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Elliott’s SU(3) model is at the basis of the shell-model description of rotational motion in atomic
nuclei. We demonstrate that SU(3) symmetry can be realized in a truncated shell-model space
if constructed in terms of a sufficient number of collective S, D, G, . . . pairs (i.e., with angular
momentum zero, two, four, . . . ) and if the structure of the pairs is optimally determined either by
a conjugate-gradient minimization method or from a Hartree-Fock intrinsic state. We illustrate the
procedure for 6 protons and 6 neutrons in the pf (sdg) shell and exactly reproduce the level energies
and electric quadrupole properties of the ground-state rotational band with SDG (SDGI) pairs.
The SD-pair approximation without significant renormalization, on the other hand, cannot describe
the full SU(3) collectivity. A mapping from Elliott’s fermionic SU(3) model to systems with s, d,
g, . . . bosons provides insight into the existence of a decoupled collective subspace in terms of S, D,
G, . . . pairs.

Atomic nuclei exhibit a wide variety of behaviors, rang-
ing from single-particle motion to superconducting-like
pairing to vibrational and rotational modes. To a large
extent the story of nuclear structure is the quest to en-
compass the widest range of behaviors within the fewest
degrees of freedom. In the early stage of nuclear physics,
the spherical nuclear shell model [1, 2] stressed the single-
particle nature of the nucleons in a nucleus, while the
geometric collective model [3, 4] and the Nilsson mean-
field model [5] pointed the way to describing rotational
bands by emphasizing permanent quadrupole deforma-
tions [6] in “intrinsic” states. The reconciliation between
these two pictures has been one of the most important
advances in our understanding of the structure of nu-
clei. It was in large part due to Elliott who showed,
on the basis of an underlying SU(3) symmetry, how to
obtain deformed “intrinsic” states in a finite harmonic-
oscillator single-particle basis occupied by nucleons that
interact through a quadrupole-quadrupole force [7]. This
major step forward provided a microscopic interpretation
of rotational motion in the context of the spherical shell
model and, more recently, led to the symmetry-adapted
no-core shell model [8].

Although the spherical shell model does provide a gen-
eral framework to reproduce rotational bands [9] and
shape coexistence [10] in light- and medium-mass nuclei,
it is computationally still extremely challenging to de-
scribe deformation in heavier-mass regions [11]. Approx-
imations must be sought. A tremendous simplification of
the shell model occurs by considering only pairs of nucle-
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ons with angular momentum 0 and 2, and treating them
as (s and d) bosons. This approximation, known as the
interacting boson model (IBM) [12, 13], is particularly
attractive because of its symmetry treatment in terms of
a U(6) Lie algebra, which allows a spherical U(5), a de-
formed SU(3), and an intermediate SO(6) limit. While
the IBM has been connected to the shell model for spher-
ical nuclei [14, 15], such relation has never been estab-
lished for deformed nuclei, in which case the IBM has
rather been derived from mean-field models [16, 17].

The nucleon-pair approximation (NPA) [18, 19] is one
possible truncation scheme of the shell-model configura-
tion space. The building blocks of the NPA are fermion
pairs with certain angular momenta. Calculations are
carried out in a fully fermionic framework, albeit in a
severely reduced model space defined by the most im-
portant degrees of freedom in terms of pairs. The NPA
therefore can be considered as intermediate between the
full-configuration shell model and models that adopt the
same degrees of freedom as the nucleon pairs but in
terms of bosons. While the NPA has been successful
for nearly spherical nuclei [20–27], previous studies for
well-deformed nuclei are not satisfactory. For example,
in the fermion dynamical symmetry model [28, 29] an
SU(3) limit with Sp(6) symmetry can be constructed in
terms of S and D pairs but their symmetry-determined
structure is far removed from that of realistic pairs [30].
Also, the binding energy, moment of inertia, and elec-
tric quadrupole (E2) transitions calculated in an SD-pair
approximation are much smaller than those obtained in
Elliott’s SU(3) limit for the pf and sdg shells [31].

In this Letter we successfully apply the NPA of the
shell model to well-deformed nuclei. We show that the
low-energy excitations of many-nucleon systems in El-
liott’s SU(3) limit can be exactly reproduced with a suit-
able choice of pairs in the NPA. We obtain an under-
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standing of this observation through a mapping to a cor-
responding boson model.
We consider an example system with even numbers

of protons and neutrons in a degenerate pf or sdg shell,
interacting through a quadrupole-quadrupole force of the
form,

VQ = −(Qπ +Qν) · (Qπ +Qν), (1)

where Qπ (Qν) is the quadrupole operator for protons
(neutrons),

Q = −
∑

αβ

〈nαlαjα‖r2Y2‖nβlβjβ〉√
5r20

(

a†α × ãβ
)(2)

. (2)

Greek letters α, β, . . . denote harmonic-oscillator single-
particle orbits labeled by n, l, j, and jz ; a

†
α and ãβ are

the nucleon creation operator and its time-reversed form
for the annihilation operator, respectively; and r0 is the
harmonic-oscillator length. As shown in Ref. [7], the in-
teraction VQ is a combination of the Casimir operators of
SU(3) and SO(3), and its eigenstates are therefore clas-
sified by (irreducible) representations of these algebras
with eigenenergies given by

− 5

2π

[

1

2
(λ2 + λµ+ µ2 + 3λ+ 3µ)− 3

8
L(L+ 1)

]

, (3)

in terms of the SU(3) labels (λ, µ) and the SO(3) label
L, the total orbital angular momentum. Several useful
SU(3) representations for low-lying states can be found
in Ref. [31].
In the following we discuss in detail the case of 6 pro-

tons and 6 neutrons (6p-6n) in the NPA of the shell model
and subsequently generalize to other numbers of nucle-
ons. A nucleon-pair state of 6 protons is written as

|ϕ(Iπ)〉 =
(

(A(J1)
† ×A(J2)

†
)(I2) ×A(J3)

†
)(Iπ)

|0〉, (4)

where I2 is an intermediate angular momentum andA(J)†

is the creation operator of a collective pair with angular
momentum J :

A(J)† =
∑

α≤β

yJ(αβ)
(

a†α × a†β

)(J)

, (5)

where yJ(αβ) is the pair-structure coefficient. For sys-
tems with protons and neutrons, we construct the ba-
sis by coupling the proton and neutron pair states to
a state with total angular momentum I, i.e., |ψ(I)〉 =
(

|ϕ(Iπ)〉 × |ϕ(Iν)〉
)(I)

. Level energies and wave functions
are obtained by diagonalization of the Hamiltonian ma-
trix in the space spanned by

{

|ψ(I)〉
}

, that is, from a
configuration-interaction calculation. If a sufficient num-
ber of pair states are considered in Eq. (4), the NPA
model space can be made exactly equivalent to the full
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FIG. 1: (a) Excitation energy and (b) electric quadrupole re-
duced transition probability B(E2; I → I − 2) for the ground
rotational band of 6 protons and 6 neutrons in the pf shell in
Elliott’s SU(3) model. The subscript “GS” stands for gener-
alized seniority and “CG” for conjugate gradient (see text).

shell-model space. The interest of the NPA, however, is
to restrict to the relevant pairs and describe low-energy
nuclear structure in a truncated shell-model space.

The selection of relevant pairs with the correct struc-
ture in Eq. (5) has been a long standing problem in
NPA calculations. Recent applications choose pairs by
the generalized seniority scheme (GS). Specifically, one
optimizes the structure coefficients of the S pair by min-
imizing the expectation value of the Hamiltonian in the
S-pair condensate and one obtains other pairs by diag-
onalizing the Hamiltonian matrix in the space spanned
by GS-two (i.e., one-broken-pair) states [25, 32]. The
collective pairs obtained with the GS approach provide
a good description of nearly-spherical nuclei but, as rec-
ognized in Ref. [33] and as will also be shown below,
they are inappropriate in deformed nuclei. Instead we use
the conjugate gradient (CG) method [34, 35], where the
structure coefficients of all pairs considered in the basis
are simultaneously optimized by minimizing the ground-
state energy in a series of iterative NPA calculations for
a given Hamiltonian. The initial pairs in this iterative
procedure are SU(3) tensors, obtained by diagonalizing
VQ in a two-particle basis and retaining the lowest-energy
pair.

Figure 1 shows, for a 6p-6n system in the pf shell, the
results of various NPA calculations concerning excitation
energies and E2 reduced transition probabilities (with
the standard effective charges eπ = 1.5 and eν = 0.5) for
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FIG. 2: Same as Fig. 1 for the sdg shell.

the lowest rotational band. These are compared to the
exact results of Elliott’s model, where the ground band
belongs to the SU(3) representation (λ, µ) = (24, 0). Sur-
prisingly, the SDG-pair approximation of the shell model
in the CG approach (denoted as SDGCG) reproduces the
exact binding energy, 810/π MeV according to Eq. (3),
to a precision of eight digits, as well as the exact excita-
tion energies for the entire ground band. One can under-
stand the occurrence of the (24, 0) representation from
the coupling of (12, 0) for the six protons and six neu-
trons separately and, in fact, all bands contained in the
product (12, 0)×(12, 0), i.e. (24, 0), (22, 1),. . . ,(0, 12), are
exactly reproduced in the SDGCG-pair truncated space.
We also find that the results of the SDG-pair approxima-
tion are close to the exact results if the pairs are SU(3)
tensors. For example, with such pairs the calculation re-
produces 98% of the exact binding energy, 99% of the
exact moment of inertia, and 97% of the exact B(E2)
values.

On the other hand, the results of the SDG-pair ap-
proximation deteriorate if the pairs are obtained with
the GS approach (denoted as SDGGS), which repro-
duces only 76% of the exact binding energy. Further-
more, SDGGS fails to describe the quadrupole collectiv-
ity: The moment of inertia predicted by SDGGS is only
∼43% of the exact one, the predicted B(E2) values are
too small, and the yrast states with angular momentum
I ≥ 10 do not follow the behavior of a quantum rotor.
One concludes that the structure of the collective pairs,
as determined by the GS approach, is not suitable for the
description of well-deformed nuclei.

It is also of interest to investigate the standard SD-
pair approximation of the shell model and results of
the SDGS-, SDCG-, and SDS

′D′
CG-pair approximations

are shown in Fig. 1. Here S′ and D′ are collective
pairs with angular momentum 0 and 2 but orthogo-
nal to the S and D pairs, respectively. While the CG
approach provides the numerically optimal solution in
SDCG- and SDS′D′

CG-pair approximations, the results
nonetheless are underwhelming. In the SDGS, SDCG,
and SDS′D′

CG spaces only 76%, 83%, and 84% of the
exact binding energy are reproduced, respectively, and
the predicted moments of inertia and B(E2) strengths
are evidently smaller than the exact SU(3) results. We
conclude that the collective SD pairs cannot fully explain
the quadrupole collectivity of the SU(3) states. Interest-
ingly, the excitation energies of the yrast states predicted
by the SD-pair approximations follow an I(I+1) rule and
the B(E2) strength exhibits a nearly-parabolic shape [see
Fig. 1(b)], two typical features of rotational motion. This
raises the hope that an effective Hamiltonian and effec-

tive charges can be derived in the restricted SDCG space,
which takes into account the coupling with the excluded
space. This conclusion is in line with a more phenomeno-
logical approach [17], in which an L · L term is added to
the Hamiltonian, such that properties of low-lying states
of well-deformed nuclei are reproduced in sd-IBM.

Figure 2 shows the corresponding results of for the 6p-
6n system in the sdg shell. In this case the SDGICG-pair
approximation of the shell model reproduces exactly the
SU(3) results and all states belonging to the coupled rep-
resentation (18, 0)× (18, 0), i.e. (36, 0), (34, 1),. . . ,(0, 18),
are fully contained in the SDGICG-pair truncated space.
Again, if the pairs are SU(3) tensors, the SDGI-pair ap-
proximation is close to the exact result and reproduces
99% of the exact binding energy, 97% of the exact mo-
ment of inertia, and 99% of the exact B(E2) values. The
SDGCG-pair approximation yields 96% of the binding
energy and 57% of the moment of inertia. The pre-
dicted B(E2) strength in the SDGCG-pair approxima-
tion is close to the exact result for low angular momenta
but deteriorates as angular momentum I increases. The
necessity of renormalization is even larger in the SDCG-
pair approximation.

Let us now try to understand the above results. Specif-
ically, why is it that the SU(3) results in the pf shell are
exactly reproduced with SDG but not with SD pairs?
Similarly, why is it that SU(3) in the sdg shell cannot be
represented with SD or SDG but requires SDGI pairs?
To explain these findings, we invoke a mapping to a sys-
tem with corresponding s, d, g, and i bosons (denoted
as sd-, sdg-, or sdgi-IBM) and the bosonic realization of
SU(3). The mapping is further specified by the fact that
the quadrupole-quadrupole interaction VQ is an SU(4) in-
variant and, consequently, one aims to realize the symme-
tries associated with Wigner’s supermultiplet model [36]
in terms of bosons. An SU(4)-invariant boson model,
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known as IBM-4 [37], requires to assign to each boson
a spin-isospin of (s, t) = (0, 1) or (1, 0), giving rise to a
spin-isospin algebra Ust(6).
The SU(3) limit can be realized in terms of bosons by

first decoupling the orbital angular momentum from the
spin-isospin of the bosons. For an nb-boson state this
leads to the classification

U(6Λ) ⊃ U(Λ) ⊗ Ust(6)
↓ ↓ ↓

[nb]
[

h̄
]

≡ [h1, ..., h6]
[

h̄
]

≡ [h1, ..., h6]
, (6)

with Λ = 6, 15, and 28 for sd-, sdg-, and sdgi-IBM,
respectively. The six labels [h̄] are a partition of nb such
that h1 ≥ h2 ≥ · · · ≥ h6; they specify the representations
of U(Λ) and Ust(6), which by virtue of the overall U(6Λ)
symmetry of the bosons must be identical. For all above
values of Λ (i.e., Λ = 6, 15, and 28), Elliott’s SU(3)
appears as a subalgebra of U(Λ),

U(Λ) ⊃ U(3) ⊃ SU(3) ⊃ SO(3)
↓ ↓ ↓ ↓
[

h̄
]

[h′′1 , h
′′
2 , h

′′
3 ] (λ, µ) K L

, (7)

while Wigner’s SU(4) occurs as a subalgebra of Ust(6),

Ust(6) ⊃ SUst(4) ⊃ SUs(2) ⊗ SUt(2)
↓ ↓ ↓ ↓
[

h̄
]

(λ′, µ′, ν′) S T
. (8)

The quantum numbers (λ, µ), K, and L in Eq. (7) and
(λ′, µ′, ν′), S, and T in Eq. (8) have an interpretation
identical to that in Elliott’s fermionic SU(3) model [7, 38].
The SU(3) labels (λ, µ) in the different versions of the

IBM can be worked out with the following procedure [39].
For a given number of bosons nb, one enumerates all
possible Young diagrams [h̄] of U(Λ) or Ust(6). For
each [h̄] one obtains the SUst(4) labels (λ′, µ′, ν′) from
the branching rule U(6) ⊃ SU(4), and retains only the
ones that contain the favored supermultiplet. Finally,
the SU(3) labels (λ, µ) for the above [h̄] are found from
the U(Λ) ⊃ SU(3) branching rule.
Let us apply this procedure to the 6p-6n system in

the pf shell. The lowest eigenstates of the quadrupole-
quadrupole interaction belong to the favored SU(4)
supermultiplet (λ′, µ′, ν′) = (0, 0, 0) and the leading
(fermionic) SU(3) representation is (λ, µ) = (24, 0). For
nb = 6 bosons, the Ust(6) or U(Λ) representations con-
taining this favored supermultiplet (0, 0, 0) are [h̄] = [6],
[4, 2], [23], and [16], which have the SU(3) labels (λ, µ)
as listed in Table I for the sd-, sdg-, and sdgi-IBM. The
leading SU(3) representation (24, 0) is not contained in
sd-IBM but is present in the [6] representation of U(15),
and therefore it is contained in sdg-IBM. Similarly, 6p-6n
in the sdg shell give rise to the leading SU(3) represen-
tation (36, 0), which is not contained in sd- nor sdg-IBM
but present in sdgi-IBM.

TABLE I: Leading SU(3) representations for 6 bosons in sd-,
sdg-, and sdgi-IBM occurring in the U(Λ) and Ust(6) repre-
sentations [h̄] containing the favored supermultiplet (0, 0, 0).

(bosons)nb [h̄] (λ, µ)
(sd)6 [6] (12, 0), (8, 2), (4, 4), (6, 0), (0, 6), . . .

[4, 2] (8, 2), (6, 3), (7, 1), (4, 4)2, (5, 2), . . .
[23] (6, 0), (0, 6), (3, 3), (2, 2)2, (0, 0)
[16] (0, 0)

(sdg)6 [6] (24, 0), (20, 2), (18, 3), (16, 4)2, (18, 0), . . .
[4, 2] (20, 2), (18, 3), (19, 1), (16, 4)3, (17, 2), . . .
[23] (18, 0), (15, 3), (12, 6), (13, 4), (14, 2)3, . . .
[16] (12, 0), (8, 5), (9, 3), (3, 9), (7, 4), . . .

(sdgi)6 [6] (36, 0), (32, 2), (30, 3), (28, 4)2, (30, 0), . . .
[4, 2] (32, 2), (30, 3), (31, 1), (28, 4)3, (29, 2)2, . . .
[23] (30, 0), (27, 3), (24, 6), (25, 4), (26, 2)3, . . .
[16] (24, 0), (20, 5), (21, 3), (18, 6), (19, 4), . . .

TABLE II: Leading fermionic SU(3) representations (λ,µ) for
n nucleons in the pf and sdg shells and the U(6), U(15), and
U(28) representations of the nb = n/2 boson system that
contain this (λ, µ) in sd-, sdg-, and sdgi-IBM.

(shell)n (λ, µ) sd-IBM sdg-IBM sdgi-IBM
(pf)4 (12, 0) — — [2]
(pf)8 (16, 4) — — [4], [22]
(pf)12 (24, 0) — [6] [6], [4, 2], [23], [16]
(sdg)4 (16, 0) — — —
(sdg)8 (24, 4) — — —
(sdg)12 (36, 0) — — [6]

The generalization to the 2p-2n (n = 4) and 4p-4n
(n = 8) systems in the pf and sdg shells is summarized in
Table II. The second column lists the leading fermionic
SU(3) representations and the third, fourth, and fifth
columns indicate whether this representation is contained
in sd-, sdg-, and sdgi-IBM, respectively. A dash (—) in-
dicates that it is not, in which case an NPA calculation
adopting the corresponding SD, SDG, or SDGI pairs
does not reproduce the full collectivity of the ground-
state band in the fermionic SU(3) model. For n = 4
and n = 8 nucleons in the sdg shell no exact mapping
can be realized to sdgi-IBM and bosons with even higher
angular momentum are needed. It should be noted, how-
ever, that this generally occurs for low nucleon number
(e.g., for n = 12 nucleons in the sdg shell the problem
does not occur), for which NPA calculations with high
angular momentum pairs are still feasible.

While the best NPA solutions so far have been found
by a numerically intensive optimization, it turns out
they can also be obtained from a deformed “intrinsic”
state. Again consider the 6p-6n system in the pf shell.
An unconstrained Hartree-Fock (HF) calculation in this
single-particle shell-model space [40] with a quadrupole-
quadrupole interaction provides us with a HF state with
an axially symmetric quadrupole deformed shape, a con-
sequence of the spontaneous symmetry breaking [41] of



5

0

4

8

52Fe

 

E x
  (

M
eV

)

10+

8+

6+

4+

2+

0+
SDGSMExpt.
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results are obtained with the GXPF1 interaction.

rotational symmetry. One can project out a K = 0 band
with good angular momentum from this HF state [42],
which exactly corresponds to the SU(3) representation
(24, 0) [7]. We use a and ā to denote the HF single-
particle orbit and its time-reversal partner, respectively,
and we write the creation operator of a nucleon as c†a. A
Slater determinant for an even number 2N of protons or
neutrons can be written as a pair condensate:

N
∏

a=1

c†ac
†
ā|0〉 = N

(

∑

a

va c
†
ac

†
ā

)N

|0〉. (9)

The pair in the deformed HF state is a superposition of
collective pairs of good angular momentum in the shell
model [43]:

∑

a

va c
†
ac

†
ā =

∑

JM

A
(J)
M

†

. (10)

For the appropriate va one obtains SDG pairs, which
are the same as the SDG pairs obtained by the CG-NPA
calculations. Similarly, the SDGI pairs responsible for
(36,0) for 6p-6n in the sdg shell can be also projected
out from a deformed HF pair. The CG approach pro-
vides numerically optimal solutions in the NPA but is
computationally heavy due to hundreds, even thousands
of iterations. The HF approach derives pairs using an
unconstrained HF calculation and the decomposition of
pairs according to Eq. (10) has a very low computational
cost.
Finally, we show that the NPA with CG-pairs provides

a good description of low-lying states of rotational nuclei
also if a realistic shell-model interaction is taken. We ex-
emplify this with the nucleus 52Fe, considered as a 6p-6n
system in the pf shell with the GXPF1 effective interac-
tion [45]. Figure 3 and Table III compare, for the ground

Iπ Expt. SM SDG
2+ 14.2(19) 19.2 17.0
4+ 26(6) 25.0 21.6
6+ 10(3) 17.4 20.0
8+ 9(4) 11.5 15.5
10+ 12.7 10.5

TABLE III: B(E2; I → I−2) values (in W.u.) for the ground
rotational band of 52Fe. The experimental values are taken
from Ref. [44] and the shell-model results are obtained with
the GXPF1 interaction.

rotational band of 52Fe, the experimental data [44], the
full configuration shell model (SM), and the SDGCG-pair
approximation. Both the level energies and the B(E2)
values obtained with SDGCG are in good agreement with
the data and with the shell model.

In summary, we construct in the NPA a collective sub-
space of the full shell-model space such that the for-
mer exactly reproduces, without any renormalization, the
properties of the low-energy states of the latter. This con-
struction is valid for an SU(3) quadrupole-quadrupole
Hamiltonian and is achieved by determining the struc-
ture of the pairs with the conjugate-gradient minimiza-
tion technique or on the basis of a deformed HF calcula-
tion. Exact correspondence is achieved only if a sufficient
number of different pairs is considered. For example, a
6p-6n system in the pf (sdg) shell is reproduced exactly
with SDG (SDGI) pairs; with just SD pairs, an im-
portant renormalization of all operators is required. We
have analytic understanding of this result: The collec-
tive subspace of the NPA exactly captures the collectiv-
ity of the full space if and only if the mapping to a model
constructed with bosons corresponding to the pairs gives
rise to a leading bosonic SU(3) representation that is also
leading in fermionic SU(3).

For many years a central problem in nuclear structure
has been the construction of a collective subspace that de-
couples from the full shell-model space. With this work
the conditions necessary for this decoupling to be ex-
act are now understood for an SU(3) Hamiltonian. This
understanding will pave the way for the construction of
viable collective subspaces for more realistic shell-model
interactions. It will also clarify the derivation of boson
Hamiltonians appropriate for quadrupole deformed nu-
clei. Similar techniques conceivably might be applied
elsewhere, such as to octupole-deformed nuclei with a
Sp(Ω) or SO(Ω) symmetry [38].
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