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Abstract. Rotational bands in 109Rh are investigated in a simple model and in the interacting 

boson-fermion model. We have developed a solvable extended transitional Hamiltonian by adding 

a two-configuration mixing term. Results suggest that 109Rh is a good candidate for triaxiality and 

shape coexistence. Mixing between 3/2+ states with K = 1/2 and 3/2 is found to be weak, as 

evidenced by the E2 strengths. 

 

I. INTRODUCTION 

Arima and Iachello proposed the original version of the interacting boson model (IBM) for even-

even nuclei [1-4]. The extension of this model to the interacting boson-fermion model (IBFM) has 

been quite successful in odd mass nuclei [5-11]. In the neutron-rich region (40≤Z≤50 and N≥50), 

odd-A109Rh nuclei such as 109Rh (with Z=45, N= 64) are of current interest because of the different 

deformation types they exhibit. Different shapes (e.g., prolate, oblate, and gamma-soft or triaxial) 

can coexist in the same nucleus [12-14]. Shape coexistence likely appears in a majority of nuclei. 

Examples of this coexistence phenomenon involving vibrational and rotational bands are seen 

from (πg9/2, πp1/2, πp3/2, πf5/2) and (πg7/2/d5/2) subshells, respectively, in the region of the Z= 50 

shell closure [15-17]. The A≈100 region is renowned for the presence of normal and intruder states 

with different types of deformation. In this region (Z≥44), the intruder states may originate from 

the top of the πg9/2 subshell with oblate deformation. To the contrary, the intruder states may 

originate below or near the bottom of the νh11/2 subshell with prolate deformation. In the nuclear 

potential system, prolate deformation decreases to become γ-soft or triaxial when the number of 

protons increases, away from the mid-shell. Moreover, when more neutrons are added, with strong 

softness and deformation, oblate deformation increases, and ground states become triaxial as we 

reach N=60 and beyond [18,19]. In Rh isotopes, we have the same phenomenon. It has been shown 

that there is clear evidence for shape coexistence based on the rotational band structure (intruder 

states) [20]. The interpretation of shape coexistence and shape transitions [21] for Rh isotopes, 

indicating the softness in the γ direction, is supported by the O(6) limit of the IBM and triaxial 

shape for the ground state [22]. 

The presence of K=1/2 intruder states in our model is well known. Some band mixing is 

inevitable, particularly to understand the B(E2) values. Previous studies have used extensive 
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spectroscopic information to analyze these intruder states built on the single l/2+ [431], 3/2+ [422] 

and other Nilsson orbitals, which are very close to the Fermi level for Z=45 nuclei [16,23,24].  

Therefore, these kinds of states are good candidates to investigate rotational bands in odd-mass 

nuclei. Such a concept has been simply extended to the Rh (Z= 45) isotopes. Similar studies for 

other odd-mass nuclei were reported in the A≈100 region [25-27]. For the odd-A Rh nuclei in this 

region, several rotational bands are built on the single-particle levels with the odd proton 

occupying the πg9/2, πp1/2, and π(g7/2/d5/2) sub-shells [22,27]. In addition to the references cited 

herein for the Ru-Rh region, several workers investigated collective features in somewhat lighter 

nuclei.  These include Ge and Se [28], Zr [29,30], and Mo [31,32].  Wood, et al [33] discussed 

shape coexistence in even-even nuclei from 16O to 238U.  An excellent review [34] on various 

aspects of coexistence did not mention 109Rh. 

 

Recently, prominent solvable models were suggested for the IBM in even-even nuclei [35-41]. 

The aim of the present study is to extend and complete those kinds of solutions, proposing a 

solvable model for identifying band mixing. We have employed a two-configuration mixing plus 

pairing model [42,43] to calculate the collective bands' energy spectra and band mixing.  We have 

also considered the E2 strengths in a simpler model [44-46]. Details of the pairing model can be 

found in Refs. [41,42,47,48]. The main reason to include the configuration mixing Hamiltonian is 

we may not interpret the coexistence and intruder pattern without a two-configuration mixing term 

in the proposed model. These are especially useful when we have collective bands. The availability 

of experimental data has enabled us to study the quantum phase transition and E2 transition rates 

within the intruder band and band mixing for shape coexistence in odd mass nuclei with 

vibrational- and rotational-like bands. 

In the following, we present the available data, together with a simple analysis of the E2 

strengths.  This is followed by model calculations within the IBFM framework. 

 

II.  DATA AND SIMPLE ANALYSIS 

The low-lying positive-parity states of 109Rh divide themselves naturally into three bands: 

a Kπ = 7/2+ ground band, a nearly-degenerate, strongly decoupled 1/2+ band, and a 3/2+ side band.  

The latter is similar to the so-called gamma band in even-even nuclei.   The 7/2+ and 1/2+ bands 

are supposedly built on the 7/2+ [413] and 1/2+ [431] proton Nilsson orbitals, respectively. The 
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1/2+ band is frequently referred to as an intruder band.  These band placements are illustrated in 

Fig. 1. The numbers by the arrows are M(E2), computed from published E2 strengths [22] using 

the relationship M2(i → f) = (2Ji+1) B(E2; i → f). 

It can be noted that the E2 strength from the first 3/2+ state to the 7/2+ ground state (g.s.) is 

extremely small: B(E2) = 0.0174(5) W.u.  Bucher, et al. suggested that this strong inhibition was 

caused by vastly different deformations for the two states.  This is unlikely to be the case.  The 

likely explanation is the fact that E2 transitions with ΔK > 2 are forbidden.  The lower 3/2+ state 

probably obtains its g.s. strength by mixing with the Kπ = 3/2+ band head.  We define basis states 

│JK > = │3/2 1/2 > and │3/2 3/2 >.  Then we write  

   │3/2(226 keV) > = a │3/2 1/2 > + b │3/2 3/2 >,  

 │3/2(359 keV) > = -b │3/2 1/2 > + a │3/2 3/2 >. (0.1) 

Then b/a = M(226 → g.s.)/M(359 → g.s.) = 0.264(4)/10.24(10) = 0.0258(1), i.e. very little 

mixing.   With this mixing, the potential matrix element causing the mixing is then about 3.43 keV.  

If the two 5/2 states mix with the same V, then their mixing amplitude is 0.0674, meaning the M 

from 5/2(478) to 9/2 would be very weak. 

In 107Rh, the E2 strength for the first 3/2+ to 7/2+ g.s. is much less inhibited: B(E2) = 0.16(2) 

W.u., compared to 0.0174 W.u. in 109Rh.  This difference is easily understood from the different 

energy splittings of the lowest two 3/2+ states in the two nuclei. 

 Within the K = 1/2+ band, the transition matrix elements scale as M(Ji 1/2 → Jf 1/2) = 

M(1/2+) (2Ji+1)1/2 (Ji 1/2 20│Jf 1/2), where the last factor is a Clebsch-Gordan coefficient, and 

M(1/2+) is the same for all transitions within the band.  Thus, M(7/2 → 3/2)/(M(5/2 → 1/2) should 

be (12/7)1/2 = 1.31.  The experimental ratio is 1.27(5).  Similarly, the ratio M(1/2 → 3/2)/M(1/2 → 

5/2) should be (2/3)1/2 = 0.816.  The experimental ratio is 0.71(11).  These results, and those for 

other transitions, are summarized in Table I. 

 The lowest negative-parity states also appear to form a rotational band, having Kπ = 1/2-, 

presumably based on the proton Nilsson orbital 1/2- [301].  The known states in this band, and the 

known transition matrix element, are depicted in Fig. 2.  A comparison of the 5/2 → 1/2 matrix 
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elements in the two K = 1/2 bands indicates that the 1/2- band is somewhat less collective than the 

1/2+ band. Expected transition matrix elements for the 1/2- band are listed in Table II. 

Transitions from the K = 3/2 to 7/2 band have ΔK = 2, and scale as M(Ji 3/2 → Jf 7/2) = 

M0 (2Ji+1) (Ji 3/2 22│Jf 7/2). 

Thus, the ratio M(5/2 3/2 → 9/2 7/2)/M(3/2 3/2 → 7/2 7/2) should be 0.913. The 

experimental ratio is 12.5(7)/10.24(10) = 1.22(7).  This enhancement of the 5/2 → 9/2 transition 

could arise from mixing of the 9/2+ states in the 3/2 and 7/2 bands.  The 5/2 → 9/2 transition would 

gain strength from the 9/2 → 5/2 in-band transition.  The 9/2 member of the 3/2 band is currently 

unknown.  A state at 1097 keV has a strong L=4 angular distribution in the 110Pd(d, 3He) reaction, 

with C2S = 1.8 [20].  By comparison, the first 9/2+ state has C2S = 3.4, whereas the 7/2+ g.s. is 

understandably weak, with C2S = 0.19.  The 9/2+ assignment is confirmed from the analyzing 

power in the 110Pd(t, α) reaction with polarized tritons  [49].  The only known decays of the 10.97-

keV state are to states with Jπ = 7/2+, 9/2+, and 11/2+, presumably via M1.  A measurement of the 

E2 strength from this state to the 5/2+ member of the K=3/2 band would be valuable.  Hagen, et 

al. [50] report strong mixing between the 11/2+ member of the g.s. band and a supposed (11/2+) 

band head at 642 keV. 

 

Table I. E2 transition matrix elements [(W.u.)
1/2

] within the K
π 

= 1/2
+
 band in 

109
Rh. 

i f M(E2)/M(1/2
+
) Mcalc Mexp 

a)
 

5/2 1/2 1.095 26.0 26.0(9) 
b)

 

3/2 1/2 0.8944 21.2 18.4(27) 

5/2 3/2 0.5855 13.9 unknown 

7/2 3/2 1.434 34.9 33.0(6) 

7/2 5/2 0.4781 11.4 unknown 

a) Computed from published E2 strengths [22] using the relationship M2(i → f) = (2Ji+1) B(E2; i → f). 

b) Normalizing this transition strength provides M(1/2+) = 23.74 (W.u.)1/2. 

 

 

 



6 
 

Table II. E2 transition matrix elements [(W.u.)
1/2

] within the K
π
=1/2

-
 band in 

109
Rh. 

i f M(E2)/M(1/2
-
) Mcalc Mexp 

5/2 1/2 1.095 19.0 19.0(7) a) 

3/2 1/2 0.8944 15.5  

5/2 3/2 0.5855 10.2  

7/2 3/2 1.434 24.9  

7/2 5/2 0.4781 8.30  

a) Normalizing this transition strength provides M(1/2-) = 17.35 (W.u.)1/2. 

 

 

Fig. 1 Lowest members of first three rotational bands in 109Rh.  The numbers by the arrows are M(E2), 

computed from published E2 strengths [22] using the relationship M2(i → f) = (2Ji+1) B(E2; i → f). 
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Fig. 2 As Fig. 1, but for a negative-parity band 

III. THEORETICAL FRAMEWORK 

A. Theory of IBFM 

The theory of building blocks for IBM is based on the s and d boson numbers with angular 

momentum of L=0 and 2 [1-4]. In a first attempt at describing the energy spectra built on the 

intruder state, we have chosen a transitional Hamiltonian by adding a two-configuration mixing 

term. It has been shown that U(5) and O(6) configurations are the basic ingredients to reproduce 

the normal and intruder states, respectively [51]. The group chain associated with the normal U(5) 

limit is: 

 
   dN n L

U(6) U(5) O(5) O(3).


     (0.2) 

The relevant chain associated with the intruder O(6) limit is: 

 
 N 2 L

U(6) O(6) O(5) O(3).
  

     (0.3) 

We introduce the generators of quasi-spin operators [35,37,41,52] with 

 
2† † 0 † †

s s s

1 1ˆ ˆ ˆS (S ) s , S (s s s s),
2 4

       (0.4) 
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† † † 0 † †

d d d

1 1ˆ ˆ ˆS (S ) d .d , S (d d d d ),
2 4

 

   



      (0.5) 

in which 
†s (s) and 

†d (d) are the creation (annihilation) operators of s and d bosons, respectively. 

The two pairing operators  0,ˆ ˆS S

    s,d    satisfy the following commutation relations 

 
0 0ˆ ˆ ˆ ˆ ˆ ˆS ,S S   S , 2 S, .S   

          
       
   

  (0.6) 

For a theoretical framework, a simple IBFM Hamiltonian with the two-configuration mixing term 

is employed that is based on the even-even boson core coupled with a single fermion in the j = 7/2 

orbit. The Hamiltonian of IBFM can be written as 

 B B iF m xF
ˆ ˆ ˆ ˆ ˆH H H V H ,     (0.7) 

where B FĤ , Ĥ  and BFV̂  are the operators for boson, fermion, and interaction between them 

respectively and mixĤ  is the two-configuration mixing term. 

The operators in Eq. (1.7) can be defined as 

 d B F mix

x 2xˆ ˆ ˆˆ ˆˆ ˆH c (1 x)n S S y Q .q H ,
N N

  
     

 
  (0.8) 

where x is the control parameter for the transition of        U 5 U 2j 1 O 6 U 2j 1     . We 

must mention that x = 0 and 1 denote the    U 5 U 2j 1   and    O 6 U 2j 1   limits, 

respectively. The generators of the Lie algebra for the quasi-spin group with Ŝ  and Ŝ

, quadrupole 

and fermion operators with BQ̂ , Fq̂  and mixĤ  can be defined as 

 

d s d s

† † (2)

B

† (2)

F j j

mix s s d d s s d d

ˆ ˆ ˆ ˆ ˆ ˆS S S , S S S ,

Q̂ (s d d s) ,

q̂ (a a ) ,

ˆ ˆ ˆ ˆĤ g S g S g S g S .

     

   

   

   

 

   

  (0.9) 

In a normal basis, any quantum state can be represented as a linear combination of U(5)⊃O(5)⊃ 

O(3), with a certain angular momentum for the IBFM framework 

 
d

d

L,

n , d

n L

J C Nn L;nlj;JM ,

 



    (0.10) 
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where dNn L;nlj; J and M are the total boson number, d boson number, seniority number, an 

additional quantum number to distinguish different states with the same L, angular momentum, 

fermion number, orbital quantum number, fermion angular momentum, the total angular 

momentum quantum number, and third components of the total angular momentum, respectively. 

Also, the coefficient 
d

L,

n ,C 

  is the corresponding amplitude of the eigenvector obtained by 

diagonalizing the Hamiltonian. The configuration mixing Ĥ  under projection operator ( P̂ ) in the 

U(5) limit of the IBM is then written as  mixB F BF
ˆ ˆ ˆ ˆ ˆ ˆ ˆH P H H V H P.   In addition to the mixing 

parameters sg  and dg , the mixing calculation requires another parameter, which we call offset 

parameter ( ) to excite two more particles from the closed shell. In our previous configuration 

mixing paper,   is taken according to the energy of the lowest intruder state to reduce the number 

of parameters. Here we have the same procedure, and   term is fixed at 0.8  MeV to promote 

a proton boson into the next major shell. It should be noted that the Casimir operator of O(5) and 

the O(3) invariant L.L  in the U(5) Hamiltonian are commutative with sS
and dS

. P̂ , satisfying 

2ˆ ˆP P   and †ˆ ˆP P , is the projection operator defined by 

 d

d

N n L;nlj;JM if N N,
P̂ N n L;nlj;JM

0 otherwise,

   
   


  (0.11) 

which keeps the Hamiltonian (1.7) effective only within the subspace spanned by 

     N N 2 N 4 ···      mixed configurations, where N  is the total boson number of the 

system without configuration mixing, and dN n L;nlj;JM   is a basis vector with the total 

number of bosons N N 2n    with n 0,1,2,....  

 In the IBFM configuration mixing calculation, one needs to consider the basis vector. The lower 

eigenvalue leads to the following form of the energy matrix 

 
N N mix N 2

N 2 mix N N 2

U(5) U(5) H O(6)
,

O(6) H U(5) O(6)



 

 
 
 

  (0.12) 

where U(5) symmetry applies on the basis state with N bosons only, whereas the O(6) symmetry 

has to be applied to the states with N+2 bosons, the total wave function being of the type 
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1 2d N N 2Nn L; j;J J J .          The calculations are performed in two steps . In the 

first, the Hamiltonian is diagonalized without mixing configuration in the usual basis (right panel 

of Figs 3 and 4). In the second, mix
ˆ ˆH H , is diagonalized with mixing configuration (middle panel 

of Figs 3 and 4). In this step an energy   is also added to the energies of the states of the 

configuration. Using the commutation relation and diagonalizing 
dn LĤ E

  , we can obtain 

the eigenvalues. Here we employ the same procedure as in [52] to get the energy spectra by 

diagonalization of the Hamiltonian.  

 

B. E2 transitions 

One important piece of information for the intruder states in connection with band mixing is the 

transition probabilities [41,42]. E2 transition rates between different excited states (normal and 

intruder states) provide detailed information about the nuclear structure. As the E2 transitions are 

very sensitive to band mixing, the calculated transition probabilities are the best evidence for the 

mixing, which we will discuss in the next section. We define the electric quadrupole operator as 

[5,53] 

 
(2) (2)

E2 B † † F †

IBFM j jT e s d d s e a a ,


             (0.13) 

where eB and eF are the effective charges. The E2 transition strength is defined as    

 

2
(E2)

f IBFM i

i f

i

ˆJ T J
B(E2;J J ) ,

2J 1
 


  (0.14) 

for which we have used the selection rules to obtain the E2 transition rates. 

C. Band mixing 

  Some prominent phenomena are observed for the neutron-rich nuclei around mass A= 100–

110. These are the band mixing [44-46], shape coexistence [54,55], and existence of the intruder 

states [15,22,56]. There is a correlation between these phenomena. Venkova, et al. [17] stated that 

strong band mixing was expected in 109Rh, but was not observed.  This weak mixing is consistent 

with the simple analysis in Sec. II above. 

To further understand the structural properties of 109Rh, we have compared experimental results 

and IBFM calculations.  
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IV. NUMERICAL RESULTS
 

 

The diagonalization of the Hamiltonian can easily determine eigen-energies. Since IBM works 

best for low-lying states, high-lying states are not considered in our IBFM calculation. The model 

is restricted with even numbers of protons and neutrons. In order to fix the number of bosons one 

takes into account the nearest closed shell with magic numbers.  Here, 40Zr50 is preferred as a 

closed shell nucleus. In the present IBM calculation, the number of neutron and proton pairs would 

be N 7   and N 2  . In the proposed structure, the Z=40 sub-shell and N=50 major shell 

closures, are taken as the inert core, and the intruder configuration represents the proton 2p-2h 

excitation from the g9/2 orbital. The model is based on the even-even boson core with quasi-spin 

type IBM Hamiltonian coupled with a single fermion. The coupling parameters of the boson-

fermion interaction term are extracted separately for positive and negative-parity states. The fixed 

values x = 0.8 and y = 1 for positive and negative parity states are adopted. Figure 1 compares 

experimental and calculated results. The coupling parameters gs and gd for s and d bosons were all 

taken to be real with gs > 0 and gd > 0, for example, shown in [57,58], while the configuration 

mixing Hamiltonian adopted in (1.7) is equivalent to (1.8) with gs = -gd in our calculations. In the 

diagonalization, the mixing Hamiltonian is applied to obtain a low-lying spectrum, and the term 

LĤ zJ(J 1)   is added to (1.7) to lift the degeneracy of the levels with the same seniority to form 

the angular momentum sequences with different angular momentum quantum numbers. It is 

known that in the Hamiltonian, if gs = gd = 0, the system is for the normal IBFM without 

configuration mixing. With non-zero gs and gd values, the mixing occurs.  We can see that the band 

structure is basically well reproduced. 

Considering the normal and different members of the lowest K=l/2+ band, it becomes interesting 

to search for possible vibrational and rotational bands, respectively, and to compare with 

theoretical IBFM predictions. Energy spectra for the IBFM calculations are shown in Figures. 3 

and 4 for states that are candidates for members of the normal and intruder bands. We can see that 

109Rh is an excellent candidate for triaxiality and shape coexistence because we have x = 0.8, close 

to the γ-soft limit. In the last section, we have found that, in 109Rh, the mixing between the two 

configurations with K=1/2 and 3/2 is weak for the low-spin 3/2 states, resulting in small 

discrepancies with the experimental data. To shed some light into the origin of the mixing, the 
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sensitivity of the energy spectra to the values of these mixing strength (gs and gd), can be noted in 

Figs. 3 and 4.  

 

Fig 3. Partial energy spectra of 109Rh for positive parity.  Experimental data (a) are taken from [22] and references 

therein.  Calculations (b) and (c) are based on the even-even boson core coupled with a single fermion, where thick 

lines indicate the intruder states. Parameters are taken as x = 0.8, gs = -287.16, gd = 88.19, z = -108.47, c = -0.506 in 

keV.  

 

Fig. 4.  As Fig. 3, but for negative parity. Parameters are taken as x = 0.8, gs = -250.38, gd = 59.51, z = -74.17, c =  

-0.45 in keV. 

We find there are not significant differences between the results in the presence and absence of 

configuration mixing terms. This implies that the effect of configuration mixing is negligible in 

109Rh. We believe that the configuration mixing scheme is important to find new insights into 

triaxiality and shape coexistence phenomena. In the present case, configuration mixing has a 

prominent role in clarifying the rotational contribution in odd mass nuclei. It should be noted that 

with this approach it is important to get the intruder states. The configuration mixing scheme is 

applied to describe both normal and intruder states and keeps the lower part of the γ-unstable 

spectrum unchanged.  
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It is clear that multiple orbitals are important for the low-lying states. The predicted energies for 

the 3/2+, 1/2+, 7/2+, and 5/2+ intruder levels are 220.28, 232.71, 402.6, and 393.7 keV, to be 

compared with experimental values of 225.9, 257.7, 409.7, and 478.3 keV, respectively. 

The positive-parity states calculated based on the configuration mixing scheme in this work 

extend above 1 MeV and are consistent with those already noted from previous work [59]. The 

experimental level scheme of 109Rh has been deduced from [22] and references therein. For both 

the normal and K=1/2+ [431] bands, experiment and IBFM calculations are in reasonable 

agreement.  

Results of the calculations for E2 transition are listed in Table III and compared with 

experimental values. 

 

 

 

Table III. IBFM calculations and experimental values of E2 transition rates (W.u) in 109Rh. The model effective 

charge parameters are eB = 8.85 and eF = 29.80. Experimental data are taken from [60]. 

i f E2 (calc) E2 (exp) 

3/2)1 7/2)1 0.45 0.0174(5) 

1/2)1 3/2)1 169.67 170(50) 

3/2)2 7/2)1 16.59 26.2(5) 

7/2)2 3/2)1 65.64 136(5) 

  5/2)1 9/2) 1 65.57 >23 

5/2)2 1/2)1 74.07 113(8) 

5/2)1 9/2)1 23.6 26(3) 

 5/2(672) 5/2) 1 66.17 >150 

 5/2(672) 9/2) 1 23.6 >5.9 

 

Based on the signatures for shape coexistence reported in [22,51], the intruder states must form 

a rotational-like band.  Comparing the K=1/2 bands to the calculated level shows an agreement of 

the IBFM calculations with experimental values.  Under the expectation for intruder states, strong 

E2 intraband transitions should be seen. These transitions are verified by IBFM calculations, 

connecting the K=1/2+ band members in 109Rh. The agreement is quite reasonable for both the 

normal and intruder states. The calculations with the present model give a reasonable fit to both 

excitation energies and E2 transition rates. 
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In addition to energy spectra and E2 transition strengths, M1 rates are also important observables 

to compare with results of model calculations. To obtain B(M1) values, the standard operators 

have been used: 

 

 
     M1 M1

B, F,

M1
T T T    (0.15) 

 
  (

†

B,

M1 1)

d dT 


      (0.16) 

 
  †M1

(1)

F, j ja aT 


   
 

 (0.17) 

Based on the Wigner-Ekart theorem, one can calculate the B(M1) values by (1.15). We have 

taken 0.52   and 0.63  . A comparison is presented in Table IV.  Experimental values are 

from [22,58].  Overall agreement is reasonable, although many M1 strengths remain to be 

measured. 

 

Table IV. Calculated and experimental B(M1) values in 109Rh.  Experimental data are taken from [60]. 

 Ei[keV] Ji
π  Ef[keV] Jf

π  B(M1)cal 

[W.u.]   

B(M1)exp 

[W.u.] 

206.250 (20) 9/2+ 0.0 7/2+ 0.0102 0.20(3) 

358.584 (16) 3/2+   257.66 (3) 3/2+ 0.00013 0.00032 (10) 

358.584 (16) 3/2+   225.873 (19) 3/2+ 0.00110 0.00118 (11) 

409.74 (3) 7/2+   206.250 (20) 9/2+ 4.8x10-6 0.00025 (6) 

409.74 (3) 7/2+   0.0 7/2+ 2.6 10-5 6.6 10-5 (8) 

426.759 (19) 5/2+ 358.584 (16) 3/2+ 0.007 0.26(2) 

426.759 (19) 5/2+ 225.873 (19) 3/2+ 0.0008 > 0.00040 

426.759 (19) 5/2+ 0.0 7/2+ 0.0007 > 0.0032 

478.28 (3) 5/2+ 358.584 (16) 3/2+ 0.0017 0.0025 (4) 

478.28 (3) 5/2+ 225.873 (19) 3/2+ 0.0002 0.0024 (3) 

478.28 (3) 5/2+ 0.0 7/2+ 1.3 10-5 4.1 10-5 (6) 

568.10 (4) 3/2- 373.99 (3) 1/2- 0.0005 ––  

623.12 (4) 5/2- 568.10 (4) 3/2- 0.0050 0.054 (8) 

671.876 (22) 5/2+ 0.0 7/2+ 0.0079 > 0.00019 

740.80 (4) 3/2-   623.12 (4) 5/2- 0.0039 > 0.0065 

740.80 (4) 3/2-   568.10 (4) 3/2- 0.0069 > 0.015 

740.80 (4) 3/2-   373.99 (3) 1/2- 0.060 > 0.0058 

855.99 (4) 5/2-   740.80 (4) 3/2- 0.0093 > 0.017 

855.99 (4) 5/2-   623.12 (4) 5/2- 0.0090 > 0.017 

855.99 (4) 5/2-   568.10 (4) 3/2- 0.0005 > 0.0053 

861.00 (8) 9/2+ 409.74 (3) 7/2+ 0.00071  –– 

861.00 (8) 9/2+ 0.0 7/2+ 0.00001  –– 

926.76 (4) 5/2-   740.80 (4) 3/2-  0.0060 0.0053 (16) 

javascript:iaea.nds.comm.openlcguide('gam_be')
javascript:iaea.nds.comm.openlcguide('gam_be')
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926.76 (4) 5/2-   623.12 (4) 5/2- 0.0073 0.0034 (11) 

926.76 (4) 5/2-   568.10 (4) 3/2- 0.0036 0.0016 (6) 

1011.60 (4) 3/2+   426.759 (19) 5/2+ 6.3 10-8 ––  

1026.46 (3) (5/2,7/2)+ 671.876 (22) 5/2+ 0.00011 > 0.00022 

1026.46 (3) (5/2,7/2)+ 426.759 (19) 5/2+ 0.00008 > 0.00013 

1026.46 (3) (5/2,7/2)+ 409.74 (3) 7/2+ 2.4 10-5 > 6.9 10-5 

1026.46 (3) (5/2,7/2)+ 0.0 7/2+ 0.00044 > 0.00011 

1096.25 (4) (9/2)+ 0.0 7/2+ 0.00090 - 

1096.25 (4) (9/2)+ 409.74 (3) 7/2+ 0.0013 - 

 

 

V. CONCLUSION 

 

The triaxiality of the 109Rh nucleus was studied through IBFM calculations. The experimental 

energy spectra and the two-mixing configuration model calculations are consistent for the low-

lying states. In conclusion, the mixing amplitudes confirm the weak nature of the mixing, in 

particular, the purity of the K=1/2 intruder band. This work is part of a more systematic study of 

the A≈100 region for which high-lying states should provide more information. We hope that, 

combined with solvable models, these systematic investigations will allow an understanding of 

structure of rotational bands in these nuclei. Investigations of high-lying states in neutron-rich 

isotopes using the same approach are in progress. 
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