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In this paper we present a computation of the rates of strangeness-changing processes and the
resultant bulk viscosity in matter at the densities and temperatures typical of neutron star mergers.
To deal with the high temperature in this environment we go beyond the Fermi surface approxi-
mation in our rate calculations and numerically evaluate the full phase space integral. We include
processes where quarks move between baryons via meson exchange: these have generally been omit-
ted in previous analyses but provide the dominant contribution to the rates of strangeness-changing
processes and the bulk viscosity. The calculation of these rates is an essential step towards any cal-
culation of dissipation mechanisms in hyperonic matter in mergers. As one application, we calculate
the dissipation times for density oscillations at the frequencies seen in merger simulations. We find
that hyperon bulk viscosity for temperatures in the MeV regime can probably be neglected in this
context, but becomes highly relevant for keV-range temperatures.

I. INTRODUCTION

The discovery of gravitational waves from a binary
neutron star merger in 2017, named GW170817 [1],
opened a new window to study dense nuclear and possibly
quark matter at high densities and temperatures [2–9].
In order to relate the phase structure of dense matter to
the astrophysical observations detailed simulations using
numerical relativity and relativistic hydrodynamics have
to be performed [10–14], using accurate representations
of the relevant material properties. Therefore, it is nec-
essary to improve our understanding of dense matter in
merger conditions. Studies of GW170817 [15, 16] esti-
mate that the central densities of the merging stars were
more than two times saturation density (n0 = 0.15 fm−3).
Numerical simulations of the first 20 ms after the ini-
tial contact of the stars provide further insight. They
suggest that the density reaches several times satura-
tion density and that temperatures can reach tens of
MeV [11, 14], where some simulations even predict up
to T ≈ 100 MeV [13]. Furthermore, fluid elements un-
dergo strong density oscillations with central frequencies
of around 1 kHz [17, 18]. This raises the question of which
microscopic transport phenomena and dissipation mech-
anisms are important on the 20 ms neutron star merger
time scale. Initial estimates of various transport phe-
nomena in Ref. [17] showed the potential importance of
bulk viscosity in ordinary nuclear matter. Bulk viscos-
ity is a dissipative mechanism, which converts oscillation
energy into heat or radiated neutrinos. The magnitude
of the bulk viscosity and the equation of state (EOS) of
nuclear matter together determine the dissipation time
scale on which oscillations are damped. A detailed study
in neutrino-transparent matter showed that dissipation
times for npe-matter due to direct and modified Urca
processes are indeed on a millisecond timescale [19, 20],
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whereas in the neutrino-trapped regime, bulk viscosity
seems to be negligible [21, 22].

The intriguing prospect for nuclear physics is that
other forms of matter might have different bulk viscos-
ity, leading to observable signatures of their presence in
the merger. In this paper we focus on hyperonic mat-
ter, where several weak, non-leptonic processes can con-
tribute to beta equilibration and hence to bulk viscosity.
Although the existence of hyperons in cold, isolated neu-
tron stars is contested (the “hyperon puzzle” [23, 24]),
the higher temperatures and densities reached in the
merger render their appearance highly likely. In the past,
hyperonic bulk viscosity has been exclusively studied at
low (keV range) temperature, often in the context of r-
modes [25–32]. At these temperatures one can use the
Fermi surface (FS) approximation since all particles par-
ticipating in beta equilibration processes are close to their
Fermi surfaces. Furthermore, an ultra non-relativistic
approach, where the baryon momenta in the matrix ele-
ment are set to zero, is sometimes adopted [25, 26, 31] in
order to obtain analytic results. In the merger environ-
ment, both of these assumptions are invalid and need to
be improved on. Additionally, most studies only consider
the contact interaction diagram where a W boson is ex-
changed between baryons. In Refs. [28, 32], it has been
shown that, at least at the studied low temperatures, the
one meson exchange (OME) contribution, where the W
exchange is internal to a hadron, dominates the rates that
are relevant to the bulk viscosity. In our treatment of
the beta equilibration rate we improve on previous treat-
ments and obtain results that are valid in the merger
environment by
(a) Taking the OME contributions for all processes into
account;
(b) Computing numerically the full twelve dimensional
phase space integral instead of using the FS approxima-
tion;
(c) Using a fully relativistic approach, which is partic-
ularly important at high densities where the Fermi mo-
menta are largest.

This allows us to calculate the re-equilibration rates at
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temperatures up to 50 MeV for four different strangeness
changing, non-leptonic weak decay processes, two of
which predominantly occur via OME, not via the con-
tact interaction which is heavily suppressed. We show
that all of these rates contribute to the bulk viscosity
and have to be taken into account. Although neutrino
trapping is expected at T & 5 MeV, it does not influence
the non-leptonic rates that we calculate, and we neglect
its influence on the equation of state.

We find that the re-equilibration rates at high temper-
atures are generally too fast to lead to a sizeable bulk vis-
cosity and correspondingly short dissipation times. Con-
sequently, hyperon bulk viscosity is most likely not a sig-
nificant factor in the hot regions of neutron star mergers.
However, for temperatures in the keV regime, bulk vis-
cosity shows a resonant peak, giving damping times in
the ms range, which means that we expect significant
damping of density oscillations in either exceptionally
cold regions of a merger or in the inspiral phase of an
elliptic merger, where tidal forces are expected to ex-
cite f-modes with frequencies of order 1 kHz. [33, 34].
The processes whose rates we calculate, along with other
(semi-leptonic) hyperon decay processes, might play an
important role in cooling, thermal transport or radiative
dissipation [35] and are a fundamental ingredient for an
extension of the calculation of phase conversion dissipa-
tion [36] to merger temperatures.

In this paper we use natural units, where ~ = c =
kB = 1 and the mostly-minus signature of the Minkowski
metric, gµν = diag(1,−1,−1,−1).

II. HYPERONIC MATTER AND BULK
VISCOSITY

A. Equation of State

There are many proposed equations of state for nuclear
matter with hyperonic degrees of freedom. Depending
on the EOS, different hyperons appear at different on-
set densities [37–44]. Since our analysis requires calcula-
tions, including derivatives, of the EOS both in and out

of chemical equilibrium with respect to strangeness, we
use a simple EOS, that we call “PK1+H”, which can
be computed at arbitrary strangeness fraction, rather
than using an EOS that is defined via a table of num-
bers. PK1+H allows stars up to a maximum mass
of 1.88 M�, putting it at the 3σ edge of compatibility
with current constraints (Mmax > 1.928± 0.017 M� [45],
Mmax > 2.01 ± 0.04 M� [46]). We were able to per-
fom one check that our main conclusions are not spe-
cific to the EOS that we used, by calculating a typical
strangeness-changing rate using another hyperonic EOS,
GM1’B, which has Mmax = 2.02 M� [47]. GM1’B pre-
dicts a different order of the onset of the different hy-
peron species and includes an additional (strange) ex-
change meson, which leads to a repulsion between the
hyperons. However, as we will discuss in Sec. III, in
the relevant density and temperature range it predicts
strangeness-changing rates comparable to PK1+H. This
is an indication that our findings concerning the rele-
vance of hyperonic bulk viscosity are valid for any EOS
where at least one hyperonic degree of freedom appears
at a density that is reachable in mergers.

The PK1+H EOS is based on a relativistic mean field
model (RMF) which includes nonlinear mesonic terms
which interact with the nucleons and the Λ and Σ− hy-
perons, which have the lowest onset densities. We ne-
glect the other hyperons in the baryon octet because
they only appear at much higher densities. In PK1+H,
the Σ− hyperon appears first as a function of density
due to its contributions to the overall charge neutrality
of matter. The nuclear part of the Lagrangian includ-
ing the Yukawa couplings gσN , gωN , gρN , between the
nucleons and the three mesons follow the conventions in
[48], the numerical parameters are chosen according to
the PK1 parametrization from Table 1 in Ref. [49]. We
extend the PK1 EOS to the hyperonic sector by adding
the hyperons to the Langrangian as shown below. The
hyperonic coupling constants are chosen in accordance
with Ref. [37] in such a way that the model reproduces a
hyperon spectrum similar to the one from the DD-ME2
hyperonic EOS investigated in Ref. [40]. All numerical
parameters are summarized in App. B. The Lagrangian
of the model is

L = LB + Lm + Ll , (1a)

LB =
∑
i

ψ̄i [iγµ∂µ −Mi − gσiσ − gωiγµωµ − gρiγµ~τ · ~ρµ]ψi , (1b)

Lm =
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 − g2

3
σ3 − g3

4
σ4 − 1

4
ωµνωµν +

1

2
m2
ωω

µωµ +
c3
4

(ωµωµ)
2

+
1

2
m2
ρ~ρ

µ · ~ρµ −
1

4
~ρµν · ~ρµν , (1c)

Ll =
∑
l

ψ̄l [iγ
µ∂µ −ml]ψl , (1d)
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FIG. 1. Logarithm of the ratios of all baryonic particle densi-
ties over the total baryon density at T = 2 MeV (solid lines)
and T = 50 MeV (dashed lines) plotted as a function of to-
tal baryon density in units of the saturation density. In the
used parametrization PK1+H, saturation density is given by
n0 = 0.148 fm−3. Although the Λ-hyperon is less massive
than the Σ−hyperon, the order of their onset is reversed be-
cause of charge neutrality.

where

ωµν ≡ ∂µων − ∂νωµ , (2a)

~ρµν ≡ ∂µ~ρ ν − ∂ν~ρµ + gρN~ρ
µ × ~ρ ν , (2b)

with symbols with arrows being vectors in isospin
space. The first term LB includes the sum over the four
baryons (neutron, proton, Λ and Σ−) with their masses
Mi and their Yukawa interactions with the mesonic fields.
We include the scalar σ meson, the vector meson ωµ and
the isovector triplet ~ρµ, which breaks isospin symme-
try, and self-interactions for the scalar and the vector
mesons. Note that the Yukawa couplings are different for
every baryon-meson interaction. Their values are given
in App. B. The leptonic Lagrangian Ll introduces free
electrons and muons, where we assume the electrons to
be massless. The particle fractions in or out of chemi-
cal equilibrium are then obtained by solving the Euler-
Lagrange equations in the mean field approximation.

The resultant particle content for neutral matter in
beta equilibrium is shown in Fig. 1. Chemical equilib-
rium, charge neutrality and baryon number can be ex-

pressed as

nB = nn + np + nΣ− + nΛ baryon number , (3a)

np = ne + nµ + nΣ− charge neutrality , (3b)

µp = µn − µe chemical equ. , (3c)

µe = µµ , (3d)

µΣ− = µn + µe , (3e)

µΛ = µn , (3f)

where ni and µi are the number density and chemical
potential for particle species i. The resulting dispersion
relations for the baryons are given by

Ei =

√
p2
i + (M∗i )

2
+ gωi〈ω0〉+ gρiIi3〈ρ03〉 , (4)

with the modulus of the three-momentum pi = |pi|, the
effective baryon mass M∗i = Mi−gσi〈σ〉, where 〈σ〉 is the
vacuum-expectation value (vev) of the σ-meson and 〈ω0〉
the vev of the temporal component of the ω. Only the
temporal part of the third isospin-vector component of
the ~ρ develops a finite expectation value Ii3〈ρ03〉, where
Ii3 denotes the third component of the isospin projection
of the i−th baryon.

B. Rate Calculation and Matrix Element

Computations of hyperonic bulk viscosity have been
performed using various nucleonic interactions, approx-
imations and EOS in the past, but exclusively for low
enough temperatures so that the FS approximation is
valid, and often in the context of the r-mode instabil-
ity [25, 27, 28, 31, 32, 50]. In this work we are inter-
ested in mergers where the temperature is high enough
to eliminate nucleonic or hyperonic superfluidity and to
invalidate the FS approximation.

Hyperonic bulk viscosity arises from beta equilibration
of the strangeness fraction, which will be dominated by
the fastest strangeness-changing processes. We focus on
non-leptonic processes, which are typically faster than
(semi-)leptonic ones [28, 51]. The processes we are in-
cluding in this work all change strangeness by one unit
and are mediated by the weak interaction,

I : n+ n⇐⇒ p+ Σ− , (5a)

II : n+ p⇐⇒ p+ Λ , (5b)

III : n+ n⇐⇒ n+ Λ , (5c)

IV : Λ + Λ⇐⇒ Λ + n . (5d)

In general there are two main contributions to such
processes.
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(a) “contact interaction”: exchange of a W boson be-
tween the baryons, which at the energy scales relevant to
our calculations can be reduced to a contact interaction
between the baryons, depicted for process I in Fig. 2(c);
(b) “one meson exchange” (OME): a combined weak-
strong channel, depicted for process I in Fig. 2(a) and
(b). In this channel, the flavor-changing W-boson ex-
change occurs inside one of the incoming baryons, creat-
ing an off-shell intermediate state. A strong interaction
with the second incoming baryon rearranges the quarks
and improves the kinematics of the process. We model
that strong interaction as one-meson exchange.

Early work by Jones [25] and Lindblom and Owen [27]
only included contact interactions, so they neglected pro-
cesses III and IV which would require exchange of a Z bo-

son between the baryons, and such flavor changing neu-
tral currents are highly suppressed by the GIM mecha-
nism [52].

However, there are OME contributions to all four pro-
cesses in Eq. (5), and at temperatures in the sub-MeV
range the OME channel is the dominant contribution.
For processes I and II, the OME contribution to the rate
is an order of magnitude larger than the contact inter-
action contribution [28]. Process III, in particular, is
non-negligible at most densities. This can partially be at-
tributed to the large phase space near the neutron Fermi
surface compared to the other baryon species. We calcu-
late the OME contribution to all 4 processes. The rates
Γ12→34 can be calculated by computing the full phase
space integral:

Γ12→34 =
1

S

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

d3p4

(2π)3

∑
s |M1234|2

24E∗1E
∗
2E
∗
3E
∗
4

(2π)4δ (E1 + E2 − E3 − E4) δ3 (p1 + p2 − p3 − p4)× (6)

f1(E1, µ1)f2(E2, µ2) [1− f3(E3, µ3)] [1− f4(E4, µ4)] ,

with the symmetry factor S = 2 for all processes with two
identical baryons on one side of the reaction, i.e. processes
I, III and IV, and S = 1 for process II. The spin-summed,
squared matrix element of the process

∑
s |M1234|2 turn-

ing the incoming baryons with labels 1 and 2 into baryons
3 and 4, where the labels stand for the corresponding
baryons in Eqs. (5), can be obtained from the Feynman
diagrams in panel (a) of Fig. 2 which give the matrix
element

M1234 =[ū3F
S
23u2 ū4F

W
14 u1Dϕ(k2

1)

− ū3F
S
13u1 ū4F

W
24 u2Dϕ(k2

2)] , (7)

where the Dirac bispinors are normalized following
Refs. [53] and [54] to u†u = 2E∗ which leads to the corre-
sponding energy denominators in Eq. (6). When we eval-
uate |M1234|2, the spin summation over Dirac bispinors,
which follow equations of motion derived from meson ex-
change Lagrangians as used here, leads to an expression
in terms of the quasi-momentum (E∗,−p) where

E∗i =

√
p2
i + (M∗i )

2
. (8)

In all other parts of the calculation, including the delta
distributions in the rate integral Eq. (6), on-shell nu-
cleons are characterized by four-momenta that obey the
dispersion relation Eq. (4). Therefore, the meson propa-
gator Dϕ, defined in Eq. (10), depends on the dispersion
relations from Eq. (4) as well, whereas the remaining ma-
trix element is given in terms of the quasi-momentum.
For a detailed calculation of spin sums in RMFs see ap-
pendix B of Ref. [54].

The weak and strong interaction vertices are given by

FWij = GFm
2
π (Aij +Bijγ5) , FSij = gijγ5 , (9)

with the Fermi constant GF = 1.1663787× 10−5 GeV−2,
the fifth gamma matrix γ5, and the strong interaction
coupling constants gij and weak interaction coupling con-
stants Aij and Bij , which depend on the baryons in the
corresponding vertex and are summarized in App. B.
The coupling constants Aij and Bij are rendered mass-
less via the insertion of a factor of the pion mass squared,
m2
π, for all processes (whether the exchanged meson is a

pion or not). The meson propagator is given by

Dϕ(k) =
1

k2
0 − k2 −m2

ϕ

, (10)

where the energy k0 and the momentum k of the meson
ϕ, which would be a pion in processes I to III and a kaon
in IV, is determined by energy-momentum conservation
in the vertices.

The Fermi-Dirac distribution functions

fi(Ei, µi) =
1

1 + exp
(
Ei−µi
T

) (11)

account for Pauli blocking and depend on the full dis-
persion relation of the incoming (i = 1, 2) and outgoing
(i = 3, 4) baryons, see Eq. (4), the chemical potentials
µi and the temperature T . Since the effective masses
become smaller than the corresponding Fermi momenta
at high densities, we treat all baryons as relativistic par-
ticles. A non-relativistic treatment leads to nonphysical
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FIG. 2. Panels (a) and (b) show Feynman and quarkflow diagrams for the OME contribution to process I. The flavor changing
weak-interaction vertex FWnΣ connecting the incoming neutron n with a pion and the Σ−-hyperon represents a combination of
a flavor changing W−boson exchange within the baryon and a quark exchange (modeled via one meson exchange) with the
spectator baryon. The strong-interaction vertex FSnp connects the nucleons n and p with a pion. For the matrix element in
Eq. (7), we have to subtract a second Feynman diagram with the two initial neutrons exchanged. Panel (c) shows the Feynman
diagram for the contact interaction contribution, where the two nucleons exchange a charged W -boson that is integrated out.
This is the basis for the matrix element in Eq. (12). All coupling constants can be found in App. B. The remaining diagrams
are shown in App. A.

behavior of the bulk viscosity at medium to high densities
(around nB ≈ 3n0) [22].

Although they will turn out to be small compared to
the OME channel, we also compute the rates for the pro-
cesses n+ n↔ p+ Σ− and n+ p↔ p+ Λ in the contact
interaction channel. The corresponding matrix elements
are derived from the Feynman diagrams in Fig. 2(c),
Fig. 10(c) and Fig. 11(c) and are, after spin-summation,
given by [26–28, 32]

∑
s

∣∣MnnpΣ−
∣∣2 = cWM

2
nMpMΣ−

(
1 + 3cnpA cnΣ−

A

)2

(12)

and∑
s

|MnppΛ|2 = cWMnM
2
pMΛ

(
1 + 3|cnpA |

2|cpΛA |
2
)
, (13)

where cW = 8G2
F sin2(2θC). All numerical constants can

be found in App. B. Since the OME processes provide
the dominant contribution to the rates, we only need to
make a rough estimate of the subdominant contribution
from contact interactions. Following the approach used
widely in the literature [25, 26, 31] we simplify the matrix
element by applying the ultra non-relativistic approxi-
mation, where Ei = M∗i and the energy denominators in
Eq. (6) are replaced with the effective masses M∗i . The
contact interaction contribution to the rates can then be
computed analytically. We emphasize that this is an ex-
tremely crude approximation: in cold hyperonic matter,
the ultra non-relativistic approximation underestimates
the rates by up to two orders of magnitude. However,
even in an improved relativistic treatment, the contact
interaction produces rates which are still an order of mag-
nitude slower than the ones derived from the OME pro-
cess [28, 32]. The results for the rates in the OME and
contact interaction channel are shown in Sec. III.

C. Bulk Viscosity

In this section we derive an expression for hyperonic
bulk viscosity, where we use the methods and notation of
Refs. [30, 32]. As noted in Sec. I, these works calculated
the equilibration rate assuming low temperatures charac-
teristic of isolated neutron stars. In this work we obtain
results which are valid at the densities and temperatures
that arise in mergers, where a thermal population of hy-
perons below the zero temperature onset is present. Bulk
viscosity is defined by the deviation from the equilibrium
pressure P0 via

P − P0 = −ζ∇ · v , (14)

where P is the current pressure of the fluid element
which undergoes a harmonic oscillation of the form
n = n0 + δn exp(−iωt), with the external oscillation fre-
quency ω, the equilibrium density n0 and the amplitude
of the oscillation δn� n0. The bulk viscosity ζ is given
by the coefficient of the divergence of the fluid element
velocity v on the right hand side of Eq. (14). The os-
cillation will push the matter out of beta equilibrium,
which causes a difference ∆Γ between the backward and
forward rates of the individual processes in Eqs. (5). In
principle, the pressure P is a function of the six particle
species numbers (proton, neutron, Λ and Σ−−hyperons ,
electrons and muons). We assume that thermal conduc-
tion operates fast enough that the temperature is time-
independent, so we calculate isothermal susceptibilities
and bulk viscosity. For sufficiently low temperatures and
long wavelength of the density oscillations an adiabatic
calculation might be appropriate [19], but we will reserve
the exploration of this regime for future work. Not all
of the particle densities are independent, since the total
baryon number is given by

nB = nn + np + nΛ + nΣ− , (15)



6

and we assume local charge neutrality,

np = ne + nµ + nΣ− . (16)

We assume that strong interaction processes such as

n+ Λ⇐⇒ p+ Σ− , (17)

are in equilibrium. It is important to note that
this strong interaction, though it conserves strangeness,
changes the neutron number. This means that choos-
ing the neutron number as the equilibrating quantity (as
done in Refs. [27, 28] for instance) is misleading [25, 47].
We will calculate the bulk viscosity arising from the equi-
lbration of the strangeness fraction, which is given by
xH = nH/nB with the hyperon number nH = nΣ− + nΛ

[30, 32].
We are now left with four independent variables, the

hyperon number nH , baryon number nB , and the elec-
tron and muon fraction xe = ne/nB and xµ = nµ/nB .
The continuity equations for baryon number, electron
and muon number are given by

∂nB
∂t
− nB∇ · v = 0 , (18)

∂ne
∂t
− ne∇ · v = 0 , (19)

∂nµ
∂t
− nµ∇ · v = 0 . (20)

The hyperon number is not conserved but changes due to
weak interactions. We assume [27, 28, 30, 32] that semi-
leptonic Urca-type processes [19] and purely leptonic pro-
cesses [51] are very slow compared to the density oscilla-
tion timescale, so the electron and muon fractions never
deviate from their equilibrium values: δxe = δxµ = 0.

Additionally, we ignore processes that change the hy-
peron number by more than one unit and assume that
they are slow compared to the ones that only change it
by one unit. The source terms in the hyperon evolu-
tion equation are due to the four strangeness changing
processes in Eqs. (5). The four reactions lead to source
terms

∆Γi = λiδµi with i = I, . . . , IV , (21)

where ∆Γ are the differences between the back and for-
ward rates Γ from Eq. (6) which try to re-establish
chemical equilibrium. We have assumed that the oscil-
lation amplitude δn is small enough so that δµi � T ,
corresponding to the subthermal regime, where the lin-
ear approximation is valid. Taking into account that
δµn + δµΛ = δµp + δµΣ− due to the strong reaction from
Eq. (17), we find that all processes equilibrate the same
chemical potential, δµI = δµII = δµIII = δµIV ≡ δµ with

δµ = 2µn − µp − µΣ− = µn − µΛ . (22)

Therefore, the hyperonic evolution equation is given by

∂nH
∂t
−∇ · (nHv) = ΓI + ΓII + ΓIII + ΓIV . (23)

The pressure P and the chemical imbalance δµ, which
are functions of nB , nH , xe and xµ, can be expanded
around equilibrium as

P = P0 + δP , (24)

δP =
∂P

∂nB

∣∣∣∣∣
xe,xµ,nH ,T

δnB +
∂P

δnH

∣∣∣∣∣
xe,xµ,nB ,T

δnH , (25)

and

δµ =
∂δµ

∂nB

∣∣∣∣∣
xe,xµ,nH ,T

δnB +
∂δµ

δnH

∣∣∣∣∣
xe,xµ,nB ,T

δnH ,

where we used that δxe = δxµ = 0. Inserting the har-
monic density oscillation into the continuity equations
yields

δnB = −nB
iω
∇ · v , (26)

δnH = − 1

iω
[nH∇ · v − λδµ] , (27)

where λ = λI+λII+λIII+λIV. By inserting the expression
for δµ into Eq. (27) we find

δnH = −∇ · v
iω

[
nH + λ

nB
iω

∂δµ

∂nB

](
1 +

iλ

ωnB

∂δµ

δxH

)−1

.

(28)

We now use Eq. (24), and Eqs. (28) and (26) for the
perturbations δnH and δnB , to compute P − P0, from
which we can obtain the (real part of) the bulk viscosity
as the coefficient of ∇ · v,

<ζ = λ
∂P

∂xH

∂δµ

∂nB

[
ω2 +

λ2

n2
B

(
∂δµ

∂xH

)2]−1

(29)

= nB

(
∂δµ

∂xH

)−1
∂δµ

∂nB

∂P

∂xH

γ

ω2 + γ2
,

where we have defined

γ = Bλ , (30)

with the susceptibility

B ≡ 1

nB

∂δµ

∂xH

∣∣∣∣∣
xe,xµ,nB ,T

. (31)

The various derivatives with respect to the hyperon and
baryon number of the pressure and δµ are computed
numerically from the EOS by changing the hyperon or
baryon number while holding the other variables con-
stant and solving the RMF equations.
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FIG. 3. Individual rates of all four strangeness-changing pro-
cesses defined in Eqs. (5) at T = 5 MeV as a function of
baryon density normalized to saturation density n0 in the
OME channel. Below the hyperon onset at nB ≈ 1.85 n0, the
rates drop quickly to zero as the thermal population of hy-
perons becomes highly suppressed. The individual rates grow
roughly as T 3. Extrapolation using this scaling is accurate to
within 40% up to T = 50 MeV.

OME FS approx

OME full phase space

contact interaction FS approx
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FIG. 4. Net strangeness changing rate (processes
I+II+III+IV) at T = 5 MeV (solid blue line) in comparison to
the FS approximation (black, dashed line labeled “OME FS
approx”, see Appendix C). We also show the contribution to
the rate from the contact interaction (black, dotted line), es-
timated using the FS approximation and the non-relativistic
limit (Eqs. (12) and (13)). Rates in the FS approximation are
only defined above the hyperon density threshold.

III. RESULTS AND DISCUSSION

A. Full Phase Space Calculation of Rates

In Fig. 3 we present our calculation of the rates for the
processes I to IV in Eqs. (5) as a function of baryon den-
sity at a temperature of T = 5 MeV. The plot shows the

four individual rates computed numerically from Eq. (6).
After analytical simplifications we carry out the remain-
ing five dimensional integration using the CUBA library
[55]. At vanishing temperature, T = 0, there exists a
critical minimal density below which no hyperons are
present. The actual value of the critical density depends
on the choice of equation of state. For the PK1+H EOS
that we are using, the onset density for hyperons at T = 0
is nB ≈ 1.85 n0. At non-zero temperature there is a ther-
mal population of hyperons at and below this density.
The thermal hyperon population increases with temper-
ature and decreases when the density is lowered further.
In this regime the hyperon density is exponentially sen-
sitive to temperature and density, so we observe that the
rates span many orders of magnitude. They are much
less sensitive at densities above the hyperon threshold.
We also observe that the rate of process IV is, especially
at low densities, suppressed compared to all other rates.
This is because this process involves three hyperons and
only one nucleon, and therefore has less phase space avail-
able. Furthermore, the strong interaction in this case is
mediated by kaon exchange instead of pion exchange, so
the interaction is suppressed by the higher mass of the
kaon mK in the meson propagator, even at high densities
where the density of Λ hyperons becomes comparable to
the neutron density (see Fig. 1).

It is interesting to compare these features with the
GM1’B EOS which we have noted above is less conve-
nient to deal with than PK1+H but is more consistent
with phenomenological constraints. In GM1’B the zero-
temperature hyperon onset involves the Λ rather than
the Σ−, and occurs at a higher density, nB = 2.39n0.
However, the rates for processes II, III, and IV for the
GM1’B EOS show very similar behavior to PK1+H, just
shifted to slightly higher densities. Process I, since it in-
volves the Σ−, only occurs at higher densities. As an
example, a direct comparison of the rates for process III
is shown in Fig. 5 for a temperature of T = 5 MeV. For
our purposes, the important points are: (1) above the
hyperon onset density, the rate is the same to within a
factor of 2 for both EOSes; (2) below the onset density,
the rates drop off with the same exponential suppression
(same slope). As we will discuss in Sec. IV, this gives
some indication that the main conclusions that we draw
from PK1+H will hold for other hyperonic EOSes.

Fig. 4 shows how our calculation compares to one
that uses the FS approximation, and one that only in-
cludes contact interactions. The figure shows the sum
of the OME contributions to the rate for all 4 processes,
Γ = ΓI + ΓII + ΓIII + ΓIV at T = 5 MeV as a function
of baryon density (solid blue line). For comparison, we
show the same rate in the FS approximation (labeled
OME FS approx; the calculation is described in App. C).
Rates in the FS approximation are only computed above
the hyperon threshold, since the Fermi momenta are not
properly defined below that density.

At high densities, where the thermal blurring becomes
negligible compared to the Fermi momenta of the partici-
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Comparison of Rates for Pr. III

FIG. 5. Comparison of the rate for process III for the PK1+H
EOS, which we use in in this work, and the GM1’B EOS (see
Sec. II) at T = 5 MeV. Above the hyperon onset density the
rates level out to similar values, and below the onset they
show the same exponential suppression.

pating particles, the FS approximation works well for the
OME contribution. At T = 5 MeV, the FS approxima-
tion agrees with the full phase space calculation within
50% at densities of nB & 3.5n0. However, it completely
fails below the hyperon onset and overestimates the rate
immediately above the onset by up to an order of mag-
nitude. Contrary to what one might expect, the FS
approximation in the OME channel gives a faster rate
than the full phase space integral, although the latter re-
ceives contributions from all thermally accessible states,
not only from states close to the Fermi surface. This
is because further approximations in the energy integral
tend to overestimate the rate: see App. B of Ref. [56] for
more information. We conclude that at merger tempera-
tures the FS approximation is unreliable, so we perform
full phase space integrals to obtain all the results shown
in the rest of this paper.

To estimate the magnitude of the rates in the con-
tact interaction channel, we compute the sum of pro-
cess I and II in the ultra non-relativistic limit, using the
FS approximation; see the paragraph below Eq. (13) for
more details. Process III and IV are, as mentioned ear-
lier, heavily suppressed in the contact interaction channel
and therefore neglected. The result is plotted in Fig. 4
with a black, dotted line labeled “contact interaction FS
approx”. As noted in Sec. II B, including relativistic cor-
rections can enhance it by up to 2 orders of magnitude,
but the figure shows that it is still subleading compared
to the comparable (FS approximation) contribution from
OME. In the results presented in the rest of this paper
we will therefore neglect the contributions of the contact
interaction channel.

T= 3
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T = 50

Σ
- onset
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10-4
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Susceptibility B PK1+H

FIG. 6. Susceptibility B for the PK1+H EOS (defined in
Eq. (31)) as a function of baryon density at temperatures
T = 3, 4, 5, 10, 25, 50 MeV, where the highest (blue solid)
curve at low densities corresponds to T = 3 MeV and smaller
susceptibilities correspond to higher temperatures. As the
density drops below the hyperon onset at nB ≈ 1.85 n0

(marked by the thin, black, dashed, vertical line), the suscep-
tibility shows an exponential increase, arising from the expo-
nential suppression of the hyperon fraction in this regime.

B. Re-equilibration Rates γ

The chemical re-equilibration rate γ, defined in
Eq. (30), depends on the strangeness-changing rates and
the susceptibility B, defined in Eq. (31), which is propor-
tional to the derivative of the chemical imbalance δµ with
respect to the hyperon fraction xH . We plot this suscep-
tibility, for the PK1+H EOS, in Fig. 6 as a function of
baryon density for temperatures from T = 3 to T = 50
MeV. As the density drops below the hyperon onset at a
baryon density of nB ≈ 1.85 n0, the susceptibility shows
an exponential increase. This can be understood in terms
of the exponential density dependence of the thermal hy-
peron population (see Fig. 1). In this regime, the size of
δµ necessary to change the strangeness by a given amount
therefore also increases exponentially as the baryon den-
sity drops through the hyperon onset region. Above the
hyperon onset, the strangeness fraction rises more slowly
with increasing density, which leads to a leveling of B.
For higher temperatures, the hyperon fraction and there-
fore the susceptibilities behave more smoothly. Combin-
ing these results with the rates shown in Fig. 3 allows us
to compute the re-equilibration rate γ, which we show in
Fig. 7. The opposite exponential density dependencies of
the rates λ and the suceptibility B turn out to balance
each other, so the re-equilibration rates do not change
significantly when densities drop below the hyperon on-
set. The horizontal black dotted line shows where the
equilibration rate would match the external frequency ω,
which is where the bulk viscosity would reach its resonant
maximum. In all our calculations we assume an external
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FIG. 7. Re-equilibration rate γ defined in Eq. (30) for the
PK1+H EOS as a function of baryon density. The color cod-
ing is identical to Fig. 6. All rates are obtained by evaluating
the full phase space integral for the OME matrix elements.
The black, dotted, horizontal line marks the optimal equili-
bration rate for maximal bulk viscosity where it would match
the external oscillation, γ = ω. The exponential behavior of
the rates from Fig. 4 balances that of the susceptibility B from
Fig. 6, leading to nearly density-independent re-equilibration
rates γ. Therefore, the rates are, even at lower temperatures,
too fast to match the external oscillation. Only at tempera-
tures in the keV regime, γ matches ω, see the grey, dashed
line where we show γ for a temperature of 4.5 keV computed
from the EOS at T = 0 using the FS approximation for the
rates.

oscillation frequency of ω = 2π kHz which is typical for
the high-amplitude density oscillations that occur imme-
diately after the merger [17].

For densities above saturation density (below which
nuclear matter might not be uniform [57]), and tempera-
tures down to about 2 MeV, the equilbration rate remains
far above the external oscillation frequency. This leads us
to expect that at the typical densities and temperatures
of nuclear matter in neutron star mergers the hyperonic
bulk viscosity and the resultant attenuation of density
oscillations will not be significant. We also performed
calculations at much lower temperatures (grey dashed
lines), where the FS approximation for the OME inter-
action yields rather accurate results. Our calculations
neglected hyperon and nuclear superfluidity which might
become important at these temperatures [26, 58, 59]. In
this regime the difference between the hyperonic rates
out of equilibrium can be computed by calculating the
rate from Eq. (C3) while linearizing I(ξ) for small ξ,
see Ref. [28]. We computed the susceptibilities from the
PK1+H EOS at T = 0 and found that the bulk viscosity
for 1 kHz oscillations reaches a resonant maximum (ne-
glecting superfluidity) at T ≈ 4 keV, which is in agree-
ment with the findings of Ref. [32]. We show this in
Fig. 7 and Fig. 8 with a grey, dashed line. The kink in
the re-equilibration rate arises from the sudden onset of

Σ- onset

T= 2 MeV

T= 50

T= 0.5 MeV

T= 4.5 keV
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Bulk Viscosity

FIG. 8. Solid lines show the bulk viscosity as function of
baryon density at temperatures of T = 2, 5, 10, 25, 50 MeV
for the finite temperature PK1+H EOS computed from the
full phase space integral. Above the hyperon onset, the bulk
viscosity decreases with temperature, since even for T = 2
MeV the re-equilibration rate, which generally further in-
creases with temperature, is too fast to match the external
frequency (see Fig. 7). Below the hyperon onset (marked by
a black dashed vertical line), the bulk viscosity drops more
drastically for low temperatures due to the faster decrease of
the hyperon fraction. For temperatures of 2 MeV or below,
the rates and susceptibilities can not be computed reliably
below the hyperon onset because of the small hyperon frac-
tion. At temperatures of over 20 MeV, bulk viscosity is com-
pletely smooth due to the higher thermal hyperon population.
The dashed lines show the bulk viscosity for T = 0.5 MeV
and T = 4.5 keV. At temperatures of a few keV, the re-
equilibration time and the external oscillation match, leading
to a maximal bulk viscosity. The kink at nB ≈ 2.2n0 is a
result of the Λ onset.

the Λ-hyperon at nB ≈ 2.2n0 and is less pronounced in
the higher temperature calculation, where the thermal
population of hyperons blurs the onset.

C. Bulk Viscosity and Dissipation Times

In Fig. 8 we show the bulk viscosity as a function of
density at various temperatures. The solid, colored lines
are from Eq. (29). We calculated the OME contribution
to the equilibration rate by numerically evaluating the
full phase space integral Eq. (6). We cover baryon den-
sities nB ∈ [1.4n0, 4n0] and temperatures ranging from
T = 2 MeV to T = 50 MeV. The vertical dashed line
indicates the density at which hyperons would first ap-
pear when the temperature is zero. The various colored
lines correspond to the temperatures of 2, 5, 10, 25, and
50 MeV.

At all densities for these temperatures we observe a
low bulk viscosity compared to the bulk viscosity ob-
tained from nuclear semi-leptonic processes [19]. Above
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FIG. 9. Density and temperature dependence of the dissi-
pation time for density oscillations, using the PK1+H EOS.
Within the 1 ms contour, the shortest dissipation time occurs
at a temperature of T = 4 keV, where the re-equilibration
time γ matches the external frequency ω, leading to maximal
bulk viscosity. For lower temperatures the re-equilibration
rate is slower than the external oscillation, whereas for higher
temperatures the rates are too fast.

the hyperon onset, bulk viscosity decreases with temper-
ature. The largest bulk viscosity is therefore obtained
at the lowest shown temperature, T = 2 MeV. This is
because the equilibration rate is always too fast (faster
than the typical density oscillation frequency ∼ 1 kHz),
so to increase the bulk viscosity one must decrease the
equilibration rate, e.g., by reducing the temperature or
density. As the density is lowered below the hyperon on-
set, bulk viscosity drops off much faster for smaller tem-
peratures, since the thermal population decreases more
rapidly. For high temperatures, in the tens of MeV, bulk
viscosity only drops slowly with decreasing density, even
below the T = 0 hyperon onset. Therefore, the bulk vis-
cosity for densities below the onset is larger for higher
temperatures.

In order to achieve a resonant match between the equi-
libration rate and the assumed density oscillation fre-
quency of 1 kHz, we would have to extend our results
down to temperatures in the keV range. In this regime
nucleonic/hyperonic superfluidity may become impor-
tant, but to get a lower limit on the resonant temperature
we can neglect superfluidity and compute the suscep-
tibilities from the zero-temperature PK1+H EOS, and
calculate the rates in the FS approximation. We find
that bulk viscosity peaks, for a given density above the
hyperon onset, at temperatures around 4 keV, which is
in agreement with Ref. [32]. We show these results in
Fig. 8 using dashed, grey lines. The kink in the bulk
viscosity is a result of the onset of the Λ hyperon at a

baryon density of nB ≈ 2.2n0 and is more pronounced
for smaller temperatures, where few thermal hyperons
are present. If we took superfluidity into account this
would exponentially suppress the strangeness changing
rates at temperatures below the superfluid critical tem-
perature Tc, so the resonant temperature would rise to a
value closer to Tc [30, 47].

For oscillations in mergers, one important measure of
the importance of bulk viscosity is the dissipation time
τdiss which quantifies how fast a density oscillation of a
fluid element is damped. Following Refs. [19, 60, 61],

τdiss ≡
ε

dε/dt
=
κ−1
S

ω2ζ
, (32)

where ε is the energy carried by an oscillation in baryon
density with frequency ω and amplitude δn,

ε =
κ−1
S

2

(
δn

nB

)2

, (33)

where

κ−1
S = nB

∂P

∂nB

∣∣∣∣∣
T,xH ,xe,xµ

, (34)

and κS is the incompressibility. The dissipation times
we compute from the bulk viscosity for typical merger
temperatures in the MeV range is on the scale of seconds
and above. Dissipation times at and around the resonant
temperature of a few keV are considerably shorter, as
can be seen in Fig. 9, which shows a contour plot of
the dissipation time in the plane of baryon density and
temperature. In this plot, the resonant nature of the
bulk viscosity is clearly visible: At a given density, the
re-equilibration rate for temperatures below 1 keV is too
slow to match the external frequency, leading to a smaller
bulk viscosity and longer dissipation times. Raising the
temperature leads to a resonant maximum of the bulk
viscosity and a corresponding minimum of the dissipation
times, then at higher temperatures the rates become too
fast and the dissipation times rise again. The density
dependence of the dissipation time is much weaker than
the T 3 temperature dependence of the rates Γ.

IV. CONCLUSIONS

In this paper we have presented a calculation of hyper-
onic bulk viscosity and the resultant dissipation time for
density oscillations in the range of densities and temper-
atures that are expected to exist in binary neutron star
mergers. For this purpose, we used the PK1+H EOS,
whose maximum neutron star mass is at the edge of com-
patibility with observations, but we checked that com-
parable results for a typical strangeness-changing rate
are obtained for the GM1’B EOS. This indicates that
our main result, that the strangeness-changing rates are
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much too fast to match the typical frequency of the ex-
ternal oscillations in a merger, so the hyperonic bulk vis-
cosity is small compared to its nuclear counterpart in the
MeV temperature range, is likely to be a general feature
of hyperonic equations of state.

We calculated hyperonic equilibration rates by eval-
uating the one meson exchange contribution, which, as
first discussed in Ref. [28], is the dominant channel in all
of the studied parameter space.

Previous studies of hyperonic bulk viscosity used the
Fermi Surface approximation, since they were concerned
with temperatures in the keV range. The typical tem-
perature in mergers is in the MeV range, which is high
enough to invalidate the FS approximation. We there-
fore numerically evaluate the full phase space integral
for the rates. This allows us to study the behavior of the
system at densities below the zero-temperature hyperon
onset, where there is only a thermal population of hyper-
ons and the Fermi surface is not well defined. We find
that at temperatures T & 1 MeV the hyperonic bulk vis-
cosity for kHz density oscillations is always much smaller
than its nuclear counterpart [19, 21]. This is because the
beta re-equilibration rate is always too fast to match an
external frequency oscillation of ω ∼ 2π kHz.

Consequently, it seems that hyperonic bulk viscosity is
not a significant source of damping of density oscillations
in neutron star mergers.

In future work on viscosity, the influence of large am-
plitude oscillations and magnetic fields on the hyperon
bulk viscosity could be studied. Above a temperature
of roughly 5 MeV, neutrino trapping, which plays a sub-
dominant role for the non-leptonic processes we studied
in this paper, would likely become important so semi-
leptonic beta equilibration processes with neutrinos in
the initial state should be investigated.

Finally, we note that hyperonic decays might play an
important role in other transport phenomena, like radia-
tive dissipation [35] or phase conversion dissipation [36].
The rate calculations presented in this paper are a nec-
essary step towards extending these calculations to the
higher temperatures that occur in mergers. We also com-
puted the dissipation times at keV temperatures, where
the bulk viscosity reaches its resonant maximum. For
temperatures around T ≈ 4 keV we find dissipation times
of a few ms. This suggests that hyperonic bulk viscos-
ity might play an important role in the damping of in-
duced oscillations in highly eccentric neutron star merg-
ers, where temperatures are much lower than in the post-
merger phase.
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Appendix A: Feynman and Quarkflow Diagrams

In this appendix we present the Feynman diagrams and
the corresponding quark flow diagrams for three of the
four strangeness changing processes we take into account,
see Eqs. (5). Process I is depicted in the main part of
this publication, see Fig. 2. For the computation of the
matrix element in Eq. (7), a second Feynman diagram
with the initial baryons exchanged has to be subtracted.
Only for process II this leads to a nontrivial change, since
in all other cases the initial particles are identical. In
these trivial cases, we do not draw the second Feynman
and quark flow diagram.

For process I and II, we additionally show the diagrams
for the same process in the contact interaction channel,
where the baryons directly exchange a charged W -boson.
These diagrams are the basis for the matrix elements in
Eq. (12) and Eq. (13).
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FIG. 10. Feynman- and quarkflow diagram for process II,
n+ p→ p+ Λ, in the OME channel (panels (a) and (b)) and
the contact interaction channel (panel (c)).
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FIG. 11. Feynman- and quarkflow diagram for process II,
n + p → p + Λ, in the OME channel (panels (a) and (b))
and the contact interaction channel (panel c), both with the
initial nucleons exchanged.
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FIG. 12. Feynman- and quarkflow diagram for process III,
n + n → n + Λ in the OME channel. The corresponding
contact interaction channel would be mediated by neutral
Z−boson exchange and is therefore suppressed by the GIM
mechanism. For the calculation of the OME matrix element,
a diagram with the two incoming neutrons exchanged has to
be subtracted from the depicted one.
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FIG. 13. Feynman- and quarkflow diagram for process IV,
Λ + Λ→ Λ +n in the OME channel. The corresponding con-
tact interaction channel is suppressed due to the GIM mech-
anism. For the calculation of the OME matrix element, a
diagram with the two incoming hyperons exchanged has to
be subtracted from the depicted one.
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Appendix B: Numerical Parameters and Coupling
Constants

In this appendix we collect all numerical parameters
and coupling constants from the EOS and the Feynman
diagrams in Fig. 2 and App. A.

Mn Mp mσ mω mρ gσN gωN

939.5731 938.2796 514.0891 784.254 763 10.3222 13.0131

gρN g2[fm−1] g3 c3 me mµ mπ mK

4.5297 -8.1688 -9.9976 55.636 0 106 134.976 497.611

MΛ MΣ− gσΛ gσΣ− gωΛ

1115 1197 0.642 gσN 0.453 gσN 0.66 gωN

gωΣ− gρΛ gρΣ−

0.66 gωN 0 −2 gρN

TABLE I. Numerical parameters for the nuclear part and the
hyperonic extension of the PK1+H equation of state. The
nuclear EOS and all parameters are taken from Ref. [49]. The
meson-nucleon Yukawa couplings are identical for neutron and
proton, i.e. gσN ≡ gσn = gσp etc.. All masses are given in
MeV.

Vertex gij Aij Bij

ppπ 13.3 - -

npπ 13.3
√

2 - -

nnπ −13.3 - -

Λnπ - −1.07 −7.19

Λpπ - 1.46 9.95

Σ−nπ - 1.93 −0.63

ΛnK −14.1 - -

ΛKK - 0.67 −12.72

TABLE II. Coupling constants for the matrix element in the
OME channel taken from Refs. [28, 32]. The kaon couplings
were originally published in Refs. [62, 63]. The vertices are
defined in Eq. (9).

cnpA cpΛA cnΣ−
A sin2(2θc)

-1.26 -0.72 0.34 0.18742

TABLE III. Coupling constants for the matrix element in the
contact interaction channel taken from Refs. [27, 28].
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Appendix C: Fermi Surface Approximation

In this appendix we derive the Fermi surface approxi-
mation for the rates defined in Eq. (6). At low temper-
atures, the Fermi spheres are sharply defined and only
particles close to the Fermi surface can participate in the
processes given in Eqs. (5). In this case, we can sim-
plify the full phase space integral from Eq. (6) by using
the FS approximation: we fix all the momentum magni-
tudes to their respective Fermi momenta, and split the
integral into angular and energy contributions. The FS
approximation can be applied to the OME and contact-
interaction contributions. For details on the FS approxi-
mation see Refs. [64, 65]. The validity of this approx-
imation depends on the temperature and the density.
Whereas in cold neutron stars with temperatures in the
keV-range this approximation is certainly valid, we can
observe noticeable deviations from the FS approximation
at temperatures in the MeV-range, especially at densi-
ties close to the hyperon threshold. For a momentum-
independent matrix element, like the contact interaction
channel matrix element in the ultra non-relativistic ap-
proximation, the rate is

Γ12→34 =
T 3|M1234|2

(2π)523S
I(ξ)Q(4) , (C1)

where

I(ξ) =
eξ

eξ − 1

4π2ξ + ξ3

6
, (C2)

and the squared matrix element |M1234|2 comes from
Eq. (12) and Eq. (13), the symmetry factor S and where
ξ ≡ δµ/T , and δµ is the chemical potential that measures
the deviation from chemical equilibrium (Eq. (22)). Q(4)

depends on the relations of the various Fermi momenta
and is defined in Tab. 1 of Ref. [65].1 For the full mo-
mentum dependent matrix element from Fig. 2, the rate
in the FS approximation is

Γ12→34 =
M∗1M

∗
2M

∗
3M

∗
4

S(2π)824
pF4T

3I(ξ)

∫ 2π

0

dϕ

∫ s+

s−

ds×

k+
1 |M1234|2(k+

1 )θ(r2
+ − 1) + k−1 |M1234|2(k−1 )θ(r2

+ − 1)√
p2
F2 − (1− s2)p2

F4

,

(C3)

where pFi is the Fermi momentum of the i−th parti-
cle in Fig. 2, with momentum transfers k1 = p1 −
p3 and k2 = p4 − p2. Energy-momentum conser-
vation demands that the moduli of the momentum
transfer vectors are equal, k1 = k2. Furthermore,
the delta distribution has two zeros, which lead to

1 In Ref. [65], the baryons are ordered by the magnitude of their
Fermi momenta.

the two separate contributions to the rate integral
with the modulus for k1 (and therefore k2) given by

k±1 = pF4s±
√
p2
F4(s2 − 1) + p2

F2, and θ being the Heav-

iside function of r± =
(
p2
F1 − k

±2
1 − p2

F3

)
/
(
2k±1 pF3

)
.

The angles ϕ and s = cos θ are the azimuthal and polar
angle between p4 and k1. The integration boundaries for
s ∈ [−1, 1] have to be chosen such that k±1 is real and pos-
itive. |M |21234(k±1 ) is the spin summed, squared matrix
element evaluated on the Fermi surface, i.e. |p3| = pF3,
|p4| = pF4 and |k1| = |k2| = k±1 . Energy momentum
conservation sets the polar angle cos θ3 ≡ r between k1

and p3 to r = r± defined above. Note that in chemi-
cal equilibrium, ξ = 0 and limξ→0 I(ξ) = 2π2/3. The
remaining integrals are evaluated numerically.
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