This is the accepted manuscript made available via CHORUS. The article has been published as:
math
xmlns="http://www.w3.org/1998/Math/MathML">mrow>m multiscripts $>$ mi mathvariant="normal" $>$ F /mi>mprescripts>/mprescripts>none>/none>mn>19/mn> $/$ mmultiscripts $>$ msup $>$ mrow $>\mathrm{mo}>(/ \mathrm{mo}>\mathrm{mi}>\mathrm{p} / \mathrm{mi}>\mathrm{mo}>, / \mathrm{m}$ $\mathrm{o}>\mathrm{mi}>\mathrm{\gamma} / \mathrm{mi}>\mathrm{mo}>) / \mathrm{mo}>/ \mathrm{mrow}>\mathrm{mn}>20 / \mathrm{mn}>/ \mathrm{msup}>\mathrm{mi}>\mathrm{Ne}$ $/ \mathrm{mi}>/ \mathrm{mrow}>/ m a t h>$ and math
xmlns="http://www.w3.org/1998/Math/MathML">mrow>m multiscripts $>$ mi mathvariant $=$ "normal" $>\mathrm{F}$
/mi>mprescripts>/mprescripts>none>/none>mn>19/mn> $/ \mathrm{mmultiscripts}>\mathrm{mo}>(/ \mathrm{mo}>\mathrm{mi}>\mathrm{p} / \mathrm{mi}>\mathrm{mo}>, / \mathrm{mo}>\mathrm{mi}>\alpha / \mathrm{mi}>$ mo>)/mo>mmultiscripts $>\mathrm{mi}$
mathvariant="normal" $>0 / m i>$ mprescripts $>/ m p r e s c r i p t s>n$ one $>/$ none $>\mathrm{mn}>16 / \mathrm{mn}>/ \mathrm{mmultiscripts}>/ m r o w>/ m a t h>$ reaction rates and their effect on calcium production in Population III stars from hot CNO breakout
R. J. deBoer, O. Clarkson, A. J. Couture, J. Görres, F. Herwig, I. Lombardo, P. Scholz, and M. Wiescher
Phys. Rev. C 103, 055815 - Published 26 May 2021
DOI: 10.1103/PhysRevC.103.055815

The ${ }^{19} \mathbf{F}(p, \gamma){ }^{20} \mathrm{Ne}$ and ${ }^{19} \mathbf{F}(p, \alpha){ }^{16} \mathrm{O}$ reaction rates and their effect on Calcium production in Population III stars from hot CNO breakout

R. J. deBoer, ${ }^{1, *}$, O. Clarkson, ${ }^{2,3,4}$ A.J. Couture, ${ }^{5}$ J. Görres, ${ }^{1}$ F. Herwig,,${ }^{2,3,4}$ I. Lombardo, ${ }^{6}$ P. Scholz, ${ }^{1}$ and M. Wiescher ${ }^{1}$
${ }^{1}$ The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 USA
${ }^{2}$ Department of Physics \mathcal{G} Astronomy, University of Victoria, Victoria, BC, V8W 2Y2, Canada
${ }^{3}$ Joint Institute for Nuclear Astrophysics, Center for the Evolution of the Elements, Michigan State University, East Lansing, MI 48824, USA
${ }^{4}$ NuGrid collaboration
${ }^{5}$ Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
${ }^{6}$ INFN, Sezione di Catania, Via Santa Sofia 64, I-95123 Catania, Italy

Abstract

First generation, or Population III, stars have a different evolution than those of later generations owing to their initial primordial abundance composition. Most notably, the lack of carbon, oxygen, and nitrogen, means that primordial massive stars must rely on the less efficient $p-p$ chains, thereby requiring the star to contract to reach temperatures high enough to eventually trigger 3α-reactions. Even small amounts of the ${ }^{12} \mathrm{C}(\alpha, \gamma)^{16} \mathrm{O}$ reactions begin feeding the CNO mass range and enable the CNO cycle to generate energy, but this occurs at higher temperature compared to later stellar generations. It is currently controversial if the observed enhanced abundances of Ca in the most metal-poor stars could be a result of the high temperature H-burning conditions in the first massive stars. The level of this enrichment depends on the hot breakout path from the CNO cycles via the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ reaction. In this work, the rates of both the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ and competing ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ reactions are re-evaluated using the phenomenological R-matrix approach, simultaneously considering several ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne},{ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$, and ${ }^{19} \mathrm{~F}(p, p){ }^{19} \mathrm{~F}$ data sets, in order to better characterize the rate uncertainties. It is found that the rate uncertainty for ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ reaction is considerably larger than previously reported. This is the result of undetermined interferences between observed resonances, a possible threshold state, possible subthreshold states, direct capture, and background levels. Additional experimental measurements are therefore needed to determine if ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ CNO breakout is responsible for Ca enrichment in metal poor stars. Astrophysically, the breakout reaction revision makes it less likely that Ca observed in the most Fe-poor stars can originate in hot CNO breakout H-burning nucleosynthtesis, thereby casting doubt on the prevailing faint supernova scenario to explain the abundances observed in these stars.

I. INTRODUCTION

A fundamental question in nuclear astrophysics concerns the reaction flow out of the CNO cycles towards heavier masses in hydrogen burning environments. At low temperature hydrogen burning, such as in massive main sequence stars, and even in low temperature cataclysmic events, such as in classical novae, the CNO matter remains in the mass range below $A \approx 20$. The initial abundance distribution of the CNO isotopes change depending on the temperature density regime of the nucleosynthesis event. Only in explosive hydrogen at burning temperatures sufficiently in excess of $\approx 0.3 \mathrm{GK}$, can break-out from the CNO cycles occur via the ${ }^{15} \mathrm{O}(\alpha, \gamma){ }^{19} \mathrm{Ne}$ and ${ }^{18} \mathrm{Ne}(\alpha, p){ }^{21} \mathrm{Na}$ reactions, triggering a thermonuclear runaway via the αp-process. The required temperatures for break-out are anticipated for accreting neutron stars, triggering an X-ray burst as an observable event and are also possible for high temperature nova events associated with accreting white dwarfs. A summary of these break-out scenarios has been dis-

[^0]cussed before by Wiescher et al. [1 and multiple experiments, using a wide range of experimental techniques, have been performed to determine the reaction rates of the α induced break-out reactions ${ }^{15} \mathrm{O}(\alpha, \gamma){ }^{19} \mathrm{Ne}$ [2/-7] and ${ }^{18} \mathrm{Ne}(\alpha, p)^{21} \mathrm{Na}$ [8-12].

Little attention has been given to the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ reaction as a possible link between the CNO cycles, the $\mathrm{Ne}-\mathrm{Na}$ cycles, and possibly beyond. In particular, at temperatures typical for hydrogen-core or -shell burning in massive main-sequence stars, more investigations are needed. In stars with near solar metallicity, the contribution of this reaction to the production of more massive nuclei is negligible compared to other nuclear production mechanisms. However, hot CNO breakout may play a key role in explaining the observed Ca abundance in the most metal-poor stars that carry the abundance signature from the first massive stars.

The most iron-poor stars we observe in our Milky Way's halo are each believed to display the nucleosynthetic signatures resulting from a single Population III (Pop III) star [13]. Keller et al. [14] suggested hot CNO breakout during hydrogen burning as the source of Ca production in the most iron and Ca-poor star known at the time, SMSS0313-6708. The Ca abundance was reported as $[\mathrm{Ca} / \mathrm{H}]=-7.2$ and -6.94 in analysis done by

Nordlander et al. [15] using solar abundances of Asplund et al. [16. Takahashi et al. [17] also cite hot CNO breakout to produce Ca in SMSS0313-6708, HE 1327-2326 and HE 0107-5240. HE 1327-2326 and HE 0107-5240 have $[\mathrm{Ca} / \mathrm{H}]$ values of -5.3 and -5.13 , respectively, based on an analysis provided in Collet et al. [18, and the same solar composition as above.
Using a combination of stellar evolution and singlezone nucleosynthesis calculations, Clarkson and Herwig $19]$ identified the ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ reaction as the most important breakout path for hydrogen burning conditions in massive Pop III stars. Clarkson and Herwig [19] investigated the conditions for the hot CNO breakout to produce the observed levels of Ca based on a detailed survey of Pop III massive star simulations with masses ranging from 15 to $140 \mathrm{M}_{\odot}$, and a range of commonly adopted assumptions on stellar mixing to cover the related systematic uncertainties. They conclude, based on these simulations, that it is unlikely that large amounts of Ca can be produced by hot CNO breakout. Even under the most optimistic assumptions of the mixing and ejection mechanisms, the predicted Ca abundance is between ≈ 0.8 and nearly 2 dex lower than required by observations of the most metal-poor stars. However, they also note that if the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne} /{ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ reaction rate ratio were a factor of ≈ 10 higher than that reported in the NACRE compilation [20], the model predictions of hot H burning may be able to account for the observed Ca abundances in metal-poor stars.
Based on the presently available nuclear data, the findings of Clarkson and Herwig [19] are in conflict with the previous assertions that the observed Ca in the most metal-poor stars originates in H burning. The question has far-reaching consequences for how the first stars are believed to evolve and die. If Ca can be produced from H burning, then Ca produced in the later Si-burning phases can fall back into the supernova, which is a key ingredient in the prevailing faint supernova with efficient fallback scenario. If Ca cannot be produced in hot H burning, then a new mechanism is needed. Either the supernova scenario has to be revised, or an alternative source must be validated. Other potential sources include a convective-reactive light Pop III i-process [21] or Ca synthesis from explosive burning.
As described in Wiescher et al. [1], the possibility of a break-out from the cold CNO cycles depends on the feeding of ${ }^{19} \mathrm{~F}$ from the equilibrium abundances of ${ }^{17} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ in the third cycle. Leakage via the ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ reaction would cause an irreversible flow from the CNO to the NeNa range because backprocessing via ${ }^{22} \mathrm{Ne}(p, \alpha){ }^{19} \mathrm{~F}$ is energetically impossible. The leakage not only depends on the abundance of ${ }^{19} \mathrm{~F}$ but also on the reaction rates of ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ and the competing back-processing reaction ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$. Therefore, the ratio of the ${ }^{19} \mathrm{~F}+p$ reactions is also of critical importance in understanding the production of Ca in the 14 second generation stars observed today.

The compound nucleus of both reactions, ${ }^{20} \mathrm{Ne}$, is char-
acterized by a pronounced α cluster structure [22], which ${ }_{17}$ favors the α-emission of the ${ }^{19} \mathrm{~F}+p$ resonance states to ${ }^{16} \mathrm{O}$ final states over the decay via γ-emission to bound ${ }_{19}$ states in ${ }^{20} \mathrm{Ne}$. Traditionally, the ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ reaction ${ }_{20}$ is estimated to be three to four orders of magnitude 121 stronger compared to the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ radiative capture ${ }_{22}$ reaction [23] (see Fig. 11).

The experimental confirmation of the predicted reaction rates for both reaction channels was troubled for the longest time by a lack or insufficiency of experimental data. Despite several efforts to measure the cross sections, remarkably little has been published. The reactions ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right)^{16} \mathrm{O}$ have been measured extensively in the low energy range by LorenzWirzba [24] between $E_{p}=0.140 .90 \mathrm{MeV}$ (with data published by Herndl et al. [25]) and by Ott [26] between $E_{p}=0.201 .64 \mathrm{MeV}$, but the majority of these experimental results are not published in peer reviewed articles.

More recently, Dababneh et al. [27], Spyrou et al. [28, Spyrou et al. [29], and Couture et al. [30] have made additional measurements of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right)^{16} \mathrm{O}$ reactions, largely confirming previous results but significantly improving measurement precision. However, recent direct measurements by Lombardo et al. 31, 32 and via the Trojan Horse method (THM) by LaCognata et al. [33, 34 and Indelicato et al. 35, have observed an enhancement in the low energy ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ cross section. Strikingly, there have been no modern measurements of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right){ }^{16} \mathrm{O}$ reaction at low energies.

Experimental information is sparse about the compet${ }_{46}$ ing ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20}$ Ne reaction which would trigger the break${ }_{17}$ out from the CNO cycles. The measurements are dif${ }_{48}$ ficult because of the enormous background count rate ${ }_{49}$ from the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right)^{16} \mathrm{O}$ reaction. The presently tab${ }_{50}$ ulated reaction rate is rather outdated and carries substantial uncertainties [20]. The rate is based primarily on a low-energy study of the ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ reaction by Suboti et al. [36] in the energy range between 0.301 .20 MeV . However, it should be noted that significantly different resonance strengths were found in many cases between Suboti et al. [36] and the previous measurements by Farney et al. 37, Keszthelyi et al. 38, and Berkes et al. 39. A recent measurement using the Q-value gating technique measured the dominant $\left(p, \gamma_{1}\right)$ branch of the cross section between 200 and 760 keV 30. While the low energy resonance at $\mathrm{E}_{\text {c.m. }}=213 \mathrm{keV}$ was not observed, an upper limit of $\omega \gamma=60 \mathrm{meV}$ was established. The resonance strengths for the other resonances were generally smaller than those previously reported, and the net interference effect at low energies was seen to be destructive.

There is also very limited experimental information available regarding threshold states, subthreshold states, and direct capture strengths. Betts et al. 40 reported a 1^{+}state near threshold via the ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He}, d\right)^{20} \mathrm{Ne}$ reaction. Kious 41 then made a more targeted study, with the ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ reaction specifically in mind. They ob173 served the same state found by Betts et al. 40, but a

FIG. 1. Level diagram of the ${ }^{20}$ Ne system, in the vicinity of the proton separation energy, showing the level properties relevant for the present R-matrix analysis of ${ }^{19} \mathrm{~F}+p$ reactions. Separation energies are indicated by the red dashed horizontal lines, while levels in ${ }^{20} \mathrm{Ne}$ by black horizontal lines. Note that the lower part of the level diagram, below the real level at $E_{x}=12.40 \mathrm{MeV}$, is not to scale.
more precise determination of the energy was obtained. 192 for the Ca production in Pop III stars are discussed in

$$
177
$$ between the near threshold resonance (at $E_{p}=11.5 \mathrm{keV}$) and other higher lying resonances for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right)^{16} \mathrm{O}{ }_{19}$ reaction. No peer reviewed results have been published 195 however.

This paper seeks to combine these past experimental 196 results into a more cohesive multichannel R-matrix anal- ${ }^{197}$ ysis [42] that includes all available ${ }^{19} \mathrm{~F}+p$ data. This work ${ }^{19}$ begins with a review of the past literature that reports 19 cross section measurements for the ${ }^{19} \mathrm{~F}+p$ reactions in ${ }^{200}$ cross section measurements for the $\mathrm{F}+p$ reactions in
Sec. The data are then subjected to an R-matrix analhese considerations, a revised reaction rate with uncer- 205 tainty estimates is presented in Sec. V. The implications 206

Detailed R-matrix calculations were also performed by Kious 41 in order to demonstrate possible interference

Sec. VI while Sec. VII provides a summary.

II. REVIEW OF DATA FROM THE LITERATURE

For a comprehensive R-matrix analysis of the ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ reactions, ideally, data for all reactions that populate the ${ }^{20} \mathrm{Ne}$ compound system over the excitation energy range of interest should be included. In this work, previous analyses are improved on by including the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(0,1,2,3,4)}\right){ }^{16} \mathrm{O},{ }^{19} \mathrm{~F}\left(p, p_{0}\right){ }^{19} \mathrm{~F}$, and ${ }^{19} \mathrm{~F}\left(p, \gamma_{1}\right)^{20} \mathrm{Ne}$ reactions in a simultaneous R matrix analysis. Unfortunately no ${ }^{19} \mathrm{~F}\left(p, p_{(1,2)}\right){ }^{19} \mathrm{~F}$ or ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ data to other final states are available. Measurements of these reactions are experimentally possible and are recommended to improve this type of global

259

260

analysis in the future. Because of the complexity of several open channels and high level density, the analysis has be limited to $E_{p} \lesssim 0.8 \mathrm{MeV}$, which allows for an accurate calculation of the reaction rate up to $\approx 1 \mathrm{GK}$.

As noted in Sec. I reactions proceeding through the $J^{\pi}=0^{+}{ }^{16} \mathrm{O}+\alpha_{(0,1)}$ channels (see Fig. 11) are limited to natural parity states, while those going through the other channels can populate all states in the compound nucleus. This has the practical consequence that the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right){ }^{16} \mathrm{O}$ cross sections exhibit a nearly completely different set of resonances and underlying states then those populated in the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}\left(p, \gamma_{(0,1)}\right)^{20} \mathrm{Ne}$ reactions. In addition, it is important to note that the first excited state to ground state decay in ${ }^{16} \mathrm{O}$ can not proceed via γ-ray emission $\left(0^{+} \rightarrow 0^{+}\right.$transition) and instead decays primarily via pair-production. Therefore, only the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ reactions can be observed through secondary γ-ray emission. Note that the γ-ray decays of the excited states in ${ }^{16} \mathrm{O}$ do so with nearly 100% probability directly to the ground state 43, simplifying secondary γ-ray measurements.
Its important to note some alternative notations that have been used in some previous literature. The most prolific is the notation ${ }^{19} \mathrm{~F}(p, \alpha \gamma){ }^{16} \mathrm{O}$, which refers to the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ reactions, emphasizing their detection via secondary γ-ray emission. A similar alternative notation, ${ }^{19} \mathrm{~F}\left(p, \alpha_{\pi}\right){ }^{16} \mathrm{O}$, is often used for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right){ }^{16} \mathrm{O}$ reaction in order to emphasize its primary decay mode of pair production. It should also be noted that some
early works refer to the $E_{x}=6.13 \mathrm{MeV}$ transition as the ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right){ }^{16} \mathrm{O}$ reaction (see, e.g., the level diagram in Berkes et al. [39]), as it is the first to decay via secondary γ-ray emission. Since this work primarily uses R-matrix to analyze each of the reactions individually, the notation using the individual number of the final state will be used for clarity.

The above nuclear properties rather naturally allow for the analysis of these different groups of reactions to be broken up into separate calculations. This was the strategy largely followed in past works, including the recent work of Lombardo et al. [44, where the focus was on the analysis of the $\left.{ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right)\right)^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right)^{16} \mathrm{O}$ reactions over a much broader energy range than that investigated in this work.

262

$$
\text { A. } \quad{ }^{19} \mathbf{F}\left(p, \alpha_{(0,1)}\right)^{16} \mathbf{O}
$$

Lombardo et al. 44 performed a comprehensive analysis of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(0,1)}\right)^{20} \mathrm{Ne}$ reactions from near threshold up to $E_{p} \approx 10 \mathrm{MeV}$ and reviews of the relevant literature covering measurements up to those energies can be found there. As this work focuses on the low energy range below $E_{p}<0.8 \mathrm{MeV}$, the data are limited to those of Refs. [24, 25, 31, 35, 45, 49 for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right)^{20} \mathrm{Ne}$ reaction and Refs. 49,50 for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right)^{20} \mathrm{Ne}$ reaction. 1 The data from Ott [26] are also examined but, because

FIG. 2. Differential S-factors of the ${ }^{19} \mathrm{~F}\left(p, a_{0}\right)^{16} \mathrm{O}$ data [24, (25), 45, 48.
of large experimental effect corrections, the majority of the data are not included in the present analysis. Data for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(0,1)}\right)^{20} \mathrm{Ne}$ reactions considered in the R matrix fit are shown in Figs. 2, 3, 4 and 5 .

As discussed recently in Lombardo et al. 44, there is rather significant inconsistency between the low energy data of Lombardo et al. [32 and that of Lorenz-Wirzba 24 below $E_{\text {c.m. }} \approx 0.5 \mathrm{MeV}$. In this analysis, the data of Lorenz-Wirzba [24] are fit at low energy to purposely investigate another fit solution in order to better gauge the uncertainty in the low energy S-factor. This choice does not represent a preference of one data set over anther. Additional measurements are needed to resolve
B. ${ }^{19} \mathbf{F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathbf{O}$

One of the main focuses of this work is the analysis of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right)^{20} \mathrm{Ne}$ reaction channels, which were not investigated in Lombardo et al. 44. As the corresponding excited states in ${ }^{16} \mathrm{O}$ decay with nearly 100% probability to the ground state via γ-ray emission, these reactions are often studied through the detection of secondary γ-rays. Refs. [24, 29, 30, 38, 39, 51, 52] all include cross section data for these reactions determined using γ ray detection. The data of Devons et al. 51 and Spyrou et al. [29] report the sum over all three of these transi-

FIG. 3. Low energy angular distributions for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right)^{16} \mathrm{O}$ reaction [24, 25, 32, 35, 46, 49,

FIG. 4. Lowest energy angle integrated ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right)^{16} \mathrm{O}$ data ${ }^{297}$ of Devons et al. [50] and Caracciolo et al. [49. The data of Devons et al. 50 has been renormalized as suggested in Lombardo et al. [44. The R-matrix cross section (red line) has 290 been convoluted with the energy resolution of the experiment.
${ }_{287}$ tions. The only particle detection experiment is that re${ }^{38}$ ported in Ott 26, where a thin gas target was utilized. ${ }_{89}$ The other data sets from Ott [26] are compared with the 290 fit, but are not included in it, due to the large experimental effects corrections needed for the thick TaF_{5} targets that were employed. Data for the 6.13 MeV transition are shown in Figs. 6 and 9, the 6.92 MeV transition in Fig. 11, and the 7.12 MeV transition in Fig. 12, Fig. 10 shows data for the sum of all three transitions and Figs. 7 and 8 show secondary γ-ray angular distributions.

$$
\text { C. } \quad{ }^{19} \mathbf{F}\left(p, p_{0}\right)^{19} \mathbf{F}
$$

Following Lombardo et al. [44, the ${ }^{19} \mathrm{~F}\left(p, p_{0}\right){ }^{19} \mathrm{~F}$ data of Caracciolo et al. 49] are included. The current analysis is expanded to also include the data of Webb et al. [53], where simulation of experimental effects were necessary. The data are shown in Fig. 13.

FIG. 5. Angular distributions of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right){ }^{16} \mathrm{O}$ reaction from Caracciolo et al. 49.

303

Data for the ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ reaction are very limited. The only cross section data are those of Couture et al. [30] and only for the ${ }^{19} \mathrm{~F}\left(p, \gamma_{1}\right)^{20} \mathrm{Ne}$ transition. Thick target yield studies of the narrow levels in this region report only small branchings to the ground state as summarized in Table 20.24 of the compilation [54. The data of Couture et al. 30] are shown in Fig. 14.

E. Other Reaction Channels

Ideally, this work would also include a full analysis ${ }^{33}$ of the ${ }^{16} \mathrm{O}+\alpha$ reactions over the overlapping excitation ${ }^{336}$
energy range. ${ }^{16} \mathrm{O}\left(\alpha, \alpha_{0}\right){ }^{16} \mathrm{O}$ cross sections over this ex- ${ }^{337}$ citation energy range are reported by Caskey [55] and ${ }_{338}$ Mehta et al. [56]. However, because of the large difference 339 in the α-particle $\left(S_{\alpha}=4.730 \mathrm{MeV}\right)$ and proton separa- ${ }_{340}$ tion $\left(S_{p}=12.844 \mathrm{MeV}\right)$ energies in ${ }^{20} \mathrm{Ne}$, the excitation energy range for low energy ${ }^{19} \mathrm{~F}+p$ induced reactions cor- ${ }^{342}$ responds to a high energy range for ${ }^{16} \mathrm{O}+\alpha$ induced reac- ${ }^{343}$ tions. It is thus possible to excite a large number of high spin states in the ${ }^{16} \mathrm{O}\left(\alpha, \alpha_{0}\right){ }^{16} \mathrm{O}$ reaction, complicating ${ }^{345}$ the R-matrix analysis of these reactions.

Additionally, no previous R-matrix analyses of the ${ }^{16} \mathrm{O}+\alpha$ reactions have extended up high enough in en- ${ }^{34}$ ${ }_{26}$ ergy to exceed S_{p}. Currently, the low energy range has ${ }_{34}$

FIG. 6. The R-matrix fit to the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ secondary γ-ray data of Lorenz-Wirzba 24] and Couture et al. 30] is shown by the red solid line. Additional data from Ott [26], which used substantially thicker targets, was not included in the fit, but calculations are shown (red dashed lines) comparing the R-matrix fit from this work convoluted with the experimental resolution.

327 been analyzed using R-matrix by Costantini et al. [57], ${ }^{228}$ focusing on the ${ }^{16} \mathrm{O}(\alpha, \gamma){ }^{20} \mathrm{Ne}$ reaction. At higher energies, Berthoumieux et al. 58 analyzed ${ }^{16} \mathrm{O}(\alpha, \alpha){ }^{16} \mathrm{O}$ data from $E_{\alpha}=3.0$ to 3.4 MeV and more recently Nauruzbayev et al. [59] and Hao et al. 60] have performed fits to limited sets of data up to $E_{\alpha}=6.25 \mathrm{MeV}$ and $E_{\alpha}=9.0 \mathrm{MeV}$ respectively. However, these higher energy analyses were limited to backward angle data and still do not exceed the proton threshold which corresponds to $E_{\alpha}=10.14 \mathrm{MeV}$.
As discussed in Lombardo et al. 44, of particular interest are the ${ }^{16} \mathrm{O}\left(\alpha, \alpha_{1}\right){ }^{16} \mathrm{O}$ data of Laymon et al. 61]. In that work, a strong 2^{+}resonance was identified at $E_{\alpha}=10.45 \mathrm{MeV}\left(E_{x}=13.09 \mathrm{MeV}\right)$, which would correspond to $E_{p} \approx 260 \mathrm{keV}$ for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right){ }^{16} \mathrm{O}$ reaction. The general trend of the data can be reproduced with a broad 2^{+}state, but it is clear that the angular distribution is distorted from that of an isolated resonance, indicating contributions from other weaker nearby levels. This is shown by the partial wave analysis in Fig. 4 of Laymon et al. 61. Additional measurements are highly desirable for this reaction.

A significant amount of data is also available for the β -

FIG. 7. Secondary on-resonance γ-ray angular distribution measurements for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right)^{16} \mathrm{O}$ reactions [38, 51]. The data of Devons et al. 51 are the sum of the three secondary γ-ray transitions while that of Keszthelyi et al. 38 are of only the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ reaction.

FIG. 8. Secondary on-resonance γ-ray angular distribution measurements for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,4)}\right){ }^{16} \mathrm{O}$ reactions at $E_{p}=340 \mathrm{keV}$ 52] and 484 keV [39. The isotropic distributions of these isolated resonances provide accurate relative angular distribution calibrations for γ-ray detectors.

FIG. 9. Differential cross section measurement of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ reaction though observation of the α-particles. This thin target data set from Ott [26] is unique for this reaction, as all others have been made by measuring secondary γ-rays.

$$
5
$$

r
delayed α decay spectrum of ${ }^{20} \mathrm{Na}(\beta \alpha)^{16} \mathrm{O}$ 62, 63]. The decay has been observed to proceed strongly through several 2^{+}states via allowed transitions. While the cutoff energy is at $E_{x}=13.89 \mathrm{MeV}$, extending above the proton separation energy in ${ }^{20} \mathrm{Ne}$, even the high statistics measurement of Laursen et al. [62] only observes decays up to $E_{x} \approx 11.9 \mathrm{MeV}$. Therefore, while these data could prove quite useful in a global fitting at lower energies, levels in the present region of interest have not yet been observed. 370
F. Transfer Reactions

While transfer reaction data is not included directly in the R-matrix analysis, the level information for near threshold levels is of vital importance in the extrapolation of the cross section to the astrophysically relevant en- ${ }^{376}$ ergy region. In this case, a strong 1^{+}near-threshold level has been identified using the ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He}, d\right){ }^{20}$ Ne reaction by Betts et al. 40] and Kious [41] at $E_{\text {c.m. }}=11 \mathrm{keV}$. This ${ }^{379}$ resonance has the potential to strongly affect both the 380 ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ reactions. In addition, Kious 41 reports a subthreshold level at $E_{\text {c.m. }}=-382$

FIG. 10. Sum of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ reactions measured with a sodium iodide summing detector by Spyrou et al. 29. The R-matrix cross section (red line) has been convoluted with the energy resolution of the experiment.

FIG. 11. Experimental data for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{3}\right)^{16} \mathrm{O}$ reaction. The top panel displays the angle integrated data of Couture et al. [30] (circles) while the bottom panel shows the differential data of Lorenz-Wirzba [24] (squares) at $\theta_{\gamma}=45^{\circ}$. The R-matrix cross section (red line) has been convoluted with the energy resolution of the experiment.

448 keV . A dedicated study seems past due in order to determine the proton ANCs of the bound state levels in ${ }^{20} \mathrm{Ne}$ to evaluate possible subthreshold resonance contri37 butions and interference in the low energy cross section.

III. R-MATRIX ANALYSIS

Based on the discussions presented in Sec. II, the present R-matrix analysis includes the reactions ${ }^{19} \mathrm{~F}\left(p, \alpha_{(0,1,2,3,4)}\right){ }^{16} \mathrm{O},{ }^{19} \mathrm{~F}\left(p, p_{0}\right){ }^{19} \mathrm{~F}$, and ${ }^{19} \mathrm{~F}\left(p, \gamma_{1}\right){ }^{20} \mathrm{Ne}$. There are no cross section data available to constrain the branchings to the ${ }^{19} \mathrm{~F}\left(p, p_{(1,2)}\right){ }^{19} \mathrm{~F},{ }^{19} \mathrm{~F}\left(p, \gamma_{0}\right)^{20} \mathrm{Ne}$, or other higher lying γ-ray decay channels. Tilley et al. [54] and Lombardo et al. 44] do report some significant

FIG. 12. Experimental data for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{4} \gamma\right)^{16} \mathrm{O}$ reaction. The top panel displays the angle integrated data of Couture et al. 30 (circles) while the bottom panel shows the differential data of Lorenz-Wirzba [24] (squares) at $\theta_{\gamma}=45^{\circ}$. The R-matrix cross section (red line) has been convoluted with the energy resolution of the experiment.

FIG. 13. The limited amount of proton scattering data from Webb et al. 53] and Caracciolo et al. 49. The R-matrix cross section (red line) has been convoluted with the energy resolution of the experiment.

FIG. 14. Only the ${ }^{19} \mathrm{~F}\left(p, \gamma_{1}\right)^{20} \mathrm{Ne}$ data of Couture et al. 30] are available for the capture reaction. The R-matrix cross section (red line) has been convoluted with the energy resolution of the experiment.
branchings to the ${ }^{19} \mathrm{~F}\left(p, p_{(1,2)}\right){ }^{19} \mathrm{~F}$ channels for the highest lying resonance considered in this analysis (see Table II), therefore the p_{1} channel is included for this resonance and a background state. It should also be noted that the present analysis stops just below the multiparticle breakup threshold, ${ }^{12} \mathrm{C}+2 \alpha$, at $E_{x}=13.79 \mathrm{MeV}$.
For the R-matrix fits, the code AZURE2 [64, 65] has been used. As is standard for the code, the alternative R-matrix formalism of Brune [66] is used to work directly with physical widths and resonance energies. In addition, a modified version of the code was created that included the formalism for secondary γ-ray angular distributions as reported in Brune and deBoer 67] and the ability to sum the cross sections for multiple reactions (for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)} \gamma\right)^{20} \mathrm{Ne}$ reaction data of Devons et al. 51] and Spyrou et al. [29]). The masses, separation energies, and channel radii used for the R-matrix fit are given in Table T. The fit to the data is shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 and the best fit parameters are given in Table II.
In general, the R-matrix fit was able to reproduce the ${ }^{19} \mathrm{~F}+p$ data described in Sec. II. For the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ data, both the energy and angular dependence of the low energy cross section was well described as demonstrated in Figs. 2 and 3. The lowest energy region, below $E_{\text {c.m. }}=0.65 \mathrm{MeV}$, is smoothly varying in energy and the data could be described using only broad background resonances of $J^{\pi}=0^{+}$and 1^{-}. In fact, it was possible to eliminate all of the higher energy levels used in the high energy fit of Lombardo et al. [44], above $E_{x}=13.7 \mathrm{MeV}$, and replace their contributions with one or two background states (see Table IT), for each J^{π}, to simplify the fitting procedure of the low energy region. The narrow resonances that are observed in the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ data, above $E_{\text {c.m. }}=0.65 \mathrm{MeV}$, were reproduced in a similar manner as Lombardo et al. [32. It is observed that the angular distribution data of Lorenz-Wirzba [24] seem to be systematically above other measurements at backward

TABLE I. Atomic masses (M), particle separation (S), and channel radii (a) used in the R-matrix calculation. Atomic masses are in atomic mass units, separation energies in MeV , and channel radii in fm . Atomic masses and separation energies are taken from Audi et al. 68].

Parameter	Value
S_{p}	12.844 MeV
S_{α}	4.73 MeV
$S_{\alpha_{1}}$	10.779 MeV
$S_{\alpha_{2}}$	10.86 MeV
$S_{\alpha_{3}}$	11.65 MeV
$S_{\alpha_{4}}$	11.85 MeV
M_{p}	1.0078 u
M_{α}	4.0026 u
$M\left({ }^{16} \mathrm{O}\right)$	15.9949 u
$M\left({ }^{19} \mathrm{~F}\right)$	18.9984 u
$M\left({ }^{20} \mathrm{Ne}\right)$	19.9924 u
$a_{p_{(0,1,2)}}$	5.136 fm
$a_{\alpha_{(0,1,2,3,4)}}$	5.75 fm

453
angles. There are weak fluctuations at low energy in the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ data that may be the result of additional weak resonance contributions, but they are of a similar magnitude as the error bars of the experimental data in that region. As discussed in Sec. II A, the data of 32 are not included in the fit, as well as the two very low energy resonances reported in the THM study of LaCognata et al. 33, as they were not needed to reproduce the data that were considered. Further discussions can be found in Sec. IVA.

The limited amount of low energy ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right){ }^{16} \mathrm{O}$ data [49, 50] could be described by the same resonances observed over this energy region in the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ data (see Figs. 4 and 5), although there are discrepancies between the data and fit in some off-resonance interference regions. The exception is the lowest energy resonance at $E_{\text {c.m. }}=0.63 \mathrm{MeV}\left(E_{x}=13.48 \mathrm{MeV}\right)$ observed in the data of Devons et al. [50]. It is possible that this resonance corresponds to the 1^{-}level that is reported in the literature at $E_{x}=13.48 \mathrm{MeV}(\Gamma=24(8) \mathrm{keV})$, but the resonance appears to be narrower, with a width of $<10 \mathrm{keV}$. Since no angular distribution information is available in this low energy region, this resonance has been fit using an arbitrary J^{π} assignment.

Almost none of the natural parity states that contribute strongly to the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(0,1)}\right)^{16} \mathrm{O}$ reactions contribute strongly to the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ reactions or the ${ }^{19} \mathrm{~F}\left(p, \gamma_{1}\right){ }^{20}$ Ne reaction, which are instead dominated by ${ }^{50}$ a shared set of resonances that correspond to unnatural 507 parity states in the ${ }^{20} \mathrm{Ne}$ system. In particular, the cross section is dominated by contributions from only $J^{\pi}=1^{+}$ and 2^{-}levels. The exceptions are the 2^{+}level that is observed as a weak resonance at $E_{x}=13.585 \mathrm{MeV}$ in all the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(0,1,2,3,4)}\right){ }^{16} \mathrm{O}$ reactions and the ${ }^{19} \mathrm{~F}\left(p, p_{0}\right){ }^{19} \mathrm{~F}$
reaction, and the 3^{-}level that is observed only in the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ sum data of Spyrou et al. [29] (see Table II).

Two sets of experimental data dominate the fit for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)} \gamma\right){ }^{16} \mathrm{O}$ reactions (see Figs. 6 and 10 , the partial cross sections of Couture et al. 30] and the γ-ray sum data of Spyrou et al. [29]. While Couture et al. 30] used a multilevel Breit-Wigner analysis to fit their cross section data, it was found that their parameters resulted in a very good starting point for the R-matrix fit for this reaction.

The data of Spyrou et al. [29] were found to be generally consistent with other data sets, especially the higher energy portion of their data. The two other lower energy data sets required a shift of $\approx 6 \mathrm{keV}$ up in energy, even after corrections for target energy loss. However, the shifted data then also agree with the resonance energies quoted in Table 1 of that work. The low energy Spyrou et al. 29] data were made with a thin target at these low energies, allowing for the resolution of a new narrow resonance at $E_{\text {c.m. }}=225 \mathrm{keV}$, which corresponds to a 3^{-}level at $E_{x}=13.07 \mathrm{MeV}$ that is just above the previously measured stronger resonance at $E_{\mathrm{c} . \mathrm{m} .}=214 \mathrm{keV}$ corresponding to the 2^{-}state at $E_{x}=13.06 \mathrm{MeV}$.

In addition, the thesis data of Lorenz-Wirzba 24, which were published in [25], were also included in the fit. The secondary γ-ray angular distribution formalism of Brune and deBoer 67] was used to fit these differential cross section measurements at $\theta_{\text {lab }}=45^{\circ}$. The data include very low energy, thin target, differential cross section measurements for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,4)}\right)^{16} \mathrm{O}$ reactions (see Figs. 6 and 12 . While the R-matrix fit was able to accurately reproduce the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ differential cross section data of Lorenz-Wirzba [24] over the majority of the energy range, larger discrepancies do occur around the low energy resonance at $E_{p}=225 \mathrm{keV}$. The increase observed in the low energy cross section data may indicate additional structure at these low energies (see Sec. IV B).

There are also measurements of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}\left(p, \gamma_{1}\right){ }^{20} \mathrm{Ne}$ reactions given in the unpublished thesis of Ott 26. The majority of these data sets use thick TaF_{5} targets repeating energy ranges already covered by thinner target measurements. The exception to this are the thin gas target differential cross section measurements of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ reaction made through direct α-particle detection. These data are included in the fit and are found to be in good agreement with the other thin target data sets. See further discussion in Sec. IV D.
There are only two sets of low energy ${ }^{19} \mathrm{~F}\left(p, p_{0}\right){ }^{19} \mathrm{~F}$ data available in the literature [49, 53] and unfortunately no ${ }^{19} \mathrm{~F}\left(p, p_{(1,2)}\right){ }^{19} \mathrm{~F}$ measurements. The spin assignments of Lombardo et al. 44 are adopted and a reasonably consistent fit is obtained. The data of Webb et al. 53 required corrections for target resolution and energy loss, which is why they were not used previously in the analysis of Lombardo et al. [44].

The experimental ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ data of Couture et al.

TABLE II. R-matrix parameters from the best fit to the ${ }^{19} \mathrm{~F}+p$ data considered in this work. Levels marked as "BG" are background levels, and do not correspond to individual levels in the compound system. When two values are given for a partial width, they correspond to either $\Gamma_{s} / \Gamma_{s+1}$ or $\Gamma_{\ell} / \Gamma_{\ell+1}$, where s and ℓ correspond to the lowest channel spin or orbital angular momentum respectively.

${ }^{\mathrm{a}}$ Fixed to the value given in Couture et al. 30.
b Spin-parity undetermined.
${ }^{\text {c }}$ Fixed to the value given in Lombardo et al. 44 .
${ }^{d}$ Fixed
[30] are described well by the levels reported in the lit- ${ }_{534}$ ergies, where the data of Lombardo et al. 32] are sigerature [54], and are the same as those populated in the ${ }_{535}$ nificantly higher in cross section than that of Lorenz${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ reactions. As in Couture et al. 30, ${ }^{536}$ Wirzba [24. Additionally, the THM measurements of a background 1^{+}level was needed to modify the off- ${ }^{537}$ LaCognata et al. [33] report two resonances at low enresonance interference shape produced by only the levels ${ }_{538}$ ergy, which should just overlap the lowest energy data in the experimentally observed region. Since the data 539 of Lorenz-Wirzba [24. However, the widths given by could be reproduced without lower energy resonance or ${ }^{540}$ LaCognata et al. [33] produce a cross section that does direct capture contributions, these components were not ${ }^{541}$ not appear to be consistent with the experimental data included in the fit. However, their effects on the extrapo- ${ }^{542}$ of Lorenz-Wirzba [24]. Therefore, the main low energy lation of the cross section to lower energies are discussed ${ }^{543}$ uncertainty in the ${ }^{19} \mathrm{~F}\left(p, a_{0}\right)^{20} \mathrm{Ne} S$-factor results from in Sec. IV G. The R-matrix fit to the capture data of 544 the systematic differences in these data sets. The data

Couture et al. 30] is shown in Fig. 14.

IV. DISCUSSION

A. Inconsistencies between different ${ }^{19} \mathbf{F}\left(p, a_{0}\right)^{16} \mathbf{O}$ and THM measurements

550

B. The 11 keV threshold resonance

While most of the ${ }^{19} \mathrm{~F}\left(p, a_{0}\right)^{20} \mathrm{Ne}$ data from the lit-
erature are in good general agreement [69], a signifi- ${ }^{551}$ Transfer measurements using the ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{20}$ Ne reaccant discrepancy has been observed between the data ${ }_{52}$ tion data 40 , 41 have observed a near threshold level at of Lorenz-Wirzba [24] and Lombardo et al. [32. The ${ }^{553} E_{p}=11.5 \mathrm{keV}\left(E_{x}=12.855 \mathrm{MeV}\right)$ 41]. As the level is a data are in reasonable agreement at higher energies above ${ }_{554} 1^{+}$state, it can only contribute to the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ $E_{\mathrm{c} . \mathrm{m} .} \approx 0.5 \mathrm{MeV}$ but increasingly diverge at lower en- ${ }^{555}$ and ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ reactions, although it will likely only

FIG. 15. Illustration of the inconsistencies between the low energy data of Lorenz-Wirzba [24, the data of Lombardo et al. 32 and the THM measurements of LaCognata et al. (33.
make a significant contribution to the total cross section if its total width is dominated by $\Gamma_{\alpha_{2}}$. The resonance is low enough in energy that it may not contribute to the rate at temperatures of interest, unless its total width is large enough to create significant interference with other higher lying resonances. The total width is highly uncertain [29, 41, both Kious [41] and Spyrou et al. [29] have estimated upper limits for the total width based on the proton width determined from the transfer reaction and the resonance's interference with the higher energy off-resonance cross section data. Spyrou et al. [29] have estimated an upper limit of 120 eV using a Breit-Wigner analysis, but the present analysis, using a full multilevel R-matrix analysis, found that larger values are possible. The R-matrix analysis reveals that this upper limit is difficult to constrain because the off-resonance cross section over the region of the data could have additional contributions from higher lying resonances and/or subthreshold resonances. The upper limit from the experimental resolution of the transfer measurements is $\approx 1 \mathrm{keV}$ 41, which is consistent with the upper limit estimate from the present R-matrix analysis. In addition, the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right)^{16} \mathrm{O}$ data of Lorenz-Wirzba [24] extend to even lower energies than that of Spyrou et al. [29] and give a larger cross section than is expected from the R-matrix fit to the higher energy data, even with interference with the near threshold resonance. This may be an indication of other low energy contributions to the cross section.

As shown in Fig. 16] if the near threshold state does have a $\Gamma_{\alpha_{2}}$ of $\approx 1 \mathrm{keV}$ it can result in a low energy cross section that is comparable to that of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right)^{16} \mathrm{O}$ cross section, which has been assumed previously to dominate over these low energies [20]. This will also be considered as another source of uncertainty in the reaction rate estimate of Sec. V as it has a significant effect on

$$
593
$$

$$
594
$$

$$
595
$$

$$
596
$$

the upper limit.
While it has not been investigated in previous work, given the branching ratios of other nearby states, it is likely that the near-threshold state also has a significant decay branch through γ-ray emission to the first excited state of ${ }^{20} \mathrm{Ne}$. Fig. 17 shows example interference solutions for the upper limit width estimate $\left(\Gamma_{\alpha_{2}}=1 \mathrm{keV}\right)$ of the near threshold state. As will be discussed further in Sec. V, the interference solutions have a significant effect on the (p, γ) reaction rate, due to their large modifications to the low energy cross section.

C. 3^{-}state observed in Spyrou et al. [29]

Spyrou et al. [29] observed a narrow low energy resonance at $E_{p}=237 \mathrm{keV}$ on the high energy side of the lowest energy resonance observed at $E_{p}=225 \mathrm{keV}$ in their sum data (see Fig. 10. Due to the close proximity of the two resonances, the only other experiment with similar resolution is that of Lorenz-Wirzba [24]. In that measurement, only data for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ cross section extends low enough in energy to possibly observe the resonance, but the data in this region do not have the sensitivity in yield.

D. Unpublished thesis results

There is a large body of experimental measurements available from experiments at the Universität Stuttgart, which are collected in the thesis of Ott [26]. The majority of these measurements use TaF_{5} targets, which are significantly thicker than other measurements. Even when the R-matrix cross section is corrected for target resolution, these measurements deviate somewhat from thin target measurements. This may be the result of the approximations used to convert these data to angle integrated cross sections [26], or could be the result of an insufficiently accurate convolution function given the large corrections necessary. For these reasons, these data were not included directly in the fitting. A comparison of the R-matrix fit with these data, approximately convoluted with the experimental target thickness, is shown in Fig. 6 .

The exception to this are the thin target data taken with a gas target system where the differential cross section of the $p\left({ }^{19} \mathrm{~F}, \alpha_{2}\right)^{16} \mathrm{O}$ reaction was determined in inverse kinematics through α-particle detection. This is a unique set of data as nearly all measurements of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ cross section have been made instead by observation of the secondary γ-rays. Further, the excellent agreement of the R-matrix fit with the differential data, as shown in Fig. 9, gives added confidence in the spin-parity assignments of the levels that are populated in this reaction.
The transfer reaction measurements presented in the thesis of Kious 41 provide much of the information available for the near and subthreshold levels that likely play

FIG. 16. Calculations of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right)^{16} \mathrm{O} S$-factor given different interference scenarios and partial width limits for the nearthreshold state at 11 keV . These should be compared with the blue dashed line, which corresponds to the nearly constant ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O} S$-factor.

$$
662 \text {] }
$$ 663

an important role in the low energy cross section of the ${ }_{664}$ bombardment with moderate beam intensities (10's of ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20}$ Ne reactions. This has $\left.{ }_{665} \mu \mathrm{~A}\right)$. Easily made, evaporated LiF targets are too unstaalready been highlighted for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right)^{16} \mathrm{O}$ in 666 ble for the large beam intensities required for low energy Spyrou et al. [29]. The importance of the near threshold ${ }_{667}$ measurements, so CaF_{2} or TaF_{5} targets have been utistate, possible subthreshold contributions, and the lim- 668 lized instead. Even with these more stable targets, large ited previous measurements, provide solid motivations 669 discrepancies have been reported. for new transfer studies.

Finally, the data presented in Lorenz-Wirzba [24] are published in Herndl et al. [25, but this work largely concentrates on comparisons of the data with zero-range distorted-wave Born approximation calculations and does not go into any details regarding the measurement of the experimental data.

The absolute normalization of the ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ cross section has proven to be challenging as is evidenced by the discrepancies in absolute cross sections reported in different works, which deviate from each other by significantly more than their stated uncertainties. One likely reason is that fluorine targets often experience significant degradation after only a fraction of a Coulomb of beam

670 For the absolute normalization of the ${ }_{671}{ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right)^{16} \mathrm{O}$ measurements, all other data have 672 been normalized to those of Couture et al. 30, which ${ }_{673}$ were in turn found to be consistent with the strength 674 measurement of Becker et al. [70] for the $E_{p}=324 \mathrm{keV}$ ${ }_{675}$ resonance (see Sec. IV F For the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0,1}\right)^{16} \mathrm{O}$ data, 676 the normalization of Lombardo et al. 44 has been ${ }_{67}$ adopted. This particular normalization was adopted 678 because the experiments of Becker et al. [70] were specif679 ically focused on measuring absolute normalizations. ${ }_{680}$ This is reflected in the small uncertainty reported in ${ }_{61}$ their measurement of the $E_{p}=340 \mathrm{keV}$ resonances 82 strength (see Table IV).

FIG. 17. Calculations of different interference scenarios given the width limitations of the near-threshold state at 11 keV .

F. Comparisons with strength measurements

This work improves on the narrow resonances formalism used by past works as the rate is obtained by numerical integration of the R-matrix cross section. This method allows for the simultaneous and consistent inclusion of both resonance and off-resonance contributions in the reaction rate calculation. Therefore, to compare with previous works, resonance strengths have been calculated based on the partial widths determined by the R-matrix analysis and are given in Tables III and IV.

While the strengths for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right)^{16} \mathrm{O}$ reactions are generally consistent, those for the ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ reaction are quite discrepant. Except for the resonance at $E_{r, \text { c.m. }}=0.634 \mathrm{MeV}$, the strength measurements for the other resonances typically differ by more than 2σ. It should be noted that in the NACRE compilation [20] average values were adopted for these strengths, despite the large discrepancies.

G. Direct Capture and Subthreshold States

Over the energy region that has been accessed by ex${ }_{3}$ perimental measurement, the ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ cross section, ${ }_{04}$ at least to the most intense first excited state transition,
TABLE III. Comparison of resonance strength measurements for narrow resonances in the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ reaction. The uncertainty in the strengths are taken as the
systematic uncertainty in the cross section measurement of Couture et al. 30 . 16%. Table adopted from Angulo et al. 20. systematic uncertainty in the cross section measurement of Couture et al. [30] (16\%). Table adopted from Angulo et al. [20].

$E_{r, \text { c.m. }}(\mathrm{MeV})$	$E_{x}(\mathrm{MeV})$	J^{π}	$\omega \gamma(\mathrm{eV})$						$\Gamma_{p_{0}}(\mathrm{eV})$	$\Gamma_{\gamma_{1}}(\mathrm{eV})$	$\Gamma_{\text {total }}(\mathrm{eV})$
			71	37]	[38]	39]	36	this work	this work		
$0.2148(10)$	13.0588	2^{-}			$1.3(13) \times 10^{-6}$			$<8.3 \times 10^{-7}$	0.012	$<0.0 ¢^{\text {a }}$	1085
0.3239(10)	13.1679	1^{+}			$3.5(7) \times 10^{-3}$		$10(2) \times 10^{-3}$	$1.4(3) \times 10^{-3}$	$35.8{ }^{\text {b }}$	0.12	2250
0.4599 (10)	13.3039	1^{+}				$5(1) \times 10^{-3}$	$1.6(4) \times 10^{-3}$	$2.3(4) \times 10^{-3}$	$12.1{ }^{\text {b }}$	0.21	834
$0.5627(10)$	13.4067	2^{-}				$20(2) \times 10^{-3}$	$5.6(8) \times 10^{-3}$	$<3.9 \times 10^{-3}$	53.6	<2	34600
$0.6345(10)$	13.4785	1^{+}	1.58 (36)	1.58(36)			1.61 (24)	1.1(2)	6480	1.5	6590

a Fixed at the upper limit of Couture et al. (30].
${ }^{\text {b }}$ Fixed at the value reported in Couture et al. (30].
TABLE IV. Comparison of resonance strength measurements for narrow resonances in the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right)^{20} \mathrm{Ne}$ reactions. Note that these resonances strengths only account for the ($p, \alpha_{2,3,4}$) portion of the total cross section at low energies. The uncertainty in the strengths are taken as the systematic uncertainty in the cross section measurement of Couture et al. 30] (16\%). Table adopted from Angulo et al. [20].

$E_{r, \text { c.m. }}(\mathrm{MeV})$	$E_{x}(\mathrm{MeV})$	J^{π}	$\omega \gamma(\mathrm{eV})$					$\Gamma_{p_{0}}(\mathrm{eV})$	$\Gamma_{\alpha}(\mathrm{eV})$	$\Gamma_{\text {total }}(\mathrm{eV})$
			[72]	[73]	[29]	others	this work		this work	
0.011	12.855	1^{+}			8.5×10^{-29}	$7.5(30) \times 10^{-29}$ [40]		1.1×10^{-28} c	100-1000	100-1000
$0.2148(10)$	13.0588	2^{-}		0.022(4)	0.0126(13)		0.015(3)	0.012	1090	1090
0.2279 (10)	13.0719	3^{-}			0.011(4)		0.015(3)	8.6×10^{-4}	87	87
$0.3239(10)$	13.1679	1^{+}	37(6)	24(4)	24.3(29)	22.3(8) 70]	27(5)	$35 . b^{\text {b }}$	2250	2250
						22(2) 52]				
						24(3) 74]				
0.4599(10)	13.3039	1^{+}	10(1)	9(1)	8(1)		9(2)	12.1 $1^{\text {b }}$	822	824
$0.5627(10)$	13.4067	2^{-}	52(8)	48(10)	48(7)		67(11)	54	34600	34600
$0.6345(10)$	13.4785	1^{+}	86(13)	90(14)	75(9)		83(14)	6480	112	6590

[^1].
S-factor extrapolations, as shown in Fig. 16, is a factor of 17 .

In this section, the rates, and their corresponding upper and lower limits, for the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ and ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ reactions are calculated based on the R matrix extrapolations of the S-factors presented in Sec. IV. The rate for the total ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ reaction is somewhat complicated as it is the sum of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(0,1,2,3,4)}\right){ }^{16} \mathrm{O}$ reactions. However, the situation is somewhat simplified because the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(0,2)}\right)^{16} \mathrm{O}$ reactions dominate. Similarly, it is possible for the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20}$ Ne reaction to proceed through several different final states, but experimentally the ${ }^{19} \mathrm{~F}\left(p, \gamma_{1}\right)^{20} \mathrm{Ne}$ transition has been shown to dominate.
Ideally the uncertainty of the reaction rates could be calculated through a detailed Bayesian analysis, but, as highlighted throughout Sec. IV. many of the important level parameters for the near and subthreshold states are either very poorly or completely unknown. Thus, with such incomplete knowledge of the priors, this type of detailed uncertainty analysis does not seem appropriate. Thus the uncertainties that are quoted here should be treated as classical limits, representing estimates of the extreme upper and lower bounds. Therefore, when these rates are utilized in astrophysics calculations that utilize Bayesian uncertainty estimation, it is suggested that the upper and lower limits given here be treated either as the limits of a uniform distribution, or the 3σ values of a normal distribution. The gaps in the experimental data highlighted in this work should serve as motivation 81 for new experimental studies, making a more detailed Bayesian uncertainty analysis of this reaction on the horizon.

The individual reaction rates and the upper and lower limits for the dominate components are given in Table V. The total reaction rates are then presented in Table VI. The following sections give further details on how each of the reaction rate components were calculated.
A. ${ }^{19} \mathbf{F}\left(p, \alpha_{0}\right){ }^{16} \mathbf{O}$ rate

There have been several recent investigations of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ component of the reaction rate. Measurements of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ cross section via THM resulted in updated rates as reported in LaCognata et al. 33]. The rate was then revised in LaCognata et al. [34] 82 based on the new direct measurements of Lombardo et al. ${ }^{825}$ [32]. New measurements were then made by Indelicato 82 et al. 35 reporting the most recent version of the rate ${ }_{82}$ based on THM data. Most recently, Lombardo et al. 82 [44] has reported a revised rate for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right)^{16} \mathrm{O}{ }_{82}$ and ${ }^{19} \mathrm{~F}\left(p, \alpha_{1}\right){ }^{16} \mathrm{O}$ components based on a comprehen- 830 sive R-matrix analysis that extends to high energies. 831

The total ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ rate is dominated by the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ reactions. For the central value of the rate, the threshold and subthreshold states are not included in the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ component. This fit is nearly identical to that presented in Couture et al. [30 and is also equivalent over the temperature range under investigation to the narrow width $(\Gamma=2 \mathrm{eV})$ solution shown in Fig. 16 Fig. 18 shows the fractional
TABLE V. Recommended rates (rec) for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right)^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}\left(p, \gamma_{1}\right)^{20} \mathrm{Ne}$ reactions as well as a lower limit (low) for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right)^{16} \mathrm{O}$ and lower and upper rate limits (upper) for the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}\left(p, \gamma_{1}\right){ }^{20} \mathrm{Ne}$ reactions. See text for details.

T	(p, α_{0}) (low)	(p, α_{2}) (rec)	(p, α_{2}) (low)	(p, α_{2}) (up)	(p, α_{3})	(p, α_{4})	$\left(p, \gamma_{1}\right)(\mathrm{rec})$	$\left(p, \gamma_{1}\right)$ (low)	$\left(p, \gamma_{1}\right)(\mathrm{up})$
(GK)	$\left(\mathrm{cm}^{3} \mathrm{~mole}^{-1} \mathrm{~s}^{-1}\right)$								
0.01	1.66×10^{-24}	4.99×10^{-23}	3.74×10^{-23}	5.73×10^{-23}	4.01×10^{-29}	1.73×10^{-28}	1.10×10^{-28}	1.89×10^{-30}	6.18×10^{-27}
0.02	3.60×10^{-17}	2.20×10^{-16}	1.65×10^{-16}	3.03×10^{-16}	1.10×10^{-21}	4.95×10^{-21}	2.38×10^{-21}	4.13×10^{-23}	3.53×10^{-20}
0.03	1.27×10^{-13}	3.53×10^{-13}	2.65×10^{-13}	5.77×10^{-13}	4.74×10^{-18}	2.23×10^{-17}	8.44×10^{-18}	1.47×10^{-19}	7.04×10^{-17}
0.04	2.17×10^{-11}	3.51×10^{-11}	2.64×10^{-11}	6.77×10^{-11}	9.81×10^{-16}	4.77×10^{-15}	1.44×10^{-15}	2.51×10^{-17}	8.70×10^{-15}
0.05	8.36×10^{-10}	8.85×10^{-10}	6.64×10^{-10}	2.01×10^{-9}	4.53×10^{-14}	2.27×10^{-13}	5.57×10^{-14}	9.64×10^{-16}	3.43×10^{-13}
0.06	1.35×10^{-8}	9.97×10^{-9}	7.48×10^{-9}	2.69×10^{-8}	8.77×10^{-13}	4.49×10^{-12}	8.98×10^{-13}	1.54×10^{-14}	5.67×10^{-12}
0.07	1.24×10^{-7}	6.66×10^{-8}	5.00×10^{-8}	2.15×10^{-7}	9.96×10^{-12}	5.05×10^{-11}	8.25×10^{-12}	1.44×10^{-13}	5.36×10^{-11}
0.08	7.67×10^{-7}	3.13×10^{-7}	2.35×10^{-7}	1.21×10^{-6}	9.31×10^{-11}	3.88×10^{-10}	5.15×10^{-11}	1.11×10^{-12}	3.44×10^{-10}
0.09	3.58×10^{-6}	1.20×10^{-6}	8.97×10^{-7}	5.29×10^{-6}	9.46×10^{-10}	2.31×10^{-9}	2.46×10^{-10}	1.06×10^{-11}	1.67×10^{-9}
0.1	1.35×10^{-5}	4.50×10^{-6}	3.37×10^{-6}	1.98×10^{-5}	9.00×10^{-9}	1.17×10^{-8}	9.93×10^{-10}	1.03×10^{-10}	6.58×10^{-9}
0.15	1.44×10^{-3}	3.87×10^{-3}	2.90×10^{-3}	5.62×10^{-3}	1.88×10^{-5}	2.20×10^{-5}	3.36×10^{-7}	2.41×10^{-7}	1.43×10^{-6}
0.2	2.69×10^{-2}	4.55×10^{-1}	3.41×10^{-1}	4.96×10^{-1}	1.83×10^{-3}	5.49×10^{-3}	2.78×10^{-5}	2.60×10^{-5}	1.31×10^{-4}
0.3	1.04×10^{0}	9.98×10^{1}	7.49×10^{1}	1.02×10^{2}	3.71×10^{-1}	1.51×10^{0}	5.63×10^{-3}	5.56×10^{-3}	2.80×10^{-2}
0.4	1.03×10^{1}	1.45×10^{3}	1.09×10^{3}	1.46×10^{3}	5.65×10^{0}	2.35×10^{1}	8.99×10^{-2}	8.92×10^{-2}	4.11×10^{-1}
0.5	5.25×10^{1}	6.82×10^{3}	5.12×10^{3}	6.81×10^{3}	2.96×10^{1}	1.21×10^{2}	6.04×10^{-1}	6.01×10^{-1}	2.32×10^{0}
0.6	1.83×10^{2}	1.86×10^{4}	1.39×10^{4}	1.84×10^{4}	9.74×10^{1}	3.68×10^{2}	2.90×10^{0}	2.89×10^{0}	8.43×10^{0}
0.7	5.02×10^{2}	3.73×10^{4}	2.80×10^{4}	3.69×10^{4}	2.71×10^{2}	8.32×10^{2}	1.04×10^{1}	1.04×10^{1}	2.36×10^{1}
0.8	1.15×10^{3}	6.24×10^{4}	4.68×10^{4}	6.15×10^{4}	7.01×10^{2}	1.58×10^{3}	2.88×10^{1}	2.87×10^{1}	5.56×10^{1}
0.9	2.32×10^{3}	9.30×10^{4}	6.97×10^{4}	9.12×10^{4}	1.66×10^{3}	2.68×10^{3}	6.41×10^{1}	6.39×10^{1}	1.14×10^{2}
1	4.19×10^{3}	1.28×10^{5}	9.59×10^{4}	1.25×10^{5}	3.54×10^{3}	4.20×10^{3}	1.21×10^{2}	1.21×10^{2}	2.10×10^{2}

TABLE VI. Recommended rates (rec) for the total ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ reactions as well as lower limit (low) and upper limits (upper) See text for details.

T	$(p, \alpha)(\mathrm{rec})$	$(p, \alpha)($ low $)$	$(p, \alpha)($ upper $)$	$(p, \gamma)(\mathrm{rec})$	$(p, \gamma)($ low $)$	$(p, \gamma)($ upper $)$
$\frac{(\mathrm{GK})}{0.01}$		1.77×10^{-24}	1.33×10^{-24}	5.90×10^{-23}	1.10×10^{-28}	1.89×10^{-30}
0.02	3.78×10^{-17}	2.84×10^{-17}	3.40×10^{-16}	2.38×10^{-21}	4.13×10^{-23}	3.18×10^{-27}
0.03	1.34×10^{-13}	1.01×10^{-13}	7.07×10^{-13}	8.44×10^{-18}	1.47×10^{-19}	7.04×10^{-20}
0.04	2.30×10^{-11}	1.73×10^{-11}	8.99×10^{-11}	1.44×10^{-15}	2.51×10^{-17}	8.70×10^{-15}
0.05	8.87×10^{-10}	6.65×10^{-10}	2.87×10^{-9}	5.57×10^{-14}	9.64×10^{-16}	3.43×10^{-13}
0.06	1.43×10^{-8}	1.07×10^{-8}	4.12×10^{-8}	8.98×10^{-13}	1.54×10^{-14}	5.67×10^{-12}
0.07	1.31×10^{-7}	9.79×10^{-8}	3.53×10^{-7}	8.25×10^{-12}	1.44×10^{-13}	5.36×10^{-11}
0.08	8.13×10^{-7}	6.10×10^{-7}	2.07×10^{-6}	5.15×10^{-11}	1.11×10^{-12}	3.44×10^{-10}
0.09	3.91×10^{-6}	2.93×10^{-6}	9.24×10^{-6}	2.46×10^{-10}	1.06×10^{-11}	1.67×10^{-9}
0.1	1.62×10^{-5}	1.22×10^{-5}	3.42×10^{-5}	9.93×10^{-10}	1.03×10^{-10}	6.58×10^{-9}
0.15	5.58×10^{-3}	5.24×10^{-3}	8.73×10^{-3}	3.36×10^{-7}	2.41×10^{-7}	1.43×10^{-6}
0.2	4.95×10^{-1}	3.95×10^{-1}	6.58×10^{-1}	2.78×10^{-5}	2.60×10^{-5}	1.31×10^{-4}
0.3	9.73×10^{1}	7.30×10^{1}	1.22×10^{2}	5.63×10^{-3}	5.56×10^{-3}	2.80×10^{-2}
0.4	1.39×10^{3}	1.04×10^{3}	1.74×10^{3}	8.99×10^{-2}	8.92×10^{-2}	4.11×10^{-1}
0.5	6.58×10^{3}	4.93×10^{3}	8.22×10^{3}	6.04×10^{-1}	6.01×10^{-1}	2.32×10^{0}
0.6	1.81×10^{4}	1.36×10^{4}	2.26×10^{4}	2.90×10^{0}	2.89×10^{0}	8.43×10^{0}
0.7	3.70×10^{4}	2.77×10^{4}	4.62×10^{4}	1.04×10^{1}	1.04×10^{1}	2.36×10^{1}
0.8	6.39×10^{4}	4.79×10^{4}	7.99×10^{4}	2.88×10^{1}	2.87×10^{1}	5.56×10^{1}
0.9	9.96×10^{4}	7.47×10^{4}	1.25×10^{5}	6.41×10^{1}	6.39×10^{1}	1.14×10^{2}
1	1.41×10^{5}	1.09×10^{5}	1.82×10^{5}	1.21×10^{2}	1.21×10^{2}	2.10×10^{2}

FIG. 18. Fractional contributions of the different final state contributions to the central value calculation of ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ reaction rate. Here the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ rate dominates around $T \approx 0.1 \mathrm{GK}$, as found in previous works (e.g. NACRE [20]).

FIG. 19. Fractional contributions of the different final state contributions to the upper limit calculation of ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ reaction rate. In this case the interference of the threshold state and subthreshold resonances enhance the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ reaction, making it dominant at all temperatures.
contribution to the total rate of the different reaction channels for the central value rate.

For the upper limit, the interference solution shown 86 by the black line in Fig. 16 is used, where both a broad 8 width is taken for the threshold level $(\Gamma=1 \mathrm{keV})$ and a subthreshold contribution is included. This enhanced ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ cross section is now larger than even the resonance enhanced rates of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ cross section reported in recent works [35, 44, (as discussed in Sec. VA). The fraction of the total rate stemming from the different reactions is given in Fig. 19. The rate and the recommended uncertainty range are shown in Fig. 20.

FIG. 20. Ratio of the present reaction ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ reaction rate to that of the NACRE compilation [20] (red solid line). The upper and lower uncertainty limits are indicated by the red dashed lines (this work) and the black dashed lines (NACRE [20]).

E. $\quad{ }^{19} \mathbf{F}(p, \gamma){ }^{20}$ Ne reaction rate

One of the other main results of this work has been a re-analysis of the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ reaction rate. Here the previous experimental results of Kious [41, Spyrou et al. [29], and Couture et al. [30] are combined in a global R-matrix analysis to gain more insight into the extrapolation of the low energy cross section. In Angulo et al. [20], a 50% uncertainty was adopted for the low temperature range for the ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ reaction. Here it has been shown that, through previously neglected interference, the near threshold state and direct capture ${ }_{555}$ can result in considerably larger uncertainties, becoming about an order of magnitude at $T=0.1 \mathrm{GK}$ and larger than three orders of magnitude at very low temperatures (see Sec. IV and Fig. 21). The effects of this larger uncertainty range are investigated in Sec. VI.

VI. ASTROPHYSICAL IMPACT

The details of the suggested CNO breakout in massive Pop III stars are discussed in Clarkson and Herwig [19]. Here we will repeat the most salient points and refer the reader to that work for further details.

Pop III stars begin their lives with primordial composition and begin hydrogen burning via $p-p$ chains and contract until central temperatures are high enough $\left(\approx 10^{8} \mathrm{~K}\right)$ to ignite the 3α-process. This bridges the mass 5 and mass 8 gaps, such that a small amount of CNO catalyst is formed [75], $X^{12} \mathrm{C} ~ \approx 10^{-9}$, which kickstarts the CNO cycle. In Clarkson and Herwig [19, 1D stellar evolution simulations showed that hot CNO cycling takes place at peak core H -burning temperatures although this phase lasts for $\approx 1 \%$ of the total main-sequence lifetime.

FIG. 21. Ratio of the present reaction ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ reaction rate to that of the NACRE compilation [20] (red solid line). The upper and lower uncertainty limits are indicated by the red dashed lines (this work) and the black dashed lines (NACRE [20]).

Hot CNO cycles can be activated for a short period of time at the end of hydrogen shell burning in these stars as well. Single-zone nucleosynthesis calculations revealed that small amounts of $\mathrm{Ca}\left(X_{\mathrm{Ca}} \approx 10^{-12}\right)$ are produced through breakout reactions passing through ${ }^{19} \mathrm{~F}$.
To determine the impact of the presented revisions of the ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ reaction rates, we have run single-zone simulations with the same conditions as those adopted in Clarkson and Herwig [19], which use a constant temperature, $T=1.19 \times 10^{8} \mathrm{~K}$, and density, $\rho=39.8 \mathrm{~g} \mathrm{~cm}^{-3}$, based on their $80 \mathrm{M}_{\odot}$, Pop III stellar evolution model. Initial abundances are those attributed to the Big Bang abundances 76. We use the NuGrid collaboration's PPN code 77] with chargedparticle reactions from the JINA reaclib V0.5 [78] and ${ }^{19} \mathrm{~F}+p$ reactions taken from the NACRE compilation [20], with symmetric uncertainties of 50% as provided. The abundances presented here are measured at the time step where the mass fraction of hydrogen is 10^{-2}. Other single zone calculations using slightly different temperature and density conditions presented in Clarkson and Herwig [19] were also tested with the updated reaction rates but no notable differences in the findings presented below were found.

These simulations show that the new recommended values for these rates decrease the abundances of species with $\mathrm{Z}>9$ (Fig. 22). Mass fractions for these species are quite small in both simulations, with ${ }^{40} \mathrm{Ca}$ being the most abundant, followed by ${ }^{32} \mathrm{~S}$ and ${ }^{28} \mathrm{Si}$. All other mass fractions are $<10^{-15}$. The updated reaction rates lead to a change of $\approx 70 \%$ in these species. Similarly, Fig. 23 shows the change in abundance evolution in our single zone simulations.

Fig. 24 shows the mass fractions of Ca , and the sum of all isotopes with $Z>9$ in these simulations. The change

FIG. 22. Abundance chart showing the percent change of isotopes using updated ${ }^{19} \mathrm{~F}+p$ reaction rates, presented in this work, compared to rates from the NACRE compilation 20. Orange colours indicate a reduction in the total mass fractions and blue indicates an increase.

FIG. 23. Abundance evolution showing simulations with rates from this work (solid lines) and using rates from the NACRE compilation 20 for ${ }^{19} \mathrm{~F}+p$ reactions (dotted lines). Abundances are plotted as a function of the decreasing amount of H in the single-zone network simulation. Therefore time proceeds from left to right.

FIG. 24. Mass fractions of Ca , and all isotopes with $\mathrm{Z}>9$ in a Pop III hydrogen burning single zone simulation, calculated using either the ${ }^{19} \mathrm{~F}+p$ reaction rates of this work (red) or those from the NACRE compilation [20] (blue). Bars indicate the variation of these abundances within the uncertainties.
VII. SUMMARY

970 A comprehensive R-matrix analysis has been per${ }_{971}$ formed that includes the majority of the low energy
cross section data for ${ }^{19} \mathrm{~F}+p$ reactions using the phe- 1007 uncertainties for the bound state and near threshold levnomenological R-matrix approach. The simultaneous 1008 els can be made, a more rigorous uncertainty analysis will fit was able to satisfactorily reproduce the available 1009 then be appropriate, leading to more statistically meancross section data for the ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O},{ }^{19} \mathrm{~F}(p, \gamma)^{20}$, and 1010 ingful reaction rate uncertainties.
${ }^{19} \mathrm{~F}(p, p){ }^{19} \mathrm{~F}$ data. As several recent works have fo- ${ }_{1011}$ The larger uncertainty found for the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ recused on the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(0,1)}\right)^{16} \mathrm{O}$ reaction, the present work ${ }_{1012}$ action only goes to further emphasize the resulting uncercenters on the ${ }^{19} \mathrm{~F}\left(p, \alpha_{(2,3,4)}\right){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20}$ reac- 1013 tainty in nucleosynthesis calculations where these rates tions. In general, a similar range of uncertainty is found 1014 are needed. The new recommended ${ }^{19} \mathrm{~F}(p, \gamma)^{20} \mathrm{Ne}$ rate of for the ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ reaction rate, but it is found that 1015 this work reduces the mass fractions for elements with Z the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ cross section may be comparable in ${ }_{1016}>9$ during hydrogen burning in massive Population III strength with the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right)^{16} \mathrm{O}$ cross section, even at low 1017 stars, thus increasing the difficulty in creating Ca solely energies where traditionally the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ cross sec- 1018 within hydrogen burning conditions in the first stars. tion has been thought to dominate the total cross section. It is also found that the uncertainty in the low energy cross section of the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20}$ reaction is considerably larger than previously estimated (e.g. NACRE [20]).
These results indicate that further measurements are needed. Of prime importance, proton transfer studies 1020 should be made in order to determine the proton ANCs 1021 of proton bound states. These are needed both to con- 1022 the National Science Foundation throurh Grant No strain contributions from subthreshold states and to de- ${ }_{1023}$ Phys-2011890, and the Joint Institute for Nuclear Astrotermine the magnitude of the direct capture contribu- 1024 physics through Grant No. PHY-1430152 (JINA Center tions for the capture reaction. Measurement of the $\alpha_{2}{ }^{-}{ }_{1025}$ for the Evolution of the Elements). FH acknowledges width of the near threshold state is also also critical. 1026 funding through a NSERC Discovery Grant. This reLow energy measurements of the ${ }^{19} \mathrm{~F}\left(p, p_{(1,2)}\right)^{19} \mathrm{~F}$ reac- ${ }_{1027}$ search has used the Astrohub online virtual research entions are also highly desirable in order to better constrain 1028 vironment (https://astrohub.uvic.ca) developed and opthe multichannel R-matrix analysis. As pointed out in 1029 erated by the Computational Stellar Astrophysics group Couture et al. 30 , ${ }^{19} \mathrm{~F}\left(p, \gamma_{1}\right)^{20} \mathrm{Ne}$ cross section should be 1030 (http://csa.phys.uvic.ca) at the University of Victoria measured to higher energies in order to better constrain 1031 and hosted on the Computed Canada Arbutus Cloud at high energy resonances contributions. Finally, but likely 1032 the University of Victoria. I.L. acknowledges the support the most difficult, the ${ }^{19} \mathrm{~F}\left(p, \alpha_{2}\right){ }^{16} \mathrm{O}$ and ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20}$ cross ${ }_{1033}$ of the INFN SyLiNuRe grant. A. C. acknowledges supsection measurements need to be extended to lower ener- ${ }^{1034}$ port from the US Department of Energy (Contract No. gies, in particular, in their off-resonance regions, in order ${ }_{1035} 89233218$ CNA000001) by the Laboratory Directed Reto limit the many different interference solutions that are 1036 search and Development program of Los Alamos National currently possible. In particular, if measurements and ${ }_{1037}$ Laboratory under Project No. LDRD-DR-20190021DR.
[1] M. Wiescher, J. Görres, and H. Schatz, Break-out reac- 1059 tions from the CNO cycles, Journal of Physics G: Nuclear 1060 and Particle Physics 25, R133 (1999).
[2] K. Langanke, M. Wiescher, W. A. Fowler, and J. Gorres, 1062 A new estimate of the ${ }^{19} \mathrm{Ne}(p, \gamma)^{20} \mathrm{Na}$ and ${ }^{15} \mathrm{O}(\alpha, \gamma){ }^{19} \mathrm{Ne}{ }^{1063}$ reaction rates at stellar energies, Astrophysical Journal 1064 301, 629 (1986)
[3] W. P. Tan, J. L. Fisker, J. Görres, M. Couder, and M. Wiescher, ${ }^{15} \mathrm{O}(\alpha, \gamma){ }^{19}$ Ne breakout reaction and impact on 1067 x-ray bursts, Phys. Rev. Lett. 98, 242503 (2007) 1068
[4] W. P. Tan, J. Görres, M. Beard, M. Couder, A. Couture, 1069 S. Falahat, J. L. Fisker, L. Lamm, P. J. LeBlanc, H. Y. ${ }_{1070}$ Lee, S. O'Brien, A. Palumbo, E. Stech, E. Strandberg, ${ }_{1071}$ and M. Wiescher, Measurement of the decay branching 1072 ratios of the α-unbound states in ${ }^{19} \mathrm{Ne}$ and the ${ }^{15} \mathrm{O}(\alpha, \gamma){ }_{1073}$ reaction rate, Phys. Rev. C 79, 055805 (2009).
[5] M. R. Hall, D. W. Bardayan, T. Baugher, A. Lepailleur ${ }^{1074}$ S. D. Pain, A. Ratkiewicz, S. Ahn, J. M. Allen, J. T. An- 1076 derson, A. D. Ayangeakaa, J. C. Blackmon, S. Burcher, 1077 M. P. Carpenter, S. M. Cha, K. Y. Chae, K. A. Chipps, 1078 J. A. Cizewski, M. Febbraro, O. Hall, J. Hu, C. L. Jiang, 1079
K. L. Jones, E. J. Lee, P. D. O'Malley, S. Ota, B. C. Rasco, D. Santiago-Gonzalez, D. Seweryniak, H. Sims, K. Smith, W. P. Tan, P. Thompson, C. Thornsberry, R. L. Varner, D. Walter, G. L. Wilson, and S. Zhu, New γ-ray transitions observed in ${ }^{19} \mathrm{Ne}$ with implications for the ${ }^{15} \mathrm{O}(\alpha, \gamma){ }^{19}$ Ne reaction rate, Phys. Rev. C 99, 035805 (2019)
[6] D. Torresi, C. Wheldon, T. Kokalova, S. Bailey, A. Boiano, C. Boiano, M. Fisichella, M. Mazzocco, C. Parascandolo, D. Pierroutsakou, E. Strano, M. Zadro, M. Cavallaro, S. Cherubini, N. Curtis, A. Di Pietro, J. P. Fernández Garcia, P. Figuera, T. Glodariu, J. Grẹbosz, M. La Cognata, M. La Commara, M. Lattuada, D. Mengoni, R. G. Pizzone, C. Signorini, C. Stefanini, L. Stroe, and C. Spitaleri, Evidence for ${ }^{15} \mathrm{O}+\alpha$ resonance structures in ${ }^{19} \mathrm{Ne}$ via direct measurement, Phys. Rev. C 96, 044317 (2017)
[7] C. Wrede, B. E. Glassman, D. Pérez-Loureiro, J. M. Allen, D. W. Bardayan, M. B. Bennett, B. A. Brown, K. A. Chipps, M. Febbraro, C. Fry, M. R. Hall, O. Hall, S. N. Liddick, P. O'Malley, W.-J. Ong, S. D. Pain,
${ }_{1137}$. SMSS0313-6708, Astronomy \& Astrophysics 597, A6 ${ }_{1201}$
1138 (2017), arXiv:1609.07416 [astro-ph.SR]. 1202 ${ }_{1139}$ [16] M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, The ${ }_{1203}$ $1140 \quad$ Chemical Composition of the Sun, Annual Review of As- 1204 1141 tronomy \& Astrophysics 47, 481 (2009), arXiv:0909.0948 1205
1142 [astro-ph.SR]. 1206
S. B. Schwartz, P. Shidling, H. Sims, P. Thompson, and ${ }_{1144}$ H. Zhang, New portal to the ${ }^{15} \mathbf{O}(\alpha, \gamma){ }^{19}$ Ne resonance ${ }_{1145}$ triggering cno-cycle breakout, Phys. Rev. C 96, 0328011146 (2017).
[8] W. Bradfield-Smith, T. Davinson, A. DiPietro, A. M. ${ }_{1148}$ Laird, A. N. Ostrowski, A. C. Shotter, P. J. Woods, 1149 S. Cherubini, W. Galster, J. S. Graulich, P. Leleux, 1150 L. Michel, A. Ninane, J. Vervier, J. Görres, M. Wiescher, 1151 J. Rahighi, and J. Hinnefeld, Breakout from the hot cno 1152 cycle via the ${ }^{18} \mathrm{Ne}(\alpha, p)^{21} \mathrm{Na}$ reaction, Phys. Rev. C 59, ${ }_{1153}$ 3402 (1999)
[9] A. Matic, A. M. vandenBerg, M. N. Harakeh, H. J. ${ }_{1155}$ Wörtche, G. P. A. Berg, M. Couder, J. L. Fisker, 1156 J. Görres, P. LeBlanc, S. O'Brien, M. Wiescher, K. Fu- ${ }_{1157}$ jita, K. Hatanaka, Y. Sakemi, Y. Shimizu, Y. Tameshige, 1158 A. Tamii, M. Yosoi, T. Adachi, Y. Fujita, Y. Shimbara, 1159 H. Fujita, T. Wakasa, P. O. Hess, B. A. Brown, and 1160 H. Schatz, High-precision (p, t) reaction measurement to ${ }_{1161}$ determine ${ }^{18} \mathrm{Ne}(\alpha, p)^{21} \mathrm{Na}$ reaction rates, Phys. Rev. C ${ }_{1162}$ 80, 055804 (2009)

1163
[10] L. Y. Zhang, J. J. He, A. Parikh, S. W. Xu, H. Yam- 1164 aguchi, D. Kahl, S. Kubono, P. Mohr, J. Hu, P. Ma, S. Z. 1165 Chen, Y. Wakabayashi, H. W. Wang, W. D. Tian, R. F. 1166 Chen, B. Guo, T. Hashimoto, Y. Togano, S. Hayakawa, 1167 T. Teranishi, N. Iwasa, T. Yamada, T. Komatsubara, 1168 Y. H. Zhang, and X. H. Zhou, Investigation of the ther- 1169 monuclear ${ }^{18} \mathrm{Ne}(\alpha, p)^{21} \mathrm{Na}$ reaction rate via resonant elas- 1170 tic scattering of ${ }^{21} \mathrm{Na}+p$, Phys. Rev. C 89, $015804{ }_{1171}$ (2014).
[11] P. J. C. Salter, M. Aliotta, T. Davinson, H. Al Falou, 1173 A. Chen, B. Davids, B. R. Fulton, N. Galinski, D. How- 1174 ell, G. Lotay, P. Machule, A. S. Murphy, C. Ruiz, S. Sjue, 1175 M. Taggart, P. Walden, and P. J. Woods, Measurement 1176 of the ${ }^{18} \mathrm{Ne}\left(\alpha, p_{0}\right)^{21} \mathrm{Na}$ reaction cross section in the burn- ${ }_{1177}$ ing energy region for x-ray bursts, Phys. Rev. Lett. 108, ${ }_{1178}$ 242701 (2012)
[12] K. Y. Chae, D. W. Bardayan, J. C. Blackmon, K. A. 1180 Chipps, R. Hatarik, K. L. Jones, R. L. Kozub, J. F. 1181 Liang, C. Matei, B. H. Moazen, C. D. Nesaraja, P. D. ${ }_{1182}$ O'Malley, S. D. Pain, S. T. Pittman, and M. S. Smith, 1183 Constraint on the astrophysical ${ }^{18} \mathrm{Ne}(\alpha, p)^{21} \mathrm{Na}$ reaction ${ }_{1184}$ rate through a ${ }^{24} \mathrm{Mg}(p, t){ }^{22} \mathrm{Mg}$ measurement, Phys. Rev. ${ }_{1185}$ C 79, 055804 (2009).

1186
13] A. Frebel and J. E. Norris, Near-Field Cosmology with 1187 Extremely Metal-Poor Stars, Annual Review of Astron- 1188 omy and Astrophysics 53, 631 (2015), arXiv:1501.06921 ${ }_{1189}$ [astro-ph.SR].
[14] S. C. Keller, M. S. Bessell, A. Frebel, A. R. Casey, 1191 M. Asplund, H. R. Jacobson, K. Lind, J. E. Norris, 1192 D. Yong, A. Heger, Z. Magic, G. S. da Costa, B. P. ${ }_{193}$ Schmidt, and P. Tisserand, A single low-energy, iron- 1194 poor supernova as the source of metals in the star SMSS 1195 J031300.36-670839.3, Nature (London) 506, 463 (2014), ${ }_{1} 196$ arXiv:1402.1517 [astro-ph.SR]
15] T. Nordlander, A. M. Amarsi, K. Lind, M. Asplund, 1198 P. S. Barklem, A. R. Casey, R. Collet, and J. Leenaarts, 1199 3D NLTE analysis of the most iron-deficient star, 1200
[17] K. Takahashi, H. Umeda, and T. Yoshida, Stellar ${ }_{1207}$

Yields of Rotating First Stars. I. Yields of Weak Supernovae and Abundances of Carbon-enhanced Hyper-metal-poor Stars, Astrophysical Journal 794, 40 (2014), arXiv:1406.5305 [astro-ph.SR]
[18] R. Collet, M. Asplund, and R. Trampedach, The Chemical Compositions of the Extreme Halo Stars HE 01075240 and HE 1327-2326 Inferred from Three-dimensional Hydrodynamical Model Atmospheres, The Astrophysical Journal 644, L121 (2006), arXiv:astro-ph/0605219 [astro-ph].
[19] O. Clarkson and F. Herwig, Convective H-He Interactions in Massive Population III Stellar Evolution Models, Monthly Notices of the Royal Astronomical Society 10.1093/mnras/staa3328 (2020), staa3328, https://academic.oup.com/mnras/advance-articlepdf/doi/10.1093/mnras/staa3328/34042489/staa3328.pdf [20] C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs, R. Kunz, J. Hammer, A. Mayer, T. Paradellis, S. Kossionides, C. Chronidou, K. Spyrou, S. Degl'Innocenti, G. Fiorentini, B. Ricci, S. Zavatarelli, C. Providencia, H. Wolters, J. Soares, C. Grama, J. Rahighi, A. Shotter, and M. L. Rachti, A compilation of charged-particle induced thermonuclear reaction rates, Nucl. Phys. A 656, 3 (1999).
[21] O. Clarkson, F. Herwig, and M. Pignatari, Pop III iprocess nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars, MNRAS 474, L37 (2018).
[22] M. Freer, H. Horiuchi, Y. Kanada-En'yo, D. Lee, and U. Meißner, Microscopic clustering in light nuclei, Rev. Mod. Phys. 90, 035004 (2018)
[23] G. R. Caughlan and W. A. Fowler, Thermonuclear reaction rates V, Atomic Data and Nuclear Data Tables 40, 283 (1988)
[24] H. Lorenz-Wirzba, Untersuchung von (p, α) Reaktionen Unterhalb der Coulombbarriere, Ph.D. thesis, Westfälischen Wilhelms-Universität zu Münster (1978).
[25] H. Herndl, H. Abele, G. Staudt, B. Bach, K. Grün, H. Scsribany, H. Oberhummer, and G. Raimann, Direct reaction analysis of ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}$ below the Coulomb barrier, Phys. Rev. C 44, R952 (1991)
[26] R. Ott, Die Astrophysikalischen Reaktionsraten der Reaktionen ${ }^{19} F(p, \alpha){ }^{16} 0$ und ${ }^{19} F\left(p, \gamma_{1}\right){ }^{20} N e$, Ph.D. thesis, Institut fr Strahlenphysik der Universitt Stuttgart (1997).
[27] S. Dababneh, K. Toukan, and I. Khubeis, Excitation function of the nuclear reaction ${ }^{19} \mathrm{~F}(p, \alpha \gamma){ }^{16} \mathrm{O}$ in the proton energy range 0.33 .0 MeV , Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 83, 319 (1993)
[28] K. Spyrou, C. Chronidou, S. Harissopulos, S. Kossionides, and T. Paradellis, Cross section and resonance strengths of the ${ }^{19} \mathrm{~F}(p, \alpha \gamma){ }^{16} \mathrm{O}$ reaction in the energy range $E_{p}=0.83 .6 \mathrm{MeV}$, Zeitschrift fr Physik A Hadrons and Nuclei 357, 283 (1997)
[29] K. Spyrou, C. Chronidou, S. Harissopulos, S. Kossionides, T. Paradellis, C. Rolfs, W. Schulte, and L. Borucki, Cross section and resonance strength measurements of ${ }^{19} \mathrm{~F}(p, \alpha \gamma){ }^{16} \mathrm{O}$ at $E_{p}=200800 \mathrm{keV}$, The European Physical Journal A - Hadrons and Nuclei 7, 79 (2000).
[30] A. Couture, M. Beard, M. Couder, J. Görres, L. Lamm, P. J. LeBlanc, H. Y. Lee, S. O'Brien, A. Palumbo, E. Stech, E. Strandberg, W. Tan, E. Uberseder, R. Azuma, C. Ugalde, and M. Wiescher, Measurement
of the ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20}$ Ne reaction and interference terms from ${ }_{1272}$ $E_{\text {c.m. }}=200-760 \mathrm{keV}$, Phys. Rev. C 77, 015802 (2008) ${ }_{1273}$
[31] I. Lombardo, D. Dell'Aquila, L. Campajola, E. Rosato, ${ }_{1274}$ G. Spadaccini, and M. Vigilante, Analysis of the 1275 ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ reaction at low energies and the spec- ${ }^{1276}$ troscopy of ${ }^{20} \mathrm{Ne}$, Journal of Physics G: Nuclear and Par- ${ }_{1277}$ ticle Physics 40, 125102 (2013).
[32] I. Lombardo, D. Dell'Aquila, A. D. Leva, I. Indelicato, ${ }^{1279}$ M. L. Cognata, M. L. Commara, A. Ordine, V. Rigato, 1280 M. Romoli, E. Rosato, G. Spadaccini, C. Spitaleri, A. Tu- ${ }^{1281}$ mino, and M. Vigilante, Toward a reassessment of the 1282 ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right){ }^{16} \mathrm{O}$ reaction rate at astrophysical tempera- ${ }^{1283}$ tures, Physics Letters B 748, 178 (2015)
[33] M. LaCognata, A. M. Mukhamedzhanov, C. Spitaleri, ${ }_{1285}^{1285}$ I. Indelicato, M. Aliotta, V. Burjan, S. Cherubini, 1286 A. Coc, M. Gulino, Z. Hons, G. G. Kiss, V. Kroha, ${ }_{1287}$ L. Lamia, J. Mrázek, S. Palmerini, Š. Piskoř, R. G. Piz- 1288 zone, S. M. R. Puglia, G. G. Rapisarda, S. Romano, M. L. ${ }_{1289}$ Sergi, and A. Tumino, The Fluorine destruction in stars: 1290 first experimental study of the ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right)^{16} \mathrm{O}$ reaction at ${ }_{1291}$ astrophysical energies, The Astrophysical Journal 739, 1292 L54 (2011)
34] M. LaCognata, S. Palmerini, C. Spitaleri, I. Indelicato, 1294 A. M. Mukhamedzhanov, I. Lombardo, and O. Trippella, 1295 Updated THM astrophysical factor of the ${ }^{19} \mathrm{~F}(p, \alpha){ }^{16} \mathrm{O}{ }_{1296}$ reaction and influence of new direct data at astrophysical 1297 energies, The Astrophysical Journal 805, 128 (2015).
[35] I. Indelicato, M. L. Cognata, C. Spitaleri, V. Bur- 1299 jan, S. Cherubini, M. Gulino, S. Hayakawa, Z. Hons, 1300 V. Kroha, L. Lamia, M. Mazzocco, J. Mrazek, R. G. Piz- 1301 zone, S. Romano, E. Strano, D. Torresi, and A. Tumino, 1302 New Improved Indirect Measurement of the ${ }^{19} \mathrm{~F}(p, \alpha)^{16} \mathrm{O}{ }_{1303}$ Reaction at Energies of Astrophysical Relevance, The As- 1304 trophysical Journal 845, 19 (2017)
36] K. Suboti, R. Ostogi, and B. Stepani, Study of the ${ }^{1305}$ ${ }^{19} \mathrm{~F}(p, \gamma){ }^{20} \mathrm{Ne}$ radiative capture reaction from $0.21 .2{ }_{1307}$ MeV, Nuclear Physics A 331, 491 (1979).
[37] G. K. Farney, H. H. Givin, B. D. Kern, and T. M. Hahn, 1309 High-energy gamma rays from the proton bombardment 1310 of fluorine, Phys. Rev. 97, 720 (1955).
[38] L. Keszthelyi, I. Berkes, I. Demeter, and I. Fodor, Res- 1312 onances in $\mathrm{F}^{19}+p$ reactions at 224 and 340 keV proton ${ }_{1313}$ energies, Nuclear Physics 29, 241 (1962).
39] I. Berkes, I. Dzsi, I. Fodor, and L. Keszthelyi, The resonance at 483 and 597 keV proton energies in $\mathrm{F}^{19}+p_{1316}$ reactions, Nuclear Physics 43, 103 (1963).
[40] R. R. Betts, H. T. Fortune, and R. Middleton, Structure ${ }^{131}$ of ${ }^{20} \mathrm{Ne}$: The ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He}, d\right)^{20}$ Ne reaction, Phys. Rev. C 11, 19 (1975)
41] M. Kious, Détermination de taux de réactions nucléaires ${ }^{132}$ conduisant á la nucléosynthèse stellaire du Fluor, Ph.D. thesis, Université de Paris-Sud (1990).
[42] A. M. Lane and R. G. Thomas, R-matrix theory of nu- ${ }^{1324}$ clear reactions, Rev. Mod. Phys. 30, 257 (1958)
[43] D. Tilley, H. Weller, and C. Cheves, Energy levels of light nuclei $\mathrm{A}=16-17$, Nuclear Physics A 564, 1 (1993)
44] I Lombardo, D Dell'Aquila, J.-J. He, G. Spadaccini, and M. Vigilante, New analysis of $p+{ }^{19} \mathrm{~F}$ reactions at low 1329 energies and the spectroscopy of natural-parity states in 1330 ${ }^{20} \mathrm{Ne}$, Phys. Rev. C 100, 044307 (2019).
[45] D. Dieumegard, B. Maurel, and G. Amsel, Microanaly- 1332 sis of Flourine by nuclear reactions: I. ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right)^{16} \mathrm{O}$ and ${ }^{1333}$ ${ }^{19} \mathrm{~F}(p, \alpha \gamma){ }^{16} \mathrm{O}$ reactions, Nuclear Instruments and Meth- ${ }_{1334}$ ods 168, 93 (1980).
[46] W. B. McLean, A. Ellett, and J. A. Jacobs, The distribution in angle of the long range alpha-particles from fluorine bombarded with protons, Phys. Rev. 58, 500 (1940)
[47] G. Breuer, Messung und Analyse von Winkelverteilung und Wirkungsquerschnitt der Reaktion $\mathrm{F}^{19}\left(p, \alpha_{0}\right) \mathrm{O}^{16} \mathrm{im}$ Energiebereich 0,4 bis $0,72 \mathrm{MeV}$, Zeitschrift fr Physik 154, 339 (1959)
[48] A. Isoya, H. Ohmura, and T. Momota, The angular distributions of the long-range alpha-particles from the reaction $\mathrm{F}^{19}\left(p, \alpha_{0}\right) \mathrm{O}^{16}$, Nuclear Physics 7, 116 (1958).
[49] R. Caracciolo, P. Cuzzocrea, A. D. Rosa, G. Inglima, E. Perillo, M. Sandoli, and G. Spadaccini, The 13.645 MeV state in ${ }^{20} \mathrm{Ne}$, Lettere al Nuovo Cimento 11, 33 (1974).
[50] S. Devons, G. Goldring, and G. R. Lindsey, Emission of Electron-Positron Pairs from Light Nuclei I: Monopole Transition in ${ }^{16} \mathrm{O}$, Proceedings of the Physical Society. Section A 67, 134 (1954)
[51] S. Devons, M. G. N. Hine, and O. R. Frisch, The angular distribution of γ-radiation from light nuclei I. Experimental, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 199, 56 (1949)
[52] S. Croft, The absolute yield, angular distribution and resonance widths of the $6.13,6.92$ and 7.12 MeV photons from the 340.5 keV resonance of the ${ }^{19} \mathrm{~F}(p, \alpha \gamma){ }^{16} \mathrm{O}$ reaction, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 307, 353 (1991).
[53] T. S. Webb, F. B. Hagedorn, W. A. Fowler, and C. C. Lauritsen, Elastic Scattering of Protons by F^{19}, Phys. Rev. 99, 138 (1955)
[54] D. Tilley, C. Cheves, J. Kelley, S. Raman, and H. Weller, Energy levels of light nuclei, $\mathrm{A}=20$, Nuclear Physics A 636, 249 (1998)
[55] G. Caskey, Natural parity states of ${ }^{20} \mathrm{Ne}$ for $12<$ $E_{x}<15.5 \mathrm{MeV}$, Phys. Rev. C 31, 717 (1985).
[56] M. K. Mehta, W. E. Hunt, and R. H. Davis, Scattering of Alpha Particles by Oxygen. II. Bombarding Energy Range 10 to 19 MeV , Phys. Rev. 160, 791 (1967)
[57] H. Costantini, R. J. deBoer, R. E. Azuma, M. Couder, J. Görres, J. W. Hammer, P. J. LeBlanc, H. Y. Lee, S. O'Brien, A. Palumbo, E. C. Simpson, E. Stech, W. Tan, E. Uberseder, and M. Wiescher, ${ }^{16} \mathrm{O}(\alpha, \gamma){ }^{20} \mathrm{Ne}$ S factor: Measurements and R-matrix analysis, Phys. Rev. C 82, 035802 (2010).
[58] E. Berthoumieux, B. Berthier, C. Moreau, J. Gallien, and A. Raoux, Parameterization of nuclear reactions cross section using R-matrix theory, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 136-138, 55 (1998), ion Beam Analysis.
[59] D. K. Nauruzbayev, V. Z. Goldberg, A. K. Nurmukhanbetova, M. S. Golovkov, A. Volya, G. V. Rogachev, and R. E. Tribble, Structure of ${ }^{20} \mathrm{Ne}$ states in resonance ${ }^{16} \mathrm{O}+\alpha$ elastic scattering, Phys. Rev. C 96, 014322 (2017).
[60] S. Hao, C. Huansheng, T. Jiayong, and Y. Fujia, Evaluation of non-rutherford cross sections, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 90, 593 (1994)
[61] C. M. Laymon, K. D. Brown, and D. P. Balamuth, $\left[{ }^{16} \mathrm{O}\left(0_{2}^{+}\right)+\alpha\right]$ parentage of continuum levels in ${ }^{20} \mathrm{Ne}$, Phys. Rev. C 45, 576 (1992).
[62] K. L. Laursen, O. S. Kirsebom, H. O. U. Fynbo,
A. Jokinen, M. Madurga, K. Riisager, A. Saastamoinen, 1372 O. Tengblad, and J. Äystö, High-statistics measurement 1373 of the β-delayed α spectrum of ${ }^{20} \mathrm{Na}$, The European ${ }_{1374}$ Physical Journal A 49, 79 (2013)
63] W. Huang, X. Xu, R. Ma, Z. Hu, J. Guo, Y. Guo, H. Liu, 1376 and L . Xu , Decay study of ${ }^{20} \mathrm{Na}$ and its beta-delayed ${ }^{16} \mathrm{O}{ }_{1377}$ recoiling, Science in China Series A: Mathematics 40, $638{ }^{1378}$ (1997)
[64] R. E. Azuma, E. Uberseder, E. C. Simpson, C. R. Brune, 1380 H. Costantini, R. J. de Boer, J. Görres, M. Heil, P. J. 1381 LeBlanc, C. Ugalde, and M. Wiescher, AZURE: An R-1382 matrix code for nuclear astrophysics, Phys. Rev. C 81, ${ }_{1383}$ 045805 (2010)
[65] E. Uberseder and R. J. deBoer, AZURE2 User Manual ${ }_{13}$ (2015).
[66] C. R. Brune, Alternative parametrization of R-matrix ${ }_{138}$ theory, Phys. Rev. C 66, 044611 (2002)
67] C. R. Brune and R. J. deBoer, Secondary γ-ray decays 1389 from the partial-wave T matrix with an R-matrix ap- ${ }^{1390}$ plication to ${ }^{15} \mathrm{~N}\left(p, \alpha_{1} \gamma\right)^{12} \mathrm{C}$, Phys. Rev. C 102, $024628{ }_{1391}$ (2020).
[68] G. Audi, A. Wapstra, and C. Thibault, The Ame2003 1393 atomic mass evaluation: (II). Tables, graphs and ref- 1394 erences, Nucl. Phys. A 729, 337 (2003), the 20031395 \{NUBASE\} and Atomic Mass Evaluations.
[69] J.-J. He, I. Lombardo, D. Dell'Aquila, Y. Xu, L.-Y. ${ }_{1397}$ Zhang, and W.-P. Liu, Thermonuclear ${ }^{19} \mathrm{~F}\left(p, \alpha_{0}\right)^{16} \mathrm{O}$ re- ${ }^{1398}$ action rate, Chinese Physics C 42, 015001 (2018)
70] H. W. Becker, W. E. Kieser, C. Rolfs, H. P. Trautvetter, ${ }_{1400}$ and M. Wiescher, Resonance strengths of some light nu- 1401 clei, Zeitschrift für Physik A Atoms and Nuclei 305, $319{ }_{1402}$ (1982)

71] R. M. Sinclaii, Gamma radiation from certain nuclear 1404
72] T. W. Bonner and J. E. Evans, Resonances in the disintegration of fluorine and lithium by protons, Phys. Rev.

1387
1388

1399

73, 666 (1948)
[73] C. Y. Chao, A. V. Tollestrup, W. A. Fowler, and C. C. Lauritsen, Low energy alpha-particles from fluorine bombarded by protons, Phys. Rev. 79, 108 (1950).
[74] D. Zahnow, C. Angulo, C. Rolfs, S. Schmidt, W. H. Schulte, and E. Somorjai, The $S(E)$ factor of ${ }^{7} \mathrm{Li}(p, \gamma)^{8} \mathrm{Be}$ and consequences for $S(E)$ extrapolation in ${ }^{7} \mathrm{Be}\left(p, \gamma_{0}\right)^{8} \mathrm{~B}$, Z. Physik A - Hadrons and Nuclei 351, 229 (1995)
[75] D. Ezer and A. G. W. Cameron, The Evolution of Hydrogen-Helium Stars, Astrophysics and Space Science 14, 399 (1971).
[76] R. H. Cyburt, B. D. Fields, K. A. Olive, and T.-H. Yeh, Big bang nucleosynthesis: Present status, Reviews of Modern Physics 88, 015004 (2016), arXiv:1505.01076 astro-ph.CO]
[77] M. Pignatari, F. Herwig, R. Hirschi, M. Bennett, G. Rockefeller, C. Fryer, F. X. Timmes, C. Ritter, A. Heger, S. Jones, U. Battino, A. Dotter, R. Trappitsch, S. Diehl, U. Frischknecht, A. Hungerford, G. Magkotsios, C. Travaglio, and P. Young, NuGrid Stellar Data Set. I.Stellar Yields from H to Bi for Stars with Metallicities $\mathrm{Z}=0.02$ and $\mathrm{Z}=0.01$, Astrophysical Journal Supplemental Series 225, 24 (2016) |arXiv:1307.6961 [astro-ph.SR]
[78] R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R. D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F. K. Thielemann, and M. Wiescher, The JINA REACLIB Database: Its Recent Updates and Impact on Type-I X-ray Bursts, The Astrophysical Journal Supplement Series 189, 240 (2010).
[79] M. Limongi and A. Chieffi, Presupernova Evolution and Explosive Nucleosynthesis of Zero Metal Massive Stars, The Astrophysical Journal Supplement 199, 38 (2012), arXiv:1202.4581 [astro-ph.SR]

[^0]: * Electronic address: rdeboer1@nd.edu

[^1]: ${ }^{\text {a }}$ Fixed at the upper limit of Couture et al. (30).
 b Fixed at the central value reported in Couture et al. 30].
 c Fixed at the central value reported in Kious 41].

