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Abstract

The interpretation of experiments that search for neutrinoless double beta decay relies on input

from nuclear theory. Cirigliano et al. recently showed that, for the light Majorana exchange

formalism, effective field theory calculations require a nn → ppe−e− contact term at leading

order. They estimated the size of this contribution by relating it to measured charge-independence-

breaking (CIB) nucleon-nucleon interactions and making an assumption about the relative sizes

of CIB operators. We show that the assumptions underlying this approximation are justified in

the limit of the number of colors Nc being large. We also obtain a large-Nc hierarchy among CIB

nucleon-nucleon interactions that is in agreement with phenomenological results.
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I. INTRODUCTION

Significant experimental efforts are underway to detect neutrinoless double beta (0νββ)

decay [1–14], a process in which two neutrons are converted into two protons with the

emission of two electrons but without the accompanying emission of neutrinos. Neutrinoless

double beta decay is a highly sensitive probe of lepton number violation (LNV) and, if

detected, would be a clear demonstration that neutrinos are Majorana particles [15]. If this

process is observed, it would also shed light on the neutrino mass hierarchy [16, 17] and on

the matter-antimatter asymmetry in the universe [18].

The inverse of the 0νββ half-life can be expressed as (see Refs. [19–21] for reviews)

[
T 0ν

1/2

]−1
= G0ν |M0ν |2m2

ββ , (1)

where mββ is the effective Majorana neutrino mass, G0ν is a phase space factor, and M0ν is

the corresponding nuclear matrix element (NME). This sensitivity to the NME requires a

deep understanding of the nuclear physics involved. One important component in the cal-

culation of the NMEs are multi-nucleon operators that encode the underlying LNV mech-

anisms. While there are many models and methods that offer insight in this direction,

effective field theory (EFT) offers a systematic, model-independent way to study LNV and

the corresponding one- and two-nucleon operators that are required as input to many-body

calculations. Each independent term in an effective Lagrangian comes with a low-energy co-

efficient (LEC), into which all unresolved short-distance details are subsumed. These LECs

need to be determined from a fit to data or a nonperturbative quantum chromodynamics

(QCD) calculation like those performed in lattice QCD (see, e.g., Refs. [22–26] for work

related to double beta decays and Ref. [27] for a general review).

An initial step towards the application of EFT to 0νββ was taken in Ref. [28] in the

context of chiral effective field theory. ChEFT refers to the generalization of chiral pertur-

bation theory (χPT) [29–34] (see e.g., Refs. [35–40] for reviews)—the EFT of pions and single

nucleons based on the approximate chiral symmetry of QCD—to two and more nucleons.

Recently, the EFT approach has received renewed attention focusing on the light-Majorana

neutrino exchange mechanism [41–44], where it has been shown that a contact term with the

undetermined LEC gNNν is required at leading order (LO) [45, 46]. This term was absent in

previous analyses. Additionally, Refs. [42, 45, 46] observed that isospin symmetry dictates
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that gNNν is related to the LEC C1 of an operator parameterizing charge independence break-

ing (CIB) in the two-nucleon system. The value of the LEC C1 is currently not determined

by data. Only the linear combination C1 +C2, where C2 is the LEC of a second, independent

CIB operator, has been extracted from experiment. To estimate the numerical impact of

the contact term in nuclear matrix elements, Refs. [45, 46] assumed that C1 ≈ C2 so that the

value of gNNν can be approximated by gNNν ≈ 1
2
(C1 + C2). Exploring this assumption from

the large-Nc perspective is the main focus of this paper.

While some lattice QCD calculations of double-β decay matrix elements in the two-

nucleon system [22, 23] and 0νββ calculations in the meson sector [23, 24] exist, a calculation

of gNNν is currently not available. In the absence of lattice QCD calculations and sufficient

data to determine gNNν , or equivalently the CIB LECs, the possibility of additional theoretical

constraints is critical. Recently, Ref. [47] estimated the values of gNNν and C1 + C2 using a

method analogous to the Cottingham formula [48, 49]. Their results support the assumption

of Refs. [45, 46]. Here, a complementary approach based on the large-Nc limit of QCD is

explored. Constraints are obtained through the spin-flavor symmetry that arises in the large-

Nc limit of QCD [50–53]. This method has been used to constrain nucleon-nucleon (NN)

interactions [54–58], including parity-violating couplings [59, 60], time-reversal-invariance-

violating couplings [61, 62], as well as magnetic and axial couplings in the context of pionless

EFT (EFTπ/) [63]. Similar work has been done in both the meson [64, 65] and single baryon

sectors of chiral perturbation theory (χPT) [66–70].

There are potential pitfalls to applying the large-Nc expansion to nuclei. For example,

Skyrme models suggests that the binding energy per nucleon in nuclear matter predicted in

the large-Nc limit is of order the nucleon mass mN ∼ Nc [71, 72], while the observed binding

energies are much smaller (of the order of a few MeVs.) For a more detailed discussion

see, e.g., Refs. [73, 74] and references therein. Here, we use arguments based on the spin-

flavor symmetry to compare the relative sizes of different terms in the NN Lagrangian. This

approach gives results for the isospin-invariant NN interactions that are consistent with NN

scattering data [54, 55, 58]. Moreover, the Wigner symmetry that was shown to emerge

in the large-Nc limit yields agreement with some parity conserving experimental results for

larger nuclei (see Ref. [54] and references therein).

This paper is structured as follows. Section II contains a discussion of the results from

Refs. [45, 46] relevant for this work. A large-Nc analysis of one- and two-nucleon ma-
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trix elements is given in Sec. III, and the spurion construction in ChEFT is discussed in

Sec. IV. Complete but minimal sets of spurion operators for both the electromagnetic and

weak interactions are derived along with the large-Nc scalings of the corresponding LECs

in Sec. V. A large-Nc hierarchy of CIB interactions in comparison to phenomenological de-

scriptions is discussed in Sec. VI. The large-Nc analyzed CIB Lagrangian is mapped onto to

the CIB Lagrangian of Ref. [46] in Sec. VII and the consistency of the LNV and CIB LECs

demonstrated. Finally, Sec. VIII summarizes the results. The appendices contain a detailed

discussion of an alternate large-Nc scaling of the quark and nucleon charges, as well as a

summary of relevant Fierz identities.

II. BACKGROUND

In this section we introduce and discuss the relevant LNV and CIB Lagrangians. At

leading order (LO) in the EFT power counting, there is a contribution to the two-nucleon

LNV transition operator from tree-level neutrino exchange between the nucleons. At the

same order, there exist contributions from dressing the tree-level diagram by iterations of

the LO NN interactions, which include contact terms and one-pion exchange diagrams [46].

A careful analysis [45, 46] of the resulting amplitude using renormalization arguments shows

that an LNV amplitude that consists of only the above contributions diverges logarithmically.

Therefore, a leading-order contact operator must be included to obtain the correct amplitude

at this order. The contact term in the LO Lagrangian is [45, 46]

LNN|∆L=2| =
(

2
√

2GFVud

)2

mββ ēLCē
T
L

gNNν
4

[(
N̄uQ̃w

Lu
†N
)2

− 1

6
Tr
(
Q̃w
LQ̃

w
L

) (
N̄τaN

)2
]

+ H.c.,

(2)

where N represents the doublet of nucleon fields, eL is the left-handed electron, the charge

conjugation matrix is C = iγ2γ0, GF is the Fermi constant, Vud is an element of the Cabibbo-

Kobayashi-Maskawa matrix, and

Q̃w
L = τ+ =

1

2

(
τ 1 + iτ 2

)
. (3)

The matrix u is

u = exp

(
i

2F
φaτ

a

)
, (4)

where the φa (a = 1, 2, 3) are the pion fields in Cartesian coordinates, the τa are Pauli matri-

ces in isospin space, and F is the pion decay constant in the chiral limit. The renormalization
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group (RG) requirement to include a contact term at LO means that an additional unknown

LEC, gNNν , must be determined in order to analyze and interpret current and future mea-

surements of 0νββ decay.

It has been shown in Refs. [45, 46] that chiral symmetry relates the LEC gNNν to an elec-

tromagnetic CIB isotensor LEC C1. The CIB isotensor Lagrangian in ChEFT has received

a significant amount of study [75–77]. In Ref. [46] it is written as

LNNCIB =
e2

4

{
C1

[(
N̄u†Q̃RuN

)2

+
(
N̄uQ̃Lu

†N
)2

− 1

6
Tr
(
Q̃2
L + Q̃2

R

) (
N̄τaN

)2
]

+C2

[
2
(
N̄u†Q̃RuN

)(
N̄uQ̃Lu

†N
)
− 1

3
Tr
(
UQ̃LU

†Q̃R

) (
N̄τaN

)2
]}

, (5)

where U = u2 and here

Q̃L = Q̃R =
1

2
τ 3. (6)

Additionally, many high-precision NN potentials, such as the Argonne v18 [78] and the

CD-Bonn [79], as well as several interactions derived from ChEFT [80–83] include short-range

CIB and charge-symmetry-breaking (CSB) operators to reproduce the observed scattering

data. In principle, determination of C1 from data also fixes the value of the 0νββ LEC gNNν .

However, at present only the linear combination C1 + C2 is constrained by available data.

The combination C1−C2 is sensitive to two-nucleon-multi-pion interactions and is currently

inaccessible. Reference [46] obtains an estimate of gNNν by assuming that the two LECs C1

and C2 are of the same size and sign, which implies gNNν ≈ 1
2
(C1 + C2). In the next sections

we examine this assumption using large-Nc scaling arguments. In particular, we show that

the terms proportional to C1 − C2 are suppressed in the large-Nc limit compared to those

proportional to C1 +C2, thereby adding support to the assumptions that C1 and C2 are of the

same size and sign and that gNNν can be approximated by the sum of the CIB LECs divided

by two.

III. LARGE-Nc SCALING

In this section we outline the basic elements needed to perform large-Nc analyses. The

large-Nc scaling of the single-nucleon matrix elements of an n-body operator O(n)
IS with spin

S and isospin I is provided by [54, 55]

〈N | O
(n)
IS

Nn
c

|N〉 . N−|I−S|c , (7)
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where n denotes the number of quarks involved in the operator. In the large-Nc limit, the

Hamiltonian takes a Hartree form [55, 84],

H = Nc

∑
n

∑
s,t

vstn

(
Si

Nc

)s(
Ia

Nc

)t(
Gia

Nc

)n−s−t
, (8)

where the one-body operators are

Si = q†
σi

2
q, Ia = q†

τa

2
q, Gia = q†

σiτa

4
q. (9)

The nucleon ground state is totally antisymmetric in the color degrees of freedom, and q

is a colorless, bosonic quark field. The coefficients vstn are functions of momentum and at

most scale as O(N0
c ) [55]. In addition to single-nucleon matrix elements (also see Ref. [85]

and references therein), these results were used in the study of two-nucleon interactions via

matrix elements of the form [54, 55]

V (p−,p+) = 〈Nα(p′1)Nβ(p′2)|H |Nγ(p1)Nδ(p2)〉 , (10)

where the Greek subscripts indicate combined spin and isospin quantum numbers and

p± ≡ p′ ± p, (11)

where p′ = p′1 − p′2 and p = p1 − p2. The two-nucleon matrix elements factorize in the

large-Nc limit [54],

〈NγNδ| O1O2 |NαNβ〉
Nc→∞−−−−→ 〈Nγ| O1 |Nα〉 〈Nδ| O2 |Nβ〉+ crossed, (12)

and the large-Nc scaling of the two-nucleon matrix elements is determined by the large-Nc

dependence of the operators O1 and O2 ∈ {Si, Ia, Gia,1},

〈N ′|Si |N〉 ∼ 〈N | Ia |N〉 . 1 ,

〈N ′|Gia |N〉 ∼ 〈N |1 |N〉 . Nc .
(13)

In addition, there can be a hidden large-Nc suppression in the momentum dependence of

the functions vstn [55]. In t-channel diagrams, factors of p+ only enter through relativistic

corrections and are therefore suppressed by the nucleon mass, which scales as Nc. Since the

analysis in the t-channel is sufficient to establish the large-Nc scaling, momenta are counted

as [55]

p− ∼ 1, p+ ∼ N−1
c . (14)
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Finally, large-Nc scaling is impacted by the number of pions involved in the process. In

χPT, pion fields are encoded in the exponential matrix u of Eq. (4). Expanding u in the

number of pions, we see that each pion field is accompanied by a factor of 1/F . In the

large-Nc limit the decay constant F is O(
√
Nc) [84, 86]; each additional pion field in the

expansion of Eq. (4) yields a suppression by 1/
√
Nc.

In summary, the large-Nc scaling of the LECs is determined by the spin-isospin structure

of the matrix elements of nucleon bilinear operators, the scaling of any relevant momentum

factors, and additional suppressions from any pion fields. Finally, the overall factor of Nc in

the Hamiltonian of Eq. (8) reduces the scaling of the LECs by one power of Nc.

This approach has been used to analyze the large-Nc behavior of NN interactions in the

symmetry-even [54–58, 87, 88] and symmetry-odd sectors [59–62], three-nucleon forces [89],

and the coupling of two nucleons to external magnetic and axial fields [63]. In this paper

the large-Nc scaling is used to establish relationships among LECs associated with CIB NN

operators.

We briefly comment on the role of the ∆ in large-Nc ChEFT. The nucleon and ∆ mass

splitting is O(1/Nc); therefore, the nucleon and the ∆ resonance become degenerate in the

large-Nc limit. The ∆ was shown to play acrucial role in deriving the spin-flavor symmetry

and obtaining consistent large-Nc scaling for pion-baryon scattering [90–93], as well as in

understanding the meson-exchange picture of the NN interactions [56]. For the quantities

of interest here, the ∆ can only appear in intermediate states and effects of the virtual ∆

degrees of freedom are not considered explicitly in the following. We thus obtain constraints

on the LECs in a ChEFT that does not include explicit ∆s. Including the ∆ resonance in

χPT changes the size of the LECs and leads to quantities that may depend on the ratio

m∆ −mN

mπ

, (15)

which depends on the order in which the large-Nc and chiral limits are taken [34, 52, 94, 95].

While this apparent difference in the treatment of the ∆ between the large-Nc and the EFT

approaches is an important issue to be resolved, earlier work on the NN interaction that

similarly excluded intermediate ∆ states obtained results that did not contradict available

data [54, 55, 58]. The role of intermediate ∆ states in NN scattering in the 1S0 channel and

how they can be integrated out is discussed in Ref. [96].
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IV. CHIRAL EFFECTIVE FIELD THEORY AND SPURION FIELDS

The CIB ChEFT Lagrangian is constructed using the spurion technique, the same tech-

nique used to construct the mass term in the LO pion Lagrangian and to include the effects

of virtual photons and leptons [97–105]. The CIB Lagrangian of interest here contains

terms with two insertions of the quark (or equivalently nucleon) charge matrix. The QCD

Lagrangian for two flavors in terms of left- and right-handed quark fields with minimal

coupling to an electromagnetic potential is

L = iq̄L/∂qL + iq̄R/∂qR − q̄LM †qR − q̄RMqL + ieAµ [q̄Lγ
µQqqL + q̄Rγ

µQqqR] , (16)

where Qq = diag(2
3
,−1

3
) is the quark charge matrix and the unit of charge e is factored

out of Qq (see the last terms in Eq. (16)). The quark mass and the charge matrix terms

break chiral symmetry explicitly. For the mass terms, the pattern of symmetry breaking

can be mapped onto the effective Lagrangian by (i) assuming that the constant matrix M

transforms under the chiral symmetry group as

M 7→ RML†, (17)

where R and L are SU(2) matrices transforming the right- and left-handed components

of the quark fields, respectively, and (ii) constructing all allowed terms that are chirally

invariant with the assumed transformation behavior of the quark mass matrix. The same

approach can be adopted for terms containing the charge matrix. First, Q is separated into

two matrices, QL and QR, such that the electromagnetic part of the Lagrangian can be

written as

LEM = ieAµ [q̄Lγ
µQLqL + q̄Rγ

µQRqR] . (18)

Next, the charge matrices are required to transform under the chiral symmetry group as

QR 7→ RQRR
†, (19)

QL 7→ LQLL
†. (20)

At the nucleonic level, the Lagrangian can be written in terms of the nucleon doublet

N = (p, n)T , which transforms under chiral symmetry as

N 7→ K(L,R, u)N, K ∈ SU(2), (21)
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while the pion matrix

u 7→ u′ = RuK† = KuL† . (22)

In Ref. [46], the matrix containing the pion fields transforms as U 7→ LUR†, where u2 = U ,

while the transformation used here is U 7→ RUL† in accord with Ref. [30]. However, this

difference does not impact the results. The construction of all possible nucleon operators

with two spurion insertions that are invariant under chiral transformations is simplified by

using the combinations

Q± =
1

2

[
u†QRu± uQLu

†] , (23)

which transform under the chiral symmetry group as

Q± → KQ±K
†. (24)

It is useful to separate these spurions into isoscalar and isovector components,

Q± =
1

2
Tr(Q±)1 + Q̃±, (25)

where

Q̃± =
1

2
Tr(Q±τ

a)τa, (26)

so that the operators are written in terms of Tr(Q±) and Q̃±.

V. LARGE-Nc SCALING OF NN INTERACTIONS WITH TWO SPURION FIELDS

The large-Nc analysis discussed in Sec. III can be extended to include the spurion opera-

tors when an explicit form for the spurion is chosen. The greatest possible large-Nc scaling

of a given CIB operator can be deduced from its spin-flavor structure, which is used to guide

the elimination of redundant operators when Eq. (26) is inserted in the relevant nucleon

bilinears (see Appendix B). However, as discussed above, some operators may receive addi-

tional 1/Nc suppressions when the leading term contains pion fields from the expansion of

u. We will point out an explicit example of this in the next subsection.

One might attempt to obtain the large-Nc scaling of gNNν , C1, and C2 directly from Eqs. (2)

and (5). However, the forms of the Lagrangians in Eqs. (2) and (5) are obtained by using

Fierz identities to eliminate redundant operators. This procedure can obscure the correct

large-Nc scalings [59, 106]. Therefore, we present an alternative minimal basis in which the
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large-Nc scaling of the LECs is manifest. The relationships between these LECs and the

ones in Eqs. (2) and (5) are given in Sec. VII.

Instead of working in the basis of Ref. [41], we will use the spurions defined in Eq. (23) and

then translate between the two bases after the LO-in-Nc Lagrangian has been derived. When

determining the large-Nc scaling of general operator forms we will leave out electromagnetic

or weak factors such as e2 or (GFVud)
2. While these factors impact the overall size of an

operator, they will not be relevant for understanding the relative large-Nc rankings among

operators that have the same overall multiplicative factor. The most general set of operators

for this analysis is given by

B1 = Tr(Q+)2 (N †ΓN)2
,

B2 = Tr(Q+)
(
N †ΓN

) (
N †Q̃+ΓN

)
,

B3 =
(
N †Q̃+ΓN

)2

,

B4 = Tr(Q−)2 (N †ΓN)2
,

B5 = Tr(Q−)
(
N †ΓN

) (
N †Q̃−ΓN

)
,

B6 =
(
N †Q̃−ΓN

)2

,

B7 = Tr(Q+) Tr(Q−)
(
N †ΓN

) (
N †ΓN

)
,

B8 = Tr(Q−)
(
N †Q̃+ΓN

) (
N †ΓN

)
,

B9 = Tr(Q+)
(
N †Q̃−ΓN

) (
N †ΓN

)
,

B10 =
(
N †Q̃+ΓN

)(
N †Q̃−ΓN

)
,

B11 = Tr
(
Q̃2

+ + Q̃2
−

) (
N †ΓN

)2
=

1

2
Tr
(
Q̃2
R + Q̃2

L

) (
N †ΓN

)2
,

B12 = Tr
(
Q̃2

+ − Q̃2
−

) (
N †ΓN

)2
= Tr

(
UQ̃LU

†Q̃R

) (
N †ΓN

)2
,

B13 = Tr
(
Q̃+Q̃−

) (
N †ΓN

)2
= Tr

(
Q̃2
R − Q̃2

L

) (
N †ΓN

)2
, (27)

where Γ can be 1, σi, τa, or σiτa. However, several of the operators that arise once all four

of the possibilities for Γ are inserted into the general forms of Eq. (27) will be redundant.

The nucleon bilinears contained in operators from B1, B4, B7, B11, B12, and B13 have the

same structure as the operators from nucleon-nucleon scattering, so operators with Γ = 1

and σiτa may start to contribute at LO in Nc, while those with Γ = σi and τa are 1/N2
c

suppressed. The Fierz identity (
N †σiτaN

)2
= −3

(
N †N

)2
(28)
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can be used to eliminate σiτa in favor of 1, and since the corresponding LECs are of the

same order there is no change in the scaling obtained. Similarly, the identity

(
N †τaN

)2
= −2

(
N †N

)2 −
(
N †σiN

)2
(29)

shows that the bilinear with τa is not independent of those containing 1 and σi in the

operators of the form B1, B4, B7, B11, B12, and B13.

For operators of the form B2, B3, B5, B6, B8, B9, and B10, on the other hand, the

insertion of Γ = τa or σiτa creates terms containing products of Pauli matrices in isospin

space in a single nucleon bilinear. The structure of these terms does not match directly onto

the Hartree Hamiltonian of Eq. (8). But the terms can be rewritten using

τaτ b = δab1 + iεabcτ c , (30)

which generates structures that contain at most a single isospin Pauli matrix. Again, the

large-Nc scaling of these terms can be determined from Eq. (13), and the forms with Γ = τa

and σiτa can be eliminated for this set of operators. There is one more redundancy. Opera-

tors with Γ = 1 or σi can be removed through the use of Eq. (26) and Fierz transformations.

For B3, B6, and B10, Γ = 1 can be eliminated, while either choice is suitable for B2, B5,

B8, and B9 since both choices scale with Nc in the same way. Again, Appendix B contains

greater detail about this procedure. In the next two subsections, the explicit forms of the

spurion fields for the electromagnetic and the weak cases, respectively, are considered.

A. Electromagnetic Spurions

For the electromagnetic case, it is useful to write the Lagrangian in terms of the nucleon

charge matrix,

Q =
1

2

(
1 + τ 3

)
. (31)

The difference between using the nucleon charge matrix and using the quark charge matrix

amounts to a shift by an unobservable constant [104]. Here, the nucleon charge matrix is

independent of Nc, which implies that the up and down quark charges are Nc-dependent.

The alternative choice that the quark charges are constant and the nucleon charge depends

on Nc is discussed in Appendix A.
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Using Eq. (31) as the spurion field in Eq. (27) yields operators with a clear spin-flavor

structure. Setting QR = QL = Q gives

Q̃± =
1

4

[
u†τ 3u± uτ 3u†

]
. (32)

The corresponding traces of operators are [105]

Tr(Q+) = 1, (33)

Tr(Q−) = 0, (34)

Tr
(
Q̃2

+ + Q̃2
−

)
= Tr

(
Q̃2
)

= 1/2, (35)

Tr
(
Q̃2

+ − Q̃2
−

)
= Tr

(
UQ̃U †Q̃

)
, (36)

Tr
(
Q̃+Q̃−

)
= 0. (37)

Since

Tr
(
Q̃2

+ + Q̃2
−

) (
N †ON

)2 ∼ Tr(Q+)2 (N †ON)2
, (38)

the operators from B11 can be absorbed into those from B1. Therefore, the only independent

operators are those from B1, B2, B3, B6, B9, B10, and B12. The operators from B10 vanish at

least through O(φ2) when u is expanded and can be neglected at this order. After eliminating

redundancies (see Appendix B) the remaining operators are

O1,1 =
(
N †N

)2
, (39)

O1,2 =
(
N †σiN

)2
, (40)

O2 =
(
N †N

) (
N †Q̃+N

)
, (41)

O3 =
(
N †σiQ̃+N

)(
N †σiQ̃+N

)
, (42)

O6 =
(
N †σiQ̃−N

)(
N †σiQ̃−N

)
, (43)

O9 =
(
N †Q̃−N

) (
N †N

)
, (44)

O12,1 = Tr
(
UQ̃U †Q̃

) (
N †N

)2
, (45)

O12,2 = Tr
(
UQ̃U †Q̃

) (
N †σiN

)2
, (46)

where the first subscript i in Oi,j indicates the Bi from which each operator originates, and

the second index j, where necessary, refers to a specific operator within the Bi, j = 1, 2, 3, 4

for Γ= 1, σi, τa, σiτa, respectively.
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Finally, as discussed in Sec. III, each additional pion field introduces a factor of 1/F ∼

1/
√
Nc. Expanding each operator to second order in the pion fields to determine the maxi-

mum Nc scaling of the corresponding LECs yields

O1,1 =
(
N †N

)2
+ · · · , (47)

O1,2 =
(
N †σiN

)2
+ · · · , (48)

O2 =
1

2

(
1− 1

2F 2
φaφa

)(
N †N

) (
N †τ 3N

)
+

1

4F 2
φ3φa

(
N †N

) (
N †τaN

)
+ · · · , (49)

O3 =
1

4

(
1− 1

F 2
φaφa

)(
N †σiτ 3N

)2
+

1

4F 2
φ3φa

(
N †σiτ 3N

) (
N †σiτaN

)
+ · · · , (50)

O6 =
1

4F 2
ε3abε3cdφaφc

(
N †σiτ bN

) (
N †σiτ dN

)
+ · · · , (51)

O9 = − 1

2F
ε3abφa

(
N †τ bN

) (
N †N

)
+ · · · , (52)

O12,1 =

[
1

2
− 4

F 2
(φaφa − φ3φ3)

] (
N †N

)2
+ · · · , (53)

O12,2 =

[
1

2
− 4

F 2
(φaφa − φ3φ3)

] (
N †σiN

)2
+ · · · (54)

where the ellipses indicate additional pion fields. The scaling of the LECs C̄i,j multiplying

Oi,j in the Lagrange density is given by

C̄1,1 ∼ Nc , (55)

C̄1,2 ∼ N−1
c , (56)

C̄2 ∼ 1 , (57)

C̄3 ∼ Nc , (58)

C̄6 ∼ 1 , (59)

C̄9 ∼ N−1/2
c , (60)

C̄12,1 ∼ Nc , (61)

C̄12,2 ∼ N−1
c . (62)

The operators O1,1 and O12,1 differ only at the multi-pion level. Therefore, differences

between the two will be 1/Nc suppressed. The same holds for the operators O1,2 and O12,2.

The operator O6 provides a concrete example of an earlier point: the generic spin-flavor

structure of the operator, before expanding u in the number of pion fields, indicates that it

could be O(Nc), but the first nonzero term has two pion fields and is thus suppressed by an

additional factor of 1/Nc.
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The Lagrangian at LO and next-to-leading order (NLO) in the large-Nc expansion is

LLO-in-Nc = e2

{[
C̄1,1 + C̄12,1 Tr

(
UQ̃U †Q̃

)] (
N †N

)2
+ C̄3

(
N †σiQ̃+N

)2
}
, (63)

LNLO-in-Nc = e2

{
C̄2

(
N †N

) (
N †Q̃+N

)
+ C̄6

(
N †σiQ̃−N

)2
}
. (64)

The C̄i and C̄i,j are LECs that have to be determined from comparison to data or from a

calculation in terms of the underlying QCD degrees of freedom. Expanding the matrices u

and U in the number of pion fields also creates terms at higher order in the large-Nc counting

than indicated by the subscript on the left side; see the discussion in Sec. III. In Sec. VII,

we will map the form of the Lagrangian in Eqs. (63) and (64) to the one used in Eq. (5) to

determine the large-Nc scaling of the LECs in Eq. (5).

B. Weak Spurions

For weak interactions, QL is given by Eq. (3) while QR = 0, which gives

Q± = Q̃± = ±1

2
uQLu

† = ±1

2
uτ+u† . (65)

As a result, all traces in Eqs. (27) vanish and therefore operators from B1, B2, B4, B5, B7,

B8, B9, B11, B12, and B13 do not contribute. Since Q̃+ = −Q̃−, the only nonvanishing term

is (
N †uτ+u†ΓN

)2
, (66)

and the structures B3, B6, and B10 become identical. As pointed out in Ref. [41], the two

operators corresponding to Γ = 1 and σi in this term are related through a Fierz identity

and are not independent at O(φ0). The authors of Ref. [41] choose to retain Γ = 1; that

is, the operator
(
N †τ+N

)2
. According to Eq. (13), this operator does not appear at LO in

the large-Nc expansion. However, eliminating the operator
(
N †σiτ+N

)2
through the Fierz

transformation (
N †σiτ+N

)2
= −3

(
N †τ+N

)2
(67)

introduces a hidden LO-in-Nc contribution in the term proportional to
(
N †τ+N

)2
. As a

result, after removing the overall factor of Nc from the Hartree Hamiltonian as discussed in

Sec. III, gNNν is of LO in the large-Nc expansion, gNNν ∼ O(Nc). This result by itself does

not justify the assumptions underlying the approximation gNNν ≈ 1
2
(C1 + C2) proposed in
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Refs. [45, 46]. However, an inconsistency in the large-Nc scaling of gNNν versus (C1 + C2)

would cast doubt on the approximation. As will be shown in Sec. VII, (C1 + C2) ∼ O(Nc),

consistent with the LO scaling of gNNν found here.

VI. LARGE-Nc HIERARCHY OF CHARGE-INDEPENDENCE-BREAKING IN-

TERACTIONS

Before focusing on the isotensor terms and their relation to gNNν , we will analyze the

large-Nc scaling of general CIB NN interactions using the results of Sec. V A. In the ab-

sence of external pions, the operators in Eqs. (47) - (54) that contain pions only contribute

through pion-loop diagrams that are of higher order in the chiral power counting than is

considered in this analysis. Adopting the conventions in Ref. [107] (also see Ref. [108]),

the NN interactions, including the effects of virtual photons, are divided into four classes

characterized by the following isospin structures:

(I) isospin invariant and charge symmetric: 1112, ~τ1 · ~τ2,

(II) CIB but not charge-symmetry-breaking (CSB), which have the isotensor form: τ 3
1 τ

3
2 −

1
3
~τ1 · ~τ2,

(III) CSB (and thus CIB) terms that are symmetric in spin and isospin indices: τ 3
1 + τ 3

2 ,

(IV) CSB with isospin mixing (these vanish on nn and pp systems, but not np, and only

occur in L 6= 0 partial waves): τ 3
1 − τ 3

2 , (~τ1 × ~τ2)3.

The subscripts in the expressions above denote nucleon bilinears one and two. Refs. [77,

108, 109] use dimensional analysis to argue that the size of these interactions is such that

Class (I) > Class (II) > Class (III) > Class (IV).

Neglecting the operators O6 and O9 because they contain at least one pion field, the

independent contact operators generated by the spurion formalism fall into the categories

(I) O1,1, O1,2 , (68)

(II) O3 , (69)

(III) O2 . (70)
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As discussed in Sec. V A, the pionless parts of the operators O12,1 and O12,2 are identical

to O1,1 and O1,2, respectively. Class (I) and (II) interactions appear at the same order in

the large-Nc expansion, while Class (III) terms are suppressed by 1/Nc. It may be unex-

pected that the large-Nc analysis suggests that the isospin-invariant Class (I) interactions

appear at the same order as CIB terms. Recall, though, that the operators considered here

are accompanied by factors of e2 in the Lagrangian. The Class (I) terms derived here are

therefore O(e2)-suppressed corrections to the dominant isospin-invariant interactions. Tak-

ing into account the additional e2 suppression of the isospin-violating terms, our results are

not in contradiction with the expectations of Refs. [77, 108, 109] that some Class (I) terms

are larger than Class (II) terms. Contact operators leading to Class (IV) CIB contain two

derivatives and are of higher order in the EFT expansion. Taking into account the scaling

of the momenta in Eq. (14), these terms are at most O(N0
c ). Additionally, at the level of

the NN Lagrangian, the two operators that lead to the Class (IV) potential given in [108]

are related by Fierz transformations and are not independent at the two-derivative order in

the EFT expansion. But previous work [110–112] has shown that formally Fierz-equivalent

operators can lead to ambiguities when used in deriving potentials with local regulators.

VII. LARGE-Nc JUSTIFICATION FOR gNNν ≈ 1
2(C1 + C2) [46]

To connect Eq. (63) to Eq. (5), it is helpful to rearrange the LO-in-Nc Lagrangian

(Eq. (63)) as

LLO-in-Nc =e2

{
1

2

[
2C̄1,1 + C̄12,1 − C̄3

]
Tr
(
Q̃2

+

) (
N †N

)2

+ C̄3

[(
N †σiQ̃+N

)2

− 1

6
Tr
(
Q̃2

+

) (
N †σiτaN

)2
]}

,

(71)

where the second term proportional to C̄3 is now a symmetric traceless isotensor. The

included trace term appears at the same order in the large-Nc expansion. This rearrangement

also produces a NLO-in-Nc contribution such that Eq. (64) becomes

LNLO-in-Nc = e2

{
1

2

[
2C̄1,1 − C̄12,1 − C̄6

]
Tr
(
Q̃2
−

) (
N †N

)2
+ C̄2

(
N †N

) (
N †Q̃+N

)
+ C̄6

[(
N †σiQ̃−N

)2

− 1

6
Tr
(
Q̃2
−

) (
N †σiτaN

)2
]}

.

(72)

We now consider the isotensor CIB term proportional to C̄3 in more detail, and relate it

to the terms used in Ref. [46], see Eq. (5). Fierz transformations are used to rewrite the
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leading terms (see Eq. (B8)). This uncovers LO-in-Nc scaling in terms that naively appear

to be of higher order. The resulting Lagrangian is

L∆I=2
LO-in-Nc

= −3e2C̄3

[(
N †Q̃+N

)2

− 1

6
Tr
(
Q̃2

+

) (
N †τaN

)2
]
. (73)

Using the definition of the spurion fields in Eqs. (23), the Lagrangian of Eq. (5) can be

written as

LNNCIB =
e2

2

{
(C1 + C2)

[(
N †Q̃+N

)2

− 1

6
Tr
(
Q̃2

+

) (
N †τaN

)2
]

+ (C1 − C2)

[(
N †Q̃−N

)2

− 1

6
Tr
(
Q̃2
−

) (
N †τaN

)2
]}

. (74)

Comparison with Eq. (73) shows that

1

2
(C1 + C2) = −3C̄3, (75)

which demonstrates that C1 + C2 ∼ Nc. A similar transformation for the isotensor term in

Eq. (72) shows that
1

2
(C1 − C2) = −3C̄6 , (76)

demonstrating that C1−C2 is 1/Nc suppressed relative to C1 + C2. Inverting these equations

gives

C1 = −3C̄3 − 3C̄6 = −3C̄3 [1 +O(1/Nc)] , (77)

C2 = −3C̄3 + 3C̄6 = −3C̄3 [1 +O(1/Nc)] . (78)

These results support the assumption of Ref.[46] that the LECs in the CIB Lagrangian are

of the same size and sign, and that therefore the neutrinoless LEC can be approximated as

gNNν ≈ 1
2
(C1 + C2).

VIII. CONCLUSION

The renormalization group analysis of Refs. [45, 46] showed that, for light-Majorana

exchange, an LNV contact term is required at leading order in ChEFT. The presence of this

term impacts the calculation of nuclear matrix elements relevant for 0νββ decay. Neither

sufficient data nor lattice QCD results are currently available to determine the size of the

corresponding LEC, gNNν . To estimate the contribution of the LNV contact term to nuclear
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matrix elements, Refs. [45, 46] assumed that the two CIB LECs C1 and C2 are of the same

size and sign, which allowed them to approximate gNNν ≈ (C1 + C2)/2.

Here, we performed large-Nc analyses of the LNV and CIB NN operators appearing at the

first nonvanishing order in ChEFT power counting. Our results show that the assumptions

underlying the approximations of gNNν used in Refs. [45, 46] are consistent with ordering

based upon the large-Nc limit, lending additional support to the numerical estimates for

matrix elements found there. They are also in line with the recent results of Ref. [47].

Our analysis also shows a hierarchy of the different classes of CIB NN interactions as

defined in Refs. [107]. The ordering obtained does not contradict phenomenological expec-

tations [77, 108, 109]. However, as is generally the case, the large-Nc results should not

be treated as precise predictions. The ordering of LECs is based on expansions in 1/Nc

and the assumption that other numerical factors are of natural size. For example, sym-

metries not captured by the large-Nc expansion may lead to unnaturally small parameters.

In particular, lattice QCD calculations of baryon-baryon interactions suggest that there is

an accidental SU(16) symmetry beyond the SU(6) symmetry in three-flavor large-Nc QCD

[113, 114]. Two additional caveats to the results in this paper are that there are unresolved

open questions involving the application of large-Nc scaling of operators within heavy nuclei,

and the potential impact of ∆ intermediate states. So far these issues have not exposed any

practical flaws to the procedure used in this paper, but they should be kept in mind. We

hope that this work will help guide many-body studies of LNV in heavier elements, as well

as the interpretation of neutrinoless double beta decay experiments.
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Appendix A: Alternative Electric Charge Scaling

The choice of keeping the nucleon charge independent of Nc, while the quark charges

scale with Nc, has the advantage that anomaly cancellations persist in a large-Nc extended

standard model [115, 116]. The up and down quark charges in units of e are then given by

qu =
Nc + 1

2Nc

, qd =
1−Nc

2Nc

, (A1)

where Nc is odd but arbitrary. This choice leads to a proton with electric charge of one in

units of e when it is taken to consist of 1
2

(Nc + 1) up quarks and 1
2

(Nc − 1) down quarks.

Similarly, the neutron has electric charge 0 when the numbers of quark flavors are switched.

In the meson sector of χPT, it is customary to use the quark charge matrix when con-

structing the spurion counterterms. However, when nucleons are included it is conventional

to use the nucleon charge matrix. The terms in the pion Lagrangian are then replaced ac-

cordingly, but this only amounts to the addition of an unobservable constant term. When

going to large-Nc, it is reasonable to ask if this is still the case when the charge matrices

with different large-Nc scalings are interchanged. To answer this question, the quark and

nucleon charge matrices are generalized [105],

Q = α1 + βτ 3 . (A2)

The leading order operator in the pion Lagrangian is

e2C Tr
(
QUQU †

)
= e2C Tr

(
α2
1 + β2τ 3Uτ 3U †

)
. (A3)

The first term is indeed an unobservable constant shift, and the second term leads to the

electromagnetic pion mass splitting when U is expanded to O(φ2), i.e.

δm2
π =

2e2

F 2
0

C . (A4)

For quark charges that scale as Eq. (A1), the quark and nucleon charge matrices become

Qq-scaling
q =

1

2Nc

[
1 +Ncτ

3
]
, (A5)

Qq-scaling
N =

1

2

[
1 + τ 3

]
, (A6)

where the superscript indicates that the quark q = u, d charges scale with Nc.
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Alternatively, it was argued that for baryons containing O(N0
c ) strange quarks, quantiza-

tion conditions require the quark charges be fixed to their physical values and independent of

Nc [117]. However, for this choice, anomalies in an SU(Nc)-extended standard model do not

cancel [115, 116] and the nucleon charge becomes Nc-dependent and unbounded as Nc →∞.

Nevertheless, as shown in the following, such a choice does not change our conclusions. The

quark and nucleon charge matrices are then

Qq-fixed
q =

1

6

[
1 + 3τ 3

]
, (A7)

Qq-fixed
N =

1

6

[
Nc1 + 3τ 3

]
, (A8)

where the superscript indicates that the quark charges q are fixed as Nc changes. Regardless

of whether the quark or nucleon charge matrices are chosen to scale with Nc, the coefficient

β = 1
2
. Therefore, both choices lead to the same pion mass splitting.

Based on the argument that a single flavor trace operator in the meson sector of χPT

corresponds to a single closed loop in large-Nc QCD, it might be expected that the LEC C

scales at most as C ∼ Nc. Using the typical diagrammatic arguments in Fig. 1, adding a

photon in the loop does not modify the color structure, so it still consists of a single sum over

all colors but it does pick up a factor of e2. Therefore, the pion mass splitting in Eq. (A4)

is at most O(N0
c ) when e is taken to be fixed and after accounting for the suppression due

to F0. However, it was shown (see, e.g., Ref. [115, 116]) that for electroweak effects to be

finite, the electromagnetic coupling can be rescaled like the strong coupling, i.e. e ∼ N
−1/2
c .

In this case, the mass splitting will be O(1/Nc).

FIG. 1. Leading order diagram in large-Nc QCD which is O(e2Nc).

When the nucleon charge is chosen to have the Nc dependence given by Eq. (A8), the

large-Nc behavior of the operators in Eqs. (27) needs to be reexamined for possible changes.

The operators that contain Tr(Q±) are now multiplied by an overall factor of Nc for each
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insertion of the trace. This leads to

C̄1,1 ∼ N3
c , (A9)

C̄1,2 ∼ Nc , (A10)

C̄2 ∼ Nc , (A11)

C̄9 ∼ N1/2
c , (A12)

while the large-Nc scaling of the other LECs remains unchanged. The operators relevant for

the classification of the CIB terms are still O1,1, O1,2, O2, and O3. To obtain the traceless

form of the Class (II) interactions, the term in the Lagrangian containingO3 can be rewritten

as

(N †σiτ 3N)2 = (N †σiτ 3N)2 − 1

3
(N †σiτaN)2 +

1

3
(N †σiτaN)2 . (A13)

The first two terms on the right-hand side combine to form the Class (II) interaction. The

last term is absorbed as an O(Nc) contribution into the Class (I) interaction. With the

alternative large-Nc scaling of the charges, the classes of charge dependence are then altered

such that (II) and (III) are the same order in Nc while they are both suppressed by N−2
c

relative to (I). This also indicates that the correspondence between the LNV operator and

the CIB contact term remains intact regardless of the choice taken for the scaling of the

nucleon charge with Nc.

Appendix B: Fierz identities and the elimination of redundant operators

The operators that contain only traces of the spurions have the form (N †ΓN)2, where Γ

can be 1, σi, τa, or σiτa. The Fierz identities in Eqs. (28) and (29) from Sec. V,

(
N †σiτaN

)2
= −3

(
N †N

)2
, (28)(

N †τaN
)2

= −2
(
N †N

)2 −
(
N †σiN

)2
, (29)

reduce the number of independent operators from four to two;(
N †N

)2
, (B1)(

N †σiN
)2
, (B2)

where the first operator is LO-in-Nc, and the second is 1/N2
c suppressed.
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For the operators involving the traceless part of the spurion field in the bilinears, the

spurions in Eq. (26) are expanded and the products of Pauli matrices reduced using Eq. (30).

All of the suppressions arising from the presence of pion fields are contained in coefficients

defined by ca,± = 1
2

Tr
(
Q̃±τ

a
)

. Therefore, Γ = 1 and σi, respectively, lead to(
N †Q̃±N

)(
N †Q̃±N

)
= ca,±cb,±

(
N †τaN

) (
N †τ bN

)
, (B3)(

N †Q̃±σ
iN
)(

N †Q̃±σ
iN
)

= ca,±cb,±
(
N †τaσiN

) (
N †τ bσiN

)
. (B4)

For Γ = τ c, (
N †Q̃±τ

cN
)(

N †Q̃±τ
cN
)

= ca,±ca,±
(
N †N

)2 − ca,±ca,±
(
N †τ bN

)2

+ca,±cb,±
(
N †τaN

) (
N †τ bN

)
, (B5)

and the operator
(
N †τ bN

)2
can be removed using the Fierz identity of Eq. (29) to obtain(

N †Q̃±τ
cN
)(

N †Q̃±τ
cN
)

= 3ca,±ca,±
(
N †N

)2
+ ca,±ca,±

(
N †σiN

)2

+ca,±cb,±
(
N †τaN

) (
N †τ bN

)
. (B6)

The first two terms in Eq. (B6) have the same bilinear structure as the operators O1,1 and

O1,2, respectively. Their contributions can be absorbed into a redefinition of the LECs of

these operators. The third term in Eq. (B6) is Eq. (B3). For Γ = σiτ c, Eq. (B6) appears

again except that the last term is Eq. (B4) instead of Eq. (B3). This shows that Γ = τ c and

σiτ c do not yield additional independent operators and can be neglected.

Additional relationships exist among some of the operators corresponding to Γ = 1 and

Γ = σi. For B3, B6, and B10, Γ = 1 can be eliminated by applying Fierz transformations to

Eq. (B3) along with the decomposition in Eq. (26). Using

Tr
(
Q̃2
±

)
= 2ca,±ca,± , (B7)

the Fierz transformation for Eq. (B3) leads to

− 3

[(
N †Q̃±N

)(
N †Q̃±N

)
− 1

6
Tr
(
Q̃±Q̃±

) (
N †τaN

)2
]

=
(
N †Q̃±N

)(
N †σiQ̃±N

)
− 1

6
Tr
(
Q̃±Q̃±

) (
N †σiτaN

)2
, (B8)

which can be arranged, with the help of additional Fierz transformations, to be(
N †Q̃±N

)(
N †Q̃±N

)
= −1

3

(
N †Q̃±N

)(
N †σiQ̃±N

)
− 1

2
Tr
(
Q̃±Q̃±

) (
N †N

)2

−1

6
Tr
(
Q̃±Q̃±

) (
N †σiN

)2
. (B9)
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Therefore, the choice of Γ = 1 can be eliminated from B3, B6, and B10 in favor of combina-

tions of Γ = σi and operators from B11, B12, and B13.

Following the same procedure for operators from B2, B5, B8, and B9 results in

Tr(Q±)
(
N †Q̃±N

) (
N †N

)
= ca,±Tr(Q±)

(
N †N

)2
, (B10)

Tr(Q±)
(
N †Q̃±σ

iN
) (
N †σiN

)
= ca,±Tr(Q±)

(
N †N

)2
, (B11)

for Γ = 1 and σi, respectively. When Γ = τ b, Fierz transformations yield

Tr(Q±)
(
N †Q̃±τ

bN
) (
N †τ bN

)
= −ca,±Tr(Q±)

[
2
(
N †N

)2
+
(
N †σiN

)2
]
. (B12)

Similarly, Γ = σiτ b leads to

Tr(Q±)
(
N †Q̃±σ

iτ bN
) (
N †σiτ bN

)
= −3ca,±Tr(Q±)

(
N †N

)2
. (B13)

This shows that again the operators with Γ = τa and Γ = σiτa are redundant for creat-

ing a complete leading-in-Nc description. As before, additional relationships exist between

the Γ = 1 and Γ = σi operators. Eliminating the remaining redundancy through Fierz

transformations leads to

− 3
(
N †N

) (
N †Q̃±N

)
=
(
N †σiN

) (
N †σiQ̃±N

)
. (B14)

Therefore, either Γ = 1 or Γ = σi may be retained, and both choices give the same large-Nc

counting.

This process eliminates the operators that possess a subleading spin-flavor structure. Any

additional factors of Nc that might be present will arise from pion fields in the expansion of

u; however, these factors will not change the spin-flavor structure of the nucleon bilinears,

and thus only lead to additional 1/
√
Nc suppressions arising from factors of 1/F .
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