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Classes of two-nucleon (2N) contact interactions are developed in configuration space at lead-
ing order (LO), next-to-leading order (NLO), and next-to-next-to-next-to-leading order (N3LO) by
fitting the experimental singlet np scattering length and deuteron binding energy at LO, and np
and pp scattering data in the laboratory-energy range 0–15 MeV at NLO and 0–25 MeV at N3LO.
These interactions are regularized by including two Gaussian cutoffs, one for T = 0 and the other
for T = 1 channels. The cutoffs are taken to vary in the ranges R0 =(1.5–2.3) fm and R1 =(1.5–3.0)
fm. The 780 (1,100) data points up to 15 (25) MeV energy, primarily differential cross sections,
are fitted by the NLO (N3LO) models with a χ2/datum about 1.7 or less (well below 1.5), when
harder cutoff values are adopted. As a first application, we report results for the binding energies of
nuclei with mass numbers A= 3–6 and 16 obtained with selected LO and NLO 2N models both by
themselves as well as in combination with a LO three-nucleon (3N) contact interaction. The latter is
characterized by a single low-energy constant that is fixed to reproduce the experimental 3H binding
energy. The inclusion of the 3N interaction largely removes the sensitivity to cutoff variations in
the few-nucleon systems and leads to predictions for the 3He and 4He binding energies that cluster
around 7.8 MeV and 30 MeV, respectively. However, in 16O this cutoff sensitivity remains rather
strong. Finally, predictions at LO only are also reported for medium-mass nuclei with A= 40, 48,
and 90.



2

I. INTRODUCTION

Understanding the interactions among the constituents of atomic nuclei lies at the heart of nuclear physics and is
still a subject of intense research. Since the advent of the Effective Field Theory (EFT) paradigm [1, 2] in the early
nineties, two-nucleon (2N) chiral interactions have been developed up to fourth (N3LO) and, more recently, fifth
(N4LO) order in the low-energy expansion [3–13]. These interactions provide an accurate description of 2N scattering
data up to the pion production threshold, comparable to that obtained by phenomenological models [14–16].

Implicit in the definition of an EFT is a cutoff scale Λ which marks the separation between the domain of applicability
and high-energy scales that characterize processes unresolved by the EFT and whose effects are subsumed in the values
of low-energy constants (LECs). An interesting version of EFT is one in which the cutoff is taken to be smaller than
the pion mass, that is, the pion mass represents the heavy scale. In such a regime, pions are integrated out and
the theory only consists of contact terms between two or more nucleons—pionless EFT [17, 18] (/πEFT). A natural
question to ask is: how well (or how poorly) will low-energy nuclear structure, including binding energies, charge
radii, and magnetic moments, be accounted for by this simpler EFT? As a first step in our attempt to answer this
question, we construct in this paper coordinate-space 2N contact interactions from fits to scattering observables in a
limited range of energies. These 2N interactions are complemented by a LO three-nucleon (3N) contact interaction,
constrained to reproduce the 3H binding energy. A first set of calculations of the ground-state energies of the hydrogen
and helium isotopes, 6Li, and 16O (40Ca, 48Ca and 90Zr) is presented with selected models at LO and NLO (LO only).
Results for the same observable with the N3LO models are limited to the 3H, 3He/4He/6He and 6Li nuclei.

In the 2N system, /πEFT reduces to the effective range expansion [19]. Due to the unnaturally large values of the
2N scattering lengths, it is convenient, in order to extend the domain of applicability of the theory, to consider the
inverse scattering length as a soft scale [20–22]. As a consequence, this EFT corresponds to an expansion around
the unitary limit of infinite scattering length [23, 24]. By introducing a single expansion parameter, the ratio of the
interaction range to the scattering length [25–28], such a theory accounts for universal phenomena, such as the Efimov
effect [29–32], in systems of three and more nucleons.

Depending on the renormalization conditions, two low-energy counting schemes can consistently be imple-
mented [33], the Weinberg counting, in which the magnitude of the LECs entering the interaction follows naive
dimensional analysis [34, 35], and the Kaplan, Savage, and Wise (KSW) counting [20, 21], in which their importance
is enhanced. In the present paper, we adhere to Weinberg counting (for related work based on KSW counting see
Refs. [36, 37]). This implies a certain amount of fine tuning of the two leading LECs, which have a direct connection
to the unnaturally large values of the singlet and triplet scattering lengths. As a matter of fact, we are led to introduce
two different cutoffs in the T = 0 and T = 1 isospin channels, in order to reduce, in the fitting procedure, the correla-
tions induced by such fine tuning. Following common practice in the construction of 2N interaction models from EFT,
we choose to perform an implicit renormalization of the LECs, through the fitting of low-energy experimental data.
Had we chosen to fix each one of the two leading LECs to a single observable, like the corresponding scattering length,
we would have obtained a dependence (running) on the associated cutoff (or renormalization point), one from each
renormalization condition. Since cutoff-independence in the description of other observables is to be expected only up
to neglected orders, the implicit renormalization procedure is likely to drive the LECs away from the renormalization
group running, except around some special value of the cutoff, which needs not be the same for the two leading LECs.
It is expected that, when higher and higher orders are included, the optimal cutoff regions will grow until a plateau
is realized, and eventually will overlap. We should also mention that at least two independent cutoffs were found to
be necessary in order to derive the rules of Weinberg counting from the Wilsonian renormalization group [38].

The present paper is organized as follows. In Sec. II the 2N contact interaction is introduced up to N3LO1, and is
regularized to obtain its coordinate space representation. In Sec. III the associated LECs are determined through an
order-by-order fit to 2N scattering observables below 15 MeV and 25 MeV laboratory energies at, respectively, NLO
and N3LO, and to the deuteron binding energy. In Sec. IV results for the binding energies of 3H, 3He, 4He, 6Li, 6He,
and 16O are reported for selected models at LO and NLO, and for the binding energies of 40Ca, 48Ca, and 90Zr with
selected LO models only. The calculations are carried out with hyperspherical-harmonics (HH) methods in systems
with mass number 3 ≤ A ≤ 6, and with auxiliary-field diffusion Monte Carlo (AFDMC) methods in A ≥ 16. Finally,
a brief summary and some concluding remarks are given in Sec. V.

1 We denote the various orders in the expansion of the interaction following the usual convention in pionfull EFT, where NLO is O(Q2)
suppressed relative to LO, and N3LO is O(Q2) suppressed relative to NLO. Here Q denotes a low-momentum scale.
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II. CONTACT INTERACTIONS AT LO, NLO, AND N3LO: A SUMMARY

The structure of two-nucleon (2N) contact interactions at LO, NLO, and N3LO is well known [6]; we provide a
brief summary here for completeness. These interactions consist of charge-independent (CI) terms at LO, NLO and
N3LO, and charge-dependent (CD) ones at NLO and N3LO. However, in a departure from common practice (at least
in the context of pionless EFT), we require the LO interactions to only act in even partial waves. We explain the
rationale for such a choice in Sec. IV below.

A. Contact interactions in momentum space

The interactions in momentum space are listed below order by order in the power counting (Q denotes generically
a low-momentum scale). The momenta k and K are defined as k=p′−p and K=(p′ + p) /2, where p and p′ are the
initial and final relative momenta of the two nucleons, and σi and τi denote respectively the Pauli spin and isospin
operators:

• CI terms of LO (Q0):

vCI
LO = C01 P

σ
0 P

τ
1 + C10 P

σ
1 P

τ
0 , (2.1)

where Pσ0 (P τ0 ) and Pσ1 (P τ1 ) are spin (isospin) projection operators on pairs with S (T ) equal to 0 and 1,

Pσ0 =
1− σ1 · σ2

4
, Pσ1 =

3 + σ1 · σ2

4
, (2.2)

and similarly for P τ0 and P τ1 ;

• CI term of NLO (Q2):

vCI
NLO(k,K) = C1 k

2 + C2 k
2 τ1 · τ2 + C3 k

2 σ1 · σ2 + C4 k
2 σ1 · σ2 τ1 · τ2 + C5 S12(k)

+C6 S12(k) τ1 · τ2 + i C7 S · (K× k) , (2.3)

where S12(k) = 3σ1 · k σ2 · k− k2 σ1 · σ2 ;

• CI terms of N3LO (Q4):

vCI
N3LO(k,K) = D1 k

4 +D2 k
4 τ1 · τ2 +D3 k

4 σ1 · σ2 + D4 k
4 σ1 · σ2 τ1 · τ2 +D5 k

2 S12(k)

+D6 k
2 S12(k) τ1 · τ2 + iD7 k

2 S · (K× k) + iD8 k
2 S · (K × k) τ1 · τ2 +D9 [S · (K× k)]

2

+D10 (K× k)
2

+D11 (K× k)
2
σ1 · σ2 , (2.4)

where S = (σ1 + σ2) /2;

• CD terms of NLO (Q2):

vCD
NLO = CIT

0 T12 , (2.5)

where T12 = 3 τ1zτ2z − τ1 · τ2 is the isotensor operator;

• CD terms of N3LO (Q4):

vCD
N3LO(k,K) =

[
CIT

1 k2 + CIT
2 k2 σ1 · σ2 + CIT

3 S12(k) + i CIT
4 S · (K× k)

]
T12 . (2.6)

We note that at N3LO there are four additional CI terms. Following Ref. [39], we have dropped them, since they lead
to operator structures in configuration space which depend quadratically on the relative momentum operator, and are
difficult to implement in quantum Monte Carlo calculations. Their inclusion was shown to lead to no improvement in
the fit to the 2N database [39]. As a matter of fact, three combinations of such terms vanish off the energy shell [13]
and their effect can be absorbed into a redefinition of the 3N interaction [40]. We have also ignored five additional
charge-symmetry-breaking (CSB) terms (one at NLO and four at N3LO) in the CD sector. There is only a single
observable sensitive to these terms, the difference between the pp and nn scattering lengths. Since the interactions at
NLO and N3LO without CSB already give nn scattering lengths reasonably close to the empirical value (as shown
below), we have made no attempt in constraining the associated LECs, and have therefore set them to zero.
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B. Regularization and contact interactions in configuration space

The contact interactions are regularized by multiplying each term by a Gaussian cutoff depending only on the
momentum transfer k but which differentiates between the pair isospin T = 0 and T = 1 channels, that is

C̃(k) = e−R
2
0k

2/4 P τ0 + e−R
2
1k

2/4 P τ1 −→ C(r) = C0(r)P τ0 + C1(r)P τ1 , Cα(r) =
1

π3/2R3
α

e−(r/Rα)
2

. (2.7)

We have investigated five different combinations of R0/R1 as listed in Table I, and have designated them as models
a, b, c, d, and o. For this latter model (o stands for optimized), the cutoffs have been determined by constraining
them along with the LECs C01 and C10 in a LO fit designed to reproduce the np effective range expansions (including
scattering lengths and effective radii) in S/T = 0/1 and 1/0. We also note that the relationship between the cutoff Λα
in momentum space and the cutoff Rα in coordinate space is Λα = 2/Rα (with α= 0 or 1), and so Λ0 and Λ1 vary
in the ranges (172–263) MeV and (132–263) MeV as R0 and R1 decrease from 2.3 to 1.5 fm and from 3.0 to 1.5 fm,
respectively.

TABLE I. Cutoff values corresponding to models a-d and o.

Model a b c d o
R0 (fm) 1.7 1.9 2.1 2.3 1.54592984
R1 (fm) 1.5 2.0 2.5 3.0 1.83039397

The coordinate-space representation of the interaction is written as

v = vEM + vCI + vCD , (2.8)

where vEM is the electromagnetic component, and

vCI = vCI
LO + vCI

NLO + vCI
N3LO =

11∑
l=1

vl(r)Ol12 , (2.9)

vCD = vCD
NLO + vCD

N3LO =

15∑
l=12

vl(r)Ol12 . (2.10)

The various operator structures of the CI and CD components read

Ol=1,...,11
12 = 1 , τ1 · τ2 , σ1 · σ2 ,σ1 · σ2 τ1 · τ2 , S12 , S12 τ1 · τ2 , L · S , L · S τ1 · τ2 , (L · S)2 , L2 , L2 σ1 · σ2 , (2.11)

and

Ol=12,...,15
12 = T12 , σ1 · σ2 T12 , S12 T12 , L · ST12 , (2.12)

where S12 and L denote the tensor and orbital angular momentum operators, respectively. Hereafter, we will refer to
these operators as

l = 1, . . . , 15 −→ l = c , τ , σ , στ , t , tτ , b , bτ , bb , q , qσ , T, σT , tT , bT . (2.13)

We note that vEM includes the complete electromagnetic interaction up to terms quadratic in the fine structure
constant (first and second order Coulomb, Darwin-Foldy, vacuum polarization, and magnetic moment terms), see
Ref. [15] for explicit expressions. The radial functions vl(r) multiplying the operators Ol12 are given in Ref. [11] and
reported in Appendix A for completeness. Because of the regularization scheme we have adopted, these functions
have an implicit dependence on the isospin T of the pair.

III. FITS TO THE DATABASE

The (configuration-space) LO, NLO, and N3LO interactions are defined as

vLO = vEM + vCI
LO , (3.1)

vNLO = vEM + vCI
LO + vCI

NLO + vCD
NLO , (3.2)
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TABLE II. The LO LECs determined by reproducing the np singlet scattering length and deuteron binding energy as obtained
for models a-d; for model o, the cutoff radii along with the LO LECs have been constrained by fitting the np scattering lengths
and effective radii in the singlet and triplet channel, and the deuteron binding energy.

Model a b c d o

C01(fm2) –0.438524414×101 –0.572220536×101 –0.700250932×101 –0.822926713×101 –0.527518671×101

C10(fm2) –0.800783936×101 –0.934392090×101 –0.107734100×102 –0.122993164×102 –0.704040080×101

vN3LO = vEM + vCI
LO + vCI

NLO + vCI
N3LO + vCD

NLO + vCD
N3LO , (3.3)

where, as already noted, the full EM interaction is retained at each order (and in all partial waves). At each order
the values of cutoffs that are considered are those listed in Table I. The LO interaction involves 2 LECs, the NLO
interaction 7 additional LECs in the CI sector and 1 LEC in the CD sector, and the N3LO interaction further 11
and 4 LECs in the CI and CD sectors, respectively. As per the operator structure, vCI

LO involves the 4 operators c, τ ,
σ, and στ ; vCI

NLO and vCD
NLO involve, respectively, the 7 operators c, τ , σ, στ , t, tτ , and b, and the single operator T ;

vCI
N3LO and vCD

N3LO involve, respectively, the 11 operators c, τ , σ, στ , t, tτ , b, bτ , bb, q, and qσ, and the 4 operators
T , σT , tT bT . However, because of the isospin dependence of the radial functions vl(r), the interactions vCI

NLO and
vCI
N3LO effectively also include, respectively, the bτ operator, and the τ1 · τ2-dependent bb, q, and qσ operators. Lastly,

the values adopted for the proton and neutron masses are, respectively, 938.27192 MeV and 939.56524 MeV, and ~c
is taken as 197.32697 MeV fm.

The 2 LECs in the LO interactions are determined by reproducing the singlet np scattering length (1anp) and
the deuteron binding energy (Bd) in models a-d. In model o, the cutoff radii along with the LO LECs have been
constrained by fitting the np scattering lengths and effective radii in the singlet and triplet channel, and the deuteron
binding energy. Their values are listed in Table II. The NLO and N3LO interactions are fitted to np and pp scattering
data (including normalizations), as assembled in the Granada database [41–43], over the laboratory energy range
0–15 MeV at NLO and 0–25 MeV at N3LO, and, simultaneously, to Bd. The corresponding LECs are reported in
Table XIV at NLO and Table XV at N3LO, in Appendix B. The optimization of the objective function χ2 with respect
to the LECs is carried out with the Practical Optimization Using No Derivatives (for Squares), POUNDERS [44].
We list the numbers of np, pp, np+ pp data (including normalizations) and corresponding χ2/datum for all models in
Table III. The NLO and N3LO fits are optimized by minimizing the χ2 corresponding to the total number of np+ pp
data. The numbers of data points change slightly for each of the various models because of fluctuations in the number
of normalizations, see Ref. [11] for more details on the fitting procedure. Finally, in Table III we also report the
χ2/datum to the np data in the laboratory energy range 0–1 MeV for the LO models. We stress that these χ2 values
do not result from fits, but rather correspond to the sets of LECs as determined in Table II. We do not report the
χ2/datum values relative to the pp data, since they are in the thousands to tens of thousands (the number of pp data
points in 0–1 MeV is about 160), and therefore meaningless.

The χ2 improves slightly or remains essentially unchanged in going from NLO to N3LO, albeit the number of data
points included in the fits increases from about 780 at 15 MeV to about 1,100 at 25 MeV; the χ2 improvement is
drastic, by about a factor of 2 for model d, corresponding to R0/R1 = 2.3/3.0 fm. But for this model, all χ2 at N3LO
are well below 2. Even in the limited range of laboratory energy we have considered, the data points number in the
several hundreds, and consist primarily of differential cross sections. The χ2 values at NLO and N3LO relative to the
pp data are generally significantly better than those relative to np data, except again at N3LO for model d for which
this trend is reversed (it worthwhile reiterating here that the fits are optimized by minimizing the χ2 relative to the
np and pp data).

We conclude this section by noting that in an earlier exploratory phase of the present work, we considered inter-
actions regularized by a single cutoff function, namely without differentiating between pairs in isospin T = 0 and 1.
This is equivalent to setting R0 =R1 =R, and

C(r) =
1

π3/2R3
e−(r/R)2 . (3.4)

Both NLO and N3LO interactions were fitted to the database over the energy range 0–15 MeV (albeit the deuteron
binding energy was not included in the fits), and with cutoff R varying between 1.0 and 2.5 fm, see Table IV. We
found the χ2 corresponding to the np data fits to be rather large when the cutoff R was taken either too small R . 1.0
fm or too large R & 2.5 fm. Moreover, the deuteron binding energy was generally poorly reproduced at both NLO
and N3LO; for example, with R= 2.5 fm it was calculated to be 1.243 (1.312) MeV at NLO (N3LO). This led us to (i)
introduce two cutoffs differentiating between T = 0 and 1 pairs in order to allow for different ranges in these channel
interactions, (ii) restrict the variability of the R0 cutoff between 1.5 fm and 2.3 fm, in order to improve the χ2, and
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TABLE III. Values of the χ2/datum at LO, NLO and N3LO. The χ2/datum values reported at LO over the lab-energy range
Tlab = 0–1 MeV are obtained with the LECs of Table II. The NLO (N3LO) fits are performed over the range Tlab = 0–15
(0–25) MeV; Nnp, Npp, and N denote, respectively, the total number of np, pp, and np+ pp data, including observables and
normalizations. The NLO and N3LO fits are carried out by enforcing that the deuteron binding energy be reproduced exactly,
and are optimized by minimizing the χ2 corresponding to the total number of np+ pp data.

Model order Tlab (MeV) Nnp χ2(np)/datum Npp χ2(pp)/datum N χ2/datum
a LO 0–1 91 5.54 157 248

NLO 0–15 381 1.83 394 1.53 776 1.67
N3LO 0–25 643 1.60 451 1.24 1096 1.45

b LO 0–1 91 37.6 157 248
NLO 0–15 382 1.39 395 1.09 778 1.24
N3LO 0–25 646 1.42 452 1.06 1099 1.27

c LO 0–1 91 24.8 157 248
NLO 0–15 378 2.34 392 1.97 771 2.15
N3LO 0–25 645 1.83 453 1.33 1099 1.62

d LO 0–1 91 41.2 157 248
NLO 0–15 377 10.2 392 6.88 770 8.51
N3LO 0–25 638 2.03 446 8.09 1085 4.52

o LO 0–1 91 2.16 157 248
NLO 0–15 382 1.27 394 1.08 777 1.17
N3LO 0–25 650 1.25 452 1.10 1103 1.19

TABLE IV. Values of the χ2/datum at NLO and N3LO obtained by setting R0 =R1 =R, namely without differentiating the
range of the interactions between T = 0 and T = 1 pairs. Remaining notation is as in Table III. The NLO and N3LO fits are
optimized by minimizing the χ2 corresponding to the total number of np+ pp data over the same range Tlab = 0–15 MeV. Note
that the deuteron binding energy was not included in the fits.

R (fm) order Tlab (MeV) Nnp χ2(np)/datum Npp χ2(pp)/datum N χ2/datum
1.0 NLO 0–15 375 15.5 390 8.61 776 12.0

N3LO 0–15 366 5.95 392 3.96 758 4.92
1.5 NLO 0–15 366 3.32 392 1.49 758 2.38

N3LO 0–15 369 1.44 395 1.64 764 1.55
2.0 NLO 0–15 367 2.78 391 1.46 758 2.10

N3LO 0–15 367 1.66 393 0.95 760 1.29
2.5 NLO 0–15 373 9.75 393 2.19 766 5.87

N3LO 0–15 374 3.48 392 1.85 766 2.64

(iii) include in the fits the deuteron binding energy which, because of the small experimental error associated with it,
puts a very tight constraint on the χ2.

A. Deuteron properties, effective range parameters, and phase shifts

Deuteron properties obtained at NLO and N3LO are reported in Table V and compared to available experimental
values. The binding energy Bd is fitted exactly and includes the contributions (about 20 keV) of electromagnetic
interactions, among which the largest is that due to the magnetic moment term. The asymptotic D/S ratio η is
reasonably close to experiment for models a, b, and d, but is significantly overpredicted and underpredicted in model
c and o, respectively. Deuteron waves at LO, NLO, and N3LO are shown in Fig. 1. They are compared to the
S- and D-wave obtained with the AV18 [15] for reference. Note that the tensor term in the n-p magnetic-moment
interaction induces at LO tiny D-waves, which are not displayed in Fig. 1. The NLO and N3LO D-waves in all models
are smaller than the AV18 D-wave, and are pushed out relative to it. By contrast, the LO, NLO, and N3LO S-waves
at short range are significantly larger than the AV18 S-wave, reflecting the absence of a repulsive core in the contact
interactions.

The effective range parameters at LO, NLO, and N3LO are given in Tables VI, VII, and VIII, respectively, where



7

TABLE V. Deuteron binding energy Bd (in MeV), D-to-S state ratio η, and D-state probability (PD) obtained at NLO and
N3LO; the experimental values [49–52] are, respectively, Bd = 2.224575(9) MeV and η= 0.0256(4). The superscript ∗ indicates
that the corresponding observable is fitted.
Model a b c d o

NLO N3LO NLO N3LO NLO N3LO NLO N3LO NLO N3LO
Bd (MeV) 2.2246∗ 2.2246∗ 2.2246∗ 2.2246∗ 2.2246∗ 2.2246∗ 2.2246∗ 2.2246∗ 2.2246∗ 2.2245∗

η 0.0233 0.0235 0.0237 0.0238 0.0373 0.0351 0.0231 0.0226 0.0169 0.0170
PD (%) 2.93 2.96 2.24 2.30 4.11 4.39 1.20 1.84 2.04 1.93
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FIG. 1. (Color online). The deuteron S-wave radial functions at LO (left panel), corresponding to the LECs of Table II, and
deuteron S- and D-wave radial functions at NLO (middle panel) and N3LO (right panel), corresponding to the best fits of
Table III, are compared to those of the AV18. Note that at LO the tensor term from the np magnetic-moment interaction
induces tiny D-wave components, which are not shown.

they are compared to experimental values. The experimental value of the singlet np scattering length is reproduced
exactly by design in the case of the LO models a-d. However, the LO model o has been constrained to reproduce
the np effective range expansions in the singlet and triplet channels as well as the deuteron binding energy. At all
orders of the power counting, the singlet and triplet np, and singlet pp and nn, scattering lengths are calculated
with the inclusion of electromagnetic interactions. Without the latter, the effective-range function is simply given by
F (k2) = k cot δ = −1/a + r k2/2 up to terms linear in k2. In the presence of electromagnetic interactions, a more
complicated effective-range function must be used; it is given explicitly in Appendix D of Ref. [11], along with relevant
references.

The predicted scattering lengths at NLO and N3LO are typically within a % of the experimental values for all
models considered. However, the effective radii display more variability from model to model, but are all reasonably
close to experiment.

TABLE VI. The singlet and triplet np, and singlet pp and nn, scattering lengths and effective radii obtained at LO; experimental
values are from Refs. [16, 45–48]. The superscript ∗ indicates the corresponding observable is fitted.

Experiment a b c d o
1app −7.8063(26) −8.1234 −8.8643 −9.5462 −10.1886 −8.6207

−7.8016(29)
1rpp 2.794(14) 2.180 2.909 3.640 4.371 2.662

2.773(14)
1ann −18.90(40) −22.13 −22.68 −23.01 −23.21 −22.53
1rnn 2.75(11) 2.26 3.05 3.87 4.71 2.78
1anp −23.740(20) −23.740∗ −23.740∗ −23.740∗ −23.740∗ −23.740∗

1rnp 2.77(5) 2.25 3.04 2.65 4.69 2.77∗

3anp 5.419(7) 5.515 5.650 5.783 5.913 5.410∗

3rnp 1.753(8) 1.89 2.06 2.21 2.36 1.757∗

The pp and (isovector and isoscalar) np S-, P-, and D-wave phase shifts obtained with the NLO and N3LO interaction
models up to a laboratory energy of 40 MeV, are displayed in Figs. 2–4, and are compared to partial-wave analyses
(PWAs) by the Nijmegen [53], Granada [41–43], and Gross-Stadler [54] groups. The Gross-Stadler PWA is limited to
np data only. The pp phases are relative to electromagnetic functions [11], while the np ones are relative to spherical
Bessel functions. Except for the S-wave phase shifts, there is a rather large spread in the P- and D-wave phase shifts
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TABLE VII. Same as in Table VI but at NLO.

Experiment a b c d o
1app −7.8063(26) −7.7489 −7.7557 −7.7463 −7.7119 −7.7570

−7.8016(29)
1rpp 2.794(14) 2.649 2.676 2.622 2.439 2.682

2.773(14)
1ann −18.90(40) −17.19 −17.21 −16.90 −16.45 −17.23
1rnn 2.75(11) 2.78 2.80 2.79 2.72 2.80
1anp −23.740(20) −23.765 −23.740 −23.746 −23.740 −23.738
1rnp 2.77(5) 2.71 2.75 2.78 2.78 2.75
3anp 5.419(7) 5.392 5.424 5.418 5.415 5.426
3rnp 1.753(8) 1.746 1.796 1.831 1.838 1.782

TABLE VIII. Same as in Table VI but at N3LO.

Experiment a b c d o
1app −7.8063(26) −7.7539 −7.7634 −7.7554 −7.7730 −7.7590

−7.8016(29)
1rpp 2.794(14) 2.669 2.709 2.674 2.744 2.690

2.773(14)
1ann −18.90(40) −17.15 −17.22 −17.13 −16.72 −17.23
1rnn 2.75(11) 2.80 2.83 2.80 2.90 2.81
1anp −23.740(20) −23.760 −23.745 −23.780 −23.794 −23.739
1rnp 2.77(5) 2.68 2.60 2.49 2.15 2.70
3anp 5.419(7) 5.397 5.415 5.366 5.363 5.422
3rnp 1.753(8) 1.754 1.784 1.769 1.776 1.775

and mixing angles among the different models. This spread does not appear to be reduced in going from NLO to
N3LO, although it is worthwhile reiterating here that the fits to the database were restricted to a rather low upper
limit in the energy range and that in such a range the data, which consist primarily of differential cross sections, are
not very sensitive to higher-order partial waves.

IV. BINDING ENERGIES OF LIGHT AND MEDIUM-WEIGHT NUCLEI

In this section we report the results for the binding energies of 3H, 3He, 4He, 6He, 6Li, 16O, 40Ca, 48Ca, and 90Zr.
The calculations are carried out with 2N interactions up to N3LO in the A= 3–6 systems, up to NLO in 16O, and
at LO only for the heavier nuclei with A ≥ 40, and make use of hyperspherical-harmonics (HH) methods in A ≤ 6
and auxiliary-field diffusion Monte Carlo (AFDMC) methods for A ≥ 16, see below. Of course, a consistent study of
nuclei must retain the complete interaction at the different orders. In the present work, which deals primarily with
the construction of 2N interactions, we include the three-nucleon (3N) contact interaction at LO only, and postpone
the study of higher order 3N terms [58] to a subsequent work (a preliminary study of these higher order terms can
be found in Ref. [59]). At LO we consider

VLO = cE
f4π
Λχ

(~c)6

π3R6
3

∑
cyclic ijk

e−(r
2
ij+r

2
jk)/R

2
3 , (4.1)

where Λχ = 1 GeV is the breaking scale of the theory and fπ = 92.4 MeV is the pion decay constant. The LEC cE can
be determined from a single three-nucleon data point for different choices of the range R3. Examples of this procedure
can be found in Refs. [24, 60, 61] where correlations between the three-, four-, six-nucleon systems, and nuclear matter
have been analyzed. Here, for each 2N model, we fix cE to reproduce B(3H) = 8.475 MeV, for different choices of
the cutoff R3. The values so obtained are listed in Table IX. They are generally found to be natural, at least when
the cutoff R3 is in the range 1.0 . R3 . 2.0 fm for models a, b, and o.
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TABLE IX. Values obtained at LO, NLO, and N3LO for the LEC cE in the 3N contact interaction, corresponding to cutoffs
R3 = 1.0, 1.5, 2.0, and 2.5 fm. Each combination is constrained to reproduce the 3H binding energy in HH calculations. Parts
(A) and (B) report the cE values obtained by either ignoring (A) or retaining (B) the full vEM in the 3H calculations.

(A)
Model order 1.0 fm 1.5 fm 2.0 fm 2.5 fm

a LO 1.8354 4.6301 11.6871 27.4702
NLO 0.14877 0.38897 0.97039 2.24176
N3LO 0.14478 0.37956 0.94411 2.18030

b LO 0.02828 0.06903 0.16387 0.36545
NLO 0.33198 0.86155 2.14635 4.95746
N3LO 0.47281 1.23309 3.09130 7.17598

c LO −2.09231 −5.37280 −12.4415 −26.8473
NLO −0.47519 −1.23710 −3.02891 −6.87885
N3LO 0.01615 0.04168 0.10266 0.23501

d LO −3.89132 −10.9436 −25.3577 −53.7786
NLO −0.58694 −1.46947 −3.50072 −7.80518
N3LO 0.17293 0.42495 1.02063 2.30254

o LO 1.0786 2.7676 6.95356 16.21993
NLO 0.35211 0.91745 2.29135 5.30139
N3LO 0.44408 1.16754 2.93643 6.82651

(B)
Model order 1.0 fm 1.5 fm 2.0 fm 2.5 fm

a LO 1.793374 4.531530 11.44228 26.8957
NLO 0.102262 0.267979 0.668900 1.54557
N3LO 0.098547 0.258262 0.644450 1.48855

b LO −0.015077 −0.036880 −0.087577 −0.19526
NLO 0.28620 0.74440 1.85546 4.28638
N3LO 0.42761 1.11761 2.80328 6.50837

c LO −2.130138 −5.480962 −12.69759 −27.4026
NLO −0.52108 −1.35981 −3.33139 −7.56723
N3LO −0.030894 −0.079822 −0.196845 −0.45074

d LO −3.921656 −11.04952 −25.61489 −54.3297
NLO −0.63311 −1.58874 −3.78706 −8.44497
N3LO 0.12387 0.30509 0.73318 1.65432

o LO 1.0362 2.6637 6.69515 15.6184
NLO 0.30552 0.79787 1.99382 4.6136
N3LO 0.39833 1.04955 2.64115 6.14099

A. Binding energies of A=3, 4, and 6 nuclei with HH methods

The 3H, 3He, 4He, 6Li and 6He binding energies obtained with the different 2N contact interactions are reported
in Table X. As already noted, the calculations have been carried out with the HH method, as described in the recent
reviews [55, 56] (and references therein). These binding energies are expected to be accurate at the level of 1 keV
and 10 keV for the three- and four-nucleon systems, respectively. For the six-nucleon system the HH basis is largely
degenerate requiring detailed studies. Accordingly, the HH states are partitioned in different “classes of convergence”
and within each of these an extrapolation is made to estimate the missing energy. The estimates for all classes of
convergence are then added up to obtain the total extrapolated value for the binding energy. A complete discussion of
these aspects—in particular, the definition of classes of convergence, and the extrapolation in each of these classes—
can be found in Ref. [62] for 6Li and in Ref. [63] for 6He. The errors on the extrapolated energies are in general larger
for 6He because of the loosely bound structure and the slower convergence as compared to 6Li.

We find that at LO there is a large spread in the results, reflecting a large dependence on the cutoffs. The three-
nucleon binding energies vary by more than 4 MeV, whereas the spread in the four- and six-nucleon binding energies
exceeds 20 MeV. This large variation as a function of the cutoffs is related to the Thomas collapse phenomenon [57]:
as the range of the interaction is reduced these systems tend to become more and more bound. This is especially
apparent in the limiting case in which the interaction is of zero-range, corresponding to the limiting case of the LO
interaction. As is apparent from Table X, the dependence on the cutoffs is much less drastic for the NLO and N3LO
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TABLE X. Binding energies (in MeV) corresponding to the 2N contact interaction models a-d and o, obtained at LO, NLO,
and N3LO with the HH method for nuclei with mass number A= 3, 4, and 6; the numbers in parentheses for A= 6 are estimates
of extrapolation errors (see text). The experimental values are 8.48, 7.72, 28.3, 32.0, and 29.3 MeV for, respectively, 3H, 3He,
4He, 6Li, and 6He.

Model order 3H 3He 4He 6Li 6He
a LO 10.705 9.917 40.89 46.71(3) 43.03(7)

NLO 8.588 7.889 31.18 36.28(17) 31.99(19)
N3LO 8.584 7.886 31.15 36.27(15) 31.93(17)

b LO 8.463 7.795 30.55 35.89(2) 32.10(5)
NLO 8.790 8.084 32.49 37.29(7) 33.15(9)
N3LO 8.964 8.249 33.36 38.73(6) 34.51(8)

c LO 7.066 6.483 24.29 29.20(2) 25.52(4)
NLO 7.967 7.307 28.13 32.00(10) 27.66(14)
N3LO 8.443 7.757 30.08 39.10(15) 33.97(10)

d LO 6.136 5.617 20.21 24.78(2) 21.24(3)
NLO 7.941 7.299 28.29 32.54(5) 28.35(5)
N3LO 8.589 7.912 31.02 50.10(3) 44.26(3)

o LO 9.696 8.958 36.88 42.27(4) 37.71(8)
NLO 8.816 8.107 32.41 37.38(12) 33.14(16)
N3LO 8.937 8.221 33.17 38.68(11) 34.30(11)

interactions. However, the 6Li and 6He results show a peculiar behavior, in that at N3LO the spread is relatively
small, about 3 MeV, for the a, b, c, and o models; on the other hand, model d seems to be an outlier and yields large
binding energies, when compared to those of the other models. Lastly, it should be noted that 6He is found to be
bound with all models, except with model c at NLO.

Next, we include the 3N contact interaction discussed earlier in the binding energy calculations of the A= 3 and 4
nuclei. The results are summarized in Fig. 5. The left, center, and right panels present the binding energies obtained
with the 2N contact interactions at LO, NLO, and N3LO (each including the full electromagnetic interaction and
hence each in combination with the LO 3N contact interaction corresponding to set B of cE values), whereas the
different symbols in each panel correspond to the five possible choices of 2N cutoffs. The lower and upper sub-
panels show the B(3He) and B(4He) results (note the energy scales). The two dashed lines indicate the experimental
values, B(3He) = 7.72 MeV and B(4He) = 28.3 MeV. The constraint B(3H) = 8.475 MeV is verified by all models by
construction. The figure shows that at LO a fine tuning of the cutoffs in the 2N interaction could be used to reproduce
B(4He), since models a and b are just below and above the experimental value; such fine tuning is in fact achieved
with model o. Increasing the order of the expansion, at NLO and N3LO, leads to much more stable results, clustering
around 7.78 MeV for B(3He) and around 30 MeV for B(4He). We expect these binding energies to be correctly
reproduced by including higher-order terms in the 3N interaction.

B. 16O nucleus with AFDMC methods

The auxiliary-field diffusion Monte Carlo (AFDMC) method [66] is used to study nuclei with A > 6 nucleons—see
Ref. [67] for a recent review (see also Ref. [68] for AFDMC applications with NLO χEFT interactions). The AFDMC
method uses imaginary-time projection techniques to filter out the ground-state of the system starting from a suitable
trial wave function, |Ψ0〉 = e−(H−E0)τ |ΨT 〉, and exhibits a favorable polynomial scaling with the number of nucleons,
which is made possible by the use of a single-particle spin-isospin basis. This representation is preserved during
the imaginary-time evolution by using Hubbard-Stratonovich transformations to linearize the quadratic spin-isospin
operators entering the short-time propagator. Applying these transformation to treat the isospin-dependent spin-
orbit term, implicit in the vCI

NLO interaction, involves non-trivial difficulties. To circumvent them, we perform the
imaginary-time propagation with a modified interaction, as described below. The vCI

NLO interactions reads

vCI
NLO =

6∑
l=1

vl(r)Ol12 + [vb(r) + vbτ (r) τ1 · τ2]L · S , (4.2)
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FIG. 2. (Color online). Phase shifts in pp channels at NLO (top panel) and N3LO (bottom panel) corresponding to the best
fits of Table III are compared to the results of the Nijmegen and Granada partial-wave analyses.
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FIG. 3. (Color online). Phase shifts in isovector np channels at NLO (top panel) and N3LO (bottom panel) corresponding to
the best fits of Table III are compared to the results of the Nijmegen, Granada, and Gross partial-wave analyses.



13

-8

-4

0

Ph
as

e 
Sh

ift
 [d

eg
]

Granada
Nijm
Gross

0

5

10

-2

0

0 20 40
Lab. Energy [MeV]

0

50

100

150

Ph
as

e 
Sh

ift
 [d

eg
]

a
b
c
d
o

0 20 40
Lab. Energy [MeV]

-15

-10

-5

0

0 20 40
Lab. Energy [MeV]

-1.5

0

1.5

M
ix

in
g 

A
ng

le
 [d

eg
]

1P1

3D2

3D3

3S1
3D1

ε1

-8

-4

0

Ph
as

e 
Sh

ift
 [d

eg
]

Granada
Nijm
Gross

0

5

10

-2

0

0 20 40
Lab. Energy [MeV]

0

50

100

150

Ph
as

e 
Sh

ift
 [d

eg
]

a
b
c
d
o

0 20 40
Lab. Energy [MeV]

-15

-10

-5

0

0 20 40
Lab. Energy [MeV]

-1.5

0

1.5

M
ix

in
g 

A
ng

le
 [d

eg
]

1P1

3D2

3D3

3S1
3D1

ε1

FIG. 4. (Color online). Phase shifts in isoscalar np channels at NLO (top panel) and N3LO (bottom panel) corresponding to
the best fits of Table III are compared to the results of the Nijmegen, Granada, and Gross partial-wave analyses.
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FIG. 5. (Color online). Binding energies of 3He (lower sub-panels) and 4He (upper sub-panels) with the inclusion of the LO
3N contact interaction corresponding to set B, determined by fitting the 3H binding energy, as a function of the cutoff R3. The
left, center, and right panels refer to the LO, NLO and N3LO 2N contact interactions (each in combination with the LO 3N
contact interaction), while circles, squares, stars, triangles down, triangles up correspond to models, a-d and o, respectively.
The lines are only drawn to guide the eye. For 4He the LO binding energies obtained with models c and d are out of scale (too
large) and are not shown. The dash lines indicate the experimental values; note the different energy scales adopted for 3He
and 4He.

where, referring to Appendix A, the radial functions of the spin-orbit components are defined as

vb(r) = −C7

r

3C
(1)
1 (r) + C

(1)
0 (r)

4
, (4.3)

vbτ (r) = −C7

r

C
(1)
1 (r)− C(1)

0 (r)

4
, (4.4)

with C
(1)
T (r) denoting the derivative of the Gaussian cutoff in isospin channel T . The isospin dependence of the spin-

orbit term comes on account of the fact that C
(1)
0 (r) and C

(1)
1 (r) have different ranges. The modified NLO interaction

is defined as

vCI ′
NLO(α) =

6∑
1=1

vl(r)Ol12 + [vb(r) + α vbτ (r)]L · S . (4.5)

The imaginary time propagation is performed with this modified interaction. The expectation values of both vCI ′
NLO(α)

and the original vCI
NLO are then evaluated, and the parameter α is adjusted so as to make these expetaction values
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the same within statistical errors. Note that a similar procedure has been adopted in Refs. [69, 70] to include the
commutator term of the three-body chiral interaction.

The trial wave function is expressed as a product of a long-range Slater determinant of single-particle orbitals and a
correlation factor, |ΨT 〉 = F |Φ〉. Since the NLO Hamiltonian contains both tensor and spin-orbit terms, we consider
a trial wave function that includes linear spin-isospin dependent correlations [71]

F =
∏

i<j<k

[
1 +

∑
cyc

u3b(rij)u3b(rik)

]1 +
∑
i<j

6∑
l=2

ul(rij)O
l
ij

 ∏
i<j

f c(rij) (4.6)

where the spin-isospin operators are defined in Eq. (2.9). The functions ul(r) are characterized by a number of
variational parameters [67], which are determined by minimizing the two-body cluster contribution to the energy per
particle of nuclear matter at saturation density. On the other hand, the function u3b(r) associated with the correlations
induced by the (LO) 3N contact interaction, and the function f c(r) are parametrized in terms of cubic splines. The
variational parameters are the values of u3b(r) and f c(r) at the grid points, plus the value of their first derivatives
at r= 0. The optimal values of the variational parameters are found employing the linear optimization method [72],
which typically converges in ≈ 20 iterations. When solving the LO Hamiltonian, which does not contain tensor or
spin-orbit terms, we drop the spin-isospin dependent correlations in Eq. (4.6). This simplified ansatz is consistent
with that adopted in Ref. [72], and allows us to compute nuclei as large as 90Zr with multiple LO Hamiltonians.

In Table XI we report the AFDMC binding energies of 3H and 4He obtained in the constrained-path approximation
using the linearized spin-isospin correlations of Eq. (4.6) and compare them with the HH results. Since in the
AFDMC the electromagnetic interaction only includes the Coulomb repulsion between finite-size (rather than point-
like) protons, for a more meaningful comparison, the HH binding energies are also obtained with this approximation;
hence these energies are slightly different from those of Table X which retain the full electromagnetic interaction. The
AFDMC and HH results for 3H are in excellent agreement with each other: the largest discrepancy between the two
methods is ≈ 0.05 MeV for model c at NLO; differences between AFDMC and HH results are much smaller for all the
other models. A similar trend is observed for the 4He nucleus; the AFDMC and HH energies are quite close; the largest
discrepancy, ≈ 0.13 MeV, is again observed for model a at NLO, and is smaller for all other models we analyzed.
Some of these differences can be ascribed to a combination of the constrained-path approximation employed in the
AFDMC, the approximate treatment of the isospin-dependent spin-orbit term of the interaction, and the convergence
of the HH basis expansion.

The binding energies of 4He and 16O at LO, NLO, and N3LO for selected 2N models and including the 3N
interaction are listed in Table XII. The agreement between HH and AFDMC calculations of 4He—the latter reported
in square brackets—remains excellent even when the 3N interaction is included in the Hamiltonian. We note that
neglecting the 3N interaction always yields too large a binding energy in 16O, even when the 4He is underbound. On
the other hand, fixing the 3N interaction to reproduce the 3H binding energy leads to a sizable cutoff dependence of
our results, regardless of the 2N interaction model considered. In general, a larger cutoff R3 corresponds to a lesser
bound 16O, as the repulsive term becomes long-ranged and affects triplets of nucleons belonging to different α-like
clusters. In this regard, we observe that in some cases the AFDMC binding energies of 16O are smaller than four
times that of 4He. Although a fully clusterized wave function can be obtained as done in Ref. [72], in this work we
use confining single-particle orbitals that effectively prevent the nucleons from diffusing far from the center of mass
of the system. Finally, we refrain from carrying out AFDMC calculations of 16O for models c and d, since for these
the LEC cE is negative and the corresponding 3N interaction would therefore lead to large additional binding for the
already overbound results predicted by the 2N models alone.

In Table XIII we list the binding energies of selected light- and medium-mass nuclei at LO computed using the HH
and AFDMC methods. We observe a similar trend as in Table XII, with a sizable dependence of the results on the
cutoff R3. Overbinding or underbinding in 16O carries over in heavier nuclei. On a positive note, models a and o for
R3 = 1.0 fm provide a satisfactory description of 16O and are also able to reproduce fairly well the binding energies
of heavier systems. It would be interesting to fit cE by reproducing 16O, as done, for instance in Ref. [73], and study
the behaviour of such a Hamiltonian in lighter and heavier nuclei.

V. SUMMARY AND CONCLUSIONS

The present work represents the first phase in a program we envision, aimed at establishing whether the energy
spectra of, and electroweak transitions between, low-lying states of nuclei can be understood on the basis of nuclear
interactions and electroweak currents, derived in an EFT formulation where pion degrees of freedom have been
integrated out. Specifically, this first phase has dealt with: (i) the construction of 2N contact interactions at LO,
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TABLE XI. Binding energies (in MeV) of 3H and 4He obtained with LO and NLO 2N interactions using the AFDMC method
in the constrained-path approximation are compared to corresponding HH results. Estimated statistical errors in the AFDMC
calculations are in parentheses. Note that the electromagnetic interaction only includes the Coulomb repulsion between finite-
size (rather than point-like) protons.

Model order B(3H) B(3H) [HH] B(4He) B(4He) [HH]
a LO 10.75(2) 10.756 41.10(5) 41.10

NLO 8.64(1) 8.639 31.50(2) 31.37
b LO 8.47(1) 8.498 30.71(1) 30.69

NLO 8.82(1) 8.839 32.75(1) 32.68
c LO 7.07(1) 7.093 24.40(1) 24.40

NLO 7.96(2) 8.013 28.33(2) 28.31
d LO 6.14(1) 6.158 20.30(2) 20.30

NLO 7.96(2) 7.981 28.45(1) 28.44
o LO 9.71(1) 9.744 37.08(3) 37.07

NLO 8.85(1) 8.867 32.66(3) 32.60

TABLE XII. Binding energies (in MeV) of 4He and 16O at LO, NLO, and N3LO obtained with selected combinations of
contact 2N+3N interaction models, and corresponding to different cutoffs in the 3N interaction, as reported in Table IX. Note
that in these calculations we have retained in vEM only the Coulomb interaction between protons (albeit accounting for their
finite size). Consequently, we have used the cE values reported in part (A) of Table IX. The A= 4 results are calculated with
both the HH method and, in square brackets, the AFDMC method in the constrained-path approximation; the latter method
is used in the A= 16 calculations.

Model order A = 4 A = 16 A = 4 A = 16 A = 4 A = 16 A = 4 A = 16
no 3N R3 = 1.0 fm R3 = 1.5 fm R3 = 2.0 fm

a LO 41.10 355.7(2) 26.59 [26.57(2)] 111.6(3) 26.63 [26.62(2)] 76.5(8) 27.19 [27.19(1)] 69.1(9)
NLO 31.37 424.7(4) 30.08 [30.19(2)] 260.7(8) 30.20 [30.31(2)] 243.2(4) 30.30 [30.39(3)] 243.6(4)
N3LO 31.15 30.08 30.20 30.30

b LO 30.69 262.8(9) 30.50 [30.51(2)] 260.5(9) 30.52 [30.52(2)] 251.0(6) 30.53 [30.53(2)] 249.3(8)
NLO 32.68 367.2(3) 29.84 [29.89(2)] 194.8(6) 30.08 [30.12(3)] 163.8(5) 30.29 [30.36(2)] 133.7(9)
N3LO 33.36 29.43 29.72 30.03

c LO 24.39 206.9(8) 47.47 36.98 34.67
NLO 28.31 317.7(3) 32.55 31.85 31.45
N3LO 30.26 30.13 30.14 30.15

d LO 20.29 170.1(4) 139.1 49.46 40.24
NLO 28.44 229.0(9) 32.95 32.20 31.77
N3LO 20.29 29.97 30.08 30.17

o LO 37.07 278.9(9) 28.18 [28.23(2)] 133.4(4) 28.49 [28.49(1)] 96.6(4) 29.00 [29.02(2)] 69.7(5)
NLO 32.60 436.8(9) 29.62 [29.69(2)] 200.1(3) 29.85 [29.89(2)] 157.0(3) 30.06 [30.14(2)] 125.8(5)
N3LO 33.17 29.47 29.75 30.03

NLO, and N3LO that are local in configuration space and therefore suitable for implementation in quantum Monte
Carlo calculations; (ii) the determination of a 3N contact interaction at LO with the single LEC entering at this
order fixed to reproduce the tritium binding energy in essentially exact HH calculations; (iii) the extension of the
AFDMC method, so as to be capable to handle approximately but reliably tensor and spin-orbit components (with
and without isospin dependence) in the 2N interactions; (iv) a fairly complete study (albeit not a fully consistent
one from a power counting perspective) of the ground-state binding energies of light nuclei with mass number up to
A= 16 with Hamiltonians based on 2N interactions of increasing order but a 3N interaction included only at LO; (v)
an initial set of AFDMC calculations of the binding energies of nuclei with A ≥ 40 based on Hamiltonians including
the contact 2N and 3N interactions at LO only.

The fits to the 2N scattering database (including the deuteron binding energy) have been restricted up to lab
energies of 15 MeV at NLO and 25 MeV up to N3LO. Despite the (apparent) flexibility afforded by the 25 LECs (20
in the charge-independent sector and 5 more in the charge-dependent one) present in the interaction at N3LO, it has
proven rather difficult to extend the fits much beyond 25 MeV, while at the same time maintaining a χ2/datum . 2.
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TABLE XIII. Binding energies (in MeV) of light- and medium-mass nuclei at LO predicted by selected combinations of contact
2N+3N interaction models, corresponding to different cutoffs in the 3N interaction as reported in Table IX. The calculations
retain in vEM only the Coulomb repulsion between finite-size (rather than point-like) protons. Consequently, the cE values
reported in part (A) of Table IX have been used for the (LO) 3N interaction. The A=4–6 and A ≥ 16 results are obtained,
respectively, with the HH method and AFDMC method in the constrained-path approximation.

Nucleus a b o a b o a b o Exp.
R3 = 1.0 fm R3 = 1.5 fm R3 = 2.0 fm

4He 26.59 30.50 28.18 26.63 30.52 28.49 27.19 30.53 29.00 28.30
6Li 28.55(2) 35.62(1) 30.77(1) 26.70(3) 35.59(1) 29.51(1) 25.07(5) 35.57(1) 28.28(1) 31.99
6He 25.73(2) 31.89(3) 27.26(3) 23.96(5) 31.87(3) 26.20(6) 22.46(9) 31.85(3) 25.22(9) 29.27
16O 111.6(3) 260.5(9) 133.4(4) 76.5(8) 251.0(6) 96.6(4) 69.1(9) 249.3(8) 69.7(5) 127.62
40Ca 297.6(5) 1463.0(9) 395.2(8) 147.2(8) 1491.7(9) 207.2(9) 234(2) 1462(1) 120.7(8) 343.05
48Ca 332.4(5) 1873.3(5) 446.5(9) 159.3 (6) 1927(2) 225.9(8) 161(9) 1874(1) 130(2) 416.00
90Zr 654(2) 6511(9) 937(6) 216.9(8) 6866(9) 392(2) - 6363(8) - 783.90

This may not be surprising, given that in the present EFT formulation the expansion parameter Q/Λ with Q and Λ
being taken, respectively, as the relative momentum and pion mass, is ≈ 0.78 at a lab energy of 25 MeV.

A different but potentially related issue is the presence of local minima in the χ2-minimization. There might be
more efficient and effective means, like those based on Bayesian methods or machine-learning techniques, to explore
the parameter space than standard optimization packages, such as POUNDERS employed in the present work. An
exploratory investigation along these lines is in progress.

In a point of departure from the standard approach, we found it helpful to have LO interactions with projections
only in the spin singlet T = 1 and spin triplet T = 0 channels, by fixing the associated C01 and C10 LECs so as to
reproduce, respectively, the (large) singlet scattering length and deuteron binding energy. These interactions vanish
in odd partial waves (in particular, P-waves) that are unconstrained by data (at this order), and, as a consequence,
significantly improve the LO description of ground-state energies in A ≥ 6 nuclei. In this respect, we note that a
fine tuning of the LECs C01 and C10 and corresponding cutoffs R1 and R0 leads to a LO interaction (model o), that
correctly reproduces the np effective range expansions in spin-singlet and spin-triplet channels.

All the N3LO 2N interactions overestimate the 3H binding energy except for model c, which leads to an under-
binding of about of 40 keV (see Table X). As a result, the LEC cE in the 3N contact interaction accompanying each of
these (N3LO) 2N interactions is positive and therefore produces a repulsive contribution for all models except model
c, see Table IX part B. However, when α2 corrections are ignored in the electromagnetic interaction, the N3LO model
c also leads to over-binding in 3H and hence to a repulsive 3N interaction, see again Table IX but now part A. The
results in Table X also indicate that the LO and NLO 2N interactions typically overbind (underbind) 3H when the
harder (softer) cutoffs, that is, smaller (larger) values for R0 and R1 are adopted. For the 2N interactions with the
softer cutoffs the need to have an attractive 3N contribution (cE < 0) in order to reproduce the experimental value
of the 3H binding energy proves catastrophic in larger nuclei, for example, by wildly over-predicting the 16O binding
energy. Indeed, these 2N and 3N models have not been considered in calculations of nuclei with A ≥ 16.

There is a large dependence of the calculated binding energies, particularly in A ≥ 16, on the cutoff of the 3N
interaction, the softer cutoff R3 = 2.0 fm generally yielding binding energy values closer to experiment, see Table XIII.
In one case, model o at LO with R3 = 1.0 fm and at NLO with R3 = 2.0 fm, theory is (miraculously, perhaps) within
less than 2% of experiment. As matter of fact, the overall picture of nuclear ground-state spectra that emerges from
the LO and NLO Hamiltonians corresponding to model o (that is, the model o 2N interaction at either LO or NLO
in combination with the LO 3N interaction having cutoff R3 = 1 fm and 2 fm, respectively) is summarized in Fig. 6,
where the predicted binding energies per nucleon are shown as function of the mass number A (only LO results are
available in A ≥ 40), and are compared to experimental and liquid-drop mass formula values.

The optimization of the two-body (R0 and R1) and three-body (R3) cutoffs has different motivations. As we have
already mentioned, the optimization of R0 and R1 leads to the correct description of effective range parameters, and to
an appreciable improvement in the χ2 values obtained in fits to the 2N database. On the other hand, the optimization
of R3 is aimed at providing a satisfactory description of nuclear binding energies. We have observed that within model
o, when R3 is set to reproduce reasonably well these energies in the mass range A ≤ 16, the energies for 40 ≤ A ≤ 90
are also reasonably well reproduced. We conclude that this parameter can be used to balance approximately the
repulsion-attraction ratio of the nuclear Hamiltonian. A similar situation has been recently observed in the case of
bosonic helium clusters [64, 65].

Because of the more complicated operator structure of the 2N interactions at N3LO (in particular the presence of
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FIG. 6. Binding energy per particle as a function of the atomic number A. The liquid drop model results, along with specific
experimental values (red symbols) in the cases of A = 4, 16, 40, 48, 90, are shown. Predictions obtained in the present work
with the 2N interaction model o at either LO or NLO in combination with the 3N interaction at LO, are indicated by the blue
(orange) symbols.

L2 and (L ·S)2 terms), these have yet to be implemented in the AFDMC method, and therefore in the present study
no N3LO results are reported for A ≥ 16. However, even within the context of calculations based on the NLO 2N
interactions, there are sub-leading 3N contact interactions, suppressed by Q2/Λ2 relative to the LO ones, that need to
be accounted for. These terms have a rich operator structure including central, tensor and spin-orbit-like components,
but involve a relatively large number (13) of unknown LECs [58]. Arguments based on the large Nc expansion allow
one to reduce the number of LECs and associated operator structures by ranking their relative importance [59].
Nevertheless, the problem remains of how best to determine these LECs. Two alternative strategies are to constrain
them by fitting 3N scattering data (cross sections and polarizations) at low energies or by reproducing the energies
of low-lying states of selected light nuclei. Both alternatives should be investigated.
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Appendix A: Configuration-space representation of the interactions

The coordinate-space representation of a generic (regularized) term O(K,k) follows from

O(r) =

∫
dk

(2π)3

∫
dK

(2π)3
eik·(r

′+r)/2O(K,k) eiK·(r
′−r) , (A1)

where r is the relative position and K −→ p = −i∇′δ(r′− r), the relative momentum operator. For the momentum-
space operator structures present in the contact interactions we find:

1 −→ C(r) , (A2)

k2 −→ −C(2)(r)− 2

r
C(1)(r) , (A3)

k4 −→ C(4)(r) +
4

r
C(3)(r) , (A4)

S12(k) −→ −
[
C(2)(r)− 1

r
C(1)(r)

]
S12 , (A5)

iS · (K× k) −→ −1

r
C(1)(r)L · S , (A6)

(K× k)
2 −→ − 1

r2

[
C(2)(r)− 1

r
C(1)(r)

]
L2 + · · · , (A7)

[S · (K× k)]
2 −→ − 1

r2

[
C(2)(r)− 1

r
C(1)(r)

]
(L · S)

2
+ · · · , (A8)

where C(r) is defined in Eq. (2.7) and

C(n)(r) =
dnC(r)

drn
. (A9)

Note that in Eqs. (A7) and (A8) only the terms proportional to L2 and (L · S)2 are retained; the · · · represent
additional terms which either involve terms quadratic in the relative momentum operator or give rise to structures
already accounted for. Using the above expressions, the functions vl(r) for the CI terms are obtained as

vc(r) = vcLO(r) + C1

[
−C(2)(r)− 2

r
C(1)(r)

]
+D1

[
C(4)(r) +

4

r
C(3)(r)

]
, (A10)

vτ (r) = vτLO(r) + C2

[
−C(2)(r)− 2

r
C(1)(r)

]
+D2

[
C(4)(r) +

4

r
C(3)(r)

]
, (A11)

vσ(r) = vσLO(r) + C3

[
−C(2)(r)− 2

r
C(1)(r)

]
+D3

[
C(4)(r) +

4

r
C(3)(r)

]
, (A12)

vστ (r) = vστLO(r) + C4

[
−C(2)(r)− 2

r
C(1)(r)

]
+D4

[
C(4)(r) +

4

r
C(3)(r)

]
, (A13)

vt(r) = −C5

[
C(2)(r)− 1

r
C(1)(r)

]
+D5

[
C(4)(r) +

1

r
C(3)(r)− 6

r2
C(2)(r) +

6

r3
C(1)(r)

]
, (A14)

vtτ (r) = −C6

[
C(2)(r)− 1

r
C(1)(r)

]
+D6

[
C(4)(r) +

1

r
C(3)(r)− 6

r2
C(2)(r) +

6

r3
C(1)(r)

]
, (A15)
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vb(r) = −C7
1

r
C(1)(r) +D7

[
1

r
C(3)(r) + 2

1

r2
C(2)(r)− 2

r3
C(1)(r)

]
, (A16)

vbτ (r) = D8

[
1

r
C(3)(r) + 2

1

r2
C(2)(r)− 2

r3
C(1)(r)

]
, (A17)

vbb(r) = −D9
1

r2

[
C(2)(r)− 1

r
C(1)(r)

]
, (A18)

vq(r) = −D10
1

r2

[
C(2)(r)− 1

r
C(1)(r)

]
, (A19)

vqσ(r) = −D11
1

r2

[
C(2)(r)− 1

r
C(1)(r)

]
, (A20)

and those for the CD ones are obtained as

vT (r) = CIT
0 C(r) + CIT

1

[
−C(2)(r)− 2

r
C(1)(r)

]
, (A21)

vσTS (r) = CIT
2

[
−C(2)(r)− 2

r
C(1)(r)

]
, (A22)

vtT (r) = −CIT
3

[
C(2)(r)− 1

r
C(1)(r)

]
, (A23)

vbT (r) = −CIT
4

1

r
C(1)(r) , (A24)

(A25)

where, of course, only the T = 1 component of the cutoff function enters in the CD interactions. For ease of presen-
tation, we have singled out the LO terms which only act in S/T=0/1 and 1/0 channels. They are written as

vcLO(r) =
3

16

[
C01 C1(r) + C10 C0(r)

]
, (A26)

vτLO(r) =
1

16

[
C01 C1(r)− 3C10 C0(r)

]
, (A27)

vσLO(r) =
1

16

[
− 3C01 C1(r) + C10 C0(r)

]
, (A28)

vστLO(r) = − 1

16

[
C01 C1(r) + C10 C0(r)

]
, (A29)

where there are only two independent LECs, C01 and C10, and the cutoff functions C0(r) and C1(r) are as given in
Eq. (2.7).

Appendix B: Fitted LECs at NLO and N3LO

Fitted values of the LECs obtained with interactions a-d and o at NLO and N3LO are reported in Tables XIV
and XV, respectively.
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[11] M. Piarulli, L. Girlanda, R. Schiavilla, R. Navarro Pérez, J. E. Amaro and E. Ruiz Arriola, Phys. Rev. C 91, no.2, 024003
(2015) doi:10.1103/PhysRevC.91.024003 [arXiv:1412.6446 [nucl-th]].

[12] D. R. Entem, R. Machleidt and Y. Nosyk, Phys. Rev. C 96, no.2, 024004 (2017) doi:10.1103/PhysRevC.96.024004
[arXiv:1703.05454 [nucl-th]].

[13] P. Reinert, H. Krebs and E. Epelbaum, Eur. Phys. J. A 54, no.5, 86 (2018) doi:10.1140/epja/i2018-12516-4
[arXiv:1711.08821 [nucl-th]].

[14] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen and J. J. de Swart, Phys. Rev. C 49, 2950-2962 (1994)
doi:10.1103/PhysRevC.49.2950 [arXiv:nucl-th/9406039 [nucl-th]].



22

[15] R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, Phys. Rev. C 51, 38-51 (1995) doi:10.1103/PhysRevC.51.38 [arXiv:nucl-
th/9408016 [nucl-th]].

[16] R. Machleidt, Phys. Rev. C 63, 024001 (2001) doi:10.1103/PhysRevC.63.024001 [arXiv:nucl-th/0006014 [nucl-th]].
[17] J. W. Chen, G. Rupak and M. J. Savage, Nucl. Phys. A 653, 386-412 (1999) doi:10.1016/S0375-9474(99)00298-5 [arXiv:nucl-

th/9902056 [nucl-th]].
[18] P. F. Bedaque and U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52, 339-396 (2002) doi:10.1146/annurev.nucl.52.050102.090637

[arXiv:nucl-th/0203055 [nucl-th]].
[19] H. A. Bethe, Phys. Rev. 76, 38-50 (1949) doi:10.1103/PhysRev.76.38
[20] D. B. Kaplan, M. J. Savage and M. B. Wise, Phys. Lett. B 424, 390-396 (1998) doi:10.1016/S0370-2693(98)00210-X

[arXiv:nucl-th/9801034 [nucl-th]].
[21] D. B. Kaplan, M. J. Savage and M. B. Wise, Nucl. Phys. B 534, 329-355 (1998) doi:10.1016/S0550-3213(98)00440-4

[arXiv:nucl-th/9802075 [nucl-th]].
[22] H.-W. Hammer, S. König, and U. van Kolck, Rev. Mod. Phys. 92, 25004 (2020) doi:10.1103/RevModPhys.92.025004
[23] S. König, H. W. Grießhammer, H. W. Hammer and U. van Kolck, Phys. Rev. Lett. 118, no.20, 202501 (2017)

doi:10.1103/PhysRevLett.118.202501 [arXiv:1607.04623 [nucl-th]].
[24] M. Gattobigio, A. Kievsky and M. Viviani, Phys. Rev. C 100, no.3, 034004 (2019) doi:10.1103/PhysRevC.100.034004

[arXiv:1903.08900 [nucl-th]].
[25] P. F. Bedaque, H. W. Hammer and U. van Kolck, Phys. Rev. Lett. 82, 463-467 (1999) doi:10.1103/PhysRevLett.82.463

[arXiv:nucl-th/9809025 [nucl-th]].
[26] P. F. Bedaque, H. W. Hammer and U. van Kolck, Nucl. Phys. A 646, 444-466 (1999) doi:10.1016/S0375-9474(98)00650-2

[arXiv:nucl-th/9811046 [nucl-th]].
[27] E. Braaten and H. W. Hammer, Phys. Rept. 428, 259-390 (2006) doi:10.1016/j.physrep.2006.03.001 [arXiv:cond-

mat/0410417 [cond-mat]].
[28] A. Deltuva, M. Gattobigio, A. Kievsky, and M. Viviani, Phys. Rev. C 102, 064001 (2020)
[29] V. Efimov, Phys. Lett. B 33, 563-564 (1970) doi:10.1016/0370-2693(70)90349-7
[30] V. N. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)
[31] P. Naidon and S. Endo, Rept. Prog. Phys. 80, no.5, 056001 (2017) doi:10.1088/1361-6633/aa50e8 [arXiv:1610.09805 [quant-

ph]].
[32] A. Kievsky, M. Viviani, M. Gattobigio and L. Girlanda, Phys. Rev. C 95, no.2, 024001 (2017)

doi:10.1103/PhysRevC.95.024001 [arXiv:1610.09858 [nucl-th]].
[33] E. Epelbaum, J. Gegelia and U. G. Meißner, Nucl. Phys. B 925, 161-185 (2017) doi:10.1016/j.nuclphysb.2017.10.008

[arXiv:1705.02524 [nucl-th]].
[34] A. Manohar and H. Georgi, Nucl. Phys. B 234, 189-212 (1984) doi:10.1016/0550-3213(84)90231-1
[35] H. Georgi, Phys. Lett. B 298, 187-189 (1993) doi:10.1016/0370-2693(93)91728-6 [arXiv:hep-ph/9207278 [hep-ph]].
[36] J. Kirscher, H. W. Griesshammer, D. Shukla and H. M. Hofmann, Eur. Phys. J. A 44, 239-256 (2010)

doi:10.1140/epja/i2010-10939-5 [arXiv:0903.5538 [nucl-th]].
[37] V. Lensky, M. C. Birse and N. R. Walet, Phys. Rev. C 94, no.3, 034003 (2016) doi:10.1103/PhysRevC.94.034003

[arXiv:1605.03898 [nucl-th]].
[38] E. Epelbaum, J. Gegelia and U. G. Meißner, Commun. Theor. Phys. 69, no.3, 303 (2018) doi:10.1088/0253-6102/69/3/303

[arXiv:1710.04178 [nucl-th]].
[39] M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A. Lovato, L.E. Marcucci, S.C. Pieper, M. Viviani, and R.B. Wiringa,

Phys. Rev. C 94, 054007 (2016).
[40] L. Girlanda, A. Kievsky, L. E. Marcucci and M. Viviani, Phys. Rev. C 102, 064003 (2020).
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