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Nuclear state densities are important inputs to statistical models of compound-nucleus reactions.
State densities are often calculated with self-consistent mean-field approximations that do not in-
clude important correlations and must be augmented with empirical collective enhancement factors.
Here, we benchmark the static-path plus random-phase approximation (SPA+RPA) to the state
density in a chain of samarium isotopes 148−155Sm against exact results (up to statistical errors) ob-
tained with the shell model Monte Carlo (SMMC) method. The SPA+RPA method incorporates all
static fluctuations beyond the mean field together with small-amplitude quantal fluctuations around
each static fluctuation. Using a pairing plus quadrupole interaction, we show that the SPA+RPA
state densities agree well with the exact SMMC densities for both the even- and odd-mass iso-
topes. For the even-mass isotopes, we also compare our results with mean-field state densities
calculated with the finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation. We find
that the SPA+RPA repairs the deficiencies of the mean-field approximation associated with broken
rotational symmetry in deformed nuclei and with the violation of particle-number conservation in
the pairing condensate. In particular, in deformed nuclei the SPA+RPA reproduces the rotational
enhancement of the state density relative to the mean-field state density.

I. INTRODUCTION

Nuclear level densities, which measure the average
number of nuclear levels per unit energy, are impor-
tant inputs to the statistical Hauser-Feshbach theory
of compound-nucleus reactions [1, 2]. Neutron capture
rates, which affect the predicted isotopic abundances in
r-process nucleosynthesis [3, 4] and the precision of i-
process simulations [5], are particularly sensitive to level
densities. Uncertainties in nuclear reaction rates also
have important implications for nuclear technology and
stockpile stewardship [6].

Level densities are extracted from various experimental
data, including level counting at low excitation energies,
neutron resonance data at the neutron separation energy,
Oslo method measurements [7, 8], and particle evapora-
tion spectra [9]. Rare-isotope beam facilities and novel
experimental techniques such as the β-Oslo method [10]
promise to extend level density measurements to unstable
nuclei. However, available data to determine nuclear level
densities remain limited, and theoretical calculations of
level densities are required to describe many compound-
nucleus reactions.

The calculation of level densities in the presence of
correlations is a challenging many-body problem. Most
theoretical approaches are based on phenomenological
models fitted to experimental data [2, 11]. Such mod-
els cannot be reliably extrapolated to regions in which
data are scarce [12]. Moreover, these models are limited
by uncertainties in the experimental data [9].

Consequently, it is important to develop microscopic
models of the level density that are based on the un-
derlying nuclear interaction. Widely used methods that
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rely on mean-field approximations [13–15] must be aug-
mented with phenomenological models to describe rota-
tional and vibrational enhancements [14, 15]. In contrast,
the configuration-interaction (CI) shell model describes
both single-particle and collective excitations within the
same framework. However, conventional CI shell model
methods are limited by the combinatorial growth of the
many-particle model space with the number of nucleons
and/or the number of single-particle states. The shell-
model Monte Carlo (SMMC) method is capable of cal-
culating level densities exactly (up to controllable sta-
tistical errors) in model spaces that are far beyond the
reach of conventional CI methods and has been applied
to nuclei as heavy as the lanthanides [16–19]; for a re-
view, see Ref. [20]. Most applications of the SMMC to
the calculation of level densities have used effective nu-
clear interactions with a good Monte Carlo sign [20–22],
although smaller bad-sign components of more general
effective nuclear interactions can be treated using the
method of Ref. [22].

Another method to calculate level densities based on
the CI shell model is the moment method [23–25]. This
approach has been applied to light and mid-mass nuclei
but becomes costly in heavy nuclei and is limited by the
need to calculate independently an accurate ground-state
energy. Similarly, the stochastic estimation method of
Ref. [26] and the methods of Ref. [27] based on the Lanc-
zos algorithm have been used to calculate CI shell model
level densities in mid-mass nuclei, but these methods can-
not be applied to heavy nuclei due to their prohibitive
computational cost.

The static-path plus random-phase approximation
(SPA+RPA) is a promising method for including cor-
relation effects beyond the mean field within the CI
shell model framework. The approach includes large-
amplitude static fluctuations beyond the mean field
and small-amplitude time-dependent quantal fluctua-
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tions around each static fluctuation [28–39]. In solv-
able models, the SPA+RPA was found to give nearly
exact results for thermodynamic quantities above a low
temperature below which the method breaks down [30–
32, 35, 36]. The SPA+RPA can also be applied to cer-
tain interactions for which the SMMC has a sign problem
and thus can be complementary to the SMMC. However,
there have been few applications of the SPA+RPA to
many-particle systems with realistic forces. In nuclear
physics, the SPA+RPA was used in Ref. [36] to calcu-
late thermal quantities in erbium isotopes with a pure
pairing force. The SPA+RPA was also used to study the
pairing properties of molybdenum isotopes with a pair-
ing force [37], as well as the level density of 56Fe with a
pairing plus quadrupole interaction [38]. In addition, the
SPA+RPA has been applied to calculate thermodynamic
properties, such as the heat capacity and spin susceptibil-
ity, in nanoscale metallic grains in the presence of pairing
and exchange correlations [39]. However, the SPA+RPA
has not been benchmarked systematically against exact
results in heavy nuclei.

Here, we benchmark SPA+RPA nuclear state densi-
ties1 against SMMC state densities for a chain of samar-
ium isotopes 148−155Sm, which describe the crossover
from vibrational to rotational collectivity [17, 40, 41]. For
the even-mass samarium isotopes, we also compare our
results with mean-field state densities calculated with the
finite-temperature Hartree-Fock-Bogoliubov (HFB) ap-
proximation. We implement a Monte Carlo method to
calculate SPA+RPA thermodynamic observables. The
SPA+RPA method breaks down below a certain low tem-
perature, and we use the partition function extrapolation
method of Ref. [42] to extract the ground-state energy
from the SPA+RPA excitation partition function above
the breakdown temperature.

Using a pairing plus quadrupole interaction, we find
that the SPA+RPA canonical entropy and state density
are in good agreement with the corresponding SMMC
results for each of the even- and odd-mass samarium
isotopes. In the even-mass deformed isotopes, the
SPA+RPA method reproduces the enhancement of the
state density relative to the HFB density due to rota-
tional collectivity. In addition, the SPA+RPA entropy
remains nonnegative at low temperatures, whereas the
pairing phase of the HFB approximation is character-
ized by an unphysical negative entropy. We study the
evolution with neutron number of the enhancement of
the SPA+RPA and SMMC state densities relative to the
HFB density, as was done in Ref. [17]. We find that the
SPA+RPA enhancement factors are in good agreement
with those extracted from the SMMC and are consistent
with a crossover from pairing-dominated collectivity to
rotational collectivity.

1 In the state density, all 2J + 1 degenerate states associated with
a nuclear level of spin J are counted, whereas in the level density
each level with spin J is counted only once.

The outline of this paper as follows. In Sec. II, we de-
rive the SPA+RPA expressions for the grand-canonical
and approximate canonical partition functions, and we
discuss the calculation of the state density. In Sec. III,
we present the Monte Carlo method used to evaluate
thermodynamic quantities in the SPA+RPA. We also
summarize the partition function extrapolation method
used to extract the SPA+RPA ground-state energy. In
Sec. IV, we apply the SPA+RPA to calculate the state
densities in a chain of samarium isotopes 148−155Sm and
compare our results with the SMMC state densities. For
the even-mass samarium isotopes, we also compare the
SPA+RPA densities with the HFB densities and extract
the collective enhancement factors. Finally, in Sec. V,
we summarize our conclusions, discuss the advantages
and limitations of the SPA+RPA method, and provide
an outlook for future developments of this method.

II. STATIC-PATH PLUS RANDOM-PHASE
APPROXIMATION TO STATE DENSITIES

A. General formulation

Here, we review the SPA+RPA formalism for the par-
tition function in the grand-canonical ensemble. Many
elements of this derivation appear in previous works; see
Refs. [30–39].

We consider a Hamiltonian in which the two-body
residual interaction is written as a sum of separable
terms,

Ĥ = Ĥ1 −
1

2

∑
α

vαÔ
2
α , (1)

where Ĥ1 is a one-body operator and Ôα are Hermitian
and bilinear in fermion creation and annihilation opera-
tors. Any Hermitian two-body interaction can be decom-
posed in this way [21]. We assume that the interaction is
purely attractive when written in the form of Eq. (1), i.e.,
all the vα are positive. An approximate SPA+RPA treat-
ment of repulsive interactions was proposed in Ref. [43]
but is not investigated here.

The Hubbard-Stratonovich transformation [44, 45] ex-
presses the Gibbs density operator at inverse temperature
β as a functional integral

e−βĤ =

∫
D[σ(τ)]e−

∫ β
0
dτ

∑
α vασ

2
α(τ)/2 T e−

∫ β
0
dτĥσ(τ) ,

(2)
where σα(τ) (with 0 ≤ τ ≤ β) are real-valued auxiliary

fields, T denotes time ordering, and ĥσ(τ) is a Hermitian
one-body Hamiltonian given by

ĥσ(τ) = Ĥ1 −
∑
α

vασα(τ)Ôα . (3)

Next, each auxiliary field is separated into a static and
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τ -dependent part

σα(τ) = σα +
∑
r 6=0

ηαre
iωrτ , (4)

where ωr = 2πr/β (r = ±1,±2, . . .) are the bosonic Mat-
subara frequencies. The grand-canonical partition func-
tion at inverse temperature β and chemical potentials
µp, µn (for protons and neutrons) can then be written as

Z(β, µp, µn) = Tre−β(Ĥ−
∑
λ=p,n µλN̂λ)

=

∫ [∏
α

(
βvα
2π

)1/2

dσα

]
e−β

∑
α vασ

2
α/2Z(σ)

×
∫
Dη e−β

∑
α,r 6=0 vα|ηαr|

2/2
〈
T e−

∫ β
0
dτV̂η(τ)

〉
σ
,

(5)

where Z(σ) is the partition function for static auxiliary
fields σ

Z(σ) = Tre−β(ĥσ−
∑
λ=p,n µλN̂λ) . (6)

In Eq. (6), the one-body Hamiltonian ĥσ is given by
Eq. (3), with the time-dependent auxiliary fields σα(τ)

replaced by the static fields σα. The operator V̂η(τ) =

−
∑
α,r 6=0 vαηαre

iωrτ Ôα(τ) in Eq. (5) (Ôα(τ) is the inter-

action picture representation of Ôα with respect to the

static Hamiltonian ĥσ) accounts for the contribution of
the time-dependent fluctuations of the auxiliary fields to
the one-body Hamiltonian. The angular brackets 〈...〉σ
denote the expectation value with respect to the static

density operator e−β(ĥσ−
∑
λ=p,n µλN̂λ).

In the SPA+RPA, the logarithm of the integrand in
Eq. (5) is expanded to second order in the amplitudes ηαr
of the time-dependent auxiliary-field fluctuations, and
the resulting Gaussian integral over ηαr is evaluated an-
alytically [30–36]. The final result is

Z(β, µp, µn) =

∫ [∏
α

(
βvα
2π

)1/2

dσα

]
e−βv·σ

2/2Z(σ)C(σ) ,

(7)
where v · σ2 =

∑
α vασ

2
α and C(σ) is the RPA correction

factor for static fields σ given by [28, 35, 36]

C(σ) =

∏
k>l

1
Ẽk−Ẽl

sinh
(
β(Ẽk − Ẽl)/2

)
∏
ν>0

1
Ων

sinh (βΩν/2)
. (8)

In Eq. (8), Ẽk are the generalized quasiparticle energies

obtained by diagonalizing ĥσ, and Ων are the eigenvalues
of the σ-dependent matrix

Skl,k′l′ = (Ẽk − Ẽl)δkk′δll′ −
1

2
(f̃l − f̃k)

∑
α

Oα,klOα,l′k′ .

(9)
Here Oα is the matrix representation of the one-body

operator Ôα in the quasiparticle basis diagonalizing ĥσ,

and f̃k is the generalized thermal quasiparticle occupa-
tion number associated with generalized quasiparticle en-
ergy Ẽk.2 The matrix S in Eq. (9) has the same form as
the thermal RPA matrix derived from considering small
oscillations around a self-consistent mean-field solution
at finite temperature [46]. Consequently, we refer to the
eigenvalues Ων as the RPA frequencies. These frequen-
cies come in pairs of opposite sign, and

∏
ν>0 in Eq. (8)

denotes the product over half the frequencies with a fixed
sign.

Some of the RPA frequencies can become imaginary
for certain static auxiliary field configurations. The
SPA+RPA is well defined at inverse temperature β pro-
vided that there exists no imaginary frequency Ω̃ν satisfy-
ing |Ω̃ν | ≥ 2π/β [32, 35, 36, 39]. Below a certain temper-
ature, this condition no longer holds, and the SPA+RPA
breaks down [30–39]. In our calculations, we find that
this breakdown temperature is very low and does not
limit our ability to calculate state densities. However,
the breakdown of the SPA+RPA makes it challenging
to estimate the ground-state energy, which is needed
to determine the excitation energy. We have overcome
this challenge using the partition function extrapolation
method [42]; see Sec. III B.

B. Pairing plus quadrupole Hamiltonian

Here we apply the SPA+RPA to a CI shell
model Hamiltonian containing pairing and quadrupole-
quadrupole interaction terms. This particular model was
studied in the SPA+RPA in Refs. [33, 38] and at the
SPA level in Ref. [29]. The SPA+RPA was applied to
the pairing model in Refs. [30, 32, 36, 37, 39] and to the
quadrupole-quadrupole interaction in Ref. [31].

The CI shell model single-particle space consists of a
set of spherical orbitals aλ = (naλ laλjaλ), where λ =
p, n denotes protons and neutrons, respectively, and the
orbitals can be different for protons and neutrons. The
orbital single-particle energies εaλ correspond to a central
Woods-Saxon potential plus spin-orbit interaction [47].
The Hamiltonian is given by

Ĥ =
∑
aλ

εaλ n̂aλ−
χ

2

2∑
µ=−2

: (−)µÔ2−µÔ2µ : −
∑
λ=p,n

gλP̂
†
λP̂λ .

(10)
In Eq. (10), : : denotes normal ordering and the

quadrupole operator Ô2µ = Ôp2µ + Ôn2µ is defined by

Ôλ2µ = (dVWS/dr)λY2µ,λ, where VWS is the Woods-Saxon

central potential. Also, P̂λ =
∑

(aλm)>0 c aλm caλm is the

2 There are 2Ns generalized quasiparticle energies and thermal
occupation numbers, where Ns is the number of single-particle
states. Let k = 1, ..., Ns and Ek be the positive quasiparticle
energy. Then, Ẽk = Ek and Ẽk+Ns = −Ek. Similarly, f̃k =

(1 + eβEk )−1, and f̃k+Ns = 1− f̃k = (1 + e−βEk )−1.
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pair annihilation operator, where |aλm〉 is a shell-model
single-particle state with magnetic quantum number m
for particle species λ, (aλm) > 0 runs over half the states,
and |aλm〉 = (−)jaλ+laλ+m |aλ −m〉 is the time-reversed
partner of |aλm〉. The interaction in Eq. (10) has a sim-
ilar form to the interaction used in Refs. [16–19], except
that the latter also included octupole and hexadecapole
terms in the multipole-multipole part of the Hamiltonian.

The static auxiliary fields consist of five complex fields
α2µ (µ = −2, ..., 2) satisfying α∗2µ = (−)µα2−µ that cou-

ple to the corresponding quadrupole operators Ô2µ, to-
gether with two complex fields ∆p,∆n that couple to the

corresponding pair operators P̂p, P̂n. We transform α2µ

to their intrinsic frame components α̃2µ defined by

α̃20 = β2 cos γ , α̃21 = α̃2−1 = 0 , α̃22 = α̃2−2 =
β2√

2
sin γ ,

(11)

and the three Euler angles characterizing the orientation
of the intrinsic frame. The integrand in Eq. (7) is inde-
pendent of the Euler angles and the phases of the pair-
ing fields. After integrating over the Euler angles and
pairing field phases, the remaining integration variables
are the intrinsic deformation parameters β2 > 0 and
0 ≤ γ ≤ π/3, and the pairing fields ∆p,n > 0. The
SPA+RPA grand-canonical partition function is then
given by

Z(β, µp, µn) =

∫ ∞
0

dβ2

∫ π/3

0

dγ

×
∫ ∞

0

∫ ∞
0

d∆pd∆nM(σ)Z(σ)C(σ) ,

(12)

where σ = (β2, γ,∆p,∆n) and the measure M(σ) is

M(σ) =
(βχ)5/2

(2π)1/2

(
2β

g

)2

β4
2 sin(3γ)∆p∆n

× e−βχβ
2
2/2−β

∑
λ=p,n ∆2

λ/gλ .

(13)

Z(σ) is given by Eq. (6), where the static one-body

Hamiltonian ĥσ is

ĥσ = Ĥ1 − χβ2

[
cos γÔ20 +

1√
2

sin γ(Ô22 + Ô2−2)

]
−
∑
λ=p,n

[
∆λ

(
P̂ †λ + P̂λ

)
+
gλ
2

(
Ns,λ

2
− N̂λ

)]
,

(14)

where Ĥ1 is the one-body Hamiltonian in Eq. (10) that
includes a shift due to uncoupling the normal-ordered
quadrupole-quadrupole term in Eq. (10), and Ns,λ is the
number of single-particle states for particle species λ. In-
cluding the contribution of the chemical potentials and
using a Bogoliubov transformation to diagonalize (14)

yields [36, 39]

ĥσ −
∑
λ=p,n

µλN̂λ =
∑
λ=p,n

∑
k>0

[
Ek,λ(a†k,λak,λ + a†

k̄,λ
ak̄,λ)

+ (εk,λ − µλ − Ek,λ)

]
,

(15)

where a, a† are annihilation and creation quasiparti-
cle operators, εk,λ are the eigenvalues of the particle-
number-conserving term in Eq. (14), and the quasiparti-
cle energies Ek,λ are given by

Ek,λ =
√

(εk,λ − µλ − gλ/2)2 + ∆2
λ . (16)

The static partition function Z(σ) is then given by

Z(σ) =
∏
λ=p,n

∏
k>0

e−β(εk,λ−µλ)4 cosh2

(
βEk,λ

2

)
. (17)

The RPA correction factor C(σ) in Eq. (12) can be cal-
culated using Eq. (8). For the single-particle Hamiltonian
(14), the RPA matrix (9) connects only quasiparticle-
state pairs with the same total parity and total z-
signature. These symmetries render the RPA matrices
block-diagonal and consequently make their diagonal-
ization computationally more efficient. We note that
the computational cost of diagonalizing the RPA ma-
trix presents a significant challenge for extending the
SPA+RPA method to larger model spaces and to more
general interactions; see Sec. V.

C. Approximate canonical partition function

Eq. (12) gives the SPA+RPA partition function in the
grand-canonical ensemble. However, to calculate state
densities of nuclei with given numbers of protons and
neutrons, it is necessary to determine the canonical par-
tition function [48]. We do so approximately in the
SPA+RPA by combining exact number-parity projection
with a saddle-point approximation for particle-number
projection [38, 39].

The number-parity projection operator is given by

P̂η =
∏
λ=p,n

1 + ηλ e
iπN̂λ

2
, (18)

where ηp, ηn = +1(−1) for even(odd) numbers of pro-
tons or neutrons, respectively. In the SPA+RPA, the
number-parity projected grand-canonical partition func-
tion is given by

Zη(β, µp, µn) =

∫
dσM(σ)Zη(σ)Cη(σ) , (19)
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where

Zη(σ) =
∏
λ=p,n

Tr
(
e−β(ĥσ,λ−µλN̂λ)

) 1

2

(
1 + ηλ〈eiπN̂λ〉σ

)
(20)

is the number-parity projected partition function for a

static auxiliary-field configuration σ, and ĥσ,λ is the one-
body Hamiltonian (15) for particle species λ.3 The op-

erator eiπN̂λ commutes with the Hamiltonian (15), so
Eq. (20) can be evaluated explicitly [49] to give

〈eiπN̂λ〉σ =
∏
k>0

tanh2

(
βEk,λ

2

)
. (21)

Cη(σ) in Eq. (19) is the number-parity projected RPA
correction factor, which is obtained by replacing the
quasiparticle occupation numbers in the RPA matrix (9)
with the number-parity-projected occupation numbers

fηk,λ =
fk,λ + ηλ〈eiπN̂λ〉σfπk,λ

1 + ηλ〈eiπN̂λ〉σ
, (22)

where fk,λ = (1 + eβEk,λ)−1 and fπk,λ = (1− eβEk,λ)−1.

The canonical partition function Zc(β,Np, Nn),
where Np and Nn are, respectively, the number
of valence protons and neutrons, is related to the
number-parity-projected grand-canonical partition func-
tion Zη(β, µp, µn) by an inverse Laplace transform

Zc(β,Np, Nn) =
(2β)2

(2πi)2

∫ iπ/2β

−iπ/2β
dµpdµne

−β
∑
λ=p,n µλNλ

× Zη(β, µp, µn) .

(23)

The leading factors of 2 in the integrals over µp and µn
in Eq. (23) arise because the number-parity projection
excludes half the possible particle numbers [36, 50]. Fol-
lowing Ref. [39], we insert Eq. (19) into Eq. (23), change
the order of the integrations over σ and over µp, µn, and
evaluate the integrals over µp, µn by applying the saddle-
point approximation to the unprojected single-particle
partition function (6). We find

Zc(β,Np, Nn) ≈
∫
dσM(σ)Zη(σ)

× e
∑
λ=p,n(ln ζλ−βµλNλ)Cη(σ) ,

(24)

where

ζλ = 2

(
2π

β2

∂2 lnZ(σ)

∂µ2
λ

)−1/2

, (25)

3 We note that ĥσ in Eqs. (14) and (15) is the sum of proton and
neutron terms.

and [39, 49]

∂2 lnZ(σ)

β2∂µ2
λ

=
∑
k>0

βEk,λ(εk,λ − µλ − gλ
2 )2 + ∆2

λ sinh(βEk,λ)

2βE3
k,λ cosh2

(
βEk,λ

2

) .

(26)
The chemical potential µλ in (26) for each particle species
λ is determined by the saddle-point condition [39]

Nλ =
∑
k>0

[
1−

(
εk,λ − µλ − gλ

2

Ek,λ

)
tanh

(
βEk,λ

2

)]
.

(27)

D. State density

The state density is the inverse Laplace transform of
the canonical partition function

ρ(E,Np, Nn) =
1

2πi

∫ i∞

−i∞
dβ eβEZc(β,Np, Nn) . (28)

We determine the average state density by evaluating
the integral in Eq. (28) in the saddle-point approxima-
tion [48]

ρ(E,Np, Nn) ≈
(

2π

β2
C(β)

)−1/2

eSc(β) , (29)

where

Sc(β) = βEc(β) + lnZc(β) (30)

is the canonical entropy and C = dEc/dT is the canon-
ical heat capacity.4 In Eq. (29), β is a function of E
determined by the saddle-point condition

E = Ec(β) = −∂ lnZc(β)

∂β
. (31)

III. PRACTICAL METHODS FOR
CALCULATING SPA+RPA STATE DENSITIES

A. Monte Carlo method

In previous applications of the SPA+RPA, the integra-
tion over the static fields σ was evaluated using quadra-
ture methods [30–39]. Although quadrature methods
could in principle be used for the pairing plus quadrupole
interaction, the computational cost of such methods
scales as the exponent of the number of static fields
and thus becomes prohibitive for more general effec-
tive nuclear interactions, such as the interaction used

4 For simplicity of notation, we have omitted the explicit depen-
dence on Np, Nn in Zc, Ec, Sc, and C.
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in Refs. [16–19]. Since our purpose is to show that
the SPA+RPA can be a practical alternative to exist-
ing methods for calculating CI shell model state densities
in heavy nuclei, it is important to use a computational
method that can be applied to more general interactions.

Here we introduce a Monte Carlo method to calcu-
late the SPA+RPA canonical energy and heat capacity,
from which we obtain the partition function, canonical
entropy, and state density. We evaluate the canonical
energy Ec defined by Eq. (31) using the approximate
canonical partition function Zc in Eq. (24). Using di-
mensionless integration variables

x =

(√
βχβ2, γ,

√
β/gp∆p,

√
β/gn∆n

)
, (32)

we rewrite Eq. (24) in the form

Zc(β) ≈
∫
dxM(x)Zη(x) (33)

where

Zη(x) = Zη(x)e
∑
λ(ln ζλ−βµλNλ)Cη(x) , (34)

and M(x) is the measure in Eq. (13). M(x) becomes in-
dependent of β when expressed as a function of x. Using
Eq. (33) in Eq. (31), we find5

Ec(β) = −

∫
dxW (x)

[
Cη(x)

∂ lnZη(x)
∂β

]
∫
dxW (x)Cη(x)

, (35)

where W (x) is the positive-definite weight function

W (x) =
M(x)Zη(x)

Cη(x)
= M(x)Zη(x)e

∑
λ(ln ζλ−βµλNλ) .

(36)
Eq. (35) can be rewritten as

Ec(β) = −

〈
Cη(x)

∂ lnZη(x)
∂β

〉
W

〈Cη(x)〉W
, (37)

where the expectation value 〈f(x)〉W of a function f(x)
with respect to a weight function W (x) is defined by

〈f(x)〉W =

∫
dxW (x)f(x)∫
dxW (x)

. (38)

To evaluate the expectation values in Eq. (37), we use
a standard Monte Carlo method in which the values of
x are sampled according to the weight function W (x).

5 We note that the canonical energy Ec(β) = −∂ lnZc/∂β calcu-
lated in Eq. (35) is not the same as the thermal expectation value
of the Hamiltonian in the SPA+RPA. In our approach, the basic
quantity is the partition function, and the canonical energy is
defined by the saddle-point condition (31).

Specifically, we perform a random walk in the space of
integration variables x, updating configurations of x ac-
cording to the Metropolis-Hastings algorithm [51]. We
calculate the observables at sample configurations sep-
arated by a sufficient number of steps to ensure that
the samples are decorrelated. We then use the jackknife
method [52] to calculate expectation values and statisti-
cal errors of the thermodynamic observables, such as Ec
in Eq. (37).6 Further details are provided in the Sup-
plemental Material repository that accompanies this ar-
ticle [53]. This Monte Carlo method is similar to the one
implemented in the SMMC method [20].

Having calculated Ec(β) using Eq. (37) for a sufficient
number of β values, we obtain the partition function by
integrating Eq. (31)

lnZc(β) = Sc(0)−
∫ β

0

dβ′Ec(β
′) . (39)

Sc(0) in Eq. (39) is the canonical entropy at β = 0 given
by

Sc(0) =
∑
λ=p,n

ln

(
Ns,λ
Nλ

)
, (40)

where Ns,λ is the dimension of the single-particle model
space and Nλ is the number of valence particles for parti-
cle species λ. The heat capacity C(β) = β2∂2 lnZc/∂β

2

can also be expressed in terms of expectation values of
the form (38) via

∂2 lnZc
∂β2

≈

〈
Cη(x)

[
∂2 lnZη(x)

∂β2 +
(
∂ lnZη(x)

∂β

)2
]〉

W

〈Cη(x)〉W

−


〈
Cη(x)

∂ lnZη(x)
∂β

〉
W

〈Cη(x)〉W

2

.

(41)

Using Eqs. (37), (39-41) together with Eqs. (30) and (29),
we calculate the canonical entropy and state density, re-
spectively.

For importance sampling, it would have been prefer-
able to include the RPA correction factor Cη(x) in the
weight function. However, diagonalizing the RPA ma-
trix is the most computationally intensive part of the
calculation. We have therefore chosen W (x) in Eq. (36)
that does not include Cη(x). We find that the Monte
Carlo method with W (x) as the weight function samples
the configuration space efficiently enough for our calcu-
lations.

6 In practice, ∂ lnZη(x)/∂β in Eq. (37) for a given sample x is
evaluated using a finite-difference formula.
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B. Ground-state energy

Eq. (29) expresses the state density as a function of the
absolute energy E. However, in statistical reaction the-
ory, state densities have to be known as functions of the
excitation energy Ex = E −E0, where E0 is the ground-
state energy. However, the SPA+RPA breaks down at
low but nonzero temperature, and therefore the ground-
state energy cannot be calculated directly. A similar
problem occurs in SMMC calculations in nuclei with an
odd number of valence protons or neutrons with good-
sign interactions, where the projection on an odd num-
ber of particles introduces a Monte Carlo sign problem
at low temperatures [20, 54] and the ground-state energy
cannot be accessed directly. In Ref. [42], the partition
function extrapolation method was introduced to deter-
mine the ground-state energy E0 of such nuclei from the
calculated SMMC partition function at higher tempera-
tures. We apply this method, summarized below, to the
SPA+RPA partition function in order to estimate the
ground-state energy. This is the first systematic method
applied to the SPA+RPA to extract the ground-state en-
ergy.

We define the excitation partition function Z ′c(β;Eref)
with respect to some reference energy Eref by

Z ′c(β;Eref) = Zc(β)eβEref . (42)

In particular, if Eref = E0, the excitation partition func-
tion is the Laplace transform of the state density ρ(Ex)
given as a function of the excitation energy

Z ′c(β;E0) = Zc(β)eβE0 =

∫ ∞
0

dExρ(Ex)e−βEx . (43)

The excitation partition function for an arbitrary refer-
ence energy is related to the excitation partition function
in Eq. (43) by

lnZ ′c(β;Eref) = lnZ ′c(β;E0)− β(E0 − Eref) . (44)

The main idea behind the partition function extrapo-
lation method is to use a reliable model for the state den-
sity in Eq. (44). For even-even nuclei, it was shown [16]
that the state density is well described by the Gilbert-
Cameron composite formula [55]

ρcomp(Ex) =

{
1
T1
e(Ex−E1)/T1 Ex < EM

ρBBF(Ex) Ex > EM
, (45)

where EM is a matching energy, and ρBBF is the back-
shifted Bethe formula [56]

ρBBF(Ex) =

√
π

12a1/4

e2
√
a(Ex−∆)

(Ex −∆)5/4
. (46)

Below EM , the state density is described by the constant-
temperature formula with parameters E1, T1, which are
determined from the parameters a and ∆ of the BBF

formula by the conditions that the state density and its
derivative are continuous at EM . Inserting the compos-
ite state density formula (45) into Eq. (43), we can fit
Eq. (44) to the SPA+RPA excitation partition function
above the method’s breakdown temperature.

We carry out the fit in two steps [42]. In the first step,
we evaluate Eq. (43) in the saddle-point approximation
using the BBF formula for ρ(Ex) to find

lnZ ′c(β;Eref) ≈
a

β
+ ln

(
πβ

6a

)
− βs , (47)

where s = E0−Eref +∆. Choosing Eref sufficiently close
to the yet-to-be-determined ground-state energy E0, we
calculate lnZ ′c(β;Eref) from the SPA+RPA data and fit
Eq. (47) to this data at moderate temperatures (for which
the BBF holds). This yields the fitted parameters (â, ŝ).
In the second step, we use a fit function obtained by
substituting the complete composite formula ρcomp(Ex)
for ρ(Ex) in Eqs. (43) and (44)

lnZ ′c(β;Eref) ≈ ln

∫ ∞
0

dEx ρcomp(Ex)e−βEx

− β(E0 − Eref) , (48)

where â is fixed, ∆ = ŝ − (E0 − Eref), and the integral
is carried out numerically. Eq. (48) depends on only two
parameters E0 and EM , which we determine with a χ2

fit.

If the backshift parameter ∆ is negative, we find that
the fitted value of EM is small, and the composite formula
is essentially equivalent to the BBF (46). In practice,
we then use ρBBF instead of ρcomp in the second step of
Eq. (48). We note that for negative ∆, the BBF is well
defined down to Ex = 0.

IV. APPLICATION TO SAMARIUM ISOTOPES

Here, we apply the SPA+RPA method discussed
in Secs. II and III to a chain of samarium isotopes
148−155Sm, which describes the crossover from spherical
to well-deformed nuclei. We use a model space consist-
ing of the following orbitals: 0g7/2, 1d5/2, 1d3/2, 2s1/2,
0h11/2, and 1f7/2 for protons; 0h11/2, 0h9/2, 1f7/2, 1f5/2,
2p3/2, 2p1/2, 0i13/2, and 1g9/2 for neutrons. The se-
lection of these orbitals is discussed in Ref. [16]. The
single-particle energies and wave functions correspond to
a Woods-Saxon central potential plus spin-orbit inter-
action with the parameters described in Ref. [16]. The
quadrupole interaction parameter in Eq. (10) is given by
χ = k2χ0, where χ0 is determined self-consistently [57]
and k2 is a renormalization factor accounting for core po-
larization. The pairing strengths gp(n) = γgp(n), where

gp(n) = 10.9/Z(N) MeV (Z and N are the total num-

ber of protons and neutrons, respectively), and γ is a
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FIG. 1. The canonical entropy as a function of inverse temperature β for the even-mass samarium isotopes 148,150,152,154Sm.
For each isotope, the SPA+RPA entropy (orange circles) is compared with the SMMC entropy (blue squares) and the HFB
entropy (green dashed-dotted lines). The error bars on the SMMC and SPA+RPA results are statistical errors due to the
Monte Carlo sampling. The insets show an expanded scale at large values of β.

renormalization factor. k2 and γ are parametrized by

γ = 1.225

(
0.72− 0.5

(N − 90)2 + 5.3

)
k2 = 2.15 + 0.0025(N − 87)2 ,

(49)

This parameterization is similar to the one used in the
SMMC calculations of Refs. [17, 19], except that γ is
increased by 22.5% to account for the absence of higher-
order multipoles in the interaction.

In the SPA+RPA, we calculate the canonical energy
Ec and heat capacity C with the Monte Carlo method
described in Sec. III A, using Eqs. (37) and (41), respec-
tively. We define a sweep as an update of each of the
four integration variables x. For each β value, we initially
carry out 50 sweeps to make sure that the Monte Carlo
walk is thermalized, i.e., the walk has reached a repre-
sentative region of the configuration space according to
the weight function W (x). We then calculate the ob-
servables every 70 sweeps to ensure that their values are
sufficiently decorrelated. In the Supplemental Material
repository, we show that these numbers of sweeps yield
acceptable thermalization and decorrelation [53]. We use
∼ 1000 − 2000 samples per β value in the calculation of
the observables.

From the energy Ec(β), we calculate lnZc(β) using
Eq. (39) and the canonical entropy Sc(β) using Eq. (30).
We then calculate the state density from Eq. (29). The
Monte Carlo results and computer codes used to analyze
them are provided in the Supplemental Material reposi-
tory [53].

Below, we compare the SPA+RPA results with exact
(up to statistical errors) SMMC results and with mean-
field finite-temperature HFB results. In the SMMC, we
calculate the thermal canonical energy as the expecta-
tion value of the Hamiltonian 〈Ĥ〉 for fixed proton and
neutron numbers; for details, see Ref. [20]. We also cal-
culate the heat capacity using the method of Ref. [58],
which reduces significantly the statistical errors. Using

the canonical energy and heat capacity, we obtain the
entropy and state density using Eqs. (30) and (29), re-
spectively.

For the finite-temperature HFB, we calculate the
self-consistent HFB solution at each temperature us-
ing the code of Ref. [59], together with the particle-
number-projected partition function using the method of
Ref. [60]. We then apply Eqs. (31), (30), (29) to obtain,
respectively, the energy, entropy, and state density.

A. Even-mass samarium isotopes

In Fig. 1, we show the canonical entropy Sc as a func-
tion of inverse temperature β for the SPA+RPA (or-
ange circles), SMMC (blue squares), and HFB (green
dashed-dotted lines) for the even-mass samarium iso-
topes 148,150,152,154Sm. The SPA+RPA entropies are
shown up to values of β close to the value above which the
approximation breaks down. For each of the isotopes, we
find the SPA+RPA entropy to be in excellent agreement
with the SMMC entropy. The two kinks in the HFB en-
tropy for 148Sm indicate the proton and neutron pairing
phase transitions, and the additional kink at lower β for
the other isotopes is due to the shape phase transition
from a spherical to a deformed mean-field solution.

At β values above the shape transition, the HFB en-
tropy significantly underestimates the SPA+RPA and
SMMC entropies because the HFB does not describe the
contribution of rotational bands that are built on intrin-
sic mean-field band heads [48]. The SPA+RPA restores
the rotational symmetry that is broken in the HFB and
thus reproduces this rotational enhancement of the en-
tropy. Furthermore, in the pairing phase, the HFB en-
tropy becomes unphysically negative because of the in-
herent breaking of particle-number conservation in the
HFB approximation [60]. In contrast, the SPA+RPA
entropy remains nonnegative (within statistical errors)
because the SPA+RPA repairs the intrinsic violation of
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particle-number conservation. Finally, as the neutron
number increases, the SPA+RPA and SMMC entropies
remain nonzero to increasingly large values of β, indi-
cating the presence of a rotational enhancement down to
lower temperatures in nuclei with larger deformation.

We used the partition function extrapolation method
summarized in Sec. III B to estimate the ground-state
energy from the SPA+RPA partition function above
the breakdown temperature of the approximation. For
148,150Sm, we used the composite formula (45) in the
second step of the fit, whereas for 152,154Sm the back-
shift parameter ∆ is negative, and it was simpler to
use the BBF formula (46). In Table I, we compare the
SPA+RPA ground-state energy estimates to the SMMC
and HFB ground-state energies. We calculated the
SMMC ground-state energies by taking a weighted av-
erage of the thermal energy at large β values (β ≈ 8− 20
MeV−1). Table I shows that the SPA+RPA misses
at most ∼600 keV of ground-state correlation energy,
whereas the HFB misses a few MeV of correlation energy
in each isotope. The agreement between the SPA+RPA
estimate and the SMMC ground-state energy improves
with decreasing deformation, and the two agree with each
other for the spherical isotope 148Sm. In Table II, we
show the parameters a,∆, EM of the state density for-
mulas obtained from the ground-state energy fits.

TABLE I. The ground-state energies (in MeV) for the SMMC,
SPA+RPA, and HFB for 148,150,152,154Sm. The SPA+RPA
estimates are obtained with the partition function extrapola-
tion method described in Sec. III B, with errors arising from
the χ2 fit to the SPA+RPA partition function data. The
SMMC values are obtained by taking a weighted average of
the thermal energies at large β values.

SMMC SPA+RPA HFB
148Sm -234.180 ± 0.016 -234.131 ± 0.021 -230.979
150Sm -254.019 ± 0.014 -253.859 ± 0.015 -251.127
152Sm -273.756 ± 0.010 -273.242 ± 0.017 -271.153
154Sm -293.292 ± 0.010 -292.680 ± 0.017 -290.449

TABLE II. The parameters obtained from the partition func-
tion extrapolation method discussed in Sec. III B applied to
the SPA+RPA. For 148,150Sm, we used the composite formula
(45) in the second step of the fit, while for 152,154Sm, we used
the BBF (46).

a (MeV−1) ∆ (MeV) EM (MeV)
148Sm 17.09 ± 0.11 1.07 ± 0.03 1.452
150Sm 18.28 ± 0.06 0.62 ± 0.02 0.95
152Sm 19.14 ± 0.10 -0.17 ± 0.03 –
154Sm 18.89 ± 0.13 -0.38 ± 0.03 –

Using the corresponding ground-state energies in Ta-
ble I, we calculated the SMMC, SPA+RPA, and HFB
state densities for 148,150,152,154Sm. Fig. 2 shows these
densities, using a similar convention as in Fig. 1. In each

isotope, the SPA+RPA state density is in good agree-
ment with the SMMC state density. In contrast, the HFB
state density significantly underestimates the SMMC and
SPA+RPA densities. As the neutron number increases,
the enhancement of the SMMC and SPA+RPA state
densities over the HFB state density persists to higher
excitation energy. This enhancement originates in the
contribution of rotational bands that are included in the
SMMC and SPA+RPA densities but are not described
by the HFB approximation. We observe an additional
enhancement of the SPA+RPA and SMMC state densi-
ties over the HFB density at very low excitation ener-
gies, which is due to the unphysical negative entropy in
the pairing phase of the HFB. This latter enhancement
is particularly apparent in the spherical nucleus 148Sm.

In Fig. 2 we also show the phenomenological compos-
ite or BBF state densities calculated with the parame-
ters reported in Table II. We find good agreement be-
tween these fitted parameterizations and the SPA+RPA
state densities. This agreement demonstrates that the
partition function extrapolation method to extract the
ground-state energy described in Sec. III B is reliable.

It is worth considering how the differences between the
ground-state energies of the SPA+RPA and SMMC af-
fect the agreement between their state densities. Despite
the discrepancies between the SPA+RPA and SMMC
ground-state energies (up to ∼ 600 keV in 154Sm), we
find that the SPA+RPA excitation energies are in good
agreement with the SMMC excitation energies as func-
tions of temperature. Because the SPA+RPA entropies
agree well with the SMMC entropies for the even-mass
samarium isotopes (see Fig. 1), the SPA+RPA state den-
sities ultimately agree well with the SMMC densities. We
note that a similar effect occurs in the HFB approxima-
tion. The HFB ground-state energies differ from their
SMMC values by a few MeV, but the systematic devia-
tions of the HFB state densities from the SMMC densities
are smaller than these large ground-state energy differ-
ences would suggest due to the good agreement between
the HFB and SMMC excitation energies as functions of
temperature. We show typical results for 152Sm in Fig. 3,
in which we compare the absolute energies (top panel)
and excitation energies (bottom panel) calculated in the
HFB, SPA+RPA and SMMC. In this case, the agreement
of both the SPA+RPA and HFB excitation energies with
the SMMC results (as a function of β) is better than it is
for the respective absolute energies. Results for the other
even-mass samarium isotopes are provided in the Sup-
plemental Material repository [53]. The systematic error
inherent in the partition function extrapolation method
will be investigated in detail in Ref. [42].

In Fig. 2 we also compare the calculated state den-
sities with experimental state densities obtained from
level counting at low excitation energies [61] (black his-
tograms) and the average s-wave neutron resonance spac-
ings D0 at the neutron separation energy Sn [62] (red tri-
angles). We used a spin cutoff model [63, 64] with rigid-
body moment of inertia to convert D0 values to state
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FIG. 2. The state density ρ as a function of excitation energy Ex for the even-mass samarium isotopes. The SPA+RPA state
density (orange circles) is compared with the SMMC density (blue squares) and the HFB density (green dashed-dotted lines)
for each isotope. The grey dashed lines show the composite formula (45) for 148,150Sm and the BBF (46) for 152,154Sm, with
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FIG. 3. The energy E (top panel) and excitation energy
Ex (bottom panel) as functions of inverse temperature β for
152Sm. The SPA+RPA energies (solid orange circles) are
compared with the SMMC energies (solid blue squares) and
HFB energies (green dashed-dotted lines). The grey dashed-
dotted line in the bottom panel indicates the neutron separa-
tion energy Sn.

densities. The agreement between the experimental data
and the SPA+RPA and SMMC state densities is good
overall, in particular for 148,150Sm. In 152,154Sm, the cal-
culated densities overestimate the experimental data. In
contrast, the mean-field HFB densities do not agree well

with the experimental data.
To make the comparison between the theoretical and

experimental state densities more quantitative, we show
in Table III the ratios of the theoretical state densities
to their experimental values at the neutron separation
energy Sn for 148,150,152Sm. In each case, the theoretical
values for the state densities (including their statistical
errors in the SMMC and SPA+RPA) are obtained by
interpolating from the excitation energies closest to Sn.
For 154Sm, the experimental value at the neutron sep-
aration energy is unavailable. The SMMC provides the
best agreement with the experimental values and is in
particularly close agreement with experiment for 150Sm.
The SPA+RPA provides somewhat less good agreement
but is within a factor of 2 for all cases. The HFB is
comparable to the SPA+RPA for 148Sm but significantly
underestimates the experimental state densities in the
more deformed samarium isotopes because this mean-
field method does not include rotational correlations.
The better performance of the HFB in 148Sm results from
the fact that the neutron separation energy is above the
pairing phase transition in this nucleus (see the left-most
panel of Fig. 2).

TABLE III. The ratios of the SMMC, SPA+RPA, and HFB
state densities to the state densities extracted from neu-
tron resonance data at the neutron separation energy Sn for
148,150,152Sm. No experimental value of D0 is available for
154Sm.

Sn (MeV) ρSMMC
res /ρexpres ρSPA+RPA

res /ρexpres ρHFB
res /ρexpres

148Sm 8.14 0.84 ± 0.09 0.63 ± 0.05 0.65
150Sm 7.99 1.02 ± 0.10 0.84 ± 0.08 0.17
152Sm 8.26 1.68 ± 0.16 2.00 ± 0.34 0.14

To demonstrate even more clearly how well the
SPA+RPA describes correlations that are missing in the
mean-field approximation, we show in Fig. 4 the state



11

0 5 10 15
Ex (MeV)

100

101

102

En
ha

nc
em

en
t K 148Sm

0 5 10 15
Ex (MeV)

150Sm

0 5 10 15
Ex (MeV)

152Sm

0 5 10 15 20
Ex (MeV)

154Sm

FIG. 4. The enhancement factor K = ρ/ρHFB for the SPA+RPA (orange circles), the SMMC (blue squares), and the neutron
resonance data (red triangles) for the even-mass samarium isotopes. The error bars indicate statistical errors from the Monte
Carlo sampling.

0 1 2 3 4
 (MeV 1)

0
10
20
30
40
50
60

En
tro

py

2 4 6 8 10
 (MeV 1)

0
4
8

12

En
tro

py

149Sm

0 1 2 3 4
 (MeV 1)

2 4 6 8 10
 (MeV 1)

0
4
8

12

En
tro

py

151Sm

0 1 2 3 4
 (MeV 1)

2 4 6 8 10
 (MeV 1)

0
4
8

12

En
tro

py

153Sm

0 1 2 3 4 5
 (MeV 1)

2 4 6 8 10
 (MeV 1)

0
4
8

12

En
tro

py

155Sm

FIG. 5. The canonical entropy as a function of inverse temperature β for the odd-mass samarium isotopes 149,151,153,155Sm.
The SPA+RPA entropy (orange circles) is compared with the SMMC entropy (blue squares) for each isotope. The error bars
show statistical errors arising from the Monte Carlo sampling. The insets show an expanded scale at large values of β.

density enhancement factor K = ρ/ρHFB for the SMMC
(blue squares) and SPA+RPA (orange circles). The
SPA+RPA enhancement factors are in good agreement
with the SMMC enhancement factors. In the spheri-
cal nucleus 148Sm, the enhancement factor differs sig-
nificantly from one only at the lowest excitation energies
and is due entirely to the unphysical negative entropy
in the pairing phase of the HFB. In the deformed iso-
topes 150,152,154Sm, a significant rotational enhancement
of ∼ 10 appears and persists to increasing excitation
energy as the neutron number increases. This change
in the enhancement factor indicates the crossover from
pairing-dominated to rotational collectivity in the chain
of samarium isotopes [17, 40, 41]. Fig. 4 also shows that
the SPA+RPA and SMMC results are in good agree-
ment with the neutron resonance data (red triangles)
in 148,150Sm. The calculated enhancement factors some-
what overestimate the neutron resonance data in 152Sm.

B. Odd-mass samarium isotopes

Having established the accuracy of the SPA+RPA
state densities for the even-mass samarium isotopes,
we next benchmark the SPA+RPA state densities for
the odd-mass samarium isotopes 149,151,153,155Sm. In
Fig. 5, we compare the SPA+RPA canonical entropy
(orange circles) with the SMMC canonical entropy (blue
squares) for the odd-mass isotopes. In each isotope, the
SPA+RPA entropy is in excellent agreement with the
SMMC entropy. The odd-mass sign problem leads to
large fluctuations of the SMMC entropy at high values of
β, as is shown in the insets of Fig. 5. The SPA+RPA en-
tropy remains reliable to slightly lower temperatures than
the SMMC entropy. Both the SPA+RPA and SMMC en-
tropies appear to converge to a nonzero limit, indicating
the magnetic degeneracy of the nonzero-spin ground state
of the odd-mass system.

The projection on the odd number of neutrons intro-
duces a Monte Carlo sign problem in the SMMC at low
temperatures [20, 54] that prevents the ground-state en-
ergy from being calculated directly. To obtain the SMMC
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FIG. 6. The state density ρ as a function of excitation energy Ex calculated with the SPA+RPA (orange circles) and SMMC
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shown as well.

and SPA+RPA state densities as functions of excita-
tion energy, we used the partition function extrapolation
method, which is summarized in Sec. III B, to determine
the ground-state energies E0 in both approaches. We
used the BBF (46) in the second step of the fits. Table IV
shows the extracted values of E0 and the BBF state den-
sity parameters a,∆ for the SMMC and SPA+RPA. The
agreement between the SMMC and SPA+RPA ground-
state energy estimates is even better than for the even-
mass isotopes, with the largest discrepancy of ∼ 300 keV
in 149Sm.

TABLE IV. Ground-state energies E0 and a,∆ values from
fitting the BBF (46) to the SPA+RPA and SMMC excitation
partition functions for the odd-mass samarium isotopes.

E0 (MeV) a (MeV−1) ∆ (MeV)
149Sm SPA+RPA -242.957 ± 0.008 18.36 ± 0.04 -0.13 ± 0.01

SMMC -243.327 ± 0.019 17.97 ± 0.04 -0.04 ± 0.02

151Sm SPA+RPA -262.913 ± 0.006 19.24 ± 0.07 -0.39 ± 0.02

SMMC -262.909 ± 0.047 18.63 ± 0.06 -0.77 ± 0.05

153Sm SPA+RPA -282.384 ± 0.005 19.57 ± 0.12 -0.84 ± 0.02

SMMC -282.449 ± 0.031 18.78 ± .09 -1.25 ± 0.05

155Sm SPA+RPA -301.949 ± 0.003 19.07 ± 0.12 -1.00 ± 0.03

SMMC -302.077 ± 0.021 18.27 ± 0.10 -1.39 ± 0.04

In Fig. 6, we compare the state densities calculated
with the SMMC (blue squares) and SPA+RPA (orange
circles) and find them to be in good agreement with each
other. We also show available experimental data from
level counting [61] (black histograms) and the average
s-wave neutron resonance spacings [62] (red triangles).
The agreement between the calculated and experimental
state densities degrades somewhat as the neutron number
increases. These results are similar to those obtained in
Ref. [19] using an interaction that included contributions
from higher-order multipoles. We also show in Fig. 6

the BBF state densities calculated with the parameters
tabulated in Table IV. These fitted BBF densities are in
good agreement with the calculated state densities.

In Table V, we show the ratios of the SMMC and
SPA+RPA state densities to the experimental state den-
sities at the neutron separation energy. The SPA+RPA
and SMMC exhibit similar agreement with experiment,
but both significantly overestimate the experimental val-
ues for 153,155Sm.

TABLE V. The ratios of the SMMC and SPA+RPA state den-
sities to the state densities extracted from neutron resonance
data at the neutron separation energy Sn for 149,151,153,155Sm.

Sn (MeV) ρSMMC
res /ρexpres ρSPA+RPA

res /ρexpres
149Sm 5.87 0.60 ± 0.08 0.93 ± 0.08
151Sm 5.60 0.81 ± 0.09 0.65 ± 0.06
153Sm 5.87 2.69 ± 0.28 2.25 ± 0.29
155Sm 5.81 4.84 ± 0.54 4.16 ± 0.65

V. CONCLUSION AND OUTLOOK

Here we benchmarked state densities calculated with
the SPA+RPA in the CI shell model framework against
exact (up to controllable statistical errors) SMMC state
densities for a chain of samarium isotopes 148−155Sm.
We implemented a Monte Carlo method to calculate the
canonical energy and heat capacity in the SPA+RPA,
from which we determined the canonical entropy and
state density. The SPA+RPA ground-state energy was
estimated from the excitation partition function above
the SPA+RPA breakdown temperature using the parti-
tion function extrapolation method [42].

We found good agreement between the SPA+RPA
state densities and SMMC state densities for all the iso-
topes considered. For the even-mass samarium isotopes,
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we also calculated mean-field state densities using the
finite-temperature HFB approximation. The main defi-
ciencies of the mean-field approximation arise from the
broken rotational symmetry in deformed nuclei and the
inherent violation of particle-number conservation in the
pairing condensate. Consequently, the mean-field ap-
proximation cannot reproduce the contribution of rota-
tional bands that are characteristic of deformed nuclei
and yields an unphysical negative entropy in the pair-
ing phase of the HFB. The SPA+RPA resolves these
deficiencies of the mean-field approximation. In par-
ticular, it reproduces well the rotational collective en-
hancement of the state density relative to the mean-field
density in deformed nuclei. This enhancement persists
to higher excitation energies as the neutron number in-
creases, demonstrating that the importance of rotational
collectivity increases with deformation. Overall, our re-
sults show that the SPA+RPA provides state densities
in the CI shell model framework that are in agreement
with exact SMMC densities.

A significant limitation of the SPA+RPA method is
the computational cost of diagonalizing the RPA matrix
at each sampled configuration of the static fields. The di-
mension of the RPA matrix scales as∼ N2

s,p+N
2
s,n (where

Ns,p(n) is the number of proton(neutron) single-particle
states), and the cost of diagonalizing this matrix scales
as the cubic power of this dimension.7 Calculating the
canonical energy and heat capacity in the SMMC scales
as a lower power of the number of single-particle states,
specifically as ∼ N4

s for each particle species. It would
therefore be useful to investigate methods for speeding
up the calculation of the RPA correction factor. One
such method was proposed in Ref. [65].

In comparing the SPA+RPA to the SMMC, it is also
useful to consider the limits of the applicability of each
method. The SPA+RPA method requires that the single-

particle Hamiltonian ĥσ in Eq. (3) be a Hermitian oper-
ator for any configuration σ of the static auxiliary fields.
This condition is guaranteed if all terms in the Hamilto-
nian are attractive when written in the separable form Ô2

α

of Eq. (1), where each operator Ôα is Hermitian. More-
over, this condition guarantees that, at temperatures
above the breakdown temperature of the SPA+RPA, the
weight function W (σ) of the Monte Carlo method dis-
cussed in Sec. III A and the RPA correction factor Cη(σ)
are both real and positive for any static field configu-

ration σ. Consequently, W (σ) can be used as a weight
function to sample the static fields, and the Monte Carlo
method described in Sec. III A will not have a sign prob-
lem. In contrast, for the SMMC method to have a good
Monte Carlo sign, the Hamiltonian must be invariant un-
der time reversal, and all of its interaction terms must be
attractive when written as a sum over terms of the form
{Ôα, Ōα} where Ōα is the time reverse of Ôα [20–22]. It
can be shown that the time-reversal and Hermitian con-
jugate of a tensor one-body density operator are related
by a sign. Thus, in some cases, either the SPA+RPA
or SMMC would have good sign while the other method
would have a sign problem, and the two methods would
complement each other. Furthermore, the SPA+RPA
can be applied if time-reversal symmetry is broken, e.g.,
in the presence of a cranking term −ωĴi (i = x, y, z),
which would cause a sign problem in the SMMC.

A method for approximately including repulsive inter-
actions in the SPA+RPA framework was proposed in
Ref. [43]. It would be interesting to benchmark this
method for realistic nuclear interactions that include re-
pulsive components.

Finally, statistical reaction codes require as input
spin- and parity-dependent level densities, rather than
just state densities. To calculate these level densities,
it is necessary to extend the SPA+RPA formalism to
include spin and parity projections.
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