconstrained HF calculation and

obtain a HF state with the minimum energy. From the

HF state, we obtain a unique S pair, a unique D pair, a

unique G pair, and a unique I pair. We find that each

of the SDGI pairs extracted from HF have comparable

amplitudes, that is, the yJK in Eq. (9), for these nu-

clides. Thus in our NPA calculations, we work in two

model spaces: the SDGHF space, constructed from the

unique SDG pairs; and the SDGIHF space, constructed

using the unique SDGI pairs, with an additional con-

straint that we allow at most one I pair in our wave

functions. For purposes of comparison, we also compute

the excitation energy from angular momentum projected

HF (PHF), using a previously developed method with

linear algebra [44].

Fig. 3 and Tables II and III compare for the yrast

states of 44−48Ti values from experiment [39, 40, 45–47],

full SM calculations, and the SDGHF- and SDGIHF-

pair approximations. Energy levels calculated by PHF

are also included in Fig. 3 . The low-lying spectrum

is well reproduced in the SM, except for 44Ti. Both of

the SDGIHF and the PHF results are in good agreement

with the data or the SM results. The level energies ob-

tained by the SDGHF-pair approximation are not good,

but interestingly we find that the B(E2) values obtained

by the SDGHF are in good agreement with the data or

the SM results. The calculated µ(2+1 )s for 44,46Ti are

smaller than the data, due to the lack of possible exci-

tations of the 40Ca core [47]. The data are closer to the

values Z/A predicted by the collective model.

Next we turn to deformed nuclei. Our unconstrained

HF calculation produces an axially symmetric deformed

minimum for 48Cr, 50Cr, and 52Fe with 〈β〉 = 0.31, 0.22,

and 0.16, respectively. From each of the HF states, we

obtain a unique S pair, a unique D pair, a unique G pair,

and a unique I pair, with the amplitudes of the SDG
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TABLE VI: B(E2; I → I − 2) (in W.u.) for the yrast states

of 60−64Zn. The experimental data are taken from [51–53].

Nuclide Iπ Expt. SM SDGHF

60Zn

2+ - 18.4 18.1

4+ - 21.6 21.8

6+ - 20.1 17.9

8+ - 12.5 9.8

62Zn

2+ 16.8(8) 21.0 22.2

4+ 26(+7− 12) 20.1 22.6

6+ 19(3) 27.5 25.7

8+ 7.9(+20− 40) 21.4 21.2

64Zn

2+ 20.0(6) 21.0 23.4

4+ 12.2(5) 25.8 31.1

6+ 23(6) 24.9 28.7

8+ - 15.5 20.7

pairs in the HF state relatively large and that of the I

pair significantly smaller. Thus in our NPA calculations,

we construct our model space, denoted as SDGHF, using

only SDG pairs.

We compare the experimental data and the SM results

against results from the SDGHF-pair approximation in

Fig. 4 (excitation energies), in Table IV (B(E2) values),

and in Table V (µ(2+1 ) values) for the ground state ro-

tational band. The energy levels calculated by the PHF

are also included in Fig. 4. Since the configuration space

of the SDGHF is much larger than the PHF, one would

expect the SDGHF provides us with better results. In-

deed, for 50Cr and 52Fe, the level energies, the B(E2)

and µ(2+1 ) values obtained by the SDGHF are in good

agreement with the data and the SM results.

For 48Cr, the B(E2) values and the excitation ener-

gies of the yrast 2+, 4+, and 6+ states obtained by the

SDGHF are good. But the excitation energies of the

higher-spin 8+ and 10+ states display an increasing dis-

crepancy. For comparison, we calculate 48Cr using the

SDGCG-pair approximation. Fig. 4 shows the SDGCG

results (including the higher-spin 6+, 8+, and 10+ states)

are closer to the data and the SM results. The SD pairs

from the HF are almost identical to those from the CG

(with an overlap larger than 0.99), while the G pairs ex-

tracted from the HF and CG approaches differ:

Ĝ†
HF ≈ 0.44(â†f7/2 × â†f7/2)

(4) − 0.61(â†f5/2 × â†f7/2)
(4)

−0.43(â†p1/2
× â†f7/2)

(4), (14)

Ĝ†
CG ≈ 0.55(â†f7/2 × â†f7/2)

(4) − 0.40(â†f5/2 × â†f7/2)
(4)

−0.38(â†p1/2
× â†f7/2)

(4). (15)

TABLE VII: µ (in µN) for the yrast 2
+ states of 60−64Zn. The

experimental data are taken from [54].

Nuclide Expt. SM SDGHF

60Zn - 1.006 1.005
62Zn 0.742(198) 0.840 0.946
64Zn 0.890(92) 0.804 0.477

TABLE VIII: B(E2; I → I − 2) (in W.u.) for the yrast band

of 64,66Ge, 84Mo. The experimental data are taken from [55].

Nuclide Iπ Expt. SM SDGCG SDGHF

64Ge

2+ - 28.0 27.2 29.3

4+ - 35.0 38.6 40.2

6+ - 43.9 39.7 43.7

8+ - 36.6 30.3 41.1

66Ge

2+ 12.0(23) 28.5 24.9 24.4

4+ > 9.6 32.5 33.3 32.2

6+ > 1.2 34.1 32.1 30.4

8+ - 14.8 19.0 21.4

10+ < 5.1 0.1 7.1 8.1

Nuclide Iπ Expt. SM SDGHF SDGIHF

84Mo

2+ - 54.9 48.8 58.2

4+ - 79.2 68.7 82.3

6+ - 86.8 73.1 88.9

8+ - 89.1 72.5 90.5

10+ - 89.1 68.9 89.5

B. 60−64Zn, 64,66Ge, 84Mo in the pf5g9 shell

We calculate low-lying states of 60−64Zn, 64,66Ge

and 84Mo in the 1p1/2-1p3/2-0f5/2-0g9/2 space, denoted

pf5g9, using the JUN45 interaction [48, 49], which pro-

vides a reasonably good description in the full SM. For

our NPA calculations we use HF-derived pairs from the

same interaction. The effective charges used for the

B(E2) calculation are eπ = 1.5 and eν = 1.1, and the

effective g factors for the µ calculation are glp = 1.0,

gln = 0, gsp = 5.586× 0.7, gsn = −3.826× 0.7.

The 60−64Zn isotopes have two valence protons in the

pf5g9 shell, and thus the collectivity is not very strong.

For each of the isotopes, we perform the unconstrained

HF calculation and obtain a HF state with the minimum

TABLE IX: µ (in µN) for the yrast 2
+ states of 64,66Ge, 84Mo.

Nuclide SM SDGCG SDGHF

64Ge 1.004 1.004 0.998
66Ge 0.982 0.900 0.960

Nuclei SM SDGHF SDGIHF

84Mo 1.016 1.009 1.015
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0

4

8

SDGIHFSDGCG
84Mo66Ge64Ge

SDGHFSMExpt.

10+

E x
  (

M
eV

) 8+

6+

4+

2+

0+
2+
0+

SMExpt. SDGHFSMExpt.

8+

6+

4+

2+

0+

10+

8+

6+

4+

SDGHFSDGCG

FIG. 6: The yrast band of 64,66Ge and 84Mo. The experimental data are taken from [53, 55, 56].

energy. From the HF state, we obtain a unique S pair,

a unique D pair, and a unique G pair. The amplitude

of the G pair is non-negligible, and so in the NPA cal-

culation of 60−64Zn, we construct our model space using

SDG pairs, i.e., the SDGHF-pair approximation. Fig.

5 and Tables VI and VII compare the yrast states of
60−64Zn from the experimental data [50–54], the SM, and

the SDGHF-pair approximation. Both the level energies

and the B(E2) values obtained by the SDGHF are in

good agreement with the data or the SM results. For
60,62Zn, the µ(2+1 ) values obtained by the SDGHF are

good. For 64Zn, the µ(2+1 ) value obtained by the SM are

in good agreement with the data, but that by the SDGHF

are relatively smaller. This discrepancy is due to the lack

of the occupation of the neutron 0g9/2 orbit in our cal-

culation: In our unconstrained HF (and the subsequent

SDGHF) calculation 〈n(ν0g9/2)〉 = 0, while in the SM

〈n(ν0g9/2)〉 ≈ 0.4. The SDG results may be improved

if the pairs are obtained by HF augmented by number-

projected BCS [29], which we leave to future work.

Our unconstrained HF calculation produces a local

minimum with 〈β〉 = 0.28 and 〈γ〉 = 20◦ for 64Ge,

which indicates a triaxially deformation, and one with

〈β〉 = 0.21 and 〈γ〉 = 60◦ for 66Ge, which has an axi-

ally symmetric oblate deformation. From the triaxially

deformed HF state, we obtain a unique S pair, two differ-

ent D pairs, and two different G pairs. The amplitudes

of the second D pair and the second G pair are very
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small. Therefore, we construct our model space for 64Ge

using the unique S pair and the first DG pairs, i.e., the

SDGHF-pair approximation. From the oblate HF state,

we obtain a unique S pair, a unique D pair, and a unique

G pair, and thus calculate 66Ge using the SDGHF pairs.

For comparison, we also calculate these two nuclei using

the SDGCG-pair approximation.

In Fig. 6 we see that the low-lying states of 64Ge and
66Ge from the data [53, 55], the SM, the SDGCG, and

the SDGHF are in good agreement with each others. The

B(E2) values obtained by the SM, the SDGCG, and the

SDGHF are also very close to each others, except for

B(E2; 10+ → 8+) (see in Table VIII). The above result

shows that both axially symmetric deformed nuclei and

triaxially deformed nuclei can be well described by using

the SDGHF- and SDGCG-pair approximations.

For 84Mo in the particle formalism (with 14 valence

protons and 14 valence neutrons) our unconstrained HF

calculation produces an oblate minimum with 〈β〉 = 0.13

and 〈γ〉 = 60◦. However it is more convenient to carry

out the NPA calculation in the hole formalism, with 8

valence proton holes and 8 valence neutron holes, and a

Pandya transformation on the interaction. From the HF

state in the hole formalism, we obtain a unique S pair,

a unique D pair, a unique G pair, and a unique I pair.

The amplitudes of the SD pairs are large. Although the

amplitudes of the GI pairs are relatively smaller, they

are non-negligible. Thus we calculate 84Mo in the hole

formalism by using the SDGHF- and SDGIHF-pair ap-

proximations (in the latter the maximum numbers of the

GI pairs are constrained to one for simplicity).

Fig. 6 and Tables VIII and IX compare the excitation

energies, B(E2) and µ(2+1 ) values between the data [56],

the SM, the SDGHF- and SDGIHF-pair approximation

results for 84Mo. The level energies of the low-lying 2+

and 4+ states obtained by the SDGHF are in good agree-

ment with the SM results, but for higher-spin states we

see increasing discrepancies. The B(E2) values from the

SDGHF result are 11-23% smaller than those from the

SM result. The above result suggests the I pair might be

important. Indeed, for the level energies and the B(E2)

values, the agreement between the SDGIHF and the SM

results are significantly improved, even if the former pre-

dict a moment of inertia slightly larger than the latter.

Both the µ(2+1 ) values from the SDGHF and SDGIHF

results are close to the SM result.

C. 108−112Xe, 112,114Ba in the sdg7h11 shell

The lightest Xe and Ba isotopes have been observed

to be 108Xe and 112Ba recently, which are N = Z nu-

clei. Although the low-lying spectra are unknown, the

TABLE X: B(E2; I → I − 2) (in W.u.) for the yrast states

of 108−112Xe and 112,114Ba.

Nuclide Iπ SM SDGHF SDGID′

HF

108Xe

2+ 30.9 27.6 30.2

4+ 41.8 38.7 40.5

6+ 44.9 40.8 43.1

8+ 47.4 39.4 45.0

10+ 44.8 35.6 43.0

Nuclide Iπ SM SDGHF

110Xe

2+ 34.3 33.3

4+ 48.4 46.6

6+ 51.7 49.6

8+ 52.1 49.3

10+ 50.8 47.1

112Xe

2+ - 33.9

4+ - 48.1

6+ - 51.8

8+ - 52.1

10+ - 50.1

Nuclide Iπ SM SDGHF SDGIHF

112Ba

2+ - 50.2 54.0

4+ - 70.6 76.0

6+ - 75.5 81.3

8+ - 75.6 81.4

10+ - 73.0 78.7

114Ba

2+ - 50.2 54.6

4+ - 70.6 76.9

6+ - 75.5 82.4

8+ - 75.9 82.8

10+ - 73.8 80.4

TABLE XI: µ (in µN) for the yrast 2
+ states of 108−112Xe and

112,114Ba.

Nuclide SM SDGHF SDGID′

HF
108Xe 0.998 0.994 0.995

Nuclide SM SDGHF

110Xe 0.847 0.604
112Xe - 0.649

Nuclide SM SDGHF SDGIHF

112Ba - 0.996 0.999
114Ba - 0.847 1.112

excitation energies of low-lying states of their neighbors
110Xe and 112Xe have been measured, which show collec-

tive rotational features [57, 58]. In this work, we calcu-

late 108−112Xe using both the SM and the NPA with the

HF approach in the 2s1/2-1d3/2-1d5/2-0g7/2-0h11/2 space,

denoted sdg7h11), with the monopole-optimized effec-

tive interactions based on the CD-Bonn potential renor-
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malized by the perturbative G-matrix approach [59].

The effective charges used for the B(E2) calculation are

eπ = 1.5 and eν = 0.5, and the effective g factors for the

µ calculation are glp = 1.1, gln = −0.1, gsp = 5.586×0.7,

gsn = −3.826× 0.7. We also compute 112,114Ba in the

NPA with HF-derived pairs using the same single-particle

space and interaction. The shell-modelM -scheme dimen-

sions of 112Xe and 112Ba, are ∼9 billion and ∼20 billion,

respectively, at the edge of what the modern large-scale

SM can do, while the M -scheme dimension of 114Ba, is

∼220 billion, well beyond the reach of any full SM cal-

culation. These nuclei demonstrate the applicability and

utility of the NPA.

Our HF calculation of 108Xe produces a triaxially de-

formed minimum with 〈β〉 = 0.39 and 〈γ〉 = 11◦. From

this HF state, we obtain one unique S pair, two D pairs,

two G pairs, and two I pairs. The amplitudes of the

second DGI pairs are much smaller than those of the

first ones. Our NPA model space is constructed using

the first SDG pairs. Since the amplitude of the first I

pair is non-negligible, and the amplitude of the second

D pair (denoted by D′) are larger than those of the sec-

ond GI pairs, we also perform an NPA calculation in the

space constructed from the first SDGI pairs and the D′

pair (for simplicity the maximum number of the D′ pair

is constrained to one). Our HF calculation produces a

prolate minimum with 〈β〉 = 0.39 and 〈γ〉 = 0◦ for 110Xe

and a triaxially deformed minimum with 〈β〉 = 0.39 and

〈γ〉 = 11◦ for 112Xe. Our NPA model spaces for these

two nuclei are constructed using the first SDG pairs.

Fig. 7 and Tables X and XI compare low-lying states

of the ground rotational band from the data [57, 58], the

SM, and the NPA with the HF approach. The level en-

ergies of the low-lying 2+, 4+, and 6+ states obtained
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by the SDGHF are in good agreement with the data or

the SM results, and the same to the B(E2) values for

2+ → 0+, 4+ → 2+, and 6+ → 4+. But for the higher-

spin states of 108Xe we see increasing discrepancy. For

the level energies and the B(E2) values, the agreement

between the SDGID′
HF and the SM results is signifi-

cantly improved, suggesting the high-spin I pair and the

second D pair are important in the description of the

higher-spin states.

Our HF calculation produces a prolate minimum with

〈β〉 = 0.35 and 〈γ〉 = 0◦ for 112Ba and a prolate one

with 〈β〉 = 0.31 and 〈γ〉 = 11◦ for 114Ba. From each

of the HF states, we obtain SDGI pairs. We calculate
112Ba and 114Ba using the SDGHF- and SDGIHF-pair

approximations.

The calculated results are presented in Fig. 8 and Ta-

bles X and XI . The level energies of the low-lying 2+, 4+,

and 6+ states obtained by the SDGHF are close to those

obtained by the SDGIHF, although the latter predicts

a slightly larger moment of inertia and slightly larger

B(E2) values.

V. SUMMARY

We have investigated the nucleon-pair approximation

of the shell model for medium- and heavy-mass nuclei,

using collective nucleon pairs derived by three different

approaches: from the generalized seniority (GS) method,

from iterative NPA calculations with the conjugate gradi-

ent method (CG), and from unconstrained Hartree-Fock

calculations (HF). By dialing between near-spherical and

deformed systems in the pf , either by changing the rel-

ative strength of schematic pairing versus quadrupole-

quadrupole interactions or by changing the number of

protons, we found the NPA with the SDGGS pairs pro-

vides good description for nearly-spherical systems, but

fails to explain deformed systems, while the collective

feature of deformed systems can be well reproduced by

the NPA with the SDGCG pairs.

The conjugate gradient method is computationally

very intensive, so we also used Hartree-Fock minima to

provide pairs for transitional nuclei and deformed nuclei.

We find that the SDGHF-pair approximation provides

us with good descriptions for low-lying states of the ro-

tational bands. In particular the B(E2) values obtained

by our NPA calculations are very close to the SM results.

The high-spin I pair is responsible for high-spin states of

the heavy-mass nuclei, 84Mo, 108−112Xe, and 112,114Ba.

In particular we point out our NPA calculations of low-

lying states of 112Ba and 114Ba, which are difficult or

impossible to be realized in currently large-scale SM cal-

culations due to the huge dimensions of the configuration

space. One additional test we have yet to carry out are

two-nucleon transfer amplitudes [60]. Nonetheless we

demonstrate the utility of the NPA for nuclear structure

physics. There are many possible applications. A small

tasting menu includes: the complex spectra of Cd iso-

topes, which exhibit evidence of shape coexistence and

strong evolution with the addition of neutron number

[61], as well as quantum phase transitions in Zr isotopes

[62]. This we leave to future work.
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