
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Windowed multipole representation of math
xmlns="http://www.w3.org/1998/Math/MathML">mi>R/mi>

/math>-matrix cross sections
Pablo Ducru, Abdulla Alhajri, Isaac Meyer, Benoit Forget, Vladimir Sobes, Colin Josey, and

Jingang Liang
Phys. Rev. C 103, 064610 — Published 14 June 2021

DOI: 10.1103/PhysRevC.103.064610

https://dx.doi.org/10.1103/PhysRevC.103.064610


Windowed multipole representation
of

R-matrix cross sections

Pablo Ducru,∗ Abdulla Alhajri,† Isaac Meyer,‡ and Benoit Forget§

Massachusetts Institute of Technology
Department of Nuclear Science & Engineering

77 Massachusetts Avenue,
Cambridge, MA, 02139 U.S.A.

Vladimir Sobes¶

University of Tennessee
Department of Nuclear Engineering

1412 Circle Drive, Knoxville, TN, 37996, U.S.A.

Colin Josey∗∗

Los Alamos National Laboratory
P.O. Box 1663 MS A143,

Los Alamos, NM 87545, U.S.A.

Jingang Liang††

Tsinghua University
Institute of Nuclear and New Energy Technology,

Beijing 100084, China

Nuclear cross sections are basic inputs to any nuclear computation. Campaigns of experiments
are fitted with the parametric R-matrix model of quantum nuclear interactions, and the resulting
cross sections are documented – both point-wise and as resonance parameters (with uncertainties) –
in standard evaluated nuclear data libraries (ENDF, JEFF, BROND, JENDL, CENDL, TENDL):
these constitute our common knowledge of fundamental low-energy nuclear cross sections. In the
past decade, a collaborative effort has been deployed to establish a new nuclear cross section li-
brary format — the Windowed Multipole Library — with the goal of considerably reducing the
computational cost of cross section calculations in nuclear transport simulations.

This article lays the theoretical foundations underpinning these efforts. From general R-matrix
scattering theory, we derive the windowed multipole representation of nuclear cross sections. Though
physically and mathematically equivalent to R-matrix cross sections, the windowed multipole repre-
sentation is particularly well suited for subsequent temperature treatment of angle-integrated cross
sections, in particular Doppler broadening, which is the averaging of cross sections over the ther-
mal motion of the target atoms. Doppler broadening is of critical importance in neutron transport
applications, as it ensures the stability of many nuclear reactors (negative thermal reactivity). Yet,
Doppler broadening of nuclear cross sections has been a considerable bottleneck for nuclear trans-
port computations, often requiring memory-costly pre-tabulations. We show that the Windowed
Multipole Representation can perform accurate Doppler broadening analytically (up to the first
reaction threshold), from which we derive cross sections temperature derivatives to any order —
all computable on-the-fly (without pre-calculations stored in memory). Furthermore, we here es-
tablish a way of converting the R-matrix resonance parameters uncertainty (covariance matrices)
into windowed multipole parameters uncertainty. We show that generating stochastic nuclear cross
sections by sampling from the resulting windowed multipole covariance matrix can reproduce the
cross section uncertainty in the original nuclear data file. The Windowed Multipole Representation
is therefore a novel nuclear physics formalism able to generate Doppler broadened stochastic nuclear
cross sections on-the-fly, unlocking breakthrough computational gains for nuclear computations.

Through this foundational article, we hope to make the Windowed Multipole Representation
accessible, reproducible, and usable for the nuclear physics community, as well as provide the theo-
retical basis for future research on expanding its capabilities.
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I. INTRODUCTION

Our knowledge of nuclear reactions is progressively
built-up by undertaking experiments and analyzing their
outcomes through the prism of a quantum model of nu-
clear collisions called R-matrix theory [1–4]. This is
known as the nuclear data evaluation process. Evalua-
tors conduct campaigns to measure nuclear cross sections
and fit them with R-matrix parameters. To account for
the epistemic uncertainty introduced, evaluators gener-
ate nuclear resonance parameters covariance matrices to
reproduce the variance observed in the measurements.

Other parametrizations of nuclear cross sections ex-
ist – such as the Humblet-Rosenfeld pole expansions
in wavenumber space [5–13] – but none have proven
as practical to document or use as R-matrix theory,
which is why our standard evaluated nuclear data li-
braries (ENDF[14], JEFF[15], BROND[16], JENDL[17],
CENDL[18], TENDL[19, 20]) are constituted of R-matrix
parameters (and their covariance uncertainties).
At the end of the 20th century, R. Hwang from Argonne
National Laboratory found a way to calculate from R-
matrix parameters the Humblet-Rosenfeld pole expan-
sion of neutron cross sections without thresholds, where
the wavenumber is proportional to the square root of
energy kc(E) ∝

√
E. He also showed that this pole rep-

resentation in z ,
√
E space presents a major advantage

for subsequent temperature treatment: integral Doppler
broadening can be accurately computed with analytic ex-
pressions [21–25]. This formalism was further developed
into the windowed multipole representation in order to
perform efficient on-the-fly computations of no-threshold
neutron cross sections with a lesser computational mem-
ory footprint [26–30]. In this article, we extend the win-
dowed multipole representation to all cross sections in the
context of R-matrix theory: be they Coulomb, photon,
neutrons, with or without thresholds. We also provide
means of converting resonance parameters uncertainties
into windowed multipole uncertainties. We thus lay the
foundations to constitute a full Windowed Multipole Li-
brary, encompassing all present nuclear data [31].

In section II, we derive the windowed multipole rep-
resentation from general R-matrix theory, showing it is
the meromorphic continuation of cross sections to com-
plex energies, and discuss numerical ways of computing
the mutipoles, either from resonance parameters or point-
wise cross section data. In section III, we expand the win-
dowed multipole representation to account for the epis-
temic uncertainty of the nuclear cross sections [32, 33].
We establish the analytic sensitivities of the windowed
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multipole parameters to the Wigner-Eisenbud R-matrix
resonance parameters. This enables us to convert to
first-order the standard resonance parameters covariance
matrix into a windowed multipoles covariance matrix,
and show the latter reproduces the statistical properties
of nuclear cross section uncertainties. Having done so,
we consider temperature effects in section IV, showing
how to analytically Doppler broaden windowed multi-
pole angle-integrated cross sections, and how to compute
arbitrary-order temperature derivatives that can prove
useful in multiphysics simulations [34, 35].

By deriving conversion methods of R-matrix resonance
parameters and their uncertainties (covariance matri-
ces) to windowed multipoles, and showing how to ac-
count for temperature effects, we thus establish the win-
dowed multipole representation as a general, physically
equivalent parametrization of R-matrix cross sections.
By its efficient on-the-fly treatment of uncertainty and
Doppler broadening, the windowed multipole representa-
tion can achieve considerable computational gains, and
has already found several new nuclear reactor physics
applications, from the establishment of a new analytic
benchmark for neutron slowing down that resolves nu-
clear resonances overlap [36], or explicit resonance treat-
ment for thermal up-scattering of angular cross sections
[37], to differential temperature tallies for higher-order
neutronics-thermohydraulics coupling schemes in nuclear
transport solvers [34, 35], or enabling new uncertainty in-
ference and propagation methods across intractable nu-
clear systems [32].

II. FROM R-MATRIX TO
WINDOWED MULTIPOLE

We here establish the Windowed Multipole Representa-
tion, deriving it from general R-matrix scattering theory.
In doing so, we show that R-matrix cross sections are
the sum of two phenomena: thresholds and resonances.
Thresholds have a behavior in the wavenumber kc space
of the channel c, so that in the vicinity of a threshold the
cross section admits a Laurent expansion in powers of kc
(starting at k−2

c ). Resonances have a behavior in the en-
ergy space E, and can thus be locally expressed as a sum
of Single-Level Breit-Wigner (SLBW) resonances, with
both symmetric and anti-symmetric Lorenztian func-
tions. In [38], we linked the R-matrix parametrization
of the scattering matrix U(E) to its wavenumber kc ex-
pansion, established by Humblet and Rosenfeld in their
Theory of Nuclear Reactions [5–13]. In this article, we
use this connection to establish the Windowed Multipole
Representation, which is the meromorphic continuation
of R-matrix cross sections in z ,

√
E space, locally ex-

pressing open channels as pole expansions. We build
upon our previous work on such expansions [38, 39], using
the same consistent notation as reference.
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A. R-matrix cross section parametrization

R-matrix theory models two-body-in/two-body-out
scattering events interacting with a “black-box” Hamil-
tonian [1–4]. Each pair of possible two-body-inputs/two-
body-outputs, along with all the corresponding quantum
numbers that describe then, constitutes a channel c. It
is assumed that for each channel, the Hamiltonian can
be partitioned into two regions: within an “inner region”
sphere of channel radius ac, the many bodies interact-
ing through the strong nuclear forces are considered an
intractable “black-box” Hamiltonian; past the channel
radius ac, the “outer region” Hamiltonian is well known
(say Coulomb potential or free-wave). For each chan-
nel c, R-matrix theory studies the many-body scattering
event into the reduced one-body system, where the solu-
tion of the Schrödinger equation is a superposition of an
incoming wavefunction Ic and an outgoing wavefunction
Oc, both function of the wavenumber kc. The latter can
be multiplied by the arbitrary (but fixed) channel radius
ac to yield the dimensionless wavenumber

ρc , kcac (1)

and we define the corresponding diagonal matrix over all
the channels ρ = diag (ρc).

1. Wavenumber-Energy mapping

Each wavenumber is related to the total energy E of
the system, which is an eigenvalue of the Hamiltonian in
the reduced center-of-mass frame. In the semi-classical
limit, a two massive particles channel (i.e. not photons)
of respective masses mc,1 and mc,2 will have a wavenum-
ber kc of:

kc(E) =

√
2mc,1mc,2

(mc,1 +mc,2) ~2
(E − ETc) (2)

where ETc denotes a threshold energy below which the
channel c is closed, as energy conservation cannot be re-
spected (ETc = 0 for reactions without threshold). In
the same semi-classical limit, a photon particle interact-
ing with a massive body of mass mc,1, the center-of-mass
wavenumber kc is linked to the total center-of-mass en-
ergy E according to:

kc(E) =
(E − ETc)

2~c

[
1 +

mc,1c2

(E − ETc) +mc,1c2

]
(3)

These two semi-classical limits can be encompassed
within a single relativistic framework as discussed in
equations (4) and (5), section II.A. of [39]. Because one
must choose the sign of the square root ±

√
· in (2), these

kc(E) relations engender a wavenumber-energy mapping

ρc(E) ←→ E (4)

which forms a complex multi-sheeted Riemann surface
with branch-points at (or close to) the threshold energies
ETc , as discussed in section II.A. p.2 of [39].

2. Transmission matrix and cross section expressions

General scattering theory expresses the incoming chan-
nel c and outgoing channel c′ angle-integrated partial
cross section σc,c′(E) at energy E as a function of the
probability transmission matrix Tcc′(E), according to
eq.(3.2d) VIII.3. p.293 of [4]:

σcc′(E) = 4πgJπc

∣∣∣∣Tcc′(E)

kc(E)

∣∣∣∣2 (5)

where the spin statistical factor is defined eq.(3.2c)
VIII.3. p.293. of [4] as:

gJπc ,
2J + 1

(2I1 + 1) (2I2 + 1)
(6)

The transmission matrix is itself derived from the scat-
tering matrix U of the interaction:

T ,
I− e−iωUe−iω

2
(7)

where ω , diag
(
ωc
)

is the diagonal matrix composed of

ωc , σ`c(ηc) − σ0(ηc), that is the difference in Coulomb
phase shift, σ`c(ηc), which are linked to the phases (argu-
ment) of the Gamma function as defined by Ian Thomp-
son in eq.(33.2.10) of [40] for angular momentum `c

σ`c(ηc) , arg
(

Γ (1 + `c + iηc)
)

(8)

and dimensionless Coulomb field parameter :

ηc ,
Z1Z2e

2Mαac
~2ρc

(9)

Note that this transmission matrix (7) definition Tcc′ ,
δcc′−e−iωcUcc′e

−iω
c′

2 is a scaled rotation of the one defined

by Lane and Thomas TL&T
cc′ , δcc′e

2iωc − Ucc′ (c.f.
eq. (2.3), VIII.2. p.292 and eq.(3.2d) VIII.3. p.293 of
[4]). We introduce definition (7) for better physical inter-
pretability, algebraic simplicity and numerical stability.

Unitarity of the scattering matrix entails that∑
c′

∣∣δcc′ − e−iωcUcc′e
−iωc′

∣∣2 = 2
(
1−<

[
e−2iωcUcc

])
,

which in turn leads to the following expression for the
total cross section of a given channel:

σc(E) ,
∑
c′

σcc′(E) = 4πgJπc
< [Tcc(E)]

|kc(E)|2 (10)

In both cross section expressions (5) and (10), the 1/ |kc|2
term links the cross section to the probability of interac-
tion, and expresses the channel reversibility equivalence:

k2
cσcc′

gJπc
=

k2
c′σc′c
gJπ
c′

(11)

The incoming Ic and outgoing Oc waves are functions
of the dimensionless wavenumber ρc , ackc and are
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linked to the regular and irregular Coulomb wave func-
tions (or Bessel functions in the case of neutral particle
channels), defined in eq.(2.13a)-(2.13b) III.2.b p.269 [4]:

Oc = H+ce
−iωc = (Gc + iFc) e−iωc

Ic = H−ce
iωc = (Gc − iFc) eiωc

(12)

and for properties of which we refer to Ian J. Thompson’s
Chapter 33, eq.(33.2.11) in [40], or Abramowitz & Stegun
chapter 14, p.537 [41]. In polar notation:

H+c = |H+c| e
iφc

|H+c| =

∣∣∣∣√|Gc|2 + |Fc|2
∣∣∣∣

φc , arg (H+c) = 2 arctan

(
|Fc|

|H+c|+ |Fc|

) (13)

3. R-matrix scattering matrix parametrization

R-matrix theory parametrizes the energy dependence
of the scattering matrix U(E) as:

U = O−1I + 2iρ1/2O−1RLO
−1ρ1/2 (14)

where the incoming and outgoing wavefunctions, I =
diag (Ic) andO = diag (Oc), are subject to the following

Wronksian condition for all channel c, wc , O
(1)
c Ic −

I
(1)
c Oc = 2i, and whereRL is the Kapur-Peierls operator,

defined as (see equation (20) section II.D of [39]):

RL ,
[
I−RL0

]−1
R = γTAγ (15)

where R is the Wigner-Eisenbud R-matrix [2]:

Rcc′(E) ,
Nλ∑
λ=1

γλ,cγλ,c′

Eλ − E
(16)

parametrized by the real resonance energies Eλ ∈ R and
the real resonance widths γλ,c ∈ R – of which we re-
spectively build the diagonal matrix e = diag (Eλ) of
size the number of levels (resonances) Nλ, and the rect-
angular matrix γ = mat (γλ,c) of size Nλ × Nc where
Nc is the number of channels. The Kapur-Peierls op-
erator (15) is thus a function of R and L0 , L − B,
where B = diag (Bc) is the diagonal matrix of real arbi-
trary boundary conditions Bc, and L = diag (Lc) where
Lc(ρc) is the dimensionless reduced logarithmic deriva-
tive of the outgoing-wave function at the channel surface:

Lc(ρc) ,
ρc
Oc

∂Oc
∂ρc

(17)

An equivalent definition (15) of the Kapur-Peierls oper-
ator RL can be expressed with the level matrix A (see
equations (17) and (18) of section II.C of [39]):

A−1 , e− EI− γ (L−B)γT (18)

As such, provided with the threshold energies, the
channel radius, boundary conditions, and Wigner-
Eisenbud resonance energies and widths, which we
can collectively call the set of R-matrix parameters{
ETc , ac, Bc, Eλ, γλ,c

}
, one can entirely determine the

energy behavior of the scattering matrix U through (14),
and therefore the cross sections through (5) and (10).

4. Reich-Moore and Breit-Wigner approximations to
R-matrix theory

In practice, many evaluations in standard nuclear data
libraries are carried out with approximations of R-matrix
theory. The most important and common is the Reich-
Moore approximation. It reduces the R-matrix to only
the channels of interest, and accounts for the effect of
all the other channels not explicitly treated by means of
the Teichmann and Wigner channel elimination method
(c.f. [42] or section X, p.299 of [4]). This approximation
is most useful when many channels are eliminated, such
that the effect on the off-diagonal elements of the level
matrix is small, a scenario often encountered in heavy
nuclei. Usually, photon channels (γ “gamma capture”)
are eliminated, so that in practice the Reich-Moore ap-
proximation of R-matrix theory [43] consists of adding a
partial eliminated capture width Γλ,γ to every resonance
energy Eλ, shifting the latter into the complex plane (c.f.
section IV.A of [39]):

eR.M. , diag

(
Eλ − i

Γλ,γ
2

)
(19)

The R-matrix (16) without the eliminated photon chan-
nels becomes:

Rc,c′ 6∈γelim. ,
Nλ∑
λ=1

γλ,cγλ,c′

Eλ − i
Γλ,γ

2 − E
i.e. RR.M. = γT (eR.M. − EI)−1

γ

(20)

and the Reich-Moore inverse level matrix (18) becomes:

A−1
R.M. , eR.M. − E I− γ (L−B)γT (21)

All the other R-matrix expressions linking these oper-
ators to the scattering matrix (14), and therefore the
cross sections, remain unchanged. Practically, the only
consequence of the Reich-Moore formalism is to intro-
duce complex resonance energies (19). In this sense, one
can consider the Reich-Moore formalism as a generaliza-
tion of R-matrix theory, even though it finds its source
in the elimination of intractable channels. It can thus
also be seen as a compression algorithm. Indeed, it is
possible to convert Reich-Moore parameters into stan-
dard R-matrix ones (not complex resonance energies) by
means of the Generalized Reich-Moore formalism, as es-
tablished in [44]. Yet this comes at the cost of introduc-
ing many more parameters, thereby considerably increas-
ing memory requirements. This is because Generalized
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Reich-Moore converts the eliminated channels R-matrix
(Nc × Nc with c 6∈ γelim.) into a square R-matrix of the
size of the levels (Nλ×Nλ), and we often have Nλ � Nc,
specially for large nuclides (c.f. [44]).

Also, note that some older evaluations are made in the
Multi-Level Breit-Wigner approximation, which simply
consists of assuming the level matrix (18) is diagonal.
This can be expressed using the Hadamard product “ ◦
” with the identity matrix as:

A−1
MLBW , A−1 ◦ I (22)

Apart from these modified expressions of the level ma-
trix, neither the Reich-Moore nor the Multi-Level Breit-
Wigner approximations have any further incidence on
how to convert R-matrix cross sections to Windowed
Multipole Representation: it suffices to take the corre-
sponding level matrix and proceed as follows.

5. Parametrizing R-matrix cross sections

By substituting the R-matrix parametrization (14) of
the scattering matrix U into the transmission matrix T
definition (7), and noticing that wavefunction relations

(12) entail
H+−H−

2i = F , one finds the transmission ma-
trix can be decomposed into the rotated (by a factor of
imaginary i) difference between a diagonal potential ma-
trix D and a full resonance matrix Z:

T = i (D −Z)

Z , H−1
+ ρ1/2RLρ

1/2H−1
+

D , H−1
+ F =

I− Y
2i

Y , H−1
+ H−

(23)

From cross section expression (5), the transmission prob-
abilities from channel c to channel c′ are then the square-
modulus |Tcc′ |2. Decomposition (23) expresses this as:

|Tcc′ |2 = |Zcc′ |2 + |Dc|2 δcc′ − 2< [Zcc′D
∗
c ] δcc′ (24)

where [ · ]∗ designates the complex conjugate. For the
total cross section (10), it is the real part of the trans-
mission matrix that appears: < [Tcc] = < [iDc]−< [iZcc].
Note that D definition (23) entails 2D∗ = i (I− Y ∗) and

|D|2 = < [iD], since definition (13) yields

< [iDc] =
|Fc|2

|Gc|2 + |Fc|2
= |Dc|2 = sin2 (φc) (25)

We can thus decompose the cross sections into the fol-
lowing components, all expressed as the real part of some
matrix elements calculable from R-matrix theory:

• Potential cross section (of channel c):

σpot
c (E) , 4πgJπc

∣∣∣∣Dc

kc

∣∣∣∣2 = 4πgJπc
< [iDc]

|kc|2
(26)

• Total cross section (of channel c):

σc(E) , σpot
c (E) + 4πgJπc

< [−iZcc]

|kc|2
(27)

• Self-scattering cross section (of channel c):

σscat
c (E) , 4πgJπc

< [−2ZccD
∗
c ]

|kc|2
(28)

• Interference cross section (of channel c):

σint
c (E) , 4πgJπc

< [−iZccY
∗
c ]

|kc|2
(29)

• Reaction cross section (from channel c to c′):

σreact
cc′ (E) , 4πgJπc

∣∣∣∣Zcc′kc

∣∣∣∣2 (30)

• Partial (angle-integrated) cross section (from chan-
nel c to c′):

σcc′(E) ,
(
σpot
c (E) + σscat

c (E)
)
δcc′ + σreact

cc′ (E)

=
(
σtot
c (E)− σint

c (E)
)
δcc′ + σreact

cc′ (E) (31)

Writing these expressions as functions of the dimen-
sionless wavenumbers of each channel, ρc , kcac, cross
sections appear as proportional to the area of the chan-
nel radius disc σc(E) ∝ 4πa2

c , and the modulation of
this area is linked to both the transmission matrix ampli-
tudes |Tcc′(E)|2 – which exhibit the resonance behavior –
and the 1/k2

c wavenumber effect that dominates the total
cross section close to the zero-energy threshold.

B. Kapur-Peierls operator pole expansion in
Siegert-Humblet radioactive states

The first step towards the Windowed Multipole Rep-
resentation consists of performing the pole expansion of
the Kapur-Peierls operator RL into what are called the
Siegert-Humblet radioactive states [45–49]. We here sum-
marize this process for the usual case of non-degenerate
solutions, and we refer to sections II and IV of [38] for a
detailed study.

The radioactive states problem consists of finding the
poles

{
Ej
}

and residue widths vectors {rj} of the Kapur-
Peierls operator RL, that is solving the following gener-
alized eigenvalue problem [45–49]:

R−1
L (E)

∣∣
E=Ej

rj = 0 (32)

where the residue widths vectors {rj} are subject to the
following normalization:

rTj

(
∂R−1

L

∂E

∣∣∣∣
E=Ej

)
rj = 1 (33)
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which can be calculated using

∂R−1
L

∂E

∣∣∣∣
E=Ej

=
∂R−1

∂E
(Ej)−

∂L

∂E
(Ej) (34)

if the R-matrix R is invertible at Ej , whence

∂R−1

∂E
(E) = −R−1γT (e− EI)−2

γR−1 (35)

If the R-matrix R is not invertible at Ej , these
radioactive poles {Ej} and radioactive widths{
rj =

[
rj,c1 , . . . , rj,c, . . . , rj,cNc

]T}
, jointly called

the Siegert-Humblet parameters, can be obtained by
solving the level matrix A radioactive eigenproblem:

A−1(E)
∣∣
E=Ej

aj = 0 (36)

where the eigenvectors aj are subject to normalization:

aj
T

(
∂A−1

∂E

∣∣∣∣
E=Ej

)
aj = 1 (37)

which is readily calculable from

∂A−1

∂E
(Ej) = −I− γ ∂L

∂E
(Ej)γT (38)

The level-matrix residues widths vectors are then linked
to the radioactive widths by the following relation:

rj = γTaj (39)

The radioactive energy poles are complex and usually
decomposed as:

Ej , Ej − i
Γj
2

(40)

It can be shown (c.f. discussion section IX.2.d pp.297–
298 in [4], or section 9.2 eq. (9.11) in [5]) that funda-
mental physical properties (conservation of probability,
causality and time reversal) ensure that the poles re-
side either on the positive semi-axis of purely-imaginary
kc ∈ iR+ – corresponding to bound states for real sub-
threshold energies, i.e. Ej < ETc and Γj = 0 – or that
all the other poles are on the lower-half kc plane, with
Γj > 0, corresponding to “resonance” or “radioactively
decaying” states. All poles enjoy the specular symmetry
property: if kc ∈ C is a pole of the Kapur-Peierls op-
erator, then −k∗c is too. Additional discussion on these
radioactive poles and residues can be found in [4], sec-
tions IX.2.c-d-e p.297-298, or in [45–49].

For our purpose of constructing the Windowed Multi-
pole Representation for R-matrix cross sections, the key
property of the radioactive states is that they allow, by
virtue of the Mittag-Leffler theorem [50, 51], to locally de-
compose the Kapur-Peierls operator into a sum of poles
and residues and a holomorphic entire part HolRL

(E), in
the neighborhoodW(E) (vicinity) of any complex energy

E ∈ C away from the branch points (threshold energies
ETc) of mapping (4):

RL(E) =
W(E)

∑
j≥1

rjr
T
j

E − Ej
+ HolRL

(E) (41)

Theorem 1 of [38] presents the branch structure of the ra-
dioactive poles Ej on the Riemann surface of the energy-
wavenumber mapping (4). We also show that when solv-
ing in dimensionless wavenumber space ρc, there are NL
number of solutions to the radioactive problem (32). In
the case of massive neutral particles (neutrons and neu-
trinos) we have

NL =

(
2Nλ +

Nc∑
c=1

`c

)
× 2

(NETc 6=ETc′
−1)

(42)

where NETc 6=ETc′
denotes the number of channels with

different thresholds. For charged particles, there is an in-
finite number (countable) of radioactive poles: NL =∞.
In essence, this is because for each different sheet of
the energy-wavenumber mapping (4), of which there are

2
(NETc 6=ETc′

−1)
, the R-matrix contributes 2Nλ poles in

wavenumber space (each resonance energy Eλ yielding
two ρc(E) space poles), and in addition each pole of the
reduced logarithmic derivative Lc(ρc) yields another ra-
dioactive pole in ρc space (c.f. theorem 1 of [38] for more
detailed discussion).

Be that as it may, radioactive poles usually have the
following characteristics (as can be observed in table I for
the case of xenon 134Xe as well as in TABLE I of [38]):
for each resonance energy Eλ there are two radioactive
poles nearby, usually on opposite sheets, close to but not
exactly the specular symmetric of one another across the
imaginary axis in wavenumber ρc space (i.e. near oppo-
site complex conjugates); moreover, for each root ωn of
the outgoing function Oc(ρc), there is a radioactive pole
nearby. Often, only one of the two radioactive poles Ej
close to the Eλ is responsible for most of the cross sec-
tion resonance behavior, while all the other radioactive
poles are more akin to non-resonant “background levels”,
though they are still necessary to fully describe the cross
section.

A critical property of the radioactive poles Ej is that
these are exactly all the poles of the scattering matrix
U(E) (proof in theorem 3 of [38]). From decomposition
(23), this entails that the transmission matrix readily
admits the following Mittag-Leffler expansion:

T (E) =
W(E)

−i
∑
j≥1

τjτ
T
j

E − Ej
+ HolT (E) (43)

where the residue width vectors are obtained by evaluat-
ing the functions in (23) at the pole values:

τj = H−1
+ (Ej)ρ1/2 (Ej) · rj (44)
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C. Transmission matrix T and resonance matrix Z
expansions in square root of energy z-space

Though energy E-space expansion (43) is correct, we
will nonetheless also introduce expansions in the square
root of energy z-space:

z ,
√
E (45)

We do this to better express the behavior of massive par-
ticles (not massless photons) near the zero-energy thresh-
old, and in order to perform analytic Doppler broaden-
ing of massive particles. Indeed, for the zero threshold
ETc = 0, the wavenumber of massive particles is simply
proportional to the square root of energy: k ∝ z. Hwang
noticed this entails a remarkable property: for neutral
particles without threshold, the Kapur-Peierls operator
RL(z) is a rational function of z (c.f. [21]), and therefore
the radioactive problem (32) can be completely solved
using polynomial root finders (c.f. section II F).

The general Mittag-Leffler expansion (41) of the
Kapur-Peierls operator in z-space is

RL(z) =
W(z)

∑
j≥1

κjκ
T
j

z − pj
+ HolRL

(z) (46)

where square root of energy z-space poles are

pj ,
√
Ej (47)

and the residue widths are connected to the poles as:

κj ,
rj√
2pj

(48)

This is readily obtained from previous E-space expres-
sions using partial fraction decomposition of simple poles:

rjr
T
j

E − Ej
=

rjr
T
j

2
√
Ej√

E −
√
Ej

+
− rjr

T
j

2
√
Ej√

E +
√
Ej

The poles pj come in opposite pairs (p+
j = +

√
Ej and

p−j = −
√
Ej), and the corresponding residue widths are

thus rotated by ±π/2 (multiplication by ±i): κ−j ,

rj/
√

2p−j = −irj/
√

2p+
j . The same rj is shared by both

poles p+
j and p−j , so that κ−j κ

−
j

T
= −κ+

j κ
+
j

T
.

Alternatively, Mittag Leffler expansion (46) can also
be directly obtained by solving the radioactive problem
in square-root-of-energy z space:

R−1
L (z)

∣∣
z=pj

κj = 0 (49)

where the residue widths vectors {κj} are subject to the
following normalization:

κT
j

(
∂R−1

L

∂z

∣∣∣∣
z=pj

)
κj = 1 (50)

which yields relationship (48) (from z =
√
E), and can

be calculated directly using

∂R−1
L

∂z

∣∣∣∣
z=pj

=
∂R−1

∂z
(pj)−

∂L

∂z
(pj) (51)

where R is invertible at z-space radioactive poles {pj} as

∂R−1

∂z
(z) = −2zR−1γT

(
e− z2I

)−2
γR−1 (52)

and where the partial derivatives ∂L
∂z (pj) can be derived

from the Mittag-Leffler expansion of L(ρ) established in
theorem 1 of [39]:

∂L

∂z
=

i +
∑
n≥1

1

ρ− ωn
+

ρ

(ρ− ωn)
2

 ∂ρ
∂z

(53)

where {ωn} are the roots of the Oc(ρ) outgoing wavefunc-
tions, also roots of H+c(ρ) from (12): ∀n, H+c(ωn) = 0.
For neutral particles, there are a finite number of such
roots, reported in TABLE I of [39].

Equivalently, we can solve for the level matrix A ra-
dioactive problem in z-space:

A−1(z)
∣∣
z=pj

αj = 0 (54)

with eigenvectors αj , aj√
2pj

subject to normalization:

αj
T

(
∂A−1

∂z

∣∣∣∣
z=pj

)
αj = 1 (55)

which is readily calculable from

∂A−1

∂z
(pj) = −2zI− γ ∂L

∂z
(pj)γ

T (56)

The level-matrix residues widths vectors are then linked
to the radioactive widths by the following relation:

κj = γTαj (57)

Regardless of the method deployed to obtain (46), the
latter entails the following Mittag Leffler expansion for
resonance matrix Z

Z(z) =
W(z)

∑
j≥1

ζjζ
T
j

z − pj
+ HolZ(z) (58)

Where the residue widths are connected to the poles as:

ζj =
τj√
2pj

= H−1
+ (pj)ρ

1/2 (pj) · κj

= H−1
+ (pj)ρ

1/2 (pj) ·
rj√
2pj

(59)



8

This links back to the transmission matrix Mittag Leffler
expansion (43), which in z-space entails:

T (z) =
W(z)

−i
∑
j≥1

ζjζ
T
j

z − pj
+ HolT (z) (60)

This transmission matrix Mittag Leffler expansion (60)
corresponds to the Humblet-Rosenfeld scattering matrix
expansion in equation (1.54) section I.1.4, p.538, of [5],
where they denote the holomorphic (entire) part HolT (z)
as Q`(k). As they discuss, the natural variable for this
non-resonant part is indeed the wavenumber kc. Equa-
tions (60) and (59) thus explicitly link the residues of the
Humblet-Rosenfeld expansions to the Wigner-Eisenbud
R-matrix parameters. Unfortunately, there exists no sim-
ple general method to express the expansion coefficients
of this entire part directly from R-matrix parameters.

D. Hwang’s conjugate continuation

The Windowed Multipole Representation is essentially
an analytic continuation of R-matrix cross sections into
the complex plane, in z-space. R-matrix cross sections
(5) and (10) are the square moduli and real parts of the
transmission matrix Tcc′(E) and the wavenumber kc(E),
yielding real cross sections. Yet one can analytically con-
tinue these cross sections by performing the conjugate
continuation of all R-matrix operators, which consists of
taking the value of the modulus and real parts on the real
axis z ∈ R, and continuing them to the complex plane.
This was the key insight introduced by Hwang in [21].

For any meromorphic function f(z), we define its con-
tinued conjugate f∗(z) as:

f∗(z) , f(z∗)∗ (61)

As such, the continued conjugate real part is defined as

<conj [f(z)] ,
f(z) + f∗(z)

2
(62)

and the continued conjugate square modulus as

|f |2conj (z) , f(z)× f∗(z) (63)

These are meromorphic complex functions: <conj [f(z)] ∈
C and |f |2conj (z) ∈ C. They are the analytic continuation
to complex z ∈ C of the real part and the square modulus,
which they match on the real axis z ∈ R. Consider a
meromorphic function f(z) with simple poles and Mittag-
Leffler expansion

f(z) =
W(z)

∑
j≥1

rj
z − pj

+
∑
n≥0

anz
n (64)

Its continued conjugate square modulus is thus

|f |2conj (z) =
W(z)

∑
j≥1

rj
z − pj

+
∑
n≥0

anz
n


×

∑
j≥1

r∗j
z − p∗j

+
∑
n≥0

a∗nz
n

 (65)

The unicity of poles and residues entails all the poles
of |f |2conj (z) are the poles pj of f(z) and their complex
conjugate p∗j . By evaluating the corresponding residues,
one finds the following Mittag-Leffler expansion for the
conjugate continuation:

|f |2conj (z) =
W(z)

∑
j≥1

rj · f(p∗j )
∗

z − pj
+
r∗j · f(p∗j )

z − p∗j
+
∑
n≥0

cnz
n

(66)
where

cn , <

 n∑
k=0

an−ka
∗
k + 2

∑
j≥1

rj ·
[
f(p∗j )

∗ − a∗n
]

pj

 (67)

which can be obtained by developing (65) and applying
Cauchy’s residues theorem to (66) with contour integra-

tions of |f |
2(z)

zn+1 . In (66), one recognizes the remarkable
property that the continued square modulus can be ex-
pressed as a continued conjugate real part

|f |2conj (z) =
W(z)

<conj

∑
j≥1

r̃j
z − pj

+
∑
n≥0

cnz
n

 (68)

with

r̃j , 2 · rj · f(p∗j )
∗ (69)

Therefore, by using Hwang’s conjugate continuation,
one can express all R-matrix cross sections as the contin-
ued conjugate real part of conjugate continued R-matrix
operators: this is the key to converting R-matrix cross
sections to Windowed Multipole Representation.

E. Windowed Multipole Representation

The Windowed Multipole Representation is the ana-
lytic continuation of the pole expansion of R-matrix cross
sections. For open channels (energies above thresholds
E > ETc), the energy dependence of R-matrix cross sec-
tions – described by equations (5) and (10) – is expanded
along the real energy axis E ∈ R, and the correspond-
ing expressions are analytically continued to all complex
energies E ∈ C. The Windowed Multipole Represen-
tation can thus be seen as a generalization of R-matrix
cross sections to the complex plane, for open channels,
as shown in figure 1. As such, windowed multipole cross
sections only match R-matrix cross sections for real en-
ergies above the channel threshold: E > ETc .
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1. Windowed Pole Representation: Transmission matrix
approach

The most straightforward approach is to consider the
transmission matrix T (E) Mittag-Leffler expansion (43),
and apply Hwang’s conjugate continuation in energy
space, which yields:

|T |2conj (E) =
W(E)

<conj

∑
j≥1

−iτ̃j
E − Ej

+ Hol|T |2(E)


(70)

where we use the Hadamard product “ ◦ ” to express the
residues as:

τ̃j , 2 · τjτT
j ◦ T

(
E∗j
)∗

(71)

Thus, for real energies with open channels, the partial
and total cross sections can be expressed respectively as

σcc′(E) =
W(E)

4πgJπc
|kc(E)|2

<conj

∑
j≥1

−i [τ̃j ]cc′

E − Ej
+ Hol|T |2(E)


(72)

and

σc(E) =
W(E)

4πgJπc
|kc(E)|2

<conj

∑
j≥1

−i
[
τjτ

T
j

]
cc

E − Ej
+ HolT (E)


(73)

Expressions (72) and (73) are general, they apply to any
cross section described by R-matrix theory (be it massless
photons or massive charged or neutral particle channels).
They are local expressions, only valid on the neighbor-
hoodW(E) of any given energy E away from the thresh-
olds (branch points ETc of (4) mapping), though this
neighborhood can be as large as the distance between
thresholds (for more discussion on this point, we refer
to the penultimate paragraph of section II.D in [38]).
They reflect the fact that two physical phenomena dic-
tate the behavior of R-matrix cross sections: resonances
and thresholds.

Away from threshold energies ETc – the branch-points
of wavenumber-energy mapping (4) – each resonance can
be accurately represented by a Single-Level Breit-Wigner
(SLBW) profile in energy space E, that is the combina-
tion of symmetric and anti-symmetric Lorenztian func-
tions. These are made evident by recalling definition
(40), which splits the radioactive poles into real and

imaginary components Ej , Ej − i
Γj
2 , and noticing that

each resonance of the Windowed Multipole Representa-
tion (72) can be expressed as:

<
[
a+ ib

E − Ej

]
= a

(E − Ej)

(E − Ej)2
+

Γ2
j

4

+ b
Γj
2

(E − Ej)2
+

Γ2
j

4
(74)

The sum of resonances is complemented by the holo-
morphic background term HolT , and modulated by the

1
|kc(E)|2 term. This illustrates the fact that the wavenum-

ber kc dominates the behavior of R-matrix cross sections
near thresholds ETc , where kc → 0. Moreover, the holo-
morphic (entire) part is itself more naturally described
as a function of the wavenumber kc rather then the en-
ergy: HolT (k), as explained by Humblet and Rosenfeld
through equations (1.64) and (1.67) section I.1.4, p.539-
540, of [5]. The threshold behavior of R-matrix cross
sections was detailed by Wigner in [52]. Depending on
the angular momenta ` and `′ and the charges of the
particles, reaction and scattering cross sections either:

a) have threshold behaviors in powers of k
N(`,`′)
c , where

N(`, `′) ∈ Z is some integer depending on the differ-
ent angular momenta, but never smaller than negative
two (N(`, `′) ≥ −2); or b) in some cases of Coulomb
repulsion, modulate this with an exponential decay ∝
exp(−a/kc) with some real positive a > 0 (see section
III of [52] for more details). This means we can repre-
sent in all generality the threshold behavior as a Laurent
expansion around the threshold: σcc′ ∼

kc→0

∑
n≥−2 ank

n
c .

By thus expressing the threshold behavior explicitly,
we can constitute the Windowed Multipole Representa-
tion of R-matrix cross sections:

σcc′(E) ,
W(E)

∑
n≥−2

ãcc
′

n knc (E) +
1

E
<conj

∑
j≥1

R̃cc
′

j

E − Ej


(75)

and

σc(E) ,
W(E)

∑
n≥−2

acnk
n
c (E) +

1

E
<conj

∑
j≥1

Rcj
E − Ej


(76)

where the residues are obtained by evaluating at the pole
values as:

R̃cc
′

j , −i
4πgJπc Ej
|kc(Ej)|2

[τ̃j ]cc′ (77)

and

Rcj , −i
4πgJπc Ej
|kc(Ej)|2

[
τjτ

T
j

]
cc (78)

Equivalently, the Windowed Multipoles Representa-
tion can be carried out in square root of energy z-space,
in what constitutes theorem 1.

Theorem 1. Windowed Multipole Formalism
Let Ej be the energy-space poles of the Kapur-Peierls op-

erator RL, defined in (15), and let z ,
√
E be the square

root of energy. The energy dependence of R-matrix cross
sections can be exactly expressed as a Laurent expansion
in wavenumber kc, of order no less than k−2

c , plus the
conjugate continuation real part (62) of a sum of energy-
space resonances with poles Ej, which in z-space yield

pairs of opposite poles pj = ±
√
Ej, so that partial cross
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sections (5) take the Windowed Multipole Representation:

σcc′(z) ,
W(z)

∑
n≥−2

ãcc
′

n knc (z) +
1

z2
<conj

∑
j≥1

r̃cc
′

j

z − pj


(79)

and the total cross section (10) takes the form:

σc(z) ,
W(z)

∑
n≥−2

acnk
n
c (z) +

1

z2
<conj

∑
j≥1

rcj
z − pj

 (80)

where the partial residues can be constructed from R-
matrix parameters as:

r̃cc
′

j , −i
4πgJπc p

2
j

|kc(pj)|2
[
2 · ζjζTj ◦ T

(
p∗j
)∗]

cc′
(81)

and the total residues as

rcj , −i
4πgJπc p

2
j

|kc(pj)|2
[
ζjζ

T
j

]
cc

(82)

where the ζj residue widths vectors are linked to the
Kapur-Peierls operator RL poles and residues through
relations (59).

Alternatively, the residues can be numerically obtained
through Cauchy’s residues theorem contour integrals

r̃cc
′

j =
1

iπ

∮
Cpj

z2σcc′(z)dz (83)

where Cpj designates a positively oriented simple closed
contour containing only pole pj. For instance, if Cpj is a
circle of small radius ε > 0 around pole pj, this yields

rcj =
ε

π

∫ 2π

θ=0

(
pj + εeiθ

)2
σc
(
pj + εeiθ

)
eiθdθ (84)

In order to perform these contour integrals, R-matrix
cross sections (5) and (10) must have been meromorphi-
cally continued to complex energies by means of conjugate
continuations (63) and (62) respectively.

Therefore, by solving the radioactive problem (32) – or
level-matrix one (36) – to find the poles Ej and residues
rj of the Kapur-Peierls operator (respectively pj and κj

from (50) or level-matrix equivalent (54) in z-space), we
can compute the transmission matrix residues τj from
(44) and the conjugate continuation ones τ̃j from (71)
(respectively ζj from (59) in z-space), to find the poles
and residues of the Windowed Multipole Representation
of R-matrix cross sections, through equations (75), (76),
(77), and (78); or respectively equations (79), (80), (81),
and (82) for z-space.

2. Windowed Pole Representation: potential and resonance
matrices approach

The transmission matrix approach is exact, but it
has three drawbacks: 1) it is not simple to interpret

(a) 238U first resonances (3 s-waves and 4 p-waves).

(b) 238U windowed multipole cross section surface.

(c) 238U first s-wave resonance peak.

FIG. 1. Windowed multipole representation of R-matrix cross
sections: 238U total cross section (minus potential scatter-
ing) meromorphic continuation into the complex z-plane, for

z = ±
√
E in (

√
eV). This surface’s crest and thalweg line

along the real axis is the R-matrix cross section above the zero
threshold. FIG. 1(b) shows the resonance peaks are the sad-
dle points between the complex conjugate poles. Negative z
in FIG.1(b) are on the shadow branch {E,−} of mapping (2).
The black circle in FIG.1(c) represents the contour integrals
around the poles of the complex cross section which enable
both conversion to windowed multipole covariances (theorem
2) and analytic Doppler broadening (theorem 3).

physically; 2) it does not give us information on the



11

“background” behavior (non-resonant Laurent expansion∑
n≥−2 ank

n
c ); 3) it can be numerically unstable. Decom-

position (23) of the transmission matrix helps us separate
the cross sections into parts we can interpret physically:
the potential cross section σpot

c has no resonances (26);
the reaction cross section σreact

cc′ has all the resonances
(30); and both the partial cross section σcc′ from (31)
and the total cross section σc from (86) also have inter-
ference resonances from the real part of the resonance
matrix Z. This means all the resonances of R-matrix
cross sections can be recovered from the resonance matrix
Z Mittag Leffler expansion (58). Applying Hwang’s con-
jugate continuation method to construct the Windowed
Multipole Representation then yields:

• Potential scattering cross section (of channel c):

σpot
c (E) =

W(z)
4πgJπc

< [iDc]

|kc|2
(85)

• Total cross section (of channel c):

σc(z) ,
W(z)

σpot
c (z) +

1

z2
<conj

∑
j≥1

rcj
z − pj

+
∑
n≥−2

bcnk
n
c (z)

(86)
where the total residues rcj are defined in (82).

• Self-scattering cross section (of channel c):

σscat
c (E) =

W(z)

1

z2
<conj

∑
j≥1

scatrcj
z − pj

+
∑
n≥−2

ccnk
n
c (z)δcc′

(87)
with scattering residues:

scatrcj , −
4πgJπc p

2
j

|kc(pj)|2
[
2 · ζjζTj ◦D

(
p∗j
)∗]

cc′
δcc′ (88)

• Interference cross section (of channel c):

σint
c (E) =

W(z)

1

z2
<conj

∑
j≥1

intrcj
z − pj

+
∑
n≥−2

dcnk
n
c (z)δcc′

(89)
with interference residues:

intrcj , −i
4πgJπc p

2
j

|kc(pj)|2
[
ζjζ

T
j ◦ Y

(
p∗j
)∗]

cc′
δcc′ (90)

• Reaction cross section (from channel c to c′):

σreact
cc′ (z) =

W(z)

1

z2
<conj

∑
j≥1

reactrcc
′

j

z − pj

+
∑
n≥−2

b̃cc
′

n knc (z)

(91)
with reaction residues:

reactrcc
′

j ,
4πgJπc p

2
j

|kc(pj)|2
[
2 · ζjζTj ◦Z

(
p∗j
)∗]

cc′
(92)

• Partial (angle-integrated) cross section (31) (from
channel c to c′):

σcc′(E) =
(
σpot
c (E) + σscat

c (E)
)
δcc′ + σreact

cc′ (E)

=
(
σtot
c (E)− σint

c (E)
)
δcc′ + σreact

cc′ (E)

Noticing that −iT ∗ = Z∗ − D∗, this entails the
partial residues r̃cc

′

j from (81) are connected to the
total residues rcj from (82), the reaction residues
reactrcc

′

j from (92), the scattering residues scatrcj
from (88), and the interference residues intrcj from
(90), according to:

r̃cc
′

j = reactrcc
′

j +scat rcj

= reactrcc
′

j + rcj −int rcj
(93)

Total cross section decomposition (86) is simpler to
interpret physically than expression (82) directly derived
from the transmission matrix, because the potential cross
section σpot

c is extracted from the background Laurent
expansion:

∑
n≥−2 a

c
nz
n. The same holds for the partial

cross section (79), where the residues decomposition (93)
untangles the direct expression (81) from the transmis-
sion matrix approach. Though mathematically equiva-
lent, some of these approaches may be more numerically
stable than others.

Importantly, we do not need the poles of the potential
matrix D to express the partial and total cross sections.
This is because any such poles (the zeros of H+) can-
cel out of the scattering matrix (14), and therefore of
the cross sections. Before we proved this result in the-
orem 3 of [38], Hwang had to explicitly decompose the
potential cross section σpot

c into poles and residues in
eq. (1) and (2) of [24] (also in eq. (3) and (4) of [25]),
with severe numerical instability implications which he
attempted to remedy by introducing pseudo-poles in [23].
We now known that under proper analytic continuation,
these spurious poles have zero residues in the transmis-
sion matrix, and thus cancel out of the partial and total
cross sections.

3. Pole expansion: R-matrix construct or rational fit

So far, we have constructed the transmission matrix
Mittag-Leffler expansion (60) by first solving the radioac-
tive states problem (49) and then obtaining the trans-
mission matrix residues from those of the Kapur-Peierls
operator, through (59). One could dispense of the inter-
mediary steps and find the radioactive poles {pj} directly
through the transmission matrix by solving the general-
ized eigenvalue problem

T−1(z)
∣∣
z=pj

ζj = 0 (94)
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and subjecting the residue widths vectors {ζj} to the
following normalization:

ζTj

(
∂T−1

∂z

∣∣∣∣
z=pj

)
ζj = i (95)

Though mathematically equivalent, this all-in-one ap-
proach can nonetheless be prone to numerical instabil-
ities. Which leads us to the question of how to nu-
merically solve the generalized eigenproblems - either
the radioactive ones (49) or directly (94). On this is-
sue, we direct the reader to the section of theorem 1
in [38] for a more detailed discussion, in particular on
the multi-sheeted nature of the Riemann mapping (4),
which can complicate the search for solutions. We will
here simply state that these are nonlinear eigenvalue
problems, and general algorithms to solve them can be
found in the Handbook of Linear Algebra [53], chap-
ter 115. One such algorithm is the Rayleigh-quotient
method, used by Brune to find alternative parameters
in [54]. Alternatively, it is sometimes more computa-
tionally advantageous to first find the radioactive poles
{pj} directly by solving the channel determinant prob-

lem, det
(
R−1
L (z)

∣∣
z=pj

)
= 0, or the corresponding level

determinant one, det
(
A−1(z)

∣∣
z=pj

)
= 0, and to second

solve the associated eigenvalue problem (which is now
linear), or even to directly evaluate the residues at the
found poles by contour integrals (83) and (84). Such
methods tailored to find all the roots of the radioactive
problem where introduced in [29], in section 5 of [36], or
in equations (200) and (204) of [55]. Also, solving the
Kapur Peierls radioactive problem (49) will be advanta-
geous over solving the level matrix one (54) when the
number of levels Nλ far exceeds the number of channels
Nc, and conversely.

Rather than starting from the Wigner-Eisenbud R-

matrix resonance parameters
{
ETc , ac, Bc, Eλ, γλ,c

}
to

construct the Windowed Multipole Representation poles
pj and residues r̃cc

′

j and rcj as (81) and (82), an al-
ternative approach is to simply curve-fit the point-wise
energy-dependence of nuclear cross sections σcc(E) with
the corresponding Windowed Multipole Representation
forms (79) and (80). For instance, this approach was
successfully deployed in [37] and in [30], where using the
“black-box” rational function approximating algorithm
called “vector-fitting” [56, 57] led to finding the exact
resonant radioactive poles {pj} of 16O, for which no res-
onance parameters were published [30]. This conversion
of point-wise R-matrix cross sections into windowed mul-
tipoles representation approach was generalized to most
of the nuclides found in the ENDF/B-VII.1 nuclear data
library [58, 59], and could potentially be facilitated by
recent advances in rational approximation algorithms –
such as RKFIT [60] or AAA [61].

4. Windowing process: Laurent background fit

Regardless of the method deployed to find the poles{
pj
}

and their corresponding residues, there exists no
general way to construct the thresholds Laurent expan-
sions,

∑
n≥−2 ankc(z)

n, from the R-matrix parameters.

One must thus select an energy windowW(E) and curve
fit the background Laurent expansion

∑
n≥−2 ankc(z)

n

by subtracting the resonances, that is the poles contri-

bution
∑
j∈W(E)

rcj
z−pj . Nonetheless, there is a difficulty

as to which such poles one should include explicitly into
the window. It is not necessary to explicitly call all the
poles

{
pj
}

for each window W(E), rather the contribu-
tion of far-away poles is best curve-fitted and included in
the Laurent expansion

∑
n≥−2 ankc(z)

n. The criterion

used to decide which poles {pj} to include within each
window is to select an accuracy bound for the Doppler
broadened cross section, and include in window W(E)
all the poles whose Doppler broadened resonances have
a significant impact on the cross section within that win-
dow. Thus, the greater the maximum temperature, the
more far-away poles have to be included to compute the
cross section within window W(E). Once the contribut-
ing poles (after Doppler broadening) have been found,
we subtract them from the zero-kelvin cross sections
and curve-fit the difference with a Laurent-expansion∑
n≥−2 ankc(z)

n. More detailed explanations on this

windowing process can be found in [26–28].

Though the background Laurent expansion must be
numerically fitted, and that the resonant poles them-
selves may be accurately found using rational approxima-
tion “black-box” algorithms, it is critical to understand
that the Windowed Multipole Representation (79) and
(80) is not a curve-fitting approximation: this is a rigor-
ous representation, mathematically and physically equiv-
alent to the exact R-matrix theory cross sections (for
real energies in open channels), or the Humblet-Rosenfeld
pole expansions in wavenumber space. This can be tested
by curve-fitting in E and kc space, both the resonances
and the background Laurent expansions. One will notice
that the E-space Breit-Wigner profiles (74) capture ex-
actly one-for-one the resonance behavior. However, the
threshold behaviors are not well represented by the E
variable: while few coefficients suffice to reach high ac-
curacy using Laurent expansions in kc (usually no more
than a−2, a−1, a0, and a1), many more expansion coef-
ficients are necessary when fitting the background with
Laurent expansions with powers of E.

Finally, remember that for non-massless particles,
wavenumber-energy mapping (2) entails that: k2

c ∝
z2 − ETc . Thus, for zero-threshold reactions (ETc = 0),
we have a direct proportionality kc ∝ z. In order to
achieve closed-form Doppler-broadening expressions, we
may be willing to sacrifice the physically accurate Lau-
rent expansion in kc, and replace it with an approxi-
mation in powers of z – that is a Laurent expansion∑
n≥−2 anz

n – plus rational Padé-type approximations
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with simple poles – that is adding non-physical pseudo-
poles – so as to approximate the exact threshold be-
havior

∑
n≥−2 ankc(z)

n with powers of z and pseudo-

poles
∑
n≥−2 ãnz

n+
∑
n≥1

r̃n
z−p̃n . Runge’s theorem guar-

antees such approximation can always be performed to
high-accuracy, though this is often costly, as many more
pseudo-poles and Laurent expansion coefficients have to
be introduced. Nonetheless, this approximation will have
advantages when Doppler-broadening massive (not mass-
less photons) particles (both charged and neutral), and it
also provides a unified Windowed Multipole formalism:

σ(z) =
W(E)

∑
n≥−2

anz
n +

1

z2
<conj

∑
j≥1

rj
z − pj

 (96)

In addition to the residues (83) and (84) of theorem 1, one
can now also obtain the Laurent expansion coefficients by
means of contour integrals:

a−2 = <conj

∑
j≥1

rj
pj

+
1

2iπ

∮
C0

z · σ(z)dz

a−1 = <conj

∑
j≥1

rj
p2
j

+
1

2iπ

∮
C0

σ(z)dz

an =
n≥0

1

2iπ

∮
C0

σ(z)

zn+1
dz =

1

2πεn

∫ 2π

θ=0

σ
(
εeiθ
)
e−inθdθ

(97)

where C0 designates a positively oriented simple closed
contour containing only pole 0, for instance a circle cen-
tered at zero with small radius ε > 0. Relations (97) are
obtained by performing partial fraction decomposition:

1

z2

rj/2

z − pj
=
rj/2

p2
j

[
1

z − pj
− 1

z
− pj
z2

]
Therefore, converting R-matrix cross sections to the

unified Windowed Multipole Representation formalism
(96) is conceptually simple: it suffices to solve for the
z-space poles {pj} of the A level matrix (18) – that is
radioactive problem (54) – and then perform contour in-
tegrals (84), (83) and (97) on the continued conjugate
(61) R-matrix cross sections (10) and (5) to find their
residues and Laurent expansion coefficients.

Henceforth, we will only treat this unified Windowed
Multipole Representation formalism (96): it is physically
exact for any R-matrix cross section of zero-threshold,
and an approximation of the exact Windowed Multipole
representations (79) and (80) only in windows that in-
clude non-zero thresholds.

F. Hwang’s special case:
zero-threshold neutron cross sections

There is one special case where it is possible to fully
and explicitly convert R-matrix parameters into their ex-
act windowed multipole representation (96), without any

need of curve-fitting or truncating the Laurent expan-
sion: this is the case of neutron cross sections with no
thresholds, which Hwang first investigated in [21]. In
this case, because all channels have zero energy threshold
(ETc = 0), every channel’s wavenumber is proportional
to the square root of energy, kc ∝ z, we can therefore
write the dimensionless wavenumber as:

ρc = ρ0c · z

ρ0c , ac

√
2mc,1mc,2

(mc,1 +mc,2) ~2

(98)

Moreover, there are no branch-points to mapping (2)
other than zero, so that the Windowed Multipole Repre-
sentation (96) is exact and valid everywhere for positive
energies E > 0: the Laurent development

∑
n≥−2 anz

n

at zero accurately describes the threshold behavior (as
there is no exponential dampening from charges). Be-
cause there are no charges, the dimensionless Coulomb
field parameter (9) is null, ηc = 0, so that the difference

ωc , σ`c(ηc)− σ0(ηc) in Coulomb phase shift (8) is such
that we always have eiωc = 1. From this, definitions (12)
entail that the incoming and outgoing wavefunctions are
then simply the H− and H+ combination of regular and
irregular Bessel functions:

O(ρ) = H+(ρ) = G(ρ) + iF (ρ) = ρ (−y`(ρ) + ij`(ρ))

I(ρ) = H−(ρ) = G(ρ)− iF (ρ) = ρ (−y`(ρ)− ij`(ρ))
(99)

where j`(ρ) is the spherical Bessel function of the first
kind, and y`(ρ) is the spherical Bessel function of the sec-
ond kind, respectively defined in chapter 10, eq.(10.47.3)
and eq.(10.47.4) of [40], or in chapter 10, eq.(10.1.1) of
Abramowitz & Stegun [41]. This in turn entails the re-
markable property that the reduced logarithmic deriva-
tive (17) of the outgoing-wave function L(ρ) is now a
rational function (that is the ratio of polynomials) in ρ,
whose expressions, along with those of O(ρ), are reported
in TABLE I of [39], and we refer to section II.B of [39]
for a more detailed description of these functions.

1. Solving the radioactive states problem:
polynomial rootfinding

Crucially, in this special case of only neutron channels
without threshold, the fact that L(ρ) is now a rational
function in z entails that (15), the Kapur-Peierls operator
RL, is also a rational function in z-space. Therefore, the
radioactive problem (49) itself becomes that of finding
the roots of a rational function. We solve the radioactive
problem through the level matrix approach (54), where
the residue width vectors are normalized as (55), which
we can calculate through (56) where the partial deriva-

tive (53) is now simply ∂ρ
∂z = ρ0c from (98). The key is

now to find the radioactive poles
{
pj
}

in z-space. We can
do so by solving for the roots of the inverse level matrix

(18) determinant: det
(
A−1(z)

∣∣
z=pj

)
= 0 . Since this
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determinant is a rational function in z, one can find all
its zeros by expressing it in irreducible form, and solve
for all the roots of the numerator polynomial. This can
be accomplished by developing the determinant and ap-
plying lemma 3 of [39] on diagonal divisibility and capped
multiplicities, in an analogous fashion as in the proof of
theorem 3 in [39], to which we point for more detailed
explanations. More precisely, one can see in TABLE I

of [39] that L`(ρ) = u`+1(ρ)
q`(ρ)

is a proper rational function

with simple poles, with a denominator q`(ρ) of degree
` and a numerator u`+1(ρ) of degree ` + 1. The poly-
nomial factor Q(z) that makes the denominator of the
det
(
A−1

)
(z) rational function irreducible can then be

found by applying lemma 3 of [39] on diagonal divisibil-
ity and capped multiplicities, yielding

Q(z) ,
Nc∏
c=1

q`c(z) (100)

so that for only neutron channels without thresholds,
finding all the radioactive poles

{
pj
}

is akin to solving
for all the roots of the following polynomial:

Q(z) · det
(
e− z2I− γ (L(z)−B)γT

)∣∣
z=pj

= 0 (101)

The degree of this polynomial, and thus the number of
(complex) roots

{
pj
}

, is:

NL = 2Nλ +

Nc∑
c=1

`c (102)

which is a particular case of the general number of ra-
dioactive poles NL we stated in (42) (and proved in the-
orem 1 of [38]), but with only one threshold, ETc =
0, so that the number of different thresholds is one:
NETc 6=ETc′

= 1.

In the simple case of Multi-Level Breit-Wigner approx-
imation (22), the diagonal level matrix A−1

MLBW greatly
simplifies the radioactive states eigenproblem (54): it is
now diagonal and the poles {pj} are the roots of:

Eλ − p2
j −

Nc∑
c=1

γ2
λ,c (Lc(pj)−Bc) = 0 (103)

We then have
[
κjκ

T
j

]
MLBW

= γT
[
αjα

T
j

]
MLBW

γ where

normalization (55) entails

[
αjα

T
j

]
MLBW

= diagNλ

(
−1

2pj +
∑Nc
c=1 γ

2
λ,c

∂Lc
∂z (pj)

)
(104)

This approach will yield the same results as those in [62].
Interestingly, besides adding the spurious poles

{
ωn
}

of the potential cross section σpot
c (eq. (1) and (2)

of [24] or eq. (3) and (4) of [25]), Hwang also ac-
counted for too many

{
pj
}

poles, in eq. (35a) section

III.A, p.197 of [21]. This is for two fundamental rea-
sons: 1) lemma 3 of [39] on diagonal divisibility and

capped multiplicities means Hwang’s q`(
√
E) functions

can be taken out of his product in equation (36) of

[21]; 2) these same q`(
√
E) functions are not the same

as our q`(ρ) functions, which are the denominator of

L`(ρ). Instead, Hwang’s q`(
√
E) functions are the de-

nominator of the penetration P`(ρ) and shift S`(ρ) func-
tions – defined as L`(ρ) = S`(ρ) + iP`(ρ) in (29) of
[39] where a thorough and in-depth study of these func-
tions is undertaken – and these denominators are differ-
ent from the denominator of L`(ρ), as we show in ta-
ble III of [39]. In essence, this is because by writing
L`(ρ) = S`(ρ) + iP`(ρ), the denominator is brought to

its squared modulus: L`(ρ) =
u`+1(ρ)·q∗` (ρ)
q`(ρ)·q∗` (ρ) , which is no

longer its irreducible form, and which therefore doubles
the number of L`(ρ) poles by introducing superfluous
complex conjugate poles from q∗` (ρ). These superfluous
poles have always been overlooked until now, recent ex-
amples are eq. (9) and (10) of [62], eq. (I.7.28) of [63],
or eq. (2.29) p.75 of [64], where they count them to find

NL = 2Nλ + 2
∑Nc
c=1 `c, which is actually the number of

alternative analytic poles NS we establish in eq. (49)
theorem 3 of [39], instead of the correct number (102) of

radioactive poles NL = 2Nλ +
∑Nc
c=1 `c we demonstrated

in theorem 1 of [38].
Because polynomial root-finding is no simple endeavor

– see [29] or [64] for methods applied to the radioactive
problem (101) and see [65–78] for more general methods
– searching for the wrong number of poles (in particular
too many) can have dire numerical consequences. For
instance, Hwang explains in [21] how he had to go to
quadruple precision in this code “WHOPPER”. He was
finding the poles one by one using a Newton-Raphson
method, and then removing them to search for the next
pole. But once he had eliminated all the true poles, he
was still searching for additional ones which did not actu-
ally exist. Numerically, though, one can never fully can-
cel out a pole, and thus will always find fictitious poles
in the immediate vicinity of the cancelled ones. This
is exactly what happened to Hwang, and why he had
many spurious poles clustered around the non-resonant
Nλ ones. Hence knowing the correct number NL of poles
(102) – and more generally (42) – is crucial in practice.

2. Exact multipole representations

Hwang also spent a lot of subsequent work performing
a pole expansion of the potential cross section σpot

c as
well as of the energy dependence he found in his scat-
tering residues, in eq. (1) and (2) of [24] or eq. (3) and
(4) of [25]. We recall that though the potential cross sec-
tion does have poles – roots

{
ωn
}

of the H+(ρ) function
reported in TABLE I of [39] or expressed by radicals in
table II of [39] – these poles actually have zero residues in
the scattering matrix, and thus cancel out of the partial



15

and total cross sections, as we prove in theorem 3 of [38].
It will thus suffice to write that for the case of neutron
cross sections with zero threshold, (25) and (26) entail
the potential cross section takes the form:

σpot
c (z) = 4πa2

c

gJπc
ρ0

2
c

sin2 φc(z)

z2

= 4πa2
c

gJπc
ρ0

2
c

1

z2
<conj

[
1− e−2iφc(z)

2

]
(105)

With all this in mind, we can now finish the explicit
Windowed Multipole Representation of no-threshold
neutral particles cross sections. Upon finding the NL
roots

{
pj
}

of the polynomial radioactive problem (101),
we can then solve for the nullspace of the inverse level
matrix (which we here assume is an eigenline and we
refer to [38] for the degenerate cases), and notice that
that the degrees of the level matrix components A is at
most -2, which leads to the the following, exact, par-
tial fraction decomposition of the level matrix and of the
Kapur-Peierls operator:

A(z)=

NL∑
j=1

αjα
T
j

z − pj

κj,γ
Tαj

RL(z)=

NL∑
j=1

κjκ
T
j

z − pj

(106)

We can then build a pole expansion of the resonance ma-

trix Z from (23) by noticing that the ρ1/2(z) =
√
zρ

1/2
0

lead to an additional z term for each residue, and that the
degrees of the numerator and denominator of z times the
level matrix, zA(z), is still negative (degree of at most
-1), guaranteeing the level matrix is a proper rational
fraction with simple poles in z-space:

ρ
1
2RLρ

1
2 (z)=

NL∑
j=1

pjρ
1
2
0κjκ

T
j ρ

1
2
0

z − pj
(107)

This has as consequence the remarkable property that
for zero-threshold neutral cross sections, the z-space ra-
dioactive squared widths κjκ

T
j (rank-one residues of the

Kapur-Peierls operator at poles pj) add up to nullity:

NL∑
j=1

κjκ
T
j = 0 (108)

From (23), we therefore obtain the following expression
for the resonance matrix:

Z(z) = H−1
+ (z)

NL∑
j=1

pjρ
1
2
0κjκ

T
j ρ

1
2
0

z − pj
H−1

+ (z) (109)

Where we deliberately left the energy dependence of
H−1

+ (z), and recall that for neutral particles H+(ρ) =

O(ρ). Polar decomposition (13) entails:H+
−1
` (ρ) =∣∣d−1

` (ρ)
∣∣ e−iφ`(ρ) = e−iρ · d−1

` (ρ), which is Hwang’s no-
tation in eq (3) of [25]. A closer look at the last column
of TABLE I of [39] shows that d−1

` (ρ) is the rational func-
tion of degree zero (that is a proper rational fraction plus
a constant) with ` poles – the roots

{
ωn
}

– that is the
square root of that which Hwang identified in eq. (1) of
[24]. Careful analysis of this functions, using TABLE I
of [39] and conjugate continuation definitions (66), yields
the following expressions:

e−2iφc(z)=e−2iρc(z)
d−1
`c

(z)

d−1
`c

∗
(z)

= Yc(ρc(z))

d`(ρ)=ei`π2
ρ`∏`

n=1 (ρ− ωn)

d−1
` (ρ)

d−1
`

∗
(ρ)

=(−1)`
∏̀
n=1

(
ρ− ω∗n
ρ− ωn

)
|d`|−2

conj (ρ)=
ρ2`∏`

n=1 (ρ− ωn) (ρ− ω∗n)
(110)

The diagonal elements of (109) are therefore exactly:

Zcc(z) = |d`c |
−2
conj (z)e−2iφc(z)

NL∑
j=1

ρ0cpj

[
κjκ

T
j

]
cc

z − pj
(111)

which, upon partial fraction decomposition, yields the
Hwang multipole representation [21]:

σc(z) = σpot
c (z) + σHwang

c (z)

+
1

z2
<conj

−i e−2iφc(z)
NL∑
j=1

Hwangrcj
z − pj


Hwangrcj , 4πa2

c

gJπc
ρ0

2
c

|d`c |
−2
conj (pj) · ρ0cpj

[
κjκ

T
j

]
cc

σHwang
c (z) , 4πa2

c

gJπc
ρ0

2
c

1

z2
<
[
−i e−2iφc(z)∆(z)

]
∆(z) ,

`c∑
n=1

∆n

[
ρ

1
2RLρ

1
2

]
cc

(
ωn
ρ0

)
ρ− ωn

+
∆∗n

[
ρ

1
2RLρ

1
2

]
cc

(
ω∗n
ρ0

)
ρ− ω∗n


∆n ,

ω2`c
n∏`c

k=1 (ωn − ω∗k)
∏`c
k 6=n (ωn − ωk)

(112)
where the Hwang residues in (112) are identical to eq.
(2) of [25]. This scripture is the conjugate continuation
real part of NL+`c poles, as identified in [64]: the NL ra-
dioactive poles (102), poles of the Kapur-Peierls operator
(49), plus the roots

{
ωn
}

of the outgoing wavefunction
O(ρ). However, we have proved the latter cancel out
of the transmission matrix, and thus of the cross sec-
tion (theorem 3 of [38]). Therefore, there must exist a
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multipole representation with only the NL Kapur-Peierls
poles. This can be achieved by developing the potential
cross section (105) into poles and residues, factoring the
e−2iρc component (which has no poles) using expressions
(110), and performing a partial fraction decomposition
of the rational terms. Upon careful consideration, one
will notice that this rational function is of degree zero,
that its poles are the radioactive poles (and only those),
and that the constant (obtained by evaluating at infinity
|ρc| → ∞) is (−1)`c . This shifts the potential cross sec-
tion, so that the total cross section (27) can be expressed
as the sum of a background cross section (with no poles),

σback
c (z),4πa2

c

gJπc
ρ0

2
c

sin2
(
ρc(z) + `c

π
2

)
z2

(113)

plus a resonant cross section with the NL radioactive
poles:

σc(z) = σback
c (z) +

1

z2
<conj

−i e−2iρc(z)
NL∑
j=1

totrcj
z − pj


totrcj , 4πa2

c

gJπc
ρ0

2
c

d−2
`c

(pj) · ρ0cpj
[
κjκ

T
j

]
cc

= 4πa2
c

gJπc
ρ0

2
c

(−1)`
(ρ0cpj)

2`+1
[
κjκ

T
j

]
cc∏`

n=1 (ρ0pj − ωn)
2

(114)
To the best of our knowledge, expression (114) is the first
time the exact multipole representation of no-threshold
neutron cross sections is derived with the proper number
of poles. It is exact and complete, in the sense that no
window-by-window Laurent expansions are needed. This
is only made possible in this specific case of neutron cross
sections with zero threshold (no charged particles nor
thresholds): though quite restrictive, it is still a case of
great practical importance for nuclear reactor physics, as
most heavy isotopes are evaluated with only two channels
(neutron and fission) with all the other channels being
eliminated under the Reich-Moore approximation. This
significant difference with light isotopes (in which many
more channels are explicitly treated) is partly due to the
fact that for heavy isotopes the number of photon chan-
nels is large enough that one can average their contribu-
tion out, and also because the resonance region starts at
lower energies for heavy isotopes, with many resonances
before the first non-zero threshold.

Note that the advantage of not needing local Laurent
developments in (114) comes at the computational cost
of having to sum all the radioactive poles for each energy
call, instead of accounting for the contributions of far-
away poles in the Laurent expansion of each window –
in this sense, the windowing process is a form of local
compression algorithm for improved efficiency [23, 26].

To compute the partial cross sections (31), we can cal-
culate the reaction cross section (30) and the interference
one (29). For the reaction cross section, we use the square
modulus conjugate continuation (66), and notice that
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(b) Second p-wave resonance.

FIG. 2. Xenon 134Xe Reich-Moore cross sections for spin-
parity group Jπ = 1/2(−) p-wave resonances: the cross sec-
tions are generated using the multipole parameters from table
I in the multipole representation total cross section (114), as
well as the reaction cross section (117) and interference one
(119) to compute the scattering cross section as (31), while the
capture cross section is the difference between the total and
the scattering. All cross sections are identical to those com-
puted using the Reich-Moore approximation R-matrix equa-
tions with the ENDF/B-VIII.0 resonance parameters.

∣∣H−1
+

∣∣−2

conj
(z) = |d|−2

conj (z) , diag (d`c(ρ) · d`c(ρ∗)∗)
−2

is now a rational function (the e−iρ terms cancel out).
Therefore, evaluating at the pole values yields the par-
tial fraction decomposition of the square modulus of the
resonance matrix:

|Z|2conj (z) = <conj

NL∑
j=1

ℵj

z − pj

 (115)

where the residues ℵj are explicitly constructed as

ℵj , 2|d|−2
conj(pj)ρ0

(
p2
jκjκ

T
j ◦
[
RL(p∗j )

]∗)
ρ0 |d|−2

conj(pj)

(116)
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In summary, the energy dependence of the residues in
(109) cancels out of the reaction residues, hence the re-
action cross section (from channel c to c′) is exactly

σreact
cc′ (z) =

1

z2
<conj

∑
j≥1

reactrcc
′

j

z − pj

 (117)

where the residues can either simply be evaluated as (92)
or constructed as:

reactrcc
′

j ,
4πa2

c

ρ0
2
c

gJπc [ℵj ]cc′ (118)

For the interference cross section (29), we notice using
expressions (110) that the phase behavior also cancels
out of < [−iZccY

∗
c ], so that plugging the resonance ma-

trix partial fraction decomposition (111) into interference
cross section expression (29) yields rational fraction

σint
c (z) =

1

z2
<conj

NL∑
j=1

intrcj
z − pj

 (119)

where the interference residues can simply be evaluated
as (89), or explicitly constructed as

intrcj , −i4πa2
c

gJπc
ρ0

2
c

|d`c |
−2
conj (pj) · ρ0cpj

[
κjκ

T
j

]
cc

= −i4πa2
c

gJπc
ρ0

2
c

(ρ0cpj)
2`c+1

[
κjκ

T
j

]
cc∏`

n=1 (ρ0cpj − ωn) (ρ0cpj − ω∗n)
(120)

Having explicitly constructed the total, potential, reac-
tion, and interference cross sections, we can thus calcu-
late the partial cross sections explicitly through (31).

3. Evidence for exact multipole representation in 134Xe

We discovered shadow alternative poles of 134Xe spin-
parity group Jπ = 1/2(−) two p-wave resonances in
[39], and found the radioactive parameters poles and
residues in [38]. We now complete this xenon trilogy
by here providing the exact multipole representation of
134Xe spin-parity group Jπ = 1/2(−) cross section. The
multipole parameters are documented in table I, and
the corresponding cross sections are plotted in figure
2. In ENDF/B-VIII.0, 134Xe is a MLBW evaluation
with only one explicit (neutron) channel, all other chan-
nels are eliminated using Wigner-Teichmann and Reich-
Moore approximations. One can thus compute the total
cross section using mutlipole representation (114), and
the scattering cross section as the partial cross section
for σnn(E) from (31), using reaction cross section (117)
and interference one (119). The capture cross section is
then computed as the difference between the total and
the scattering cross section. The p-waves (`c = 1) entail
there are NL = 5 radioactive poles – validating (102) –

and the corresponding residues are documented in table
I. As we see in this xenon example, the multipole rep-
resentation is an exact alternative formalism to compute
R-matrix cross sections. Nonetheless, if we want to treat
charged particle channels and thresholds, we need to use
local Laurent developments in energy windows, which
makes the windowed multipole representation cumber-
some and somewhat unsuited for standard nuclear data
libraries.

4. Exact to windowed multipole representations

Note that we can convert the exact multipole to-
tal cross section expression (114) – which has energy-
dependent residues due to e−2iρc(z) – into the general
windowed multipole representation (96), with energy-
independent residues plus a Laurent expansion of order
no less than −2. It suffices to evaluate the residues at
the pole values, and note that the Laurent expansion
part Laur

tot
(z) is then the difference of the two remaining

components, that is:

Laur
tot

(z) =
1

z2
<conj

NL∑
j=1

−i totrcj
z − pj

(
e−2iρ0cz − e−2iρ0cpj

)
= <conj

NL∑
j=1

totrcj
iz2

∑
n≥0

(−2iρ0c)
n

n!

zn − pnj
z − pj


=
∑
n≥1

n∑
m=1

zm

z3
<conj

NL∑
j=1

totrcj
i
pn−mj

(−2iρ0c)
n

n!


=
∑
n≥−2

anz
n

(121)
so that the total cross section (112) can be expanded as

σc(z) = σback
c (z) +

1

z2
<conj

NL∑
j=1

−i e−2iρ0cpj totrcj
z − pj


+Laur

tot
(z)

(122)
where the residues are now independent of energy. By
further performing the analytic expansion of the back-
ground cross section (113)

σback
c (z),4πa2

c

gJπc
ρ0

2
c

1−(−1)`

2 z2
+
∑
n≥1

(−1)n

2

(2ρ0c)
2n

(2n)!

z2n

z2


(123)

one recovers the general windowed multipole representa-
tion (96).

As we see, in this special case of neutron channels with-
out threshold, we can explicitly construct the full win-
dowed multipole representation (122) without the need
of local expansions for each energy windowW(E). Some-
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TABLE I. Windowed multipole parameters of the two p-wave resonances of 134Xe, spin-parity group Jπ = 1/2(−), converted
from ENDF/B-VIII.0 evaluation (MLBW) to multipole representation using Reich-Moore level matrix (21).

z =
√
E with E in (eV)

A = 132.7600
ac = 5.80 : channel radius (Fermis)

ρ0 =
Aac

√
2mn
h

A+1
in (
√

eV
−1

), so that ρ(z) , ρ0z

with
√

2mn
h

= 0.002196807122623 in units (1/(10−14m
√

eV))

Multipole parameters (rounded to 5 digits): converted from R-matrix parameters using Reich-Moore equations.

Radioactive poles pj Total residues totrcj Reaction residues reactrcc
′

j Interference residues intrcj Hwang residues Hwangrcj

(
√

eV) from (101) (barns
√

eV
3
) from (114) (barns

√
eV

3
) from (118) (barns

√
eV

3
) from (120) (barns

√
eV

3
) from (112)

6.4652× 10−8 6.9766× 10+8 2.8519× 10−2 −2.8446× 10−2 −4.6048× 10+5

−i7.9179× 10+2 −i5.5825× 10−2 +i4.6048× 10+5 +i4.6048× 10+5 −i2.8446× 10−2

−4.6731× 10+1 −1.2144× 10+3 −1.5693× 10−1 −1.3518× 10−1 −1.2229× 10+3

−i9.7105× 10−4 +i1.4390× 10+2 +i1.7479× 10+3 +i1.2229× 10+3 −i1.3518× 10−1

4.6731× 10+1 −1.2144× 10+3 1.5693× 10−1 1.7868× 10−1 −1.2229× 10+3

−i1.8048× 10−3 −i1.4386× 10+2 +i9.4043× 10+2 +i1.2229× 10+3 +i1.7868× 10−1

−7.9454× 10+1 −1.0827× 10+3 −4.2538× 10−1 −4.1864× 10−1 −1.1047× 10+3

−i1.0084× 10−3 +i2.1937× 10+2 +i1.3735× 10+3 +i1.1047× 10+3 −i4.1864× 10−1

7.9454× 10+1 −1.0827× 10+3 4.2538× 10−1 4.3211× 10−1 −1.1047× 10+3

−i1.4991× 10−3 −i2.1936× 10+2 +i9.2389× 10+2 +i1.1047× 10+3 +i4.3211× 10−1

R-matrix parameters: reference ENDF/B-VIII.0 evaluation (MLBW) used with Reich-Moore level matrix (21).

E1 = 2186.0 : first resonance energy (eV)
Γ1,n = 0.2600 : neutron width of first resonance
(not reduced width), i.e. Γλ,c = 2Pc(Eλ)γ2

λ,c

Γ1,γ = 0.0780 : eliminated capture width (eV)
E2 = 6315.0 : second resonance energy (eV)
Γ2,n = 0.4000 (eV)
Γ2,γ = 0.0780 (eV)
gJπ = 1/3 : spin statistical factor
Bc = −1

what ironically, it is also much more cumbersome to ex-
plicitly construct both the Laurent expansion and the
residues, compared to the more general approaches of
theorem 1. Alternatively, one can solve for the radioac-
tive poles

{
pj
}

through polynomial root-finding (101),
and then revert to the general methods of theorem 1 to
compute the corresponding residues, after what the Lau-
rent expansions can be locally curve-fitted.

III. WINDOWED MULTIPOLE COVARIANCES

In section II, we established the windowed multi-
pole representation as a general alternative way to
parametrize the energy dependence of R-matrix cross sec-
tions (theorem 1). In this section, we consider how the
Windowed Multipole Representation can account for R-
matrix cross section epistemic uncertainties. Such uncer-
tainties exist because nuclear cross sections are known
from experiments, and experimental measurements al-
ways come with error-bars. Therefore, in addition to
evaluating R-matrix parameter values, evaluators add

resonance parameters covariance matrices to standard
nuclear data libraries (File 32 in the ENDF/B-VIII.0 li-
brary [14]), aimed at reproducing the empirical uncer-
tainty observed in nuclear cross sections.

A. Converting R-matrix parameters covariances

If it exists, the covariance matrix Var (X) of a random
vector X with expectation value E [X] is a defined as:

Var (X) , E
[
XX†

]
− E [X]E [X]

†
(124)

We denote
{

Γ
}

the set of R-matrix resonance parame-

ters
{

Γ
}
,
{
Eλ, γλ,c

}
, which are implicitly considered to

be the expectation value of the underlying distribution,{
Γ
}
, E [Γ], and Var (Γ) their corresponding covariance

matrices. These represent the resonance parameters epis-
temic uncertainty, which is accounted for by assuming
the parameters are drawn from the multivariate normal
distribution: N (Γ,Var (Γ)). Recall that both the chan-
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nel radii ac and the boundary conditions Bc are arbi-
trarily set constants, and therefore have no uncertainty.
Also, we here do not explicitly treat the uncertainty on
threshold energies ETc , but our approach could readily
be extended to them.

We consider the unified Windowed Multipole Rep-
resentation of R-matrix cross sections (96), which we
proved is an exact representation of R-matrix cross sec-
tions everywhere but for windows containing a non-zero
threshold ETc ∈ W(E) – in these threshold windows,
form (96) is only an approximation of exact R-matrix
cross sections of theorem 1, yet this approximation (96)
can be made to reach any target accuracy. For each en-
ergy windowW(E), we denote

{
Π
}

the windowed multi-

pole parameters – that is the set of poles
{
pj
}

, residues{
r̃cc
′

j , rcj
}

, and Laurent expansion coefficients
{
an
}

that
parametrize cross section (96) in that energy window:{

Π
}
,
{
pj , r̃

cc′

j , rcj , an
}

.
The main result of this section – theorem 2 – estab-

lishes a framework to convert R-matrix resonance param-
eters covariance matrices Var (Γ) into Windowed Multi-
pole Covariances Var (Π). It is based on the following
lemma 1, which derives sensitivities of R-matrix cross
sections σ(E) to both resonance parameters

{
Γ
}

and

multipoles
{

Π
}

.

Lemma 1. Cross sections parameter sensitives
Let z ∈ C be the complex, analytically continued square-
root-of-energy: z =

√
E. Consider Windowed Multipole

cross section (96), i.e. locally of the form:

σ(z) =
W(E)

∑
n≥−2

anz
n +

1

z2
<conj

∑
j≥1

rj
z − pj


We recall the Cauchy-Poincaré-Wirtinger holomorphic
complex differential definition for z = x+ iy, x, y ∈ R

∂z ,
1

2
(∂x − i∂y) (125)

so that ∂zz = 1, and ∂zz
∗ = 0, where z∗ , x− iy.

The cross section sensitivities to multipoles ∂σ
∂Π (z) (i.e.

the partial differentials of the cross section with respect
to multipoles) are then given, for each windowW(E), by:

∂σ

∂pj
(z)=

1

z2

rj
2

(z − pj)2 ,
∂σ

∂p∗j
(z)=

1

z2

r∗j
2(

z − p∗j
)2

∂σ(z)

∂< [pj ]
=

1

z2
<conj

[
rj

(z − pj)2

]
,
∂σ(z)

∂= [pj ]
=

1

z2
<conj

[
i rj

(z − pj)2

]
∂σ

∂rj
(z)=

1

z2

1
2

z − pj
,
∂σ

∂r∗j
(z)=

1

z2

1
2

z − p∗j
∂σ(z)

∂< [rj ]
=

1

z2
<conj

[
1

z − pj

]
,
∂σ(z)

∂= [rj ]
=

1

z2
<conj

[
i

z − pj

]
∂σ

∂an
(z)=zn

(126)

Moreover, the cross section sensitivities to resonance pa-
rameters ∂σ

∂Γ (z) (i.e. the partial differentials of the cross
section with respect to resonance parameters) are subject
to the following multipole representation:

∂σ

∂Γ
(z) =
W(E)

1

z2
<conj

∑
j≥1

(
∂rj
∂Γ

)
z − pj

+

(
rj · ∂pj∂Γ

)
(z − pj)2


+
∑
n≥−2

(
∂an
∂Γ

)
zn

(127)

We seek to convert R-matrix resonance parameters co-
variances Var (Γ) into Windowed Multipole covariances
Var (Π). Yet obtaining multipoles

{
Π
}

from resonance

parameters
{

Γ
}

is not a simple transformation: one must

solve the radioactive problem (49) for the poles
{
pj
}

and

then compute the corresponding residues
{
r̂cc
′

j , rcj
}

(theo-
rem 1). We therefore take an implicit functions approach,
and locally invert the Γ → Π transformation by means
of the Jacobian matrix

(
∂Π
∂Γ

)
, that is the sensitivities of

windowed multipole coefficients to the R-matrix reso-
nance parameters (Cauchy-Dini implicit functions the-
orem). Under the assumption of small deviations from
the mean (small relative uncertainties), this yields a first-
order linear relation from multipoles

{
Π
}

to resonance

parameters
{

Γ
}

. In which case, the chain rule entails

the multipoles
{

Π
}

are also subject to a multivariate nor-
mal distribution N (Π,Var (Π)), the covariance of which
is given by (129) (sometimes called “sandwich rule”).
Therefore, the key to converting resonance covariances
Var (Γ) into multipole covariances Var (Π) lies in the sen-
sitivities

(
∂Π
∂Γ

)
. Theorem 2 establishes a contour-integrals

method to calculate these sensitivities
(
∂Π
∂Γ

)
, provided R-

matrix cross sections sensitivities ∂σ
∂Γ (E) from lemma 1.

Theorem 2. Windowed Multipole Covariances
Let us be provided with the sensitivities ∂σ

∂Γ (z) of R-matrix
cross sections (analytically continued) to resonance pa-
rameters (127). Then the multipole sensitivities (Jaco-
bian matrix) with respect to the resonance parameters,(
∂Π
∂Γ

)
, can be obtained from the following system (128) of

contour integrals in the complex plane, where Cpj desig-
nates any positively oriented simple closed contour con-
taining only pole pj. For instance, Cpj can be a circle of
radius ε > 0 around pole pj.
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1

2

rj
p2
j

·
(
∂pj
∂Γ

)
=

1

2πi

∮
Cpj

(z − pj)
∂σ

∂Γ
(z)dz =

ε2

2π

∫ 2π

θ=0

∂σ

∂Γ
(pj + εeiθ)e2iθdθ

1

2

1

p2
j

·
(
∂rj
∂Γ

)
− rj
p3
j

·
(
∂pj
∂Γ

)
=

1

2πi

∮
Cpj

∂σ

∂Γ
(z)dz =

ε

2π

∫ 2π

θ=0

∂σ

∂Γ
(pj + εeiθ)eiθdθ

(
∂an
∂Γ

)
+ δ−1,n<conj

NL∑
j=1

2
(
rj · ∂pj∂Γ

)
− pj

(
∂rj
∂Γ

)
p3
j

 + δ−2,n<conj

NL∑
j=1

(
rj · ∂pj∂Γ

)
− pj

(
∂rj
∂Γ

)
p2
j


=

1

2πi

∮
C0

1

zn+1

∂σ

∂Γ
(z)dz =

1

2πεn

∫ 2π

θ=0

∂σ

∂Γ
(εeiθ)e−inθdθ

(128)

For each energy windowW(E), the multipole sensitivities(
∂Π
∂Γ

)
from system (128) can then be converted to first

order into Windowed Multipole covariances Var (Π) as:

Var (Π) =

(
∂Π

∂Γ

)
Var (Γ)

(
∂Π

∂Γ

)†
(129)

where [ · ]† designates the Hermitian conjugate (adjoint).

Proof. Partial fraction expansion of (127) lemma 1 yields

∂σ

∂Γ
(z) =
W(E)

<conj

NL∑
j=1

(
rj · ∂pj∂Γ

)
− pj

(
∂rj
∂Γ

)
p2
jz

2

+

(
rj · ∂pj∂Γ

)
p2
j (z − pj)2

+
2
(
rj · ∂pj∂Γ

)
− pj

(
∂rj
∂Γ

)
p3
jz

+
pj

(
∂rj
∂Γ

)
− 2

(
rj · ∂pj∂Γ

)
p3
j (z − pj)


+
∑
n≥−2

(
∂an
∂Γ

)
zn

The different residues associated with poles 0 or pj are
then obtained by invoking Cauchy’s residue theorem and
multiplying correspondingly by zn or (z − pj), yielding
(128). Importantly, these contour integrals cannot be
performed without having an analytic representation of
the partial derivatives of the cross section at complex en-
ergies, ∂σ∂Γ (z), which is made possible for open channels by
Hwang’s conjugate continuations (66) and (62). Finally,
(129) is a direct application of the well-known chain-rule
first-order perturbation covariance formula.

B. Cross section uncertainties and parameter
covariances

By introducing resonance covariances Var (Γ), present
standard nuclear data libraries are built with the implicit
assumption that sampling resonance parameters from a
multivariate normal distribution N (Γ,Var (Γ)) and com-
puting the corresponding cross sections σΓ(E) generates

FIG. 3. Multipole sensitivities to R-matrix parameters
(
∂Π
∂Γ

)
.

Trajectories of pole p as resonance parameters {Γ} vary, using
the SLBW approximation of the first resonance of 238U (ap-
pendix A). The blue points show how the pole changes as Eλ
is varied with equal spacing within 3 standard deviations of
the enlarged covariance matrix, while the green points result
from equally spaced variations of Γγ within their uncertainty
range (3 standard deviations of enlarged covariance matrix).
The Jacobian

(
∂Π
∂Γ

)
from system (128) are the tangents of

these trajectories from the mean pole p (red reference point)

and are shown in solid lines. Complex pole p units are (
√

eV).

outcome distributions commensurate to our experimen-
tal uncertainty. Note that this parameter uncertainty
representation is not obvious in se, because cross sec-
tions are measured at specific energies, and the measured
cross section uncertainty is usually described with a given
exogenous distribution (say normal, log-normal, or ex-
ponential), dictated by the experiment. Therefore, no
parameter distribution (be it resonance parameters mul-
tivariate normal N (Γ,Var (Γ)) or any other) can exactly
reproduce the cross section uncertainty for each measure-
ment energy. And yet, these parameters distributions
are our best way of balancing all the different uncertain-
ties from disjointed experiments with the underlying R-
matrix theory which unifies our understanding of nuclear
interactions physics.

Significant work has been carried out to infer param-
eter distributions that accurately reproduce our uncer-
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tainty of nuclear cross sections [55, 79–86]. Assuming
R-matrix cross section uncertainty is well represented by
the resonance parameters multivariate normal distribu-
tion N (Γ,Var (Γ)) documented in standard nuclear data
libraries (file 32 in ENDF/B-VIII.0 [14]), there are two
ways of translating this into cross section distributions:
1) first-order sensitivity propagation, or; 2) stochastic
cross sections.

1. For any given energy E, first-order sensitivity prop-
agation simply considers the R-matrix cross sec-
tion sensitivities to resonance parameters ∂σ

∂Γ (E)
and linearly converts the resonance parameter co-
variance Var (Γ) into a cross section covariance
Var (σ(E)) at each energy E, using the chain rule:

Var (σΓ(E)) =

(
∂σ(E)

∂Γ

)
Var (Γ)

(
∂σ(E)

∂Γ

)†
(130)

The same approach can be undertaken using R-
matrix cross section sensitivities to windowed mul-
tipoles ∂σ

∂Π (E), established in equations (126) of
lemma 1, and then propagating the windowed mul-
tipole covariances Var (Π) to first order, yielding
cross section covariances

Var (σΠ(E)) =

(
∂σ(E)

∂Π

)
Var (Π)

(
∂σ(E)

∂Π

)†
(131)

2. Stochastic cross sections consist of sampling reso-
nance parameters

{
Γ
}

from their uncertainty dis-
tribution – say multivariate normal N (Γ,Var (Γ))
– and computing the corresponding cross section
σΓ(E) as a function of energy

dP
(
σΓ(E)

)
= σdP(Γ)(E) (132)

Alternatively, one could sample multipoles
{

Π
}

from a windowed multipole distribution – say
multivariate normal N (Π,Var (Π)) – and corre-
spondingly generate Windowed Multipole stochas-
tic cross sections

dP
(
σΠ(E)

)
= σdP(Π)(E) (133)

Stochastic cross sections uncertainties only match first
order sensitivity approaches (130) and (131) for very
small covariances. This is because normally distributed
resonance parameters do not translate into normally dis-
tributed cross sections (132): sampling resonance param-
eters from N (Γ,Var (Γ)) and then computing the corre-
sponding cross sections (5) and (10) through R-matrix
equations (7), (14), (15), (16), and (17), cannot in gen-
eral lead to normally distributed cross sections σΓ(E) at
all energies. However, they do in the linear case, which
is a good first-order approximation for small covariances.

Stochastic cross sections (132) are at the core of the
TENDL library [19, 20], and being able to sample them

is a necessary prerequisite to the Total Monte Carlo un-
certainty propagation method [87–89]. In practice, this
has been a major computational challenge, requiring to
sample resonance parameters from standard nuclear data
libraries, reconstruct the corresponding nuclear cross sec-
tions at zero Kelvin (0K), and then process each one
(with codes such as NJOY [90]) to compute the corre-
sponding cross sections at temperature T (c.f. discussion
of Doppler broadening and thermal scattering in section
IV). All this is costly, and storing the pre-processed cross
sections consumes vasts amount of memory. Because one
can directly compute Doppler-broadened nuclear cross
sections from Windowed Multipole parameters

{
Π
}

(c.f.
theorem 3 section IV), the Windowed Multipole Library
can generate stochastic cross sections (133) on-the-fly,
without any pre-processing nor storage, a true physics-
enabled computational breakthrough.

(a) 238U first capture resonance, parameters sampled from
ENDF/B-VIII uncertainty. 30 samples shown here.

(b) Cross section histogram at resonance energy Eλ = 6.67428 eV.

FIG. 4. R-matrix cross sections uncertainty, computed ei-
ther from the ENDF/B-VIII resonance parameters covariance
Var (Γ) (table II in appendix A), or from the multipoles co-
variance Var (Π), as converted through (129), for both the
stochastic cross sections (132, 133) and the sensitivities ap-
proach (130, 131).

Regardless of the method employed to represent nu-
clear cross section uncertainty, it would be desirable that
the uncertainties stemming from a windowed multipole
representation

{
Π
}

are consistent with those stemming
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(a) 238U first capture resonance, parameters sampled from an
enlarged ENDF/B-VIII uncertainty. 30 samples shown here.

(b) Cross section histogram at resonance energy Eλ = 6.67428 eV.

FIG. 5. R-matrix cross sections uncertainty, computed ei-
ther from the enlarged ENDF/B-VIII resonance parameters
covariance Var (Γ) (table II in appendix A), or from the multi-
poles covariance Var (Π), as converted through (129), for both
the stochastic cross sections (132, 133) and the sensitivities
approach (130, 131).

from resonance parameters
{

Γ
}

upon converting their co-
variances as indicated in equation (129) of theorem 2. We
undertook numerical experiments to measure the cross
section uncertainty distributions generated by either co-
variances Var (Γ) or Var (Π), for both sensitivity method
(130) and (131), or stochastic cross sections (132) and
(133). We treated the simple case of the first single-
level Breit-Wigner capture resonance of uranium isotope
238U, which admits closed form explicit expressions for
the multipoles, the cross sections, and the sensitivities,
all documented in appendix A. We compared the meth-
ods for both the ENDF/B-VIII.0 resonance parameters
covariance (which is small as this is a very well known
resonance), and an enlarged covariance matrix which con-
serves the same correlations but brings the cross section
dependency past the linear regime. Both covariances are
documented in table II (appendix A), and figures 4 and
5 show the following trends:

• For the sensitivity method (130) or (131), the cross
section uncertainty is identical for either the res-
onance parameter covariance Var (Γ) or the win-
dowed multipole covariance Var (Π), which is the

immediate consequence of conversion (129).

• For the stochastic cross section method (132) or
(133), sampling parameters from N (Γ,Var (Γ)) or
N (Π,Var (Π)) generates similar cross section dis-
tributions.

In the small covariance case of figure 4, the stochastic
cross section distributions (132) and (133) are very close
to the normal distributions from the sensitivity approach
(131), though at the tails they start differing. In the large
covariance case of figure 5, the stochastic cross sections
distributions are radically different from the normal dis-
tribution of the sensitivity method. This discrepancy is
made more blatant because the cross section distribution
is recorded at resonance peak energy Eλ = 6.67428 eV,
hence a small shift in resonance energy Eλ can dramat-
ically lower the cross section value. This illustrates the
fact that in theorem 2, when converting the resonance pa-
rameters covariances Var (Γ) into Windowed Multipoles
covariances Var (Π) through (129), the linear assumption
used for the local inversion using Jacobians

(
∂Π
∂Γ

)
from

(128) holds for a wider range of resonance parameters
than the liner assumption for the cross section sensitiv-
ity method (131). This can be seen in figure 3, where
the tangent lines from Jacobians

(
∂Π
∂Γ

)
are close to the

conversion surface, trajectories of Π(Γ), even after three
standard deviations of the large covariance matrix, some-
thing clearly not true of the cross section linear behavior
at peak energy from figure 5.

Therefore, whichever method is chosen to represent the
nuclear cross sections uncertainty, the Windowed Multi-
poles covariances Var (Π) from theorem 2 faithfully re-
produce the uncertainty from the resonance parameters
covariances Var (Γ).

IV. DOPPLER BROADENING OF
WINDOWED MULTIPOLE CROSS SECTIONS

Hitherto, we have established that the zero Kelvin (0
K) windowed multipole representation of cross sections is
equivalent to the traditional Wigner-Eisenbud R-matrix
parametrization, in both cross section values and their
uncertainties. We henceforth study how temperature af-
fects R-matrix cross sections at the nuclear level through
Doppler broadening (we do not address thermal neutron
scattering at the crystalline level), and derive how the
windowed multipole representation exhibits a major ad-
vantage: in its form (96) – exact for zero-threshold chan-
nels or windows without thresholds, and otherwise an ac-
curate approximation – the window multipole representa-
tion of R-matrix cross sections can be Doppler broadened
precisely by means of closed-form formulae (theorem 3).
This enables the long sought-after computational capa-
bility of on-the-fly Doppler broadening of nuclear cross
sections [21, 26, 91–97].
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A. Doppler broadening of nuclear cross sections:
Solbrig’s Kernel

As temperature rises, nuclei vibrate, so that the ef-
fective cross section for a beam of particles sent upon a
target at a given energy and wavenumber is the statisti-
cal result of the zero Kelvin cross sections averaged out
on all the possible relative energies at which the target
and the beam interact. For non-relativistic, non-massless
particles (not photons) in the semi-classical representa-
tion, Doppler broadening of nuclear cross section is the
process of integration over the target velocity distribu-
tion, assuming the latter is an isotropic Maxwellian (that
is a Boltzmann distribution of energies). Solbrig derived
this Doppler broadening integral in eq. (3) p. 259 of [91],
where the cross section σT (E) at temperature T and en-
ergy E (in the laboratory coordinates) is related to the
cross section σ(E) at temperature T0 as:

EσT (E) =

∞∫
0

σ(E′)E′
1
2

2β
√
π

[
e
−
(√

E′−
√
E

β

)2

− e
−
(√

E′+
√
E

β

)2
]
dE′

(134)
where β is the square root temperature energy parameter:

β ,

√
kB(T − T0)

A
(135)

where A designates the atomic mass number, and kB the
universal Boltzmann constant.
Upon change of variable to z =

√
E, the Doppler broad-

ening operation (134) becomes Solbrig’s kernel:

z2σT (z) =

∫ ∞
0

x2σT0
(x) · KD

β(z, x)dx

where: KD
β(z, x) ,

1

β
√
π

[
e−( z−xβ )

2

− e−( z+xβ )
2] (136)

Note that for zero-threshold channels, where z ∝ kc(E),
Solbrig kernel (136) is an integral operator acting on
k2
c (E) · σc(E), which is the transmission matrix square

amplitudes from cross section definition (5). The Solbrig
kernel (136) thus acts directly on the interaction proba-
bilities, rather than the actual cross section, just as the
channel reversibility equivalence (11).

Solbrig kernel integral (136) has presented major com-
putational challenges in nuclear reactor physics. When
no information is provided as to the functional form of
the zero Kelvin cross section σ(E) – i.e. it is consid-
ered a point-wise input – the traditional way of comput-
ing the Doppler broadened cross section at any tempera-
ture σT (E) has been to pre-tabulate exact cross sections
σTi(E) (usually using the SIGMA1 algorithm of [93]) for
a grid of reference temperatures

{
Ti
}

, and then inter-
polate between these points to obtain σT (E) [98–100].
However, storing all these pre-computed cross sections
at reference temperatures

{
Ti
}

represents a consider-
able memory burden, which is why methods to minimize
the memory footprint and perform Doppler broadening

(136) on-the-fly have been actively sought after [95]. The
most state-of-the-art approaches are either optimal tem-
perature Doppler kernel reconstruction quadratures [97]
(which only require 10 reference temperatures

{
Ti
}

for
standard nuclear reactor codes), new Fourier transform
methods [96], or Monte Carlo target motion sampling
rejection schemes [101–103].

To do better, one must look at the functional form
of the cross section. When the reference temperature is
zero Kelvin T0 = 0K, we have shown in section II that
R-matrix cross sections are the sum of threshold behav-
ior and resonances. Resonances have traditionally been
Doppler broadened approximately, using Voigt profiles
[91], as we here recall in section IV B.

B. Approximate Doppler broadening of
Breit-Wigner resonances: Voigt profiles

The traditional approach to Doppler broadening nu-
clear cross sections has been to consider individual Single-
Level Breit-Wigner resonances (74) at zero Kelvin, with
both symmetric (Cauchy-Lorentz distributions) and anti-
symmetric components, assuming it has a zero-energy
threshold where it behaves as an s-wave neutron chan-
nel (angular momentum ` = 0), so that we can multiply
the resonance (74) by the threshold behavior 1√

E
, as de-

scribed by Wigner in III.A.2 [52]:

σSLBW
0 (E) ,

1√
E
<
[
a+ ib

E − Ej

]
=

1√
E

[(
a

Γj/2

)
χ0(x) +

(
b

Γj/2

)
ψ0(x)

]
(137)

where x ,
(
E−Ej
Γj/2

)
with Ej , Ej − i

Γj
2 from (40), and

ψ0(x) ,
1

x2 + 1
=

Γ2
j/4

(E − Ej)2
+

Γ2
j

4

χ0(x) ,
x

x2 + 1
=

(E − Ej) Γj
2

(E − Ej)2
+

Γ2
j

4

(138)

Upon Doppler broadening (134), Single-Level Breit-
Wigner resonance (137) becomes:

σSLBW
T (E) =

1√
E

[(
a

Γj/2

)
χT (E) +

(
b

Γj/2

)
ψT (E)

]
(139)

where χT and ψT are defined using x′ ,
(
E′−Ej
Γj/2

)
as

χT (E),
E−

1
2

2β
√
π

∞∫
0

χ0(x′)

[
e
−
(√

E′−
√
E

β

)2

− e
−
(√

E′+
√
E

β

)2
]
dE′

ψT (E),
E−

1
2

2β
√
π

∞∫
0

ψ0(x′)

[
e
−
(√

E′−
√
E

β

)2

− e
−
(√

E′+
√
E

β

)2
]
dE′

(140)
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To compute these functions, the following approxima-
tions are then traditionally introduced (c.f. [91], or sec-
tion 3.3.3 chapter 4, volume 1 of [104]):

1. the Maxwell approximation, whereby we assume
the second exponential term is vanishingly small:

e
−
(√

E′+
√
E

β

)2

� 1. This is valid for E � β2, but
fails at low energies or high temperatures,

2. a Taylor expansion around the energy of Doppler
broadening: E′ = E + ε, with ε� 1. This leads to√
E′−

√
E = ε

2
√
E

+O
(
ε2
)
, so that we approximate

e
−
(√

E′−
√
E

β

)2

≈ e
−
(
E′−E
2
√
Eβ

)2

in the integrals, which
under change of variable E′ → x′ become

ψT (x) ' 1

2β
√
πE

Γj
2

∫ ∞
−2Ej/Γj

ψ0(x′)e−
(x′−x)2

4τ dx′

χT (x) ' 1

2β
√
πE

Γj
2

∫ ∞
−2Ej/Γj

χ0(x′)e−
(x′−x)2

4τ dx′

where we defined

τ , 4E

(
β

Γj

)2

= 4E
kB(T − T0)

AΓ2
j

(141)

3. we furthermore assume 2Ej � Γj , so that we ap-
proximate the integral lower limit to −∞, yielding

ψT (x) ' 1√
4πτ

∫ +∞

−∞

1

1 + x′2
e−

(x′−x)2

4τ dx′

χT (x) ' 1√
4πτ

∫ +∞

−∞

x′

1 + x′2
e−

(x′−x)2

4τ dx′
(142)

The latter are the standard Voigt functions, U(x, τ) and
V(x, τ), defined in section 7.19 of [40], which are related
to the Faddeyeva function (150) defined in 7.2.3 [40], by:√

π

4τ
w

(
x+ i

2
√
τ

)
= U(x, τ) + iV(x, τ)

for =
[
x+i
2
√
τ

]
> 0. In the case =

[
x+i
2
√
τ

]
< 0, we use

− [w (z∗)]
∗

to calculate the integral. So that the ψT (E)
and χT (E) functions can approximately be related to the
Faddeyeva function as:

ψT (E) '
√

π

4τ
<
[
w

(
x+ i

2
√
τ

)]
χT (E) '

√
π

4τ
=
[
w

(
x+ i

2
√
τ

)] (143)

So that the Doppler broadened Breit-Wigner resonance,
under these approximations, can be expressed as:

σSLBW
T (E) ' 1√

E
<
[
a+ ib

iΓj/2

√
π

4τ
w

(
x+ i

2
√
τ

)]
=

1

E
<
[√

π
a+ ib

i2β
w

(
E − Ej
2β
√
E

)] (144)

This has been the traditional “psi-chi” method to per-
form approximate Doppler broadening of nuclear reso-
nances, though some improvements have been proposed
(c.f. eq. (65) in [21]).

Note that the single-level Breit-Wigner profile (137)
does not represent higher-order angular momenta for
neutron channels, nor does it represent charged particles
or photon channels (of any angular momenta), neither
does it consider non-zero-threshold behaviors.

C. Analytic Doppler broadening of
Windowed Multipole cross sections

Theorem 1 establishes the Windowed Multipole Rep-
resentation as an equivalent formalism to parametrize R-
matrix cross sections. Windowed Multipole cross sec-
tions take the form (96) for zero-threshold cross sections
of any kind (photons, charged, higher angular momenta),
and other thresholds can be approximated with this form
(96), though not exactly. Theorem 3 shows how these
Windowed Multipole cross sections (96) can be Doppler
broadened analytically to high accuracy, without hav-
ing to assume an energy dependence of the Single-Level
Breit-Wigner cross section form σSLBW

0 (E) as in (137).

Theorem 3. Doppler broadening of Windowed
Multipole cross sections
Consider the Windowed Multipole Representation of R-
matrix cross sections (96), i.e. locally of the form:

σ(z) =
W(E)

1

z2
<conj

∑
j≥1

rj
z − pj

+
∑
n≥−2

anz
n

Upon integration against the Solbrig kernel (136), the
Doppler broadened cross section at temperature T takes
the following analytic expression:

σT (z) =
W(E)

∑
n≥−2

anDn
β(z)

+
1

z2
<

i
√
π
∑
j≥1

rj
β
· w
(
z − pj
β

)
− 1

z2
<

i
√
π
∑
j≥1

rj
β
· C
(
z

β
,
pj
β

)
(145)

where C
(
z
β ,

pj
β

)
is a correction term defined as:

C

(
z

β
,
pj
β

)
,

2 pj
iπβ

∫ ∞
0

e−( zβ+t)
2

t2 −
(
pj
β

)2 dt (146)

which is negligible in most physical ranges of tempera-
tures and energies, so that Doppler broadened Windowed
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Multipole cross sections can be well approximated as

σT (z) '
W(E)

1

z2
<

√π∑
j≥1

rj
iβ
· w
(
z − pj
β

)
+
∑
n≥−2

anDn
β(z)

(147)

where Dn
β(z) are the Doppler broadened monomials:

Dn
β(z) ,

∫ ∞
0

xn+2

z2
KD
β(z, x)dx (148)

which are subject to the following recurrence formulae
from elemental Gaussian and error functions (defined in
eq. 7.2.1 of [40]) [28]:

Dn+2
β (z) =

∀n≥1

[
β2

2
(2n+ 1) + z2

]
Dn
β(z)

−
(
β2

2

)2

n(n− 1)Dn−2
β (z)

D0
β(z) =

[
β2

2
+ z2

]
D−2
β (z) +

β

z
√
π

e−( zβ )
2

D−1
β (z) =

1

z

D−2
β (z) =

1

z2
erf

(
z

β

)
(149)

and where w(z) is the Faddeyeva function (defined in eq.
7.2.3 of [40]),

w(z) , e−z
2
(

1− erf (−iz)
)

= e−z
2

(
1 +

2i√
π

∫ z

0

et
2

dt

)
(150)

called at poles in the complex lower semi-plane, i.e.

=
[
z−pj
β

]
> 0. For all other poles, which satisfy

=
[
z−pj
β

]
≤ 0, we use the fact that the Windowed Mul-

tipole Representation has complex conjugate poles to call
the Faddeyeva function at − [w (z∗)]

∗
= −w (−z).

Proof. This analytic Doppler broadening comes from:

σT (z) =
W(E)

1

z2
<

∑
j≥1

rj

∫ ∞
0

KD
β(z, x)

x− pj
dx


+
∑
n≥−2

anDn
β(z)

Doppler broadening of the Laurent expansion part (148),
which describes the threshold behavior, was established
in [97] (eq. (14) to (16)), and the recurrence formulae
(149) are obtained through integration by parts.
The resonances Doppler broadening was established in

[21] (eq. (70) to (75)), which we here recall

β
√
π

∫ ∞
0

KD
β(z, x)

x− pj
dx ,

∫ ∞
0

dx

x− pj

[
e−( z−xβ )

2

− e−( z+xβ )
2]

=

∫ ∞
−∞

e−( z−xβ )
2

x− pj
dx−

∫ 0

−∞

e−( z−xβ )
2

x− pj
dx−

∫ ∞
0

e−( z+xβ )
2

x− pj
dx

=

∫ ∞
−∞

e−t
2

t−
(
z−pj
β

)dt+

∫ ∞
0

e−( z+xβ )
2
[

1

x+ pj
− 1

x− pj

]
dx

= iπ w

(
z − pj
β

)
− 2pj

∫ ∞
0

e−( z+xβ )
2

x2 − p2
j

dx

where in the last line we introduced the Faddeyeva func-
tion (150), defined in eq. 7.2.3 of [40], which admits the
following integral representation for = [z] > 0:

w(z) =
=[z]>0

1

iπ

∫ ∞
−∞

e−t
2

t− z
dt =

2z

iπ

∫ ∞
0

e−t
2

t2 − z2
dt (151)

In the case = [z] < 0, we then use the following integral
representation:

− [w(z∗)]
∗

= −w(−z) =
=[z]<0

1

iπ

∫ ∞
−∞

e−t
2

t− z
dt (152)

So that, calling the Faddeyeva function directly for the

poles in the complex lower semi-plane, =
[
z−pj
β

]
> 0,

while for the others we use − [w (z∗)]
∗

= −w (−z) to
calculate the integral representation (the pole represen-
tation has complex conjugate poles), the Solbrig ker-
nel Doppler broadening operation yields (145). Hwang
undertook an in-depth study of the correction term

C
(
z
β ,

pj
β

)
in section IV.D of [21], showing it is negligible

in most physical applications. Therefore, approximation
(147) is effectively faithful, in particular at high energies-
to-temperature ratios z/β � 1.

Compared to the traditional “psi-chi” method (144),
theorem 3 gives a much more general way to Doppler
broaden nuclear cross sections, applicable to charged or
uncharged particles of any angular momentum. The-
orem 3 also motivates why we decomposed the reso-
nances in z =

√
E space: it enables more accurate an-

alytic Doppler broadening, since the latter happens in
wavenumber space as Hwang showed in eq. (65) of [21].

Note that Hwang derived equations to analytically
Doppler broaden his pole representation (112), with
energy-dependent residues, showing that the e−2iρ com-
ponent shifts the Faddeyeva function evaluation, adding
a purely imaginary offset in eq. (6) of [25]. Nonetheless,
this approach is not generalizable to Coulomb channels
nor to thresholds, while theorem 3 is.

To compare these different Doppler broadening meth-
ods, we conducted numerical calculations on the first
capture resonance of 238U, in the simple Single-Level
Breit-Wigner resonance case of appendix A, reporting
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(a) T = 300 Kelvin

(b) T = 105 Kelvin

(c) T = 107 Kelvin

FIG. 6. Accuracy of different Doppler-broadening methods. Using the SLBW resonance description given in appendix A, the
cross section (A1) is reconstructed at T=0K. For each temperature {300, 105, 107} Kelvin, the cross section is broadened using
four different methods: (i) numerical integration of the Solbrig Kernel (136); (ii) Using the ψT /χT approximation (143) for
SLBW Doppler broadening (144); (iii) conversion (A5) of the resonance parameters {Γ} to multipoles {Π} and analytic Doppler
broadening of Windowed Multipole Representation (A4) from theorem 3 equation (147); (iv) formulation of the parameters in
ENDF format and processing using NJOY [90]. For each temperature, the right column shows the absolute relative error for
methods (ii), (iii), and (iv) to the direct integration of the Solbrig Kernel (i). Note: NJOY was run with a tolerance parameter
of 10−2 as higher accuracy required a prohibitively long computation time.

the results in figure 6. They show the analytic Windowed
Multipole Doppler broadening exactly matches the direct
piece-wise integration of Solbrig’s kernel (136) to 10−6

relative error, significantly outperforming the SIGMA1
method [93] of NYOJ [90], while the traditional ψT /χT
approximation (144) breaks down at high temperatures.
Note than in this particular SLBW case of appendix A,
the poles are exact opposites of one another, while the
residues are the same, so that they cancel out of the

C-function correction (146), hence the analytic Doppler
broadening of the Windowed Multipole Representation
(147) is exact. This cancelling out of C-function correc-
tion (146) is also true in general of zero threshold neutral
particles s-wave cross sections, which behave as 1/z at
low energies, thereby yielding identical residues r+

j = r−j
for opposite z-poles pairs p+

j = −p−j .
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D. Temperature derivatives of Doppler broadened
Windowed Multipole cross sections

The analytic Doppler broadening of Windowed Multi-
pole cross sections (theorem 3) has the additional advan-
tage that one can compute all its temperature derivatives
by means of simple recurrence formulae, as we here es-
tablish in theorem 4.

Theorem 4. Temperature derivatives of Win-
dowed Multipole cross sections
Consider the approximate Doppler broadened Windowed
Multipole Representation of R-matrix cross sections
(147) from theorem 3, upon change of variables θ , 1

β

σT (z) '
W(E)

1

z2
<

i
√
π
∑
j≥1

rj · θ · w
(
θ (z − pj)

)
+
∑
n≥−2

anDn
β(z)

Then its k-th temperature derivative can be computed as

∂
(k)
T σT (z) '

W(E)

1

z2
<

i
√
π
∑
j≥1

rj ·X(k)
β (z − pj)


+
∑
n≥−2

an · ∂(k)
T Dn

β(z)

(153)

X
(k)
β (z − pj) are the k-th temperature derivatives of the

Doppler broadened resonances:

X
(k)
β (z − pj) , ∂

(k)
T

[
θ · w

(
θ (z − pj)

)]
=

k∑
n=1

[(
∂

(n)
θ θ · w

(
θ(z − pj)

))
×

Bk,n

(
θ(1), θ(2), . . . , θ(k−n+1)

)]
(154)

where the sum is the Arbogast composite derivatives (Faà
di Bruno) formula [105], linking the θ-derivatives

∂
(n)
θ θ · w

(
θ(z − pj)

)
=
∀n≥1

− (z − pj)n−1

2
w(n+1)

(
θ(z − pj)

)
(155)

to the θ(n) temperature derivatives of θ

θ(n) , ∂
(n)
T θ =

1

β

(
−1

2

)n
(2n− 1)!!

(T − T0)
n (156)

by means of the partial exponential Bell polynomials
Bk,n

(
θ(1), θ(2), . . . , θ(k−n+1)

)
[106–108].

The derivatives of the Faddeyeva function can be com-
puted using recurrence formulae (c.f. 7.10 in [40]):

w(1)(z) = −2zw(z) +
2i√
π

w(n+2)(z) = −2zw(n+1)(z)− 2(n+ 1)w(n)(z)

(157)

∂
(k)
T Dn

β(z) are the temperature derivatives of the
Doppler broadened monomials, which are subject to the
following recurrence formulae, defining a , kB

A :

∂
(k)
T Dn+2

β (z) =
∀n≥1
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β2

2
(2n+ 1) + z2

]
∂

(k)
T Dn

β(z)

+
a

2
(2n+ 1)k ∂
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T Dn

β(z)

−n(n− 1)

4

[
β4∂

(k)
T Dn−2

β (z)

+ 2aβk ∂
(k−1)
T Dn−2

β (z)

+ a2k(k − 1)∂
(k−2)
T Dn−2

β (z)

]

∂
(k)
T D0
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β2

2
+z2

]
∂
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T D−2

β (z) +
a

2
k ∂

(k−1)
T D−2

β (z)

+
1

z
√
π

[
β2∂

(k)
T θe−(zθ)2+ak ∂

(k−1)
T θe−(zθ)2

]
∂

(k)
T D−1

β (z) =
1

z
δk,0

∂
(k)
T D−2

β (z) =
1

z2
∂

(k)
T erf (zθ)

(158)

In recurrence relations (158), the terms ∂
(k)
T θe−(zθ)2 can

themselves be computed using Arbogast’s formula:

∂
(k)
T θe−(zθ)2 = e−(zθ)2

k∑
n=1

[
F (n)
z (θ) ×

Bk,n

(
θ(1), θ(2), . . . , θ(k−n+1)

)]
(159)

where F
(n)
z (θ) are polynomials of degree n+ 1 defined as

F (n)
z (θ) , e(zθ)2∂

(n)
θ θe−(zθ)2 =

n+1∑
i=0

α
(n)
i θi (160)

which are recursively constructed from F
(0)
z (θ) = θ as

F (n+1)
z (θ) = ∂θF

(n)
z (θ)− 2z2θF (n)

z (θ) (161)

entailing these recurrence formulae on their coefficients:

α
(0)
0 = 0 α

(0)
1 = 1

α
(n+1)
n+1 = −2z2α(n)

n α
(n+1)
n+2 = −2z2α

(n)
n+1

α
(n+1)
i =

1≤i≤n
(i+ 1)α

(n)
i+1 − 2z2α

(n)
i−1

(162)

Finally, the terms ∂
(k)
T erf (zθ) in recurrence relations

(158) can also be computed using Arbogast’s formula:

∂
(k)
T erf (zθ) =

k∑
n=1

(
∂

(n)
θ erf (zθ)

)
·Bk,n

(
θ(1), . . . , θ(k−n+1)

)
(163)
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in which the θ derivatives can be expressed as

∂
(n)
θ erf (zθ) =

n≥1
zn(−1)n−1 2√

π
Hn−1 (zθ) e−(zθ)2 (164)

where the Hermite polynomials Hn(z) are recursively cal-
culable from H0 = 1 and H1 = 2z as:

Hn+1 =
n≥1

2zHn − 2nHn−1 (165)

Proof. The underlying assumption of the proof is that
one can neglect the derivatives of the correction term
(146). The proof consists of a series of derivatives ex-
panded using the general Leibniz rule and the Arbo-
gast formula for composite derivatives (Faà di Bruno)
(c.f. p.43 of [105]), in which the Bell polynomials can
be computed as referenced in [106–108]. Direct differ-
entiation yields the temperature derivatives of θ (156).
Expression (155) is obtained using the Faddeyeva func-
tion recurrence formula (157), documented in 7.10 of

[40]. The F
(n)
z (θ) polynomials (160) are defined from

∂
(n)
θ θe−(zθ)2 = F

(n)
z (θ)e−(zθ)2 and their degree n + 1

stems from the recursive derivatives (161) initialized at

F
(0)
z (θ) = θ, entailing the recurrence formula for the coef-

ficients (162). Similarly, expression (164) is derived from
change of variable z → θz, and using the derivative for-
mula for the error function (c.f. Abramowitz & Stegun,
p.298, eq. 7.1.19 [41], or 7.10.1 in [40]):

erf(n+1)(z) = (−1)n
2√
π

Hn(z)e−z
2

while the Hermite polynomials recurrence relation (165)
is well known and documented (c.f. 18.9 of [40]).

Underpinning this direct differentiation approach is the
assumption that the C-function correction term (146),
itself negligible, also has negligible temperature deriva-
tives. It is nonetheless possible to extend this method
to explicitly include thermal derivatives of the correction
term (146), by noticing that these derivatives follow a
similar polynomial structure as (160) and are subject to
a recurrence relation similar to (161).

E. Fourier transform approach to
temperature treatment

Ferran developed a more general approach, based on
Fourier transforms, to Doppler broaden nuclear nuclear
cross sections (we here only discussed Doppler broaden-
ing of angle-integrated cross sections)[96]. In theorem 5,
we generalize Ferran’s method, begetting arbitrary-order
temperature derivatives of Doppler broadened cross sec-
tions, while setting a more general framework for tem-
perature treatments such as low-energy thermal neu-
trons scattering with the phonons of the target’s crys-
talline structure. Moreover, when applied to the Win-
dowed Multipole Representation of R-matrix cross sec-
tions, this Fourier transform approach exactly accounts

for the entire nuclear cross section, without neglecting the
C-function correction term (146). This generality comes
at the additional cost of having to compute Fourier trans-
forms on-the-fly. Also, Fourier transforms can be numer-
ically sensitive to the tails of distributions, meaning one
has to be careful as to how the cross sections are extended
beyond the treated windows (c.f. Ferran’s discussion in
section IV.B.2 of [96]).

We here recall Ferran’s general Fourier transform
method from [96]. The function f ? g designates the con-
volution product between functions f and g, defined as:

f ? g (x) ,
∀x∈R

∫
R
f(t)g(x− t)dt (166)

Ferran expressed Solbrig’s kernel (136) Doppler broad-
ening operation as a convolution product by introducing
the Ferran representation odd-parity function [96]:

sT : z ∈ R 7→

 z2σT (z) ∀z ∈ R∗+
0 if z = 0

−z2σT (−z) ∀z ∈ R∗−
(167)

Applying Solbrig’s Kernel to sT yields a linear convolu-
tion product operator that transforms the Ferran repre-
sentation s0 of the cross section at temperature T0, to sT
at temperature T > T0 as follows [96]:

sT = s0 ?KB
T (168)

where KB
T is the Maxwell-Bolztmann distribution of en-

ergies of the target

KB
T (z) ,

∀z∈R

1

β
√
π

e−( zβ )
2

(169)

The Fourier transform of a function f is defined as (uni-
tary, ordinary frequency convention)[109]:

f̂(ν) ,
∫
R
f(t) · e−i2πνtdt (170)

for which the inverse Fourier transform is:

f(x) =

∫
R
f̂(ν) · ei2πνxdν (171)

The Fourier transform of any odd-parity function g can
be expressed as

ĝ(ν) = −2i

∫
R+

g(t) sin (2πνt) dt (172)

Fourier transforms satisfy the convolution property:

f̂ ? g = f̂ · ĝ (173)

The Doppler broadening operation can therefore be per-
formed by calculating the inverse Fourier transform of

ŝT = ̂s0 ?KB
T = ŝ0 · K̂B

T
(174)
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Since the Fourier transform of Boltzmann kernel KB
T is

well-known

K̂B
T (ν) = e−(πβν)2 (175)

given ŝ0, Doppler broadening can therefore be performed

as the inverse Fourier transform of ŝ0 · e−(πβν)2 .
In theorem 5, we derive the Fourier transform of

windowed multipole cross sections, and generalize Fer-
ran’s method to account for arbitrary order temperature
derivatives, as an alternative to theorem 4.

Theorem 5. Fourier transform Doppler broad-
ening of Windowed Multipole cross sections
Consider the zero Kelvin (0 K) Ferran representation of
Windowed Multipole R-matrix cross sections (96), i.e.
the odd-parity function s0(z) = −s0(−z) locally of the
form:

s0(z) ,
z>0

z2 · σ0(z) =
W(E)

<conj

∑
j≥1

rj
z − pj

+
∑
n≥0

an−2z
n

(176)
Then its Fourier transform (170) can be expressed as

ŝ0(ν) =
W(E)

<conj

∑
j≥1

rjV̂pj (ν)

+
∑
n≥0

an−2F̂n(ν) (177)

where the Fourier transforms of the Laurent expansions

F̂n(ν) can be expressed for either even or odd positive
integers n ≥ 0 as (δ(n)(ν) designates the n-th derivative
of Dirac’s Delta distribution):

F̂2n(ν) , (−1)n+1 2i(2n)!

(2πν)2n+1

F̂2n+1(ν) ,
(−1)ni

(2π)2n+1
δ(n)(ν)

(178)

and the Fourier transforms of the resonances at pole pj
V̂pj (ν) can be expressed as

V̂pj (ν) ,
|ph(pj)|<π

−2i · sgn(ν) · f (−2π|ν|pj) (179)

where sgn(z) designates the sign function, and f is the
auxiliary function defined in 6.2.17 of [40].

The kth-order temperature derivative of Windowed
Multipole R-matrix cross sections is the convolution:

∂
(k)
T sT = s0 ? ∂

(k)
T K

B
T (180)

which is the inverse Fourier transform (171) of product

∂̂
(k)
T sT = ŝ0 · ∂(k)

T K̂B
T

(181)

whose expressions are (177) for ŝ0 and, defining a , kB
A ,

∂
(k)
T K̂B

T = ak(iπν)2kK̂B
T = ak(iπν)2ke−(πβν)2 (182)

Proof. The proof consists of directly calculating the cor-
responding Fourier transforms by developing the linear
operators. Equation (181) stems from the Fourier trans-

form linear property ∂̂
(k)
T KB

T = ∂
(k)
T K̂B

T applied to (180).
Expression (182) is obtained by direct differentiation of
(175). In key expression (177), the Fourier transforms
of the Laurent development part (178) are obtained by
noticing that odd parity polynomials are already odd
functions, while the even parity ones must be written as
the difference of (176) multiplied by the Heaviside func-
tion for domains R− and R+, and then applying standard
Fourier transform properties. The Fourier transforms of
resonance terms (179) are obtained by identifying the
integral representation 6.7.13 in [40], and using identity
f
(
ze±iπ

)
= πe∓iz − f(z) (c.f. 6.4.6 [40]) if the phase of

the pole pj does not respect |ph (pj)| < π.

The Fourier transform approach of theorem 5 to arbi-
trary order temperature derivatives is conceptually more
elegant than the direct differentiations of theorem 4:
there is no need for Arbogast - Faà di Bruno composition
expansions nor recurrences. It is also more general, as the
correction C-function term (146) is not neglected in the
Doppler broadening, and that the Fourier transform ap-
proach could potentially be expanded to treat thermal
scattering with the phonon distributions of targets: one
would then need to replace the Boltzmann distributions

K̂B
T (175) with the corresponding phonon Fourier spec-

tra (c.f. “Neutron Slowing Down and Thermalization”
chapter in [104] or [110, 111]). In practice, theorem 5
also runs into its own hurdles: nothing guarantees that
numerically performing the on-the-fly Fourier transforms
of theorem 5 – using the Fast Fourier Transform FFT
and subsequent algorithms [112–114] – is more computa-
tionally efficient than calling the Faddeyeva functions –
which also have benefited of great algorithmic and com-
putational performance gains [115–119] – and the recur-
sive formulae of theorem 4. This is all the more so true
than theorem 5 requires the computation of the f auxil-
iary function (179), which could be more costly than call-
ing the Faddeyava function. Also, Fourier transforms are
global integrals, so the windowing process complicates
this approach, and the windows have now to be selected
according to the method Ferran discussed in IV.B.2 of
[96], considering that the Doppler broadening only af-
fects the cross section σ(E) at a given energy E for a
convolution over an interval commensurate to the tem-
perature energy β2, say four times E±4β2 [21, 91, 93, 96].
Note that this locality problem already exists in the di-
rect Doppler broadening of theorem 3 and by extension
theorem 4, and even in the windowing process itself, when
selecting which poles pj to include in window W(E) as
discussed in section II E 4 and established in [26, 28].
Though in theory the Mittag-Leffler expansion converges
on the entire energy domain between two thresholds
[ETc , ETc+1], in practice it is too costly to compute the
Faddeyeva functions for all poles, the essence of the win-
dowing process is therefore to only account for the poles
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which affect the cross section in window W(E) upon
Doppler broadening, in practice extending the domain
(“external window” in [26, 28]) for a couple of tem-
perature energy variances in the Boltzmann distribution

(
[
W(Emin − 4β2

max(T )),W(Emax + 4β2
max(T ))

]
): this is a

very similar process than Ferran’s continuation of the
function for the Fourier transform, discussed in section
IV.B.2 of [96]. Therefore, if the windowing process is
well performed, the expression of theorem 5 will be valid
within each window. Otherwise, one would need to trun-
cate the Fourier transforms at the boundary of each en-
ergy window, and laboriously concatenate the Ferran rep-
resentation window by window in the Fourier transforms.

Finally, note that Ferran’s Doppler broadening method
presents similarities with the optimal temperature kernel
reconstruction quadratures developed in [97]: both are
kernel methods operating on the cross sections, in par-
ticular the Boltzmann kernel eq. (6) of [97]. Appendix D
of [97] studies the consequences the Windowed Multipole
Representation of R-matrix cross sections on the Fourier
transforms involved in theorem 5. In particular are dis-
cussed the general shapes of the Fourier transforms of the
nuclear resonances, compared to the KB

T Boltzmann ker-
nel (175), and how this can entail properties of interest,
such as frequency separation in L2 norm (c.f. eq. (D.9)
and sections D.2 and D.3 of appendix D in [97]).

V. CONCLUSION

This article establishes the theoretical foundations for
the Windowed Multipole Library.

We derive how the Windowed Multipole Representa-
tion of R-matrix cross sections can be constructed by
finding the poles of the Kapur-Peierls operator and per-
forming Hwang’s albebraic continuation (theorem 1). In
the process, we connect the Windowed Multipole Rep-
resentation to both the Bloch and Wigner-Eisenbud R-
matrix theory and to the Humblet-Rosenfeld pole expan-
sions in wavenumber space.

We establish a method to convert R-matrix resonance
parameters covariance matrices into Windowed Multi-
pole covariances (theorem 2), and show they generate the
same uncertainty distribution on nuclear cross sections,
either through the sensitivity approach or by sampling
stochastic cross sections.

We recall Windowed Multipole cross sections can
be Doppler broadened analytically to high accuracy
(theorem 3), and expand this on-the-fly capability to
arbitrary-order temperature derivatives (theorem 4),
whist deriving new capabilities for temperature treat-
ment by means of Fourier transforms of Windowed Mul-
tipole cross sections (theorem 5).

The Windowed Multipole Representation of R-matrix
cross sections has already proved its efficacy on a vast
range of nuclear physics applications. We hope the
foundational results of this article will allow for the

widespread adoption of the Windowed Multipole Library,
and underpin new research efforts to expand its capabil-
ities.
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Appendix A: Single Breit-Wigner capture resonance

In order to derive a simple reference case that is
tractable analytically, we here study the multipole repre-
sentation of the first radiative capture s-wave resonance
of uranium 238U. We neglect the energy dependence of
the widths in the resonance (this constitutes the B=S

approximation), and denote Γλ , Γγ + Γn, so that the
γ-channel cross section takes the form:

σγ(E) = πgJπa
2
c

ΓγΓn

ρ2
0

√
Eλ

1√
E

1

(Eλ − E)
2

+ Γ2
λ/4

(A1)

which is a Single-Level Breit-Wigner resonance (137)

with Eλ , Eλ − iΓλ
2 , a = 0, and b , 2π

ΓγΓn
ρ20
√
EλΓλ

, i.e.

σγ(E) =
1√
E
<
[

ib

E − Eλ

]
(A2)

Let us now cast (A1) into the multipole representation
(96). We perform this by change of variables z2 = E,
and p2 = Eλ, and partial fraction decomposition:

1√
E
<
[

ib

E − Eλ

]
=

1

z2
<
[

ib/2

z − p
+

ib/2

z + p

]
(A3)

So that the multipole cross section in z-space is then:

σγ(z) =
1

z2
<conj

[
r

z − p
+

r

z + p

]
(A4)



31

with

r , iπ
ΓγΓn

ρ2
0

√
Eλ Γλ

p ,

√
Eλ − i

Γλ
2

(A5)

One can then verify the results of theorem 1 with these
explicit formulae.

In theorem 2, we develop a method to compute the Ja-
cobian matrix

(
∂Π
∂Γ

)
, using the sensitivities ∂σ

∂Γ (E) of the

cross section σ(E) to resonance parameters
{

Γ
}

. These
can here be derived by direct differentiation of (A1),
yielding the relative sensitivities (derivatives):

1

σγ

∂σγ
∂Eλ

=
−1

2Eλ
+ 2(E − Eλ)σγ

ρ2
0

√
E
√
Eλ

πΓnΓγ

1

σγ

∂σγ
∂Γn

=
1

Γn
− Γλ

2
σγ
ρ2

0

√
E
√
Eλ

πΓnΓγ

1

σγ

∂σγ
∂Γγ

=
1

Γγ
− Γλ

2
σγ
ρ2

0

√
E
√
Eλ

πΓnΓγ

(A6)

Alternatively, these same cross section sensitivities
∂σ
∂Γ (E) can be computed using (A2). For real b ∈ R, the
partial derivatives to any real coefficient Λ ∈ R follow

1

σγ

∂σγ
∂Λ

=
1

b

∂b

∂Λ
+
<
[

i
(E−Eλ)2

∂Eλ
∂Λ

]
<
[

i
E−Eλ

]
Since we have:

∂Eλ
∂Eλ

= 1 ,
1

b

∂b

∂Eλ
= − 1

2Eλ
∂Eλ
∂Γn

=
∂Eλ
∂Γγ

= − i

2
,

1

b

∂b

∂Γn
=

1

Γn
− 1

Γλ

,
1

b

∂b

∂Γγ
=

1

Γγ
− 1

Γλ

(A7)

the cross section sensitivities ∂σ
∂Γ (E) to resonance energy

Eλ, neutron scattering width Γn, and radiative capture
width Γγ are thus respectively

1

σγ

∂σγ
∂Eλ

=
−1

2Eλ
+
<
[

i
(E−Eλ)2

]
<
[

i
E−Eλ

]
1

σγ

∂σγ
∂Γn

=
1

Γn
− 1

Γλ
+

1

2

<
[

1
(E−Eλ)2

]
<
[

i
E−Eλ

]
1

σγ

∂σγ
∂Γγ

=
1

Γγ
− 1

Γλ
+

1

2

<
[

1
(E−Eλ)2

]
<
[

i
E−Eλ

]
(A8)

where the derivatives could be taken within the real part
because all the parameters were real. Using the cross
section sensitivities ∂σ

∂Γ (E) – either from (A6) or (A8)

– and performing the corresponding Hwang’s conjugate
continuation (section II D), one can therefore compute
the multipole sensitivities

(
∂Π
∂Γ

)
of theorem 2 using the

contour integrals system (128).
In this simple case of a Single-Level Breit-Wigner res-

onance in multipole representation (A4), we are also able
to explicitly calculate the multipole sensitivities to reso-
nance parameters – i.e. Jacobian

(
∂Π
∂Γ

)
– by direct differ-

entiation of the explicit formulae (A5), yielding:

∂p+

∂Eλ
= − ∂p−

∂Eλ
=

1

2p+

∂r+

∂Eλ
=
∂r−
∂Eλ

= − r+

2Eλ
and

∂p+

∂Γn
= −∂p−

∂Γn
=
−i

4p+

∂r+

∂Γn
=
∂r−
∂Γn

= r+

(
1

Γn
− 1

Γλ

)
and

∂p+

∂Γγ
= −∂p−

∂Γγ
=
−i

4p+

∂r+

∂Γγ
=
∂r−
∂Γγ

= r+

(
1

Γγ
− 1

Γλ

)

(A9)

The latter multipole sensitivities (A9) can then be used
to validate theorem 2.

For verification and reproducibility purposes, we gen-
erated figures 4, 5, and 6 using cross section (A1) with the
parameters from the neutron slowdown analytic bench-
mark [36], which we here report in table II. These param-
eters are similar (but not identical) to those of ENDF/B-
VIII.0 evaluations, yielding the same cross section to
a multiplicative constant. The resonance energies and
widths are those of ENDF/B-VIII.0, as well as their co-
variance matrix. The enlarged covariance matrix in table
II is that of the analytic benchmark [36], and was de-
signed to bring the neutron slowdown problem past the
linear regime in resonance sensitivity.
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TABLE II. Resonance parameters of the first s-wave radia-
tive γ-capture resonance of 238U used for generating temper-
ature tolerance plot (FIG. 6) and sensitivities demonstration
(FIG.4 and FIG.5). The resonance energies and widths, as
well as their covariance matrix, are those of ENDF/B-VIII.0
evaluation [14]. The enlarged covariance matrix, as well as
the channel radius ac, the atomic weight A, and ρ0, are those
of the analytic neutron slowdown benchmark [36]

z =
√
E with E in (eV)

A = 238
ac = 0.000948 : channel radius, in Fermis

ρ0/ac = 0.002196807122623/2 (
√

eV
−1

)
Eλ = 6.674280 : first resonance energy (eV)
Γn = 0.00149230 : neutron width of first resonance
Γγ = 0.0227110 : eliminated capture width (eV)
gJπ = 1 : spin statistical factor
ENDF/B-VIII.0 covariance matrix:
Var ([E0,Γn,Γγ ]) = 1.1637690× 10−7 −2.7442070× 10−10 1.8617500× 10−8

−2.7442070× 10−10 3.9366000× 10−10 −6.5102670× 10−9

1.8617500× 10−8 −6.5102670× 10−9 1.6255630× 10−7


Enlarged covariance matrix (same correlation):
Var ([E0,Γn,Γγ ]) = 1.2373892 −1.1217107× 10−5 5.6993358× 10−4

−1.1217107× 10−5 6.1859980× 10−8 −7.6617177× 10−7

5.6993358× 10−4 −7.6617177× 10−7 1.4327486× 10−5


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(1996).

[71] V. Y. Pan, Computers & Mathematics with Applica-
tions 31, 97 (1996).

[72] V. Y. Pan, SIAM Review 39, 187 (1997), publisher: So-
ciety for Industrial and Applied Mathematics.

[73] G. Malajovich and J. P. Zubelli, Computers & Mathe-
matics with Applications 33, 1 (1997).

[74] V. Y. Pan, Journal of Complexity 16, 213 (2000),
https://doi.org/10.1006/jcom.1999.0532.

[75] I. Z. Emiris and V. Y. Pan, Journal of Complexity
Foundations of Computational Mathematics Conference
2002, 21, 43 (2005).

[76] V. Y. Pan and A.-L. Zheng, Computers & Mathematics
with Applications 61, 1305 (2011).

[77] J. M. McNamee and V. Y. Pan, Computers & Mathe-
matics with Applications 63, 239 (2012).

[78] V. Y. Pan and E. Tsigaridas, Theoretical Computer Sci-
ence Symbolic Numeric Computation, 681, 138 (2017).

[79] E. Bauge, S. Hilaire, and P. Dossantos-Uzarralde, in
International Conference on Nuclear Data for Science
and Technology (EDP Sciences, 2007) pp. 259–264.

[80] R. Capote, D. L. Smith, A. Trkov, and M. Meghzifene,
Journal of ASTM International 9, 1 (2012), publisher:
ASTM International.

[81] A. J. Koning, The European Physical Journal A 51, 184
(2015).

[82] A. J. Koning, Nuclear Data Sheets Special Issue on
International Workshop on Nuclear Data Covariances
April 28 - May 1, 2014, Santa Fe, New Mexico, USA
http://t2.lanl.gov/cw2014, 123, 207 (2015).
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