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Ternary fission of actinides probes the state of the nucleus at scission. Light clusters are produced
in space and time very close to the scission point. Within the non-equilibrium statistical operator
method, a generalized Gibbs distribution is constructed from the information given by the observed
yields of isotopes. Using this relevant statistical operator, yields are calculated taking excited
states and continuum correlations into account, in accordance with the virial expansion of the
equation of state. Clusters with mass number A ≤ 10 are well described using the non-equilibrium
generalizations of temperature and chemical potentials. Improving the virial expansion, in-medium
effects may become of importance in determining the contribution of weakly bound states and
continuum correlations to the intrinsic partition function. Yields of larger clusters, which fail to
reach this quasi-equilibrium form of the relevant distribution, are described by nucleation kinetics,
and a saddle-to-scission relaxation time of about 7000 fm/c is inferred. Light charged particle
emission, described by reaction kinetics and virial expansions, may therefore be regarded as a very
important tool to probe the non-equilibrium time evolution of actinide nuclei during fission.

PACS numbers: 21.65.-f, 21.60.Jz, 25.70.Pq, 26.60.Kp

Introduction. - Nuclear fission remains an exciting field
of research [1]. In the last few decades, an amazing
progress has been realized with respect to experimental
investigations and phenomenology, as well as in theoreti-
cal treatments and microscopic modelling. Nevertheless,
basic concepts are still open for discussion, and an ”ab
initio” many-body theory remains a challenge given our
present understanding of quantum many-particle physics.
For a recent review on studies of thermal neutron induced
(nth,f), and spontaneous fission (sf) of actinides, as well
as a discussion on open theoretical questions, the reader
should refer to [2–6].

In this letter we focus on ternary fission which has been
discussed extensively in the literature. See, e.g., [7–16]
and further references within. We show that a many-
body approach, taking continuum correlations such as
4H, 5He, etc., into account, improves the description of
ternary fission as observed for different actinides. The
virial expansion of the intrinsic partition function, well-
known from equilibrium thermodynamics, can be gen-
eralized to the non-equilibrium case if the information
entropy approach is used. Another new result is the ex-
tension to larger light charged particles (2 < Z ≤ 6).
Above Z = 5 a critical behavior is obtained which is
described by nucleation kinetics.

From a phenomenological point of view, the fission pro-
cess can be generally described via a picture in which
the deforming nucleus, following a dynamic path, sub-
ject to fluctuations, evolves from its ground state shape
and crosses the barrier or outer saddle where the nascent
fission fragments are formed. The deformed dumbbell-
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like system, consisting of two main fragments and the
connecting neck region, then evolves toward the scission
point where the rupture occurs. Dissipative dynamics
has been applied to describe a non-adiabatic, strongly
overdamped evolution from the saddle point to scission,
see [1, 6, 17–21], though a rigorous treatment of the scis-
sion process is still unavailable. The saddle-to-scission
time is estimated as τs→s ≈ O(103 − 104) fm/c [21]. A
value τs→s = 6400 fm/c was quoted in Ref. [16], and
τs→s ≈ 103 fm/c in [17]. As pointed out in Ref. [4], the
fission time scale remains one of the most controversial
and least understood quantities in fission, see also [22].

A better understanding of the fission dynamics requires
data of different nature such as the mass and energy dis-
tributions of the two fission fragments, and the multiplic-
ities of the emitted particles, which are primarily neu-
trons, and of γ-radiation. We will not review here the
progress which has been achieved in the measurement
and interpretation of the fission-fragment mass distribu-
tion [4, 23–30] but mention only the introduction of a
temperature of about 1 MeV to describe experimental
distributions [1, 28, 29]. Temperature-like parameters
of the order of 1 MeV are used to analyze the prompt
fission neutron spectra of different actinides [3, 31–33].
The analysis of prompt fission γ-ray spectra for actinides
[34–39] also suggests a temperature-like parameter of the
same order. The use of concepts of statistical physics
such as temperature prove to be fruitful for a phenomeno-
logical approach to fission. However, temperature is
strictly defined for systems in thermodynamic equilib-
rium, but a fissioning nucleus is a finite system, not in
thermodynamic equilibrium. We show below that within
a non-equilibrium approach a Lagrange parameter λT (t)
can be introduced which may be considered as the non-
equilibrium generalization of temperature.

An interesting feature, which is directly associated
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isotope Rvir
A,Z(1.3) 233U(nth,f) 235U(nth,f) 239Pu(nth,f) 241Pu(nth,f) 248Cm(sf) 252Cf(sf)

λT [MeV] - 1.24177 1.21899 1.3097 1.1900 1.23234 1.25052

λn [MeV] - -3.52615 -3.2672 -3.46688 -3.02055 -2.92719 -3.1107

λp [MeV] - -15.8182 -16.458 -16.2212 -16.6619 -16.7798 -16.7538
1n - 560012 1.409e6 722940 1.8579e6 1.606e6 1.647e6
1H - 28.131 28.16 42.638 19.52 21.079 30.096

2Hobs - 41 50 69 42 50 63
2H 0.973 40.986 49.76 68.632 41.563 49.533 61.579

3Hobs - 460 720 720 786 922 950
3H 0.998 457.27 715.29 714.79 780.39 913.76 943.12
4H 0.0876 2.7772 4.97 5.627 6.057 8.742 8.219
3He 0.997 0.0124 0.0076 0.0235 0.00431 0.00645 0.00933

4Heobs - 10000 10000 10000 10000 10000 10000
4He 1 8858.46 8706.1 8615.7 8556.9 8313.98 8454.0
5He 0.689 1130.75 1289.04 1374.7 1439.0 1680.75 1540.9

6Heobs - 137 191 192 260 354 270
6He 0.933 115.89 158.98 159.01 211.68 276.96 222.4
7He 0.876 21.262 33.997 35.983 51.742 80.634 58.16

Y obs
6He/Y

final,vir
6He

- 0.9989 0.9897 0.9846 0.9869 0.9899 0.9622
8Heobs - 3.6 8.2 8.8 15 24 25

8He 0.971 3.4725 6.764 6.4095 12.481 21.280 13.32
9He 0.255 0.047077 0.105 0.111 0.219 0.455 0.258

Y obs
8He/Y

final,vir
8He

- 1.0229 1.1936 1.3496 1.1811 1.1042 1.8409
8Be 1.07 5.7727 2.594 5.147 2.188 2.819 2.544

TABLE I: Lagrange parameters λi, observed yields Y obs
A,Z (rows denoted with AZ

obs
) [10, 13, 40], and primary yields Y rel,vir

A,Z (rows

denoted with AZ) for H and He nuclei from ternary fission of 233U(nth,f), 235U(nth,f), 239Pu(nth,f), 241Pu(nth,f), 248Cm(sf),
and 252Cf(sf). The prefactor Rvir

A,Z(λT ) at λT = 1.3 MeV, which represents the intrinsic partition function, is also given.

In addition, two rows show the ratio of the observed yields compared to the final yields Y final,vir
6He

= Y rel,vir
6He

+ Y rel,vir
7He

and

Y final,vir
8He

= Y rel,vir
8He

+ Y rel,vir
9He

. Note that vir stands for virial approximation. Data for 252Cf(sf) are calculated in [45]. In an
analogous manner, calculations have been performed for the other actinides as shown in the Supplementary Material [41].

with the scission process, is the emission of light charged
particles observed in ternary fission processes, see, e.g.,
[7–16, 40] and references within. A light cluster with
mass number A and charge Z, most often 4He, is emit-
ted in a direction perpendicular to the symmetry axis de-
fined by the two main fission fragments, which have mass
numbers AFF distributed near half that of the fissioning
nucleus (mass number ACN ). Ternary fission yields of
a series of light isotopes {A,Z} and energies have been
measured for different actinides. Sets of experimentally
observed yields are available for 233U(nth,f), 235U(nth,f),
239Pu(nth,f), 241Pu(nth,f), 248Cm(sf), and 252Cf(sf), see
Refs. [10, 11, 13, 40]. We denote the experimentally ob-
served yields with the superscript ”obs”. Data for these
observed yields Y obs

A,Z , normalized to the total observed

experimental yield of 4Heobs taken as 10000, are pre-
sented in Tab. I.

As known from α-decay studies, a mean-field approach
like TDHFB has problems describing the formation of
clusters. For ternary fission, parameterizations of the
measured yields employing a statistical distribution with

a temperature-like parameter T ≈ 1 MeV, see [12–14],
have been explored. However, any interpretation of the
detected yields by a simple nuclear statistical equilibrium
(NSE) model, see Eq. (4) below, faces some problems.
The observed yields seen in the detector contain contri-
butions from decaying excited states and resonances so
that the observed yield distribution differs from the pri-
mary distribution at the time of scission. In addition,
yields of light charged clusters with mass number A ≥ 10
are clearly overestimated by the simple NSE distribu-
tion [13]. Modifications have been proposed [16] based
on nucleation theory [42, 43]. Chemical equilibrium con-
stants were recently derived [44] for the fission reaction
241Pu(nth,f) accounting for in-medium effects. In Ref.
[45], a non-equilibrium approach was used to discuss the
observed yields of isotopes with Z ≤ 2 for the sponta-
neous fission of 252Cf. In this letter, we extend the non-
equilibrium approach to other actinides and larger val-
ues of Z considering partial intrinsic partition functions
including continuum contributions on the level of quan-
tum virial expansions. We determine the non-equilibrium
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generalization of temperature and show that continuum
correlations have to be included.

Non-equilibrium information entropy approach. - We
describe fission as a non-equilibrium process, using
the method of the non-equilibrium statistical operator
(NSO), see [46–48]. The time evolution of a many-
particle system, with Hamiltonian H, is described by the
statistical operator ρ(t). It is easily shown that

ρ(t) = lim
ε→0

ε

∫ t

−∞
dt′e−ε(t−t

′)e−
i
~H(t−t′)ρrel(t

′)e
i
~H(t−t′)

(1)
is a solution of the von Neumann equation with bound-
ary conditions characterizing the state of the system in
the past (t′ < t), as expressed by the relevant statisti-
cal operator ρrel(t

′). The non-equilibrium state of the
system is characterized by the averages of a set of ob-
servables {Bi} denoted as relevant observables, examples
are currents, occupation numbers, concentrations of re-
acting components, as well as by the densities of energy
and particle numbers. The relevant statistical operator
is constructed from known averages of relevant observ-
ables, using information theory. As it is well known from
equilibrium statistical physics, the relevant distribution
is determined from the maximum of information entropy
−Tr{ρrel ln[ρrel]} under given constraints,

Tr{ρrel(t
′)Bi} = Tr{ρ(t′)Bi} ≡ 〈Bi〉t

′
, (2)

which are taken into account by Lagrange multipliers
λi(t

′). A minimum set of relevant observables consists of
the conserved observables, i.e., energy H, and the num-
bers Nτ of neutrons and protons (τ = n, p). The solution
is the generalized Gibbs distribution

ρrel =
e−(H−λnNn−λpNp)/λT

Tr{e−(H−λnNn−λpNp)/λT }
(3)

which physically corresponds to the most probable distri-
bution under constraints on 〈N〉t′ , 〈Z〉t′ , and 〈H〉t′ . Note
that these Lagrange multipliers λi, which are in general
dependent on the parameter t′, are not identical to the
equilibrium parameters temperature T and chemical po-
tentials µτ , but may be considered as non-equilibrium
generalizations of the temperature and chemical poten-
tials. In the limit of thermodynamic equilibrium, the
information entropy can be identified with the thermo-
dynamic entropy, and the Lagrange parameters λT , λτ
can be identified with the thermodynamic variables T
and µτ . Note that the NSO allows the possibility of in-
cluding other relevant observables, such as the pair am-
plitude in the superfluid state, or the occupation numbers
of the quasiparticle states to derive kinetic equations and
to calculate reaction rates [47, 48].

As typical for a variational approach, we have to elim-
inate the Lagrange multipliers λi(t

′) solving Eq. (2), in
order for the constraints Tr{ρ(t′)Bi} to be satisfied, see
also [46]. For non-interacting systems, the equilibrium
solutions are the well-known equations of state for ideal

Fermi or Bose gases. For a Hamiltonian H containing
nucleon-nucleon interactions, see [45], the evaluation of
averages with ρrel (3), denoted here as relevant averages,
leads to a many-particle problem which can be treated
with the methods of quantum statistics. [Note that the
mathematical concepts developed in equilibrium quan-
tum statistics can also be used for the generalized Gibbs
state ρrel, Eq. (3).]

As shown in [49] and further references given there,
the method of thermodynamic Green functions can be
applied. A cluster expansion of the single-nucleon self-
energy allows the introduction of partial densities of dif-
ferent clusters {A,Z}. These partial densities of clusters
are denoted as relevant densities because they are calcu-
lated with the relevant statistical operator ρrel (3). The
calculated yields which are proportional to the relevant
densities are denoted by relevant yields Y rel

A,Z . As detailed

in [49] and references given within, a virial expansion can
be performed which leads, e.g., to a generalized Beth-
Uhlenbeck formula [50, 51]. As a result, the relevant
yields in the virial approximation are calculated as

Y rel,vir
A,Z ∝ Rvir

A,Z(λT ) gA,Z

(
2π~2

AmλT

)−3/2

×

e(BA,Z+(A−Z)λn+Zλp)/λT (4)

(nondegenerate limit), where BA,Z denotes the (ground
state) binding energy and gA,Z the degeneracy [52]. The
pre-factor

Rvir
A,Z(λT ) = 1 +

exc∑
i

[gA,Z,i/gA,Z ]e−EA,Z,i/λT (5)

is related to the intrinsic partition function of the clus-
ter {A,Z}. The summation is performed over all ex-
cited states of excitation energy EA,Z,i and degeneracy
gA,Z,i = 2JA,Z,i + 1 [52], which decay to the ground
state. Also, the continuum contributions are included in
the virial expression. For instance, the Beth-Uhlenbeck
formula expresses the contribution of the continuum to
the intrinsic partition function via the scattering phase
shifts, see [51, 53]. For Rvir

A,Z(λT ) = 1, the simple nu-

clear statistical equilibrium (NSE) is obtained, i.e., ne-
glecting the contribution of all excited states including
continuum correlations. Note that accounting for con-
tinuum states may diminish the value of Rvir

A,Z(λT ), as

is well known from the deuteron channel, see [49] and
references therein.

In the low-density limit, virial expansions of the in-
trinsic partition functions of the channel {A,Z} have
been obtained [49, 51, 53] for 2H, 4H, 5He, 8Be using
the measured phase shifts in the corresponding channels.
The values are given in the second column of Tab. I for
λT = 1.3 MeV. Well-bound states with energies far below
the continuum edge so that excitation energy for contin-
uum states is large compared to λT make only a weak
continuum state contribution so that Rvir

A,Z(λT ) ≈ 1, if
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no further excited states are present. An interpola-
tion formula, which relates the pre-factor Rvir

A,Z(λT ) to

the energy of the edge of continuum, is given in [49], and
the corresponding estimates of the pre-factor for the He
isotopes with 6 ≤ A ≤ 9 are also shown in Tab. I.

Within the NSO approach, Eq. (1), the relevant distri-
bution ρrel serves as the initial condition to solve the von
Neumann equation for ρ(t). The evolution of the system
happens according to the system Hamiltonian. The rele-
vant (or primary) distribution Y rel

A,Z(λT ) contains stable
and unstable states of nuclei, as well as correlations in
the continuum (e.g., resonances).

The concept of introducing the relevant primary yield
distribution according to the NSO is supported by several
experimental observations. These include the observa-
tion of 5He and 7He emission [40] as well as the observed
population of the 3.368 MeV first excited state of 10Be
[54], and the 2.26 MeV excited states of 8Li [40]. Also
of interest are the inferred data for 8Be and 7Li7/2− ob-
served in [55], which cannot be described with the NSE
but demand a treatment with continuum states.

We used Lagrange parameters λi which are not time-
dependent to infer the primary yield distribution. It is as-
sumed that these parameters characterize the formation
of clusters, and the cluster formation is established at
scission. The subsequent evolution of the distribution is
described by taking into account the decay of the excited
states. The NSO approach includes also kinetic theory
to describe this stage, see [46–48], but the derivation of
reaction kinetics from first principles will not be consid-
ered in this work. Here, we approximate this process by
the feeding of the final yields from the primary yields ob-
tained from the relevant (or primary) distribution (4).
For example, for Z ≤ 2, the final yields are related
to the primary, relevant yields as Y final

3H = Y rel
3H + Y rel

4H ,

Y final
4He = Y rel

4He + Y rel
5He + 2Y rel

8Be, Y final
6He = Y rel

6He + Y rel
7He, and

Y final
8He = Y rel

8He + Y rel
9He.

In this work, to construct the relevant distribution ρrel

from an information theoretical approach, we use the
least squares method, see [16], to optimize the reproduc-
tion of the experimentally observed yields by the calcu-
lated final yields. We calculate the primary distribution

Y rel,vir
A,Z using the intrinsic partition function in the virial

form, i.e. using the excited states and scattering phase
shifts neglecting in-medium corrections. The optimum
values of the Lagrange parameters λi are given in Tab. I
for the different ternary fissioning actinides. While the
dependence of λi from {ACN , ZCN} of the parent ac-
tinide nucleus is a topic of interest [12, 14], the current
accuracy of the experimental data is not sufficient to de-
termine significant trends.

H and He isotopes. - The measured total yields of H
and He isotopes are nearly perfectly reproduced by the
corresponding sums of primary yields. The yield of 6He

is slightly overestimated by Y final,vir
6He . In contrast, the

yield of 8He is underestimated by Y final,vir
8He . Both ra-

tios Y obs
6He/Y

final,vir
6He and Y obs

8He/Y
final,vir
8He are presented in

Tab. I. Presently, the relevant distribution Y rel,vir
A,Z does

not take in-medium effects, in particular Pauli block-
ing, into account. Medium modifications are more ef-
fective for weakly bound clusters. As proposed in [45] for
252Cf(sf), a stronger reduction of the yield of 6Heobs com-
pared to 8Heobs may be related to the very low binding
energy (0.975 MeV) of the 6He nucleus below the α+ 2n
threshold. The suppression of 6Heobs appears for all con-
sidered fissioning actinides and may be considered as a
signature of the Pauli blocking. However, to address the
problem, precise experimental data are needed. Experi-
mental studies are still scarce, and the data are often not
consistent [56, 57].

Unbound nuclei such as 5He should be very sensitive
to medium modifications. The virial expression for the
intrinsic partition function is known [53], and the corre-
sponding primary yields are given in Tab. I. Fortunately,
in the case of 252Cf, the primary yields of 5He and 7He
have been measured [40], and the value Y obs

5He = 1736(274)
has been given there. In principle, because of the medium
modifications, the different cluster states may serve as a
probe to determine the neutron density in the neck region
at scission, but the uncertainties are still rather large.

Isotopes with 2< Z ≤6. - A detailed measurement of
the yields of ternary fission isotopes up to 30Mg has been
made for 241Pu(nth,f) [10, 11]. Extended sets of data for
Z > 2 are also measured for 235U(nth,f) and 245Cm(nth,f)
[11]. We have extended our analysis of the measured data
up to Z = 6 using the relevant distribution, see [41] where
these data are listed. In general, the neutron separation
energy Sn, for each isotope, is adopted as the threshold
energy for the continuum, but cluster decay is also possi-
ble, e.g., 6Li→ α+d, 7Li→ α+t, 7Be→ α+h, 8Be→ 2α,
10B → α+6Li, etc. In some cases, such as 6He, 8He,
11Li, two-neutron separation determines the threshold.
To estimate the continuum correlation, the interpolation
Rvir
A,Z(λT ) [45] was used at the corresponding binding en-

ergy Ethresh
AZ −EA,Z,i of the (ground state or excited) clus-

ter. The final yields Y final,vir
A,Z are calculated taking into

account any modifications resulting from gains or losses
occurring during the decay of the primary isotopes. A
list of excited states of the isotopes with 2 < Z ≤ 6 and
the corresponding intrinsic partition functions is given in
[41].

The question arises whether global Lagrange param-
eters λT , λn, λp, which are valid for all Z exist, as ex-
pected for matter in thermodynamic equilibrium. Before
we discuss this question, we present a calculation with the
relevant distribution given above, employing only three
Lagrange parameters λi, but taking also Li isotopes into

account. A least squares fit of final yields Y final,vir
A,Z to

Y obs
A,Z for 2H, 3H, 4He, 8He, 7Li, 8Li, 9Li has been per-

formed. The accuracy of the fit increases since, here,
6He and 11Li are not included. Both are weakly bound
systems for which medium effects and dissolution may
become of relevance, as discussed above. Again we em-
phasize that in-medium corrections are not included in
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the present calculation. The Lagrange parameter values

λ̂T = 1.2023 MeV, λ̂n = −2.9981 MeV, λ̂p = −16.6285
MeV are obtained for 241Pu(nth,f). There are only min-
imal changes compared to those derived from the fit of
Tab. I for 241Pu(nth,f), and we conclude that our ap-
proach can also reproduce the yields of isotopes with
Z = 3.

Using these Lagrange parameter values λ̂i and consid-
ering all observed data for isotopes with Z ≤ 6, the ratio

Y obs
A,Z/Y final,vir

A,Z is shown as a function of the mass num-

ber A in Fig. 1. Surprisingly, yields of 9Be, 10Be, 11B
are also well reproduced. For A ≥ 11, the calculations
overestimate the observed yields, and the ratios decrease
strongly, starting around A = 10.
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FIG. 1: (Color online) Ternary fission of 235U(nth,f)
(blue), 245Cm(nth,f) (green), and 241Pu(nth,f) (red): Ratio

Y obs
A,Z/Yfinal,vir

A,Z as function of the mass number A. Isotopes
with Z ≤ 6 are shown. Black full line: Fit of nucleation ki-
netics (6) to the data of 241Pu(nth,f). For tables of the data
shown in this figure see the Supplementary Material [41].

An explanation of the decrease has been given in [16]
using nucleation theory [42, 43]. Whereas small clus-
ters are already in a quasi-equilibrium distribution Y rel

A,Z ,
larger clusters need more formation time so that the ob-
served yields are smaller than those predicted by the rele-
vant distribution. From reaction kinetics, the expression

Y obs
A,Z/Y

final,vir
A,Z =

1

2
erfc

[
b(τ)(A1/3 − a(Ac, τ))

]
(6)

is obtained, see [16], where b(τ) = (27.59 MeV/λT )1/2 ×
(1 − e−2τ )−1/2 and a(Ac, τ) = A

1/3
c (1 − e−τ ) + e−τ .

With λT = 1.2 MeV, the least squares fit to the data of
241Pu(nth,f) (black line in Fig. 1) gives τ = 1.5406, Ac =

16.143. Then, cτs→s = τA
2/3
c λ

1/2
T /(3.967 ρ), and with

ρ = 4 × 10−4 fm−3 [16] follows τs→s = 6793 fm/c. This
time scale supports the slow evolution from saddle to
scission proposed recently as a dissipative process [6, 21].

The strong reduction of isotopes A > 10 compared to
estimates of a statistical model is also seen in [13]. In
addition, the overestimate of 5He is shown there. The
correct treatment of continuum correlations proposed in
this letter removes this discrepancy.

The yields of weakly bound clusters 11Li, 19C are
strongly overestimated, see [58]. A reason may be the
shift of the binding energy due to in-medium effects. If
the density is larger than the Mott density, the bound
states are dissolved. Bound states with threshold ener-
gies below or near 1 MeV include also 6He, 11Be, 14Be,
14B, 15C. The yields of all these isotopes are overesti-
mated. This may be considered as an indication of in-
medium effects (Pauli blocking) leading to a shift and
possibly the dissolution of the cluster. This possibility
should be considered when more accurate data are avail-
able.
Conclusions - In conclusion, we describe the yields

of light charged particles emitted from ternary fission
of actinides by a non-equilibrium distribution based
on many-particle theory. This quantum-statistical ap-
proach, which has been successfully worked out already
for the nuclear matter equation of state, symmetry en-
ergy, and other equilibrium properties, can also be used
to describe the evolution of systems in non-equilibrium.
In particular, excited states and continuum correlations
are taken into account on the level of virial expansions.
A new result of our non-equilibrium information entropy
approach is the correct description of unbound states,
such as 4H, 5He, 8Be, as continuum correlations. This im-
proves former treatments using simple NSE approaches,
see, e.g. [13], which lead to strong irregularities. For
low-A isotopes, the ratio of observed yields to calculated
yields exhibit smaller fluctuations after the correct intrin-
sic partition functions are incorporated, see Fig. 1. We
have shown that above a critical cluster size of A ≈ 10
deviations from the quasi-equilibrium are seen, which we
interpreted as the result of nucleation kinetics. An inter-
esting result is that light charged particle distributions
of ternary fission of different actinides show similar be-
havior.

The investigation of ternary fission has the advantage
that it is directly related to the scission process, and
that it can be localized in the neck region. It is an
outstanding signal to explore the fission process, and
more consistent and accurate data are necessary to work
out a complete description of the ternary fission process
within non-equilibrium quantum statistics.
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[45] G. Röpke, J.B. Natowitz, and H Pais, Eur. Phys. J. A
56, 238 (2020).

[46] D. N. Zubarev, Nonequilibrium Statistical Thermody-
namics (Plenum Press, New York 1974).

[47] D. N. Zubarev, V. Morozov, and G. Ropke, Statisti-
cal Mechanics of Nonequilibrium Processes (Akademie-
Verlag/Wiley, Berlin 1997).
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