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Abstract

Background: Recently, novel statistical methods such as neural networks and Bayesian learning

methods are implemented to describe the nuclear masses.

Purpose: Based on previous studies, an improved Naive Bayesian probability (iNBP) classifier

is proposed to study the nuclear masses by refining the results of sophisticated nuclear models.

Method: In iNBP method, the prediction for nuclear masses is treated as a classification prob-

lem. The residuals are classified into several groups to generate prior and conditional probabilities,

and the posterior probabilities are further determined by the Bayesian formula. We choose the

expectation with maximum probability as the final prediction. Reliability of the iNBP method is

assessed by analyzing the global optimizations and the extrapolating capabilities.

Results: The iNBP method exhibits impressive improvements on global descriptions for

different mass models. Moreover, the method shows robust extrapolating capabilities. Results

demonstrate the iNBP method can be applied to predict the nuclear masses of unknown regions.

Conclusions: Considering the local mass relations, the iNBP method can offer considerable

fine-tuning of the mass descriptions from nuclear models. The methodology proposed in this paper

can also be applied to other model-based extrapolations of nuclear observables.
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I. INTRODUCTION

The mass of a nucleus, originating from complex interactions between nucleons, is a

basic and indispensable property in nuclear physics. Researches on nuclear masses not

only provide guidance in searches for superheavy nuclei [1, 2], but also help understand

problems in nuclear structure [3–5], nuclear decays [6–8], nuclear reactions [9–11] and nuclear

astrophysics [12–14]. There are mainly two types of experimental methods to measure the

nuclear masses. The direct methods are based on mass spectrometry, such as Penning

trap [15] and storage ring [16]; while the indirect methods constraint nuclear masses by

determining the Q values of nuclear reactions or decays [17, 18].

As more and more nuclear mass datas are being filled up in the mass database, there

has been a great development in theoretical mass models. Three classes of nuclear models

are proposed to describe changing rules of nuclear mass. The first class of these models

are the local mass models such as the Garvey-Kelson relations (GKs) [19–22], which can

predict unknown masses from neighboring nuclei. The predictions of the local mass models

are typically accurate, but the poor behaviors in extrapolation become a limitation of such

models [20]. Secondly, there are some macroscopic models including finite-range droplet

model (FRDM) [23] and other semi-empirical models with microscopic corrections [24–26].

These models are able to give global descriptions of the general tendency of the changes of

nuclear masses, whereas some of the parameters fail to elucidate inner physical interactions

in nuclei. The third class are purely microscopic models, such as Hartree-Fock-Bogoliubov

(HFB) models [27–32] and relativistic mean-field (RMF) models [33–40]. These models

exploit several effective physical interactions, and can provide global descriptions on nuclear

masses, of which the accuracy can almost match that of microscopic-macroscopic models

[41]. However, recent researches in nuclear structure, nuclear decay, and nuclear reactions

require higher accuracy of the predictions of nuclear masses.

Recently, in addition to the development of the theoretical mass models, statistical meth-

ods have been proposed to improve the descriptions of nuclear properties. The neural

networks got employed in addressing different nuclear physics issues including many-body

problems [42–45], radii predictions [46–48], decay descriptions [49–52], reactions [53–56],

and especially nuclear mass systematics [57–63]. There are a series of advantages of neural

networks in predicting nuclear masses. First of all, compared with other traditional statis-
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tical methods, neural networks do not require a formal fitting function, which makes them

more flexible and accessible. Secondly, complex nonlinear mass relationships can be incorpo-

rated in a neural network with adjustable connection weights for predicting nuclear masses.

Finally, a neural network belongs to the class of universal approximators, which can make

global predictions for nuclear masses. Despite these advantages, there are two non-negligible

disadvantages of neural networks. First, the neural network is a “black box”, which makes it

difficult to study any relationships deeply in the data [64]. Besides, the structures of neural

networks are usually complicated, which requires a large amount of computations.

In order to overcome these disadvantages, some machine learning algorithms different

from neural networks have also been applied to predict nuclear properties. In a recent paper,

a Naive Bayesian probabilities (NBP) classifier was introduced to refine the nuclear charge

radii, which regarded predictions as a classification problem [65]. By constructing a Naive

Bayesian classifier, nuclear charge radii can be well described. For certain physical problems

which can be converted to classification tasks, the Naive Bayesian algorithm can perform

better than other more sophisticated learning schemes [66]. It is the special zero-one loss

function of the Naive Bayesian method that is responsible for the surprising performances

[66–68]. Moreover, due to the simple structure of the method, Naive Bayesian method

is capable to uncover the inner relationships in the data, which is helpful for the physical

analysis. Additionally, the amount of computation for the Naive Bayesian algorithm is much

smaller than that for other machine learning schemes.

In this paper, an improved Naive Bayesian probabilities (iNBP) classifier is put forward

to describe the nuclear masses. Compared with the classical Bayesian formula, there are

two innovations in the iNBP method. One is that a more appropriate classification is given

by the k-means algorithm, and the other is that local relationships between nuclear masses

are considered by introducing the weight functions. The key strategy of the iNBP method

is to turn the prediction of nuclear masses to a classification problem. Based on certain

nuclear mass models, the mass residuals δ (Z,N), which represent the deviations between

experimental data and theoretical results, are provided initially for each nucleus. Then,

the residuals δ (Z,N) are clustered into several groups by the k-means methods. For each

group, there is a classification value δi defined as the mean value of residuals in the group.

The original residuals δ (Z,N) in the group are recalibrated as the classification value δi.

Next, we calculate the posterior probability of different classification values δi based on the
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Bayesian formula, and choose the value δi with the maximum probability as the estimated

residual. During the calculations, the local relations between the neighboring nuclei are

taken into account by introducing weight functions. Finally, the raw results of theoretical

models are refined by adding the predicted residuals from iNBP method.

To examine its effectiveness, the iNBP method is applied to three different types of

sophisticated nuclear models: the microscopic-macroscopic FRDMmodel, the nonrelativistic

HFB model, and the relativistic RMF model in this paper. Both the interpolating and

extrapolating capabilities of iNBP method are evaluated. The nuclei with the proton number

Z > 8 are analyzed. For the interpolation, the data set includes 3245 nuclei between 16O

and 295Og in the atomic mass evaluation of 2016 (AME2016) [69]. For the extrapolation,

the learning set consists of 3007 nuclei in the atomic mass evaluation of 2003 (AME2003)

[70], while the validation set includes 238 nuclei which got newly added in the AME2016.

In addition, we display the corrections of the binding energies for Ca outside of the AME

compilation by a graphic depiction. Our results illustrate that the iNBP method has good

interpolating and extrapolating capabilities, and can be applied to predict nuclear masses

in unknown regions of the nuclear chart.

This paper is organized as follows. In the next section, the theoretical framework of

the iNBP classifier is discussed in detail. The results of predictions and corresponding

discussions are presented in Sec. III. Finally, in Sec IV a brief summary is given.

II. FORMALISM

The iNBP method involves two steps. In the first step, we use k-means algorithm to

classify all the residuals in certain groups, and the residuals are recalibrated as the corre-

sponding classification values. In the second step, the probabilities of all the classification

values are calculated by the Bayesian formula for the predicted nucleus, and the estimated

residual of the predicted nucleus is obtained from these probabilities. Assessment criteria of

accuracy and uncertainties of iNBP method are also presented in this section.
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A. Classification by the k-means algorithm

In this step, we choose the k-means algorithm to classify all the raw residuals. The

k-means algorithm automatically divides a data set into k groups by an iterative refinement

technique [71, 72]. Starting from generating k initial group centers δ
(0)
i (i = 1, ..., k) ran-

domly, the Euclidean distances between each residual δ(Z,N) and each group center δ
(0)
i are

calculated. Then, the residual is assigned to the group with the nearest group center. Next,

the new group center is recalculated as the mean value of the residuals in this group:

δ
(t)
i =

1

Ni

∑

ci

δ(Z,N)|ci, (1)

where ci represents the group label. δ(Z,N)|ci is the residual in the group ci, andNi indicates

the number of the residuals in this group. By iterative calculations with the procedure

mentioned above, the group centers can converge to final stable classification values δi, and

the assignment of the residuals to groups is not further change [71]. The residuals δ(Z,N)

in each group are recalibrated as the final classification value δi.

In Table I, we present an example for the classification with the k-means method, in

which the residuals of 3245 nuclei are separated into 10 groups. The theoretical mass values

are calculated by the RMF model with NL3* parameter set [73], and the experimental data

are taken from the AME2016 [69]. The intervals of these 10 groups are shown in Table I

with their classification values δi displayed. Residuals δ(Z,N) = Mexp−Mth in each interval

are recalibrated as the corresponding δi.

B. Prediction from the iNBP classifier

Based on the classification table presented in Table I, the residuals δ(Zt, Nt) for certain

nuclei with proton number Zt and neutron number Nt are predicted by the iNBP classifier

in this part. Supposing the proton numbers and neutron numbers are independent, the

posterior probability P (δi|Zt, Nt) of a certain classification value δi given Zt and Nt can be

calculated from the prior probabilities P (Zt), P (Nt), P (δi) and the conditional probabilities

P (Zt| δi), P (Nt| δi) with the Bayesian formula [65]:

P (δi|Zt, Nt) =
P (Zt, Nt| δi)P (δi)

P (Zt, Nt)
=

P (Zt| δi)P (Nt| δi)P (δi)

P (Zt)P (Nt)
. (2)
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TABLE I. An example of the classification by k-means algorithm with 10 groups and the cor-

responding classification values δi. The number of the residuals in each group is given as well.

Intervals (MeV) δi (MeV) Ni

(−∞, -12.48) δ1 = −15.8 17

(-12.48, -7.00) δ2 = −8.91 82

(-7.00, -4.03) δ3 = −5.01 277

(-4.03, -2.24) δ4 = −3.05 404

(-2.24, -0.70) δ5 = −1.42 440

(-0.70, 0.67) δ6 = 0.03 496

(0.67, 1.91) δ7 = 1.31 558

(1.91, 3.16) δ8 = 2.51 494

(3.16, 4.74) δ9 = 3.81 358

(4.74, +∞) δ10 = 5.68 119

The prior probability P (Zt), P (Nt) and P (δi) represent the occurrence frequencies of

features Zt, Nt and δi in the sample, respectively. The conditional probabilities P (Zt| δi)

and P (Nt| δi) represent the occurrence frequencies of features Zt and Nt in the group with

the classification values δi.

In order to take into account the local relations between the neighboring nuclei, a weight

function is further introduced in calculating the prior and conditional probabilities.

w(Z,N) = exp

[

−
(Z − Zt)

2 + (N −Nt)
2

2ρ2

]

. (3)

The weight function Eq. (3) models the spatial dependence of the nearby nuclei. There is

only one parameter ρ in Eq. (3). For different predicted nuclei, the parameter ρ is the same.

In Eq. (4) of the Ref. [63], an exponential quadratic covariance kernel is defined in Gaussian

processes (GP) to take into account the correlations between the masses of different nuclei.

In this paper, the role of the weight function of iNBP method is similar to the kernel function

of the GP method in Ref. [63].

During the studies, the variance ρ of Eq. (3) is set to be ρ = 3. Then the prior probabilities

P (Zt), P (Nt), P (δi) in the Bayesian formula Eq. (2) are converted to Pwt(Zt), Pwt(Nt) and
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Pwt(δi):

P (Zt) =

∑

Z ,N

δZ,Zt

∑

Z ,N

1
−→ Pwt(Zt) =

∑

Z ,N

δZ,Zt
× w(Z,N)

∑

Z ,N

w(Z,N)
,

P (Nt) =

∑

Z ,N

δN,Nt

∑

Z ,N

1
−→ Pwt(Nt) =

∑

Z ,N

δN,Nt
× w(Z,N)

∑

Z ,N

w(Z,N)
,

P (δi) =

∑

δ=δi

1

∑

Z ,N

1
−→ Pwt(δi) =

∑

δ=δi

w(Z,N)

∑

Z ,N

w(Z,N)
, (4)

where δZ,Zt
is the Kronecker delta function. The summation

∑

Z,N 1 represents the amount

of the nuclei in the sample set, and the summation
∑

δ=δi
1 represents the number of nuclei

in the group with classification values δ = δi.

Similarly, the expressions of the conditional probabilities P (Zt| δi), P (Nt| δi) are also

converted to Pwt(Zt| δi), Pwt(Nt| δi):

P (Zt| δi) =

∑

δ=δi

δZ,Zt

∑

δ=δi

1
−→ Pwt(Zt| δi) =

∑

δ=δi

δZ,Zt
× w(Z,N)

∑

δ=δi

w(Z,N)
,

P (Nt| δi) =

∑

δ=δi

δN,Nt

∑

δ=δi

1
−→ Pwt(Nt| δi) =

∑

δ=δi

δN,Nt
× w(Z,N)

∑

δ=δi

w(Z,N)
. (5)

The parameter ρ in Eq. (3) can describe the contributions of the adjacent nuclei to the

target nucleus. The smaller the value of ρ, the greater the contributions of the adjacent

nuclei. When the ρ → ∞, the weight function w(Z,N) → 1 in Eqs. (4) and (5), and all

the nuclei contribute equally to the predicted nucleus in the Bayesian formula Eq. (2). The

smaller the value of ρ, the higher for the improvement of the accuracy of the iNBP method.

However, for the too small ρ, the weight function Eq. (3) for certain predicted nucleus is

very small, and in this case, the prediction cannot be made. Because for very small ρ, the

prior probabilities P (Z) or P (N) are very close to zero for certain nuclei in Bayesian formula

Eq. (2), which causes the posterior probabilities for different classification values δi cannot

be calculated. By comprehensive considering the prediction accuracy and the number of

the predicted nuclei, we finally choose ρ = 3 in the paper. Detailed discussion is presented

in Sec. IIIB to illustrate the influences of values of ρ on the prediction accuracy and the

number of the predicted nuclei.
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It should be noted that the law of total probability is also satisfied after introducing the

weight functions:

Pwt(Zt(Nt)) =
∑

Pwt(Zt(Nt)| δi)Pwt(δi),

Pwt(δi) =
∑

Pwt(δi|Zt(Nt))Pwt(Zt(Nt)), (6)

which reflects the fundamental relations between conditional probabilities Eqs. (5) and the

prior probabilities Eqs. (4). The law of total probability Eqs. (6) ensures the adjusted

posterior probability Pwt(δi|Zt, Nt) still satisfies the Bayesian formula. Combining Eqs. (4)

and (5), the posterior probabilities Pwt(δi|Zt, Nt) can be calculated by the Bayesian formula

Eq. (2). By comparing the posterior probabilities Pwt(δi|Zt, Nt) of each δi, the residual

δm with the maximum Pwt(δm|Zt, Nt) is regarded as the predicted residual of the nucleus

(Zt, Nt).

As an example of the iNBP method, we refine the theoretical nuclear mass of 29Si to

illustrate the prediction process. There are 3245 nuclei with Z > 8 in AME2016 whose

experimental masses are known. The raw residuals δ(Z,N) are calculated by the RMF

model with NL3* parameter set [73]. The sample set contains 3245 nuclei in AME2016,

except 29Si itself. All the residuals δ(Z,N) are grouped into 10 classes of Table I, and

recalibrated as representing classification values δi. The prior probabilities Pwt(δi), Pwt(Zt =

14), Pwt(Nt = 15) and the conditional probabilities Pwt(Zt = 14| δi), Pwt(Nt = 15| δi) are

calculated using Eqs. (4) and (5), and presented in Table II. Thereafter the posterior

probability Pwt(δi|Zt = 14, Nt = 15) of each classification value δi are updated by the

Bayesian formula Eq. (2), which is also presented in Table II.

One can see in Table II that the classification value δ9 = 3.81 MeV has the maximum

posterior probability Pwt(δ9|Zt = 14, Nt = 15) = 0.22, which is much larger than those

of other classification values. Therefore, the estimated residual δest of 29Si are chosen to

be δ9 = 3.81 MeV. For 29Si, the raw theoretical binding energy from the RMF model is

Braw = 241.06 MeV. By applying the iNBP method, the refined theoretical binding energy is

Brefi = Braw+δest = 244.87 MeV. Compared with the experimental data Bexp = 245.01 MeV,

we obtain a 96% improvement of the accuracy for 29Si. It should be mentioned that, though

all the data in the AME2016 are used as an input, most of the nuclei has little contributions

to the prior and conditional probabilities in Eq. (2), due to the introduction of the weight

function. For the 29Si, about 5% of AME2016 data contribute to the final predictions.
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TABLE II. The prediction of residual for 29Si with Zt = 14 and Nt = 15, based on 10 classification

values of Table I. The sample set contains 3245 nuclei with Z > 8, except the predicted nucleus

29Si. The prior probabilities Pwt(δi) and conditional probabilities Pwt(Zt| δi), Pwt(Nt| δi) are also

presented in this table, where the weight functions are introduced during the calculations.

δi (MeV) Pwt(δi) Pwt(Zt| δi) Pwt(Nt| δi) Pwt(δi|Zt, Nt)

-15.8 0 0 0 0

-8.91 8.3E-3 0 0 0

-5.01 3.0E-2 0 0 0

-3.05 8.0E-2 5.1E-2 9.7E-2 1.8E-2

-1.42 4.3E-2 6.6E-2 6.4E-2 8.4E-3

0.03 0.16 9.7E-2 7.8E-2 5.5E-2

1.31 0.13 6.5E-2 0.21 8.4E-2

2.51 0.24 2.1E-2 0.23 5.4E-2

3.81 0.19 0.29 8.4E-2 0.22

5.68 0.12 0.32 0 0

C. Assessment criteria for model accuracy and uncertainties

The assessment criteria for the predicted results and the associated uncertainties are pre-

sented below. The standard deviation σrms can quantify the quality of the global deviations

between theoretical results and experimental data for a certain model, and it is defined with

σ2
rms =

1

X

X
∑

i=1

(M i
exp −M i

th)
2, (7)

where X represents the total number of the nuclei in the data set. By comparing the

standard deviations before and after the application of the iNBP method, we can evaluate

the power of nuclear mass prediction of this method.

As a statistic model always produces a nondeterministic inference, the assessment for its

uncertainty is essential. For the iNBP method, the uncertainties are contributed from the

variety of the classification tables. The predictions in Table II are based on the classification

table given in Table I. If we choose other classification tables, different results will be

obtained. In this paper we choose 51 different classification tables whose number of groups
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varies from 10 to 60. The predicted nuclear mass 〈M〉 is the mean value of all estimated M

obtained from 51 classifications tables. The uncertainty of the result ∆M is:

∆M =
√

〈M2〉 − 〈M〉2, (8)

where 〈M2〉 is the mean value of the square of the mass.

III. RESULTS

In this section, the theoretical nuclear masses are refined following the iNBP method,

with the raw results calculated within the semi-empirical model FRDM, the nonrelativistic

HFB model and the relativistic RMF model, respectively. 51 classification tables are used

to generate predictions. The global optimizations are carried out and the extrapolating

capabilities of the iNBP method are assessed. Moreover, to intuitively test the validity of

iNBP method, we present the corrections for the nuclear binding energies of the Ca isotopic

chains outside of the AME compilation.

A. Global optimization of iNBP method

We first analyze the performances of the iNBP method in global optimizations. 3245

nuclei with Z > 8 in the AME2016 [69] are chosen as the entire set. The theoretical binding

energies for each nuclei in the entire set are calculated by the FRDM model, the HFB

model with UNEDF1 parameter set [74] and the RMF model with NL3* parameter set [73],

respectively. Then the corresponding raw residual δraw(Z,N) for each nucleus is obtained.

In Table III, we present the standard deviations σpre of the theoretical masses for 3245 nuclei

in the entire set.

After the calculations of the nuclear masses, the iNBP method is further applied to

refine the theoretical results. The sample set for each target nucleus includes 3245 nuclei in

AME2016 except the target nucleus itself. Firstly, each residual is classified into a certain

group by k-means algorithm and recalibrated as a corresponding classification value δi. For

the targeted nucleus (Zt, Nt), the prior probabilities Pwt(Zt(Nt)), Pwt(δi) and the conditional

probabilities Pwt(Zt(Nt)| δi) are calculated with Eqs. (4) and (5). With these probabilities,

the posterior probabilities Pwt(δi|Zt, Nt) are given for each classification values δi by the
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TABLE III. The standard deviation σpre (MeV) from theoretical models and σpost (MeV) from the

iNBP method. 3245 nuclei in AME2016 with Z > 8 are chosen as the entire set.

Models FRDM HFB RMF

σpre 0.89 2.11 3.35

σpost 0.33 0.56 1.34

∆σ/σpre 63% 73% 60%

Bayesian formula Eq. (2). The classification value δm with the maximum posterior proba-

bility is identified as the estimated residual of the target nucleus. Repeating this procedure

51 times with different classification tables and averaging the estimated residuals, we can

obtain the final predicted residual of the targeted nucleus. Adding the predicted residual to

the raw theoretical nuclear mass, we finally obtain the corrected nuclear mass.

0

30

60

90

120

Z

FRDM

spre=0.89 MeV -2.5

-1.3

0.0

1.3

2.5
(Z,N)

FRDM+iNBP

spost=0.33 MeV

spost=0.56 MeVspre=2.11 MeV

spost=1.34 MeVspre=3.35 MeV

0

30

60

90

Z

HFB

-5.0

-2.5

0.0

2.5

5.0

HFB+iNBP

30 60 90 120 1500

30

60

90

N

Z

RMF

30 60 90 120 150
N

-7.0

-3.5

0.0

3.5

7.0
RMF+iNBP

FIG. 1. Left panels: raw residuals δraw of theoretical nuclear masses for the FRDM model, the HFB

model and the RMF model with respect to the entire set, which includes 3245 nuclei in AME2016;

Right panels: the corresponding corrected residuals δcorr of nuclear masses by the iNBP method.

The values of the standard deviations before and after the iNBP refinements on the entire set are

also presented in the figure.

We also calculate the σpost for the corrected nuclear masses from the iNBP method. The

power of the global optimization of the iNBP method can be quantified as the relative
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change of the standard deviation, ∆σ/σpre = (σpre − σpost)/σpre. In Table III one can see

that convincing improvements are obtained with the iNBP refinement. For FRDM model,

the standard derivation is σpost = 0.33 MeV after the iNBP corrections, and the accuracy

of the descriptions on the nuclear mass improves by 63%. For the HFB model, after the

iNBP refinements the standard derivation σpost becomes 0.56 MeV, and the accuracy of

the descriptions on the nuclear mass improves by 73%. For the RMF model, the standard

deviation is improved to σpost = 1.34 MeV, with a 60% reduction in σ after the iNBP

refinements.

To illustrate graphically the performance of the iNBP method in refining mass predictions,

in Fig. 1 we compare the raw residuals and the corrected residuals of 3245 nuclei in the

entire set. Raw residuals from the FRDM, HFB, and RMF models are displayed on the left

panels and the corrected residuals from the iNBP method are on the right panels. It can be

seen from Fig. 1 that the iNBP method greatly improves the accuracy of the descriptions of

the nuclear masses, especially on the region of heavy nuclei for the FRDM model, and the

nuclei near the drip line for the HFB and RMF models.

Overall, by combining the iNBP method with the empirical and microscopic models and

utilizing data, we arrive at a stronger predictive power for nuclear masses. This suggests

that the iNBP method incorporates the mass information of nuclei with the same Z or

N in a statistical way, and provides necessary and rational corrections to the results from

mean-field theories. However, it should be noticed that there is a limitation of the iNBP

method. Specifically, predictions cannot be made for nuclei with the proton number or

neutron number absent from the sample set, because the prior probability P (Z) or P (N) is

zero in these cases. There are 3245 nuclei in the entire set. For the FRDM model, masses

of 3240 nuclei can be predicted. For the HFB and RMf models, the number of nuclei for

which predictions can be made is 3242. For the nuclei unpredicted by the iNBP method,

the prior probability Pwt(δi) is regarded as the posterior probability Pwt(δi|Zt, Nt) as an

approximation.

B. Extrapolating capabilities of the iNBP method

It is essential to investigate the capabilities of extrapolation of iNBP method, since ex-

trapolation is more challenging than interpolation. In this part, we analyze the extrapolating
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TABLE IV. The standard deviation σpre (MeV) of nuclear masses obtained from the raw FRDM,

HFB and RMF models, and the standard deviation σpost (MeV) after the iNBP corrections. The

entire set includes 3245 nuclei with Z > 8 in the AME2016 compilation. The learning set includes

3007 nuclei with Z > 8 in AME2003 compilation, and the validation set includes newly added 238

nuclei in AME2016 compilation.

Learning set Validation set Entire set

Models FRDM HFB RMF FRDM HFB RMF FRDM HFB RMF

σpre 0.87 2.08 3.20 1.16 2.45 4.90 0.89 2.11 3.35

σpost 0.34 0.56 1.38 0.50 1.06 2.81 0.33 0.56 1.34

∆σ/σpre 61% 73% 57% 57% 57% 43% 63% 73% 60%

capabilities of the iNBP method and illustrates the effect of the value of ρ . Before the ex-

trapolation, all the 3245 nuclei with Z > 8 in the entire set are assigned to the learning set

and the validation set. The learning set includes 3007 nuclei in the AME2003 [70], and the

validation set consists of the newly added 238 nuclei in the AME2016 [69].

First, we assess the extrapolating capability of the iNBP method based on the FRDM

model. In Table IV we provide the raw standard deviations σpre calculated by the FRDM

model for the learning set and the validation set. For the learning set the deviation σpre is

0.87 MeV, and for the validation set the deviation σpre is 1.16 MeV. This indicates that the

raw FRDM model extrapolates well. Then we employ the iNBP method to make predictions

for the validation set, where the prior and the conditional probabilities are obtained from

data in the learning set. In Table IV we display the standard deviations σpost for the

learning set and the validation set after the iNBP corrections. The relative change of the

standard deviation ∆σ/σpre is used to quantify the improvements of the accuracy of the mass

predictions. From Table IV it can be seen that by applying the iNBP method on the FRDM

model, the accuracy of the prediction for the validation set improves by 57%. Compared

with the improvement for the learning set (61% for the standard deviation reduction), one

can see the iNBP method has a reliable extrapolating capability.

Besides the FRDM model, the extrapolating capabilities of the iNBP method are also

discussed based on the HFB model and the RMF model. According to the calculations by

the HFB model, for the learning set the raw standard deviation σpre = 2.08 MeV, and for

13



the validation set σpre = 2.45 MeV, which illustrates the HFB model has the extrapolating

ability. Similarly, the nuclear masses in the validation set are predicted by the iNBP method

based on the learning set. For the validation set, we obtain a 57% improvement on the mass

descriptions after the iNBP corrections from the relative change between σpre and σpost.

Compared with the relative changes of the standard deviation of the learning set (73%

improvement), we demonstrate a robust extrapolating ability for the iNBP method when

applied to the HFB model.

For the RMF model, the raw prediction results are also presented in Table IV. For the

learning set the raw standard deviation is σpre = 3.20 MeV, and for the validation set it is

σpre = 4.90 MeV. This indicates the RMF model also has the extrapolating capability. With

the iNBP refinements, we obtain a 57% reduction in the standard deviation for the learning

set and a 43% reduction for the validation set. Compared with the relative changes between

σpre and σpost for the learning set and the validation set, one can see the iNBP method also

has the definite extrapolating capability when applied on the RMF model.

TABLE V. Nuclei in the validation set with raw residuals |δraw|>12 MeV, calculated by the RMF

model with NL3* parameter set, and the corrected residuals |δcorr|, following the corrections from

iNBP method. All residuals are in MeV.

Z N |δraw| |δcorr|

89 131 13.09 4.18

90 131 13.37 4.46

91 127 12.09 3.18

91 130 16.25 0.43

91 131 15.65 0.17

91 132 13.53 4.62

92 130 16.29 0.47

92 131 14.79 1.03

93 126 12.48 3.35

93 127 12.60 3.22

93 132 14.52 1.31

93 133 14.08 5.17
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Furthermore, we display the corrected results for the nuclei with relatively large raw

residuals in Table V. For nuclei with the raw residuals | δraw|>12 MeV in the validation

set, we present the associated corrected residuals | δcorr| . In Table V one can see impressive

improvements in the mass predictions after the iNBP corrections. For example, the raw

residual for 220Np is | δraw| = 12.60 MeV. After the iNBP corrections, the corrected residual

is | δcorr| = 3.22 MeV, where a 74% improvement is obtained. This is because the inner

mass relations between the neighboring nuclei are implicit in the iNBP method, unlike in

the mean-field theories.

The results of the Table IV and Table V indicate that the iNBP method has good ex-

trapolating capabilities. The improvements on the validation set show the stability of the

iNBP method in extrapolations, and illustrate the rationality of the approach that incorpo-

rates local mass relations through the Bayesian formula. This improves the success of the

iNBP method in predicting the masses of the unknown nuclei. There are also limitations

for the iNBP extrapolations. As we already mentioned, if the proton number or the neutron

number of a nucleus is absent from the learning set, the nuclear mass cannot be predicted

by the iNBP method. There are 238 nuclei in the validation set. For the FRDM model,

229 corrected nuclear masses are obtained. For the HFB model, we obtain 234 corrected

nuclear masses, and for the RMF model we obtain 233 corrected nuclear masses. For the

unpredictable nuclei, we also use the prior probability Pwt(δi) as the posterior probability

Pwt(δi|Zt, Nt) as an approximation.

TABLE VI. The predicted abilities of different ρ2 in weight function for the extrapolation. The

raw nuclear masses are calculated by the RMF model with NL3* parameter set. The learning

set includes 3007 nuclei with Z ≥ 8 in the AME2003 compilation, and the validation set includes

newly added 238 nuclei in AME2016 compilation. Nunpre represents the number of nuclei which

cannot be predicted by the iNBP method.

ρ2 σpre σpost ∆σ/σpre Nunpre

1 4.90 2.63 46% 16

3 4.90 2.67 45% 8

9 4.90 2.81 43% 5
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The value of ρ in weigh function Eq. (3) also influences the predicted abilities of the iNBP

method. In Table VI we present the predicted abilities of different ρ2 for the extrapolation in

the case of NL3* parameter set. One can see that as the value of ρ2 decreases, the predicted

accuracy of iNBP method is gradually improved. However, for the too small ρ, the weight

function can be very small, and in this case the prediction cannot be made for certain

predicted nucleus, which has been discussed in Sec. IIB of this paper. By comprehensive

considering the prediction accuracy and the number of the predicted nuclei for different

nuclear models, we finally choose ρ = 3 in the paper.

C. Predictions of nuclear mass outside the AME compilation

As a follow-up to the previous discussions, we present a further illustration of the iNBP

refinements by considering nuclear chains outside the AME compilation. The neutron-rich

Ca isotopes are chosen as candidates. At present, the heaviest Ca isotopes observed is 60Ca

[75], and the predicted drip line is up to 70Ca [62]. Compared with the Odd-A nuclei, the

even-even nuclei are more bound, and the 2n drip line extends further away. With the 3245

nuclei of Z > 8 in AME2016 as the learning set, the binding energies of even-even isotopes of

58−70Ca are predicted and presented in Figs. 2. The raw theoretical values obtained by the

FRDM model [23], the HFB model with UNEDF1 parameter set [74] and the RMF model

with NL3* parameter set [73] are also presented in the figures.

In Fig. 2a, the raw binding energies of the isotopes 47−57Ca of FRDM model are smaller

than the experimental data. However, after the iNBP refinements, the corrected binding

energies can well reproduce the experimental data, which can be attributed to the local

mass correlations brought about from the Bayesian Formula Eq. (2). From Figs. 2b and 2c,

one can also see that satisfactory improvements are obtained after the iNBP corrections on

the raw results of HFB and RMF models. This also shows the considerable effects of the

embedded local mass relations on the descriptions of nuclear binding energies.

In order to exhibit the validity of iNBP method, the extrapolations towards the neutron

drip line are carried out for the FRDM, HFB and RMF models in Figs. 2. From the

calculations of three base models, the raw binding energies of 68,70Ca are almost equal to

each other, which means the 2n drip line located around the 70Ca in theoretical predictions.

However, the binding energies of 60−70Ca obtained from the HFB model are nearly 5 MeV
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FIG. 2. (a) The theoretical and experimental binding energies for the Ca isotopes. The red circles

represent raw results from the FRDM model and the blue circles represent the corrected results

from the iNBP method. (b) The same as (a), but for the corrections on the results of HFB model.

(c) The same as (a), but for the corrections on the results of RMF model.

smaller than those from the FRDM and RMF models. After the iNBP refinements, the

predicted nuclear mass of isotopes 60−64Ca for the three models are very close to each other,

which means the extrapolations outside the AME compilation with the different base models

are in agreement. For 68,70Ca, its neutron number is too far from the AME data set, and

the impacts of the raw results are much larger than existing experimental data in AME

compilation. This causes the corrected results of RMF model is still larger than those of

FRDM and HFB models.

The essence of the iNBP method can be reflected in Figs. 2. The sophisticated semi-

empirical models and mean-field theories convincingly describe the global changing trends of

nuclear binding energies, and the descriptions can be systematically fine-tuned by the iNBP

method. The extrapolations in Figs. 2 further suggest that the iNBP method captures effects

of residual interactions missing in the FRDM and mean-field approaches, which results in

visible corrections on the binding energies. Therefore, the iNBP method can be applied to

predict the nuclear mass outside the AME tables. In follow-up studies, we will further take

into account more results of different energy density functionals and consider the impacts

of model mixing to study the extent of bound nuclei.
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IV. SUMMARY

Nuclear mass is a basic and important characteristic in nuclear physics. Many success-

ful theoretical models have been proposed to describe nuclear masses, including the semi-

empirical models and the microscopic theories. Besides these, in recent years statistical

methods such as neural networks have also been implemented to improve the descriptions

on nuclear masses. In our previous work, we applied the Naive Bayesian probability (NBP)

classifier to refine the nuclear charge radii. In the present paper, an improved Naive Bayesian

probability (iNBP) classifier is further proposed to address the predictions of nuclear masses.

There are two main innovations in the iNBP method. On one hand, a classification is given

in terms of the k-means algorithm; on the other hand, the local mass relationships between

neighboring nuclei are induced with the weight functions.

Global optimizations and extrapolating capabilities have been discussed in assessing the

effectiveness of the iNBP method. Firstly, we analyze the global optimizations of the method.

Our results demonstrate that the iNBP method can offer considerable and reasonable correc-

tions within the global description of nuclear masses. Secondly, the extrapolating capabilities

of the iNBP method are analyzed. We use the iNBP method to predict the nuclear masses

of the nuclei newly added in AME2016, based on the data in AME2003. Compared the

relative changes of the standard deviation ∆σ/σpre for the learning set and the validation

set, one can see the iNBP method has reliable extrapolating capabilities. Finally, the iNBP

corrections for the isotopes outside the AME compilation are exhibited in Figs. 2 to provide

qualitative insights. The extrapolations with the different base models outside the AME

compilation are in agreement with each other, which indicates the iNBP method can predict

nuclear masses in the unknown regions. Combining the global optimizations and extrapo-

lating analysis, we find that the iNBP method can provide necessary fine adjustments on

the robust trends of binding energies from sophisticated nuclear models, and the corrected

binding energies well reproduce the experimental data.

With the application of the iNBP method, the description of the nuclear masses is sig-

nificantly improved. This is due to the local relations statistically taken into account by

the iNBP method. Theoretical nuclear models convincingly describe the principal changing

trends of nuclear masses, and iNBP method provides sizeable and reliable fine-tuning. In

iNBP method, the Bayesian formula reflects the statistical mass relations of the nuclei with
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the same Z and N , and the weight functions include the local mass correlations between the

neighboring nuclei. The extrapolation results obtained from the iNBP method can provide

support for the experimental studies on masses of exotic nuclei near the drip line. The iNBP

method proposed in this paper can also be used to study other nuclear properties such as

nuclear decay, nuclear charge radii and nuclear reactions.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Grants

No. 11505292, No. 11605105, No. 11822503, No. 11975167, and No. 12035011), by the

Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020MA096), by

the Fundamental Research Funds for the Central Universities (Grant No. 20CX05013A),

and by the Graduate Innovative Research Funds of China University of Petroleum (East

China) (Grant No. YCX2020104). and by the U.S. Department of Energy Office of Science

under Grant No. DE-SC0019209.

∗ liujian@upc.edu.cn.

[1] D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).
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