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While Josephson-like junctions, transiently established in heavy ion collisions (τcoll ≈ 10−21 s) between
superfluid nuclei –through which Cooper pair tunneling (Q-value Q2n) proceeds mainly in terms of successive
transfer of entangled nucleons– is deprived from the macroscopic aspects of a supercurrent, it displays many of
the special effects associated with spontaneous symmetry breaking in gauge space (BCS condensation), which
can be studied in terms of individual quantum states and of tunneling of single Cooper pairs. From the results of
studies of one- and two- neutron transfer reactions carried out at energies below the Coulomb barrier we estimate
the value of the mean square radius (correlation length) of the nuclear Cooper pair. A quantity related to the
largest distance of closest approach for which the absolute two-nucleon tunneling cross section is of the order of
the single-particle one. Furthermore, emission of γ-rays of (Josephson) frequency νJ = Q2n/h distributed over
an energy range ~/τcoll is predicted.

Introduction— A pair of interacting electrons moving in
time-reversal states (ν, ν̃)(≡ (k ↑,−k ↓)) above a non-
interacting Fermi sea whose only role is to block, through
Pauli principle, states below the Fermi energy εF from par-
ticipating in the two-particle system, lead to a bound state
provided the interaction is attractive, no matter how weak it
is [1].

At the basis of BCS superconductivity [2, 3] one finds the
condensation of strongly overlapping, very extended, weakly
bound Cooper pairs corresponding to ordering in occupy-
ing momentum space, and not space-like condensation of
strongly bound clusters which undergo Bose condensation. In
BCS condensation, the inner, intrinsic structure of the pair,
that is, the fact that it is made out of fermions entangled
in time reversal states, is the characterizing feature, with its
energy gap for both single-pair translation and dissociation
(see [4–7]), as it emerges from Schrieffer’s trial wavefunc-
tion |ΨBCS 〉 =

∏
ν>0(U′ν + e−2iφV ′νP

†
ν)|0〉 [8]. The associ-

ated spontaneously broken symmetry in the two-dimensional
gauge space, is quantitatively measured by the generalized de-
formation (order) parameter α0 = 〈ΨBCS |P†|ΨBCS 〉 = e−2iφα′0.
The pair creation operator is defined as P† =

∑
ν>0 a†νa

†

ν̃ , where
a†ν(a

†

ν̃) creates, acting on the vacuum state |0〉, a fermion (elec-
tron) moving in the state ν(ν̃) while α′0 =

∑
ν>0 U′νV

′
ν measures

the number of Cooper pairs, a quantity closely related to the
pairing gap ∆′ = Gα′0 (≈ 1 meV), G being the pairing cou-
pling constant. The intrinsic, body-fixed frame of reference
(x′-axis) subtends a gauge angle 2φ with the laboratory axis x
(see e.g. Fig. 11 ref. [9]).

Weakly coupled superconductors— The Cooper pair wave-
function can be written as 〈r1σ1, r2σ2|

∑
ν>0 c′νP

†
ν |0〉 =

ϕq(r)eiq·Rχ(σ1, σ2). The variable r (R) is the relative (center
of mass) coordinate while q is the center of mass momentum,

χ being the singlet spin function. For q = 0 [8, 10]

ϕ0(r) ∼ e−r/ξ cos kFr, (1)

the quantity

ξ =
~vF

π∆
, (2)

being the correlation length (≈ 104Å).
In the calculation of the Cooper pair tunneling probabil-

ity p2 between two weakly coupled superconductors (S-S),
also known as Josephson junction, of typical width d(≈ 10 −
30 Å � ξ) one has to add the phased amplitudes before one
takes the modulus squared. As a consequence, the probabil-
ity p2 of a pair going through the junction is comparable to
the probability p1 for a single electron ([11], see also Ch. 6 of
[12]). This result is at the basis of the Josephson effect(s) [13–
17]: a) unbiased junction; the small but finite overlap of the
condensed amplitudes |ΨBCS (`)〉 and |ΨBCS (r)〉 is sufficient to
lock the associated gauge phase difference (φrel(R) = φ`−φr),
function which acts as the velocity potential of a collective
flow (center of mass momentum) superimposed on the Cooper
pairs correlated intrinsic motion (1). The associated direct su-
percurrent of carriers of charge q = 2e and maximum value
Ic = π

e ∆`r
1

Rb
is undamped, because the internal degrees of

freedom are frozen by the reduced pairing gap ∆`r =
∆`∆r

∆`+∆r
. In

the above relation ∆` and ∆r are the pairing gap of the left and
right superconductors with respect to the junction. Similarly
concerning the gauge phase φ` and φr; b) biased junction;
when there is a dc voltage V , and thus an associated chemical
potential difference (λ`−λr) across the junction, circulation of
an alternating current of carriers q = 2e, critical value Ic and
of frequency νJ = V×2e/h is observed, while φrel precesses at
the rate given by φ̇rel = (λ` − λr)/~ = V × 2e/~. There is then
an energy difference ∆E = V×2e each time a Cooper pair tun-
nels from one side of the junction to the other, energy which
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must appear elsewhere. Being the process superconducting, it
is free of dissipation. To leave the quasiparticle distribution
unchanged, Cooper pairs can tunnel back and forth with the
emission of a photon of frequency νJ . The Josephson junction
not only converts a direct voltage into an alternating current,
but also works as an oscillatory circuit. It radiates electromag-
netic waves in the superhigh frequency range.

The critical supercurrent Ic (of typical value ≈ 2 mA) across
an S-S junction is, within a factor π/4 equal to the N-N sin-
gle electron carrier current, for an applied equivalent potential
bias Veq = (2∆/e) (≈ 2 mV), S (N) indicating the supercon-
ducting (normal) phase of the metal. That is

Ic =
π

4
Veq

Rb
, (3)

where Rb(≈ 1Ω) is the resistance of the junction (Ic ≈ 1.6
mA). A relation which testifies to the correctness of p2 ≈ p1,
and constitutes one of the pillars on which the validity of the
BCS description of superconductivity rests. Another one is
provided by the photons of frequency

νJ = KJV, (4)

emitted by a biased S-S junction. The Josephson constant,
inverse of the flux quantum (fluxon) is KJ = 2e/h. For voltage
differences across the junction of ≈1mV one has νJ ≈ 0.5
THz.

It is of notice that in the tunneling process between two su-
perconductors in which a bias of value V & 2∆/e is applied
to the junction, a momentum & q = ~/ξ is given to the cen-
ter of mass of ϕq(r) and, as a result, Cooper pairs are broken
and quasiparticle excitations created –thus the labeling (S-Q)
given in the literature to such processes– through which a nor-
mal (dissipative) current of carriers q = e flows [18]. In other
words, for T = 0 one is in presence of processes connect-
ing a ground state (S) with ground and excited states (Q). The
importance of this fact in connection with the Josephson-like
junction transiently formed in heavy ion reactions between su-
perfluid nuclei, becomes apparent below.

Cooper pair tunneling in nuclei— Recently, a breakthrough
on the subject was made through the study of one- and two-
neutron transfer reactions with heavy ion collisions in inverse
[19] and direct [20] kinematics, enabled by the use of mag-
netic and γ-ray spectrometers,

116Sn +60 Ni→


115Sn +61 Ni (Q1n ≈ −1.74 MeV), (a)

114Sn +62 Ni (Q2n ≈ 1.307 MeV). (b)
(5)

These reactions were carried out for twelve bombarding en-
ergies in the range 140.60 MeV≤ Ecm ≤ 167.95 MeV. That
is, from energies above the Coulomb barrier (EB = 157.60
MeV), to well below it. While the Cooper pair transfer chan-
nel (5 (b)) is dominated by the ground-ground state transition,
the single-particle transfer one is inclusive. In fact, the the-
oretical calculations of the differential cross section associ-
ated with channel (5 (a)) indicates the incoherent contribution

of a number of quasiparticle states of 61Ni lying at energies
. 2.640 MeV ([19, 21]). A value which is consistent with
twice the value of the pairing gap of Ni. In other words, in
the case of the reaction 5 (a), we are in presence of a S-Q like
transfer. Making use of the relation (2), as well as of the val-
ues (vF/c) ≈ 0.3 and ∆ ≈ 1.3−1.5 MeV, one obtains ξ ≈ 13.6
fm (within this context see for example Fig. 7, App. A of
[22]).

The analysis of the data associated with the reactions (5
(a)) and (5 (b)) carried out in [19, 20] makes use of a pow-
erful semiclassical approximation in which the optical poten-
tial employed was microscopically calculated in terms of the
interaction energy per unit area, proximity potential propor-
tional to the surface tension and the reduced radius, regard-
ing the real part ([23] Eqs. (30), (40)–(43) pp. 111, 114).
The imaginary part was worked out in terms of first-order
transition probabilities making use of the same microscopic
formfactors used in the analysis of the data [24–26]. The
resulting potentials have been extensively tested throughout
the mass table [27–30]. The short wavelength of relative mo-
tion (de Broglie reduced wavelength o = 0.36/2π fm≈ 0.06
fm), allows to accurately determine the distance of closest ap-
proach D0 for each bombarding energy, by calculating the cor-
responding classical trajectory as solution of the equations of
motion associated with the real part of the optical potential
plus the Coulomb potential. The accuracy of the resulting
connection between Ec.m. and D0 was demonstrated by the
comparison between the theoretical and experimental values
of σel/σRuth displayed in the upper part of Figs. 3 of refer-
ence [19]. Making use of the U,V occupation amplitudes for
both Sn and Ni, as well as the optical potential given in [19]
we have calculated, within the framework of first and second
order DWBA [31], the absolute one- and two- nucleon trans-
fer differential cross sections. In the second case, including
both successive (dominant channel) and simultaneous trans-
fer, properly corrected by non-orthogonality. Theory is com-
pared with experiment in Table I. As expected [19], the results
provide an overall account of the experimental findings.

From direct inspection of this Table it emerges that the dis-
tance of closest approach lying within the interval 13.12 fm
≤ D0 ≤ 13.49 fm is the largest one for which dσ/dΩ|2n is,
within a factor of about 0.6 (≈ (π/4)2) of the same order of
dσ/dΩ|1n. In keeping with (1) and (2) one can posit that the
above interval provides a sensible bound to the size of the nu-
clear Cooper pair correlation length. Already increasing D0
by ≈0.6 fm (D0 = 14.05) σ1n becomes a factor 6 larger than
σ2n. A signal indicating that stretching the transferred Cooper
pair to larger dimensions ruptures it, quenches its pairing gap
and unfreezes the quasiparticle degrees of freedom. Said it
differently, a consequence of forcing Cooper pair partners, in
the dominant successive transfer process, to be at a relative
distance larger than ξ. This leads to a strain which plays a
role similar to that played by applying a momentum q ≈ 1/ξ
(associated with the critical bias Veq = 2∆/e) to the center of
mass of the Cooper pairs, resulting in the transition from the
S-S transfer regime to the S-Q one. As a result, we choose
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D0 = 13.49 fm as a representative value for ξ of the trans-
ferred Cooper pair.

Nuclear analogue of radiating Josephson junction— As
stated before, when the two superconducting elements of a
junction are at a different electric potential, the transfer of a
pair of electrons from one side (e.g. `) to the other one (r)
involves an energy change of 2e × V . If the process is truly
a superfluid process, free of dissipation, this energy must ap-
pear elsewhere as a unit. In fact, it appears as a photon of
energy hν = 2e × V (radiofrequency) in keeping with (4), and
as experimentally observed (see e.g. [32] and refs. therein).

In the nuclear case and in connection with the reaction 5
(b) for bombarding conditions for which D0 = 13.49 fm
(namely Ec.m. ≈ 154.26 MeV and τcoll ≈ ξ/(2Ec.m./µi)1/2 ≈

0.5 × 10−21s), the Cooper pair tunnels few MeV below the
Coulomb barrier. Consequently the absorptive component of
the optical potential plays essentially no role in the process,
and tunneling takes place lossless, free of dissipation. Being
the bombarding energy ≈ 3.9 MeV/A (Elab = 452.5 MeV),
that is an order of magnitude smaller than the Fermi energy,
one can expect that there can be time for the two-neutrons to
be transferred back and forth about three times. That is, for
about two (≈ 1.5) cycles of the quasielastic process

116Sn +60 Ni→114 Sn +62 Ni→116 Sn +60 Ni. (6)

Due to the fact that nuclear Cooper pairs carry an effec-
tive charge (e)e f f ≈ (−2eZ/A), one expects the transient
Josephson-like nuclear junction to emit γ-rays of frequency
ν = Q2n/h (=1.307 MeV/h). Because of the short colli-
sion time (τcoll) the radiated photons will display a width
(≈ ~/τcoll). Due to the recoil of the `(Sn)-r(Ni) nuclear su-
perconducting junction associated with Cooper pair tunneling,
the corresponding line shape will be distorted with respect to
a Gaussian-like shape.

In what follows we calculate the γ-emission cross section
in terms of a macroscopic formulation of the (ac) Josephson
effect, particularly suited to be used in connection with the
nuclear case.

Concerning the search for nuclear analogs of the Josephson
effect see ([33–39], see also [23]).

Macroscopic calculation of dipole emission— Making use
of α0 = e−2iφα′0 one can introduce the density of supercon-
ducting electron (fermion) pairs,

Ψ∗Ψ =
α′0
V

= n′s, (7)

in terms of the pair probability amplitude [40, 41],

Ψ = e−iφ √
n′s, (8)

where V is an appropriate volume element. Both n′s and φ
can be functions of space (and time), and their variation deter-
mines the motion of the BCS condensate, e.g. the supercur-
rent. Since the pairs are in the same state and must therefore
behave in an identical fashion, the equations of motion of the
macrostate must coincide with the equation of motion for any

single pair of this state [42]. In other words, due to its unique
coherence properties the condensed (superfluid) portion of the
superconductor behaves like a single quantum particle of mass
and charge twice that of an electron.

It is then sensible to expect that the dynamical behavior of
a Josephson junction –right (r) and left (`) weakly coupled
superconductors– would be similar to that of two quantum
levels weakly coupled to one another via an external field [43].
Considering the situation in which the tunneling interaction is
relatively constant over a coherence length [44], the electrody-
namics of a radiating Josephson junction is analogous to that
of a two-level atom placed in a static external field, role which
in the present case is played by the tunneling interaction in-
ducing non resonant transitions between the two quantum lev-
els. These transitions give rise to an induced dipole moment
whose oscillations generate the coherent Josephson radiation
field, the intensity of the emitted radiation being proportional
to the number of Cooper pairs that are involved in the tunnel-
ing process quantity squared, the frequency being that defined
in Eq. (4).

A similar, incipient superradiant Josephson-like phe-
nomenon is expected to arise in the case of the nuclear heavy
ion reaction under discussion, from an ensemble of correlated
Cooper pairs (α′0 ≈ 8 (2), 116Sn (60Ni)) undergoing the coher-
ent, back and forth quasielastic Cooper pair transfer process.
In what follows the associated γ-emission probability is cal-
culated.

According to Fermi’s Golden rule, the rate of spontaneous
emission between two levels in the dipole approximation can
be written as ([45], p. 340),

dPi f

dt
=

4ω3
i f |〈i|d | f 〉|

2

3~c3 , (9)

where ωi f = 2π/T is the emission frequency, T being the
associated period, d = qr the dipole moment operator and q
the charge.

In connection with the reaction (5 (b)) i ≡ B(= A+2)+b→
f ≡ A + a(= b + 2), and q = 2ee f f = −2 × e(Zb + ZB)/(Ab +

AB), where (Ab,Zb) ≡ (60, 28) and (AB,ZB) ≡ (116, 50), one
obtains q = −2× (78/176)e = −e× 0.89, and d = −e× 0.89×
13.49 fm=−e × 12.01 fm. Let us now calculate dPi f

dt = N/T ,
where N is the number of photons emitted per cycle,

N = T ×
dPi f

dt
=

8π
3

(~ωi f )2d2

(~c)3 ≈ 3.71 × 10−4, (10)

and ~ωi f = Q2n = 1.307 MeV. Making use of the experimen-
tal value (see Tab. I), dσ2n(Ecm = 154.26MeV)/dΩ|θc.m.=140◦ ≈

2.58 mb/sr, one expects the associated γ-radiation to be emit-
ted perpendicular to the reaction plane, with a cross sec-
tion dσγ/(dΩγdEγ) = Ndσ2n/dΩ|θc.m.=140◦ δ(Eγ − Q2n) ≈
0.96 µb/sr δ(Eγ−Q2n). In other words, one expects a (reduced)
strength function of centroid 1.307 MeV, width ~/τcoll ≈ 1.3
MeV and energy integrated area of 0.96 µb/sr.

Dipole radiation: microscopic calculation— A similar cal-
culation of the γ-emission quasielastic process, this time
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E = 140.6 MeV E = 145.02 MeV E = 146.10 MeV E = 148.10 MeV E = 150.62 MeV E = 151.86 MeV
D0 (fm) 14.8 14.39 14.24 14.05 13.81 13.70

σ
exp
1n (σth

1n) (mb/sr) 1.24 (1.10) 2.13 (2.01) 2.32 (2.29) 3.00 (2.96) 3.50 (3.75) 5.03 (4.51)
σ

exp
2n (σth

2n) (mb/sr) 0.07 (0.05) 0.23 (0.19) 0.31 (0.26) 0.5 (0.44) 1.00 (0.87) 1.83 (1.22)

E = 154.26 MeV E = 158.63 MeV E = 162.11 MeV E = 164.4 MeV E = 164.8 MeV E = 167.95 MeV
D0 (fm) 13.49 13.12 12.83 12.66 12.62 12.39

σ
exp
1n (σth

1n) (mb/sr) 7.25 (6.03) 9.70 (9.08) 7.88 (9.51) 5.92 (4.64) 4.83 (4.53) <0.7 (0.25)
σ

exp
2n (σth

2n) (mb/sr) 2.58 (2.35) 6.80 (7.54) 6.11 (8.85) 4.08 (2.34) 3.48 (1.68) <0.25 (0.07)

TABLE I. Center of mass absolute differential cross section at 140◦ [19, 20, 46] associated with the reactions (5). In brackets the results of
the theoretical calculations carried out as explained in the text. For the twelve bombarding energies (E = Ec.m.) also the distance of closest
approach D0 is indicated.

fully microscopic, was carried out extending the second or-
der DWBA formalism employed in the calculation of the two-
nucleon transfer absolute differential cross sections displayed
in Tab. I, to include the coupling to the electromagnetic field
in the dipole approximation.

The T -matrix associated with the successive transfer of the
Cooper pairs, that is, half of a cycle of the process leading
to the result (10), and which contributes essentially all of the
corresponding cross section, can be written in the post-post
representation as

Tmγ
(k f ,ki) = 2

∑
ν,ν′

B(A)
ν B(b)

ν′

∫
χ∗f (rBb,k f )

[
φ j f (rA1 )φ j f (rA2 )

]0∗

0
U(A)(rb1)

[
φ j f (rA2 )φ ji (rb1 )

]K

M
d1

mγ
(rO1) drCc drb1 drA2

×

∫
G(rCc, r′Cc)

[
φ j f (r

′
A2

)φ ji (r
′
b1

)
]K∗

M
U(A)(r′c2)

[
φ ji (r

′
b2

)φ ji (r
′
b1

)
]0

0
χi(r′Aa,ki) dr′cC dr′b1

dr′A2
. (11)

where B(i)
j =

(√
j + 1

2 U(i)
j V (i)

j

)
is the two-nucleon transfer

spectroscopic amplitude (see e.g. [31]; see also [13]), while
U(A)(r) is the mean field potential [47] mediating the succes-
sive transfer process B(= A+2)+b→ F(= A+1)+ f (= b+1)→
A + a(= b + 2). The Green’s function G(rCc, r′cC) propagates
the intermediate channel (F, f ) (no asymptotic waves), while
χi, χ f are the distorted waves describing the relative motion of
the heavy ions in the initial (B, b) and final (A, a) channels, the
momenta ki and k f ensuring energy conservation. The dipole
operator is defined as

d1
mγ

= q

√
4π
3
Y1mγ

(rO1) (12)

whereY1mγ
(rO1) is the vector spherical harmonic of order one,

Y1mγ
(rO1) = rO1Y1

mγ
(r̂O1) and rO1 is the coordinate of one of

the transferred neutrons measured from the center of mass.
The γ-strength function (double differential cross section)

associated with (11) can be written as

d2σ

dΩdEγ
=

(
µiµ f

(2π~2)2

k f

ki

) 8π
3

E2
γ

(~c)3

 ∣∣∣Tmγ
(k f ,ki)

∣∣∣2
× δ(Eγ + E f − (Ei + Q)), (13)

where Eγ = ~ωi f , ki = (2µiEi)1/2/~ and k f = (2µ f E f )1/2/~,
Ei and E f being the (c.m.) kinetic energy in initial and final
channels.

In addition to the analytic prefactors describing the elec-
tromagnetic and kinematical phase spaces, the strength func-
tion (13) depends on the photon energy through the dis-
torted waves and the effective formfactors which, in channel
(F(A + 1)), ( f (= b + 1)), restrict the integrations to the re-
gion of overlap between the partner nucleons of the tunneling
Cooper pair. In other words, for the overlap region associ-
ated with the largest relative distance between the two ions in
which the normal and abnormal densities are simultaneously
present. That is, the distance of closest approach correspond-
ing to the correlation length ξ.
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Making the ansatz θc.m. = 0◦(k̂i = k̂ f = ẑ), mA ≈ mB,mb ≈

ma � 1, and substituting the distorted waves by plane waves
one obtains for small momentum transfer (q → 0), T ∼

exp
(
−(Q − Eγ)2/∆E2

)
, and the FWHM of the line shape is

∆E ≈
√

3(~/τcoll) (≈ 2.30 MeV). The fact that, in a Josephson
junction the two superconductors S ` and S r are macroscopic
objects at rest, implies that the delta function in (13) is re-
placed by δ(ω − 2eV/h) which in the nuclear case translates
into δ(Eγ − Q2n).

The γ-strength function (13) was worked out making use
of microscopic formfactors (see Eq. (11)). They were ob-
tained from the coherent summation of products of single-
particle wavefunctions weighted by the two-nucleon spectro-
scopic amplitudes. These wavefunctions were calculated with
the help of the mean field potentials U(i), potentials which also
act in the transfer process, propagated from the initial to the
final channel by the Green’s function. The distorted waves χ
were determined with the help of the microscopic optical po-
tential of ref. [19]. Up to 150 partial waves were included in
the calculation. The final results are shown in Fig. 1 (a) in
terms of a dashed line. It describes a γ-strength function with
centroid, FWHM and energy integrated area of 4 MeV, 5 MeV
and 5.18 µb/sr respectively, associated with a dipole moment
〈d〉 = −e × 9.36 fm (〈r〉 ≈ 10.52 fm).

Multiplying these results by
(

8π
3

(1.307)2MeV2

(~c)3

) (
8π
3

E2
γ

(~c)3

)−1
one

obtains a Gaussian-like reduced γ-strength function (Fig. 1
(a) and (b) continuous line). The associated centroid, FWHM
and energy integrated area being: 1.1 MeV; 3.6 MeV and 0.57
µb/sr respectively, the value of the associated dipole moment
being d = −e × 9.36 fm (r = 10.52 fm). Quantities which
can be compared at profit with the corresponding results of
the macroscopic calculations[48]. Summing up, both the cen-

reduced γ
strength

γ strength

(a) (b)

FIG. 1. (a) Double differential cross section for γ-emission at θc.m. =

140◦ as a function of the energy of the emitted γ-ray, calculated with
Eqs. (11) and (13) (dashed curve). The reduced strength (continu-
ous curve) has been obtained by dividing out from d2σ/dΩdEγ the
phase-space factor ∼ E2

γ, and multiplying it by the corresponding
quantity with Eγ = 1.307 (MeV) (see text for details). The reduced
γ-strength function is shown in (b) with a different scale, where the
width and the position of the centroid are more apparent.

troid, width as well as the line shape of the γ-strength function
are distorted as compared to the simple dipole macroscopic
estimate, let alone in relation to that observed in the radiofre-
quency emission from a Josephson junction (see e.g. [32]).

All this without jeopardizing the validity of the nuclear anal-
ogy.

From the comparison of the estimate of the correlation
length of 13.49 fm made by following σ2n/σ1n as a func-
tion of the bombarding energy Ec.m. (D0) and determining
σ2n/σ1n|(D0)max

& 0.6, and that obtained from the quantum me-
chanical calculation of the value of the dipole operator (12),
i.e. of the distance of 10.52 fm over which the partner nucle-
ons of the transferred Cooper pair are correlated in the asso-
ciated successive tunneling process, one can ascribe an error
to the theoretical estimate of the correlation length leading to
ξ ≈ 12.0 ± 1.5 fm.

Conclusions— The special effects found in superconductiv-
ity by which a dc voltage V applied across a junction between
two superconductors does not determine the intensity of the
supercurrent (Ohm’s law) circulating through it, but the fre-
quency of an alternating supercurrent (νJ = 2e × V/h), finds
its nuclear analogue in the electromagnetic radiation predicted
to be emitted in a quasielastic heavy ion collision between two
superfluid nuclei in terms of γ-rays of frequency ν = Q2n/h.
For the particular reaction studied, and selecting the bom-
barding energy for which the distance of closest approach
is approximately equal to the correlation length ξ ≈ 13.5
fm (largest of the measured distances of closest approach for
which σ2n ≈ σ1n within a factor of two), theory predicts for
the reduced γ-strength function dσγ/dΩ|θc.m.=140◦ ≈ 0.57 µb/sr
(νJ ≈ 1.1 MeV/h) corresponding to an observable γ-strength
function dσγ/dΩ|θc.m.=140◦ ≈ 5.18 µb/sr, peaked at ≈ 4 MeV. It
can be concluded that a nuclear analogue to the (ac) Josephson
effect has been identified.
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[27] Ö Akyuz and A. Winther. Nuclear surface-surface interaction
in the folding model. In R. A. Broglia, R. A. Ricci, and C. H.
Dasso, editors, International School “Enrico Fermi” course
LXXVII, page 492. North Holland, Amsterdam, 1981.

[28] G. Pollarolo and R. A. Broglia. Microscopic Description of the
Backward Rise of the Elastic Angular Distribution 16O+28Si.
Nuovo Cimento, 81:278, 1984.

[29] J. M. Quesada, R. A. Broglia, V. Bragin, and G. Pollarolo.
Single-particle and collective aspects of the absorptive poten-
tial for heavy ion reactions. Nuclear Physics A, 428:305, 1984.

[30] A. Winther. Grazing collisions in low-energy heavy ion reac-
tions. In R. A. Broglia and C. H. Dasso, editors, Frontiers in
Nuclear Dynamics, page 203. Plenum Pressd, New York, 1985.

[31] G. Potel, A. Idini, F. Barranco, E. Vigezzi, and R. A. Broglia.
Cooper pair transfer in nuclei. Rep. Prog. Phys., 76:106301,
2013.

[32] P. E. Lindelof. Superconducting micro bridges exhibiting
Josephson properties. Rep. Prog. Phys., 44:60, 1981.

[33] V. I. Goldanskii and A. I. Larkin. An analog of the Josephson
effect in nuclear transformations. Soviet Physics JETP, 26:617,
1968.

[34] K. Dietrich. On a nuclear Josephson effect in heavy ion scatter-
ing. Physics Letters B, 32(6):428, 1970.

[35] K. Dietrich. Semiclassical theory of a nuclear Josephson effect
in reactions between heavy ions. Annals of Physics, 66:480,
1971.

[36] K. Hara. On the Josephson-current in heavy-ion reactions.
Physics Letters B, 35:198, 1971.

[37] M. Kleber and H. Schmidt. Josephson effect in nuclear reac-
tions. Zeitschrift für Physik, 245:68, 1971.

[38] H. Weiss. Semiclassical description of two-nucleon transfer be-
tween superfluid nuclei. Phys. Rev. C, 19:834, 1979.

[39] W. von Oertzen and A. Vitturi. Pairing correlations of nucleons
and multi–nucleon transfer between heavy nuclei. Reports on
Progress in Physics, 64:1247, 2001.

[40] V. L. Ginzburg and L. D. Landau. On the theory of supercon-
ductivity. JETP, 20:1064, 1950.

[41] Vitaly L. Ginzburg. Nobel Lecture: On superconductivity and
superfluidity (what I have and have not managed to do) as well
as on the “physical minimum” at the beginning of the XXI cen-
tury. Rev. Mod. Phys., 76:981, 2004.

[42] J. E. Marcerau. Macroscopic Quantum Phenomena. In R. D.
Parks, editor, Superconductivity, volume 1, page 393. Marcel
Dekker, New York, 1969.

[43] R. P. Feynman. Lectures on Physics, volume 3. Addison-
Wesley, Reading, Mass., 1963.

[44] D. Rogovin and M. Scully. Superconductivity and macroscopic
quantum phenomena. Physics Reports, 25:175, 1976.

[45] J. L. Basdevant and J. Dalibard. Quantum Mechanics. Springer,
Berlin, 2005.

[46] L. Corradi. Private communication.
[47] It is of notice that the mean field potentials U (A) and U (b) are

those used in the calculation of the single-particle wavefunc-
tions appearing in Eq. (11).

[48] Making use of the value d = −e × 9.36 fm resulting from (11),
one can estimate, from the macroscopic prediction, a micro-
scopic one. Namely, (9.36/12.01)2 × 0.96 µb/sr ≈ 0.58 µb/sr. A
result which testifies to the validity of the separability between
the γ-process (number of photons N) and the two-nucleon
transfer one (σ2n), assumed in the macroscopic model.


	Quantum entanglement in nuclear Cooper pair tunneling with -rays
	Abstract
	References


