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The nuclear symmetry energy is a key quantity in nuclear (astro)physics. It describes the isospin
dependence of the nuclear equation of state, which is commonly assumed to be almost quadratic.
In this work, we confront this standard quadratic expansion of the equation of state with explicit
asymmetric nuclear-matter calculations based on a set of commonly used Hamiltonians including
two- and three-nucleon forces derived from chiral effective field theory. We study, in particular,
the importance of non-quadratic contributions to the symmetry energy, including the non-analytic
logarithmic term introduced by Kaiser [Phys. Rev. C 91, 065201 (2015)]. Our results suggest that
the non-quadratic contribution to the symmetry energy can be systematically determined from the
various Hamiltonians employed, and we obtain 0.74+0.11

−0.08 MeV (or −1.02+0.11
−0.08 MeV for the potential

term with the effective mass contribution) at nuclear saturation density, while the logarithmic
contribution to the symmetry energy is relatively small and model-dependent. We also employ the
meta-model approach to study the impact of the higher-order contributions on the neutron-star
crust-core transition density, and find a 5% correction.

I. INTRODUCTION

The nuclear-matter equation of state (EOS) is of great
interest for nuclear physics, see recent reviews [1–3] and
references therein. It connects bulk properties of atomic
nuclei, with small isospin asymmetry, with neutron-rich
matter inside neutron stars (NSs) [4, 5]. The isospin
dependence of the nuclear-matter EOS is described by
the nuclear symmetry energy which, for example, gov-
erns the proton fraction in beta-equilibrium, determines
the pressure in the core of NSs, and hence, the NS mass-
radius relation [6–8], or cooling via the direct URCA pro-
cess [9]. Due to its importance for many physical systems,
the symmetry energy and its density dependence were
identified as key quantities for nuclear (astro)physics in
the 2015 DOE/NSF Nuclear Science Advisory Commit-
tee Long Range Plan for Nuclear Science [10], and are
actively investigated by combining information from nu-
clear theory, astrophysics, and experiments.

Because NS observations still come with sizable un-
certainties, the symmetry energy and its density depen-
dence cannot be inferred from NS properties alone [9].
Hence, various constraints on the symmetry energy have
be been inferred from experimental data, e.g., deter-
minations of neutron skins in lead (PREX) and cal-
cium (CREX) [11, 12], collective modes such as giant
dipole resonances [13], and heavy-ion collisions [14, 15].
Typically, experimental constraints are in the range
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esym(nsat) ≈ 29 − 35 MeV [9, 16, 17] at the nuclear sat-

uration density, 0.16 fm−3 ≡ nemp
sat (for a review see,

e.g., Ref. [14]). The determination of the symmetry
energy is on the road-map for several future experi-
ments conducted at rare-isotope beam facilities such as
FRIB at MSU, SPIRAL2 at GANIL, and FAIR at GSI.
While there are nuclear EOS models for a wide range
of values for the symmetry energy and its density de-
pendence [18, 19], microscopic EOS calculations based
on chiral nuclear interactions have improved theoreti-
cal constraints considerably over the last years (see, e.g.,
Refs. [3, 20, 21] for recent reviews).

An extraction of the nuclear symmetry energy from
nuclear theory as well as experimental and astrophysical
programs requires that the measured quantities in these
different approaches, as well as their relations, are well
defined. Different approximations for the symmetry en-
ergy are commonly used. It is, therefore, important to
clarify whether the symmetry energy measured in labora-
tory experiments is the same quantity as the one inferred
from NS properties. For example, the energy per parti-
cle of nuclear matter at zero temperature is a function of
the baryon density n = nn + np and isospin asymmetry
δ = (nn−np)/n, where nn (np) denotes the neutron (pro-
ton) number density. The isospin-asymmetry expansion
from symmetric nuclear matter (SNM, δ = 0) to pure
neutron matter (PNM, δ = 1) is often employed,

e(n, δ) ≈ e(n, δ = 0) + δ2 esym,2(n)

+δ4 esym,4(n) +O(δ6) . (1)

Here esym,2(n) and esym,4(n) are the quadratic and quar-
tic contributions to the symmetry energy, respectively.
Given the expansion (1), the quadratic contribution to
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the symmetry energy is defined by the second derivative

esym,2(n) =
1

2

∂2e(n, δ)

∂δ2

∣∣∣∣
δ=0

, (2)

similar to the empirical Bethe-Weizsäcker mass formula
for finite nuclei. Hence, esym,2(n) is often referred to as
the symmetry energy, and used in nuclear experiments.
In practice, however, the more commonly used definition
of the symmetry energy is given by the difference between
the energy per particle in PNM and SNM,

esym(n) = ePNM(n)− eSNM(n) . (3)

While definition (3) requires the EOS only in the limits
of PNM and SNM, Eq. (2) necessitates explicit calcula-
tions of isospin-asymmetric nuclear matter (ANM). Both
esym,2(n) and esym(n) are equal if the isospin dependence
of the energy per particle is purely quadratic, i.e., non-
quadratic terms in the expansion (1) vanish. However,
there is no a priori argument why this should be the
case. In fact, non-quadratic terms have been found to be
relevant for, e.g., accurate studies of nuclear matter in
beta-equilibrium at supra-saturation density [22–25] and
the crust-core transition density in NSs [24, 26].

In this work, we confront the expansion (1) with the ex-
plicit ANM calculations based on chiral nucleon-nucleon
(NN) and three-nucleon (3N) interactions reported in
Ref. [27] and quantify the impact of non-quadratic contri-
butions to the symmetry energy. We also investigate to
which extent uncertainties in the microscopic approach
affect the extraction of non-quadratic contributions to
the symmetry energy. The paper is organized as fol-
lows. In Sec. II, we give an overview of previous studies
of non-quadratic contributions to the symmetry energy.
In Sec. III, we present our computational setup and, in
Sec. III A, we compare it with other calculations. In
Sec. III B, the derivation of the Landau effective mass
from the single-particle energy is presented. General ex-
pressions for the energy expansion in terms of the isospin-
asymmetry parameter δ are given in Sec. III C, in partic-
ular, for the total energy per particle as well as for the
contributions of the potential energy terms. We then dis-
cuss the EOS in the limits of PNM and SNM in Sec. IV,
followed by the symmetry energy in Sec. V. In Sec. VI,
we study the impact of the non-quadratic contributions
to the symmetry energy in determinations of the core-
crust transition in NSs. Finally, we conclude in Sec. VII.
The Python codes used to perform the analysis and gen-
erate the figures in this paper are publicly available on
GitHub [28] and briefly described in the Supplemental
Material [29] associated with this publication.

II. PREVIOUS STUDIES OF NON-QUADRATIC
CONTRIBUTIONS

As stated above, there is no a priori reason for the
isospin-asymmetry expansion to be purely quadratic. In

general, even the free Fermi gas (FFG) energy per parti-
cle, given by

eFFG(n) =
tsatSNM

2

(
n

nsat

)2/3 [
(1+δ)5/3+(1−δ)5/3

]
, (4)

with tsatSNM = 3
5mN

(
3π2

2 nsat

)2/3
≈ 22.1 MeV, leads to

non-quadratic contributions to the expansion (1). For
example, the quartic term,

eFFGsym,4(n) ' 0.45 MeV×
(

n

nsat

)2/3

, (5)

represents a ≈ 3.5% correction to the FFG symmetry
energy at nsat. Nuclear interactions also contribute to
non-quadratic terms; for example, the phenomenological
Skyrme interaction [30] gives the following quartic con-
tribution to the symmetry energy:

eSkyrme
sym,4 (n) ' eFFGsym,4(n)

+
k5F

972π2
[3t1(1 + x1) + t2(1− x2)] , (6)

where kF is the Fermi momentum. The Skyrme param-
eters (t1, t2) represent the correction to the bare nu-
cleon mass generated by in-medium effects. Since the
Skyrme in-medium mass is generally ≈ 30 − 40% lower
than the bare mass [30], these terms increase the eFFGsym,4

by ≈ 30−40% to ≈ (0.7−0.8) MeV. In a recent work, Cai
and Li [25] found esym,4(nsat) = (7.2 ± 2.5) MeV, which
indicates a rather significant difference between esym
and esym,2. They employed an empirically constrained
isospin-dependent single-nucleon momentum distribution
and the EOS of PNM near the unitary limit. Subse-
quently, Bulgac et al. found that esym,4(n = 0.1 fm−3) =
2.635 MeV is necessary in order to reproduce proper-
ties of both finite nuclei and the PNM EOS as calcu-
lated in Ref. [31]. In contrast, previous works, e.g.,
based on Brueckner-Hartree-Fock (BHF) approaches and
hard-core interactions [32–35] obtained only small non-
quadratic contributions to the symmetry energy.

In a recent study of nuclear matter in many-body per-
turbation theory (MBPT) with contributions from 1π-
exchange, 2π-exchange, and three-body terms involv-
ing virtual ∆(1232)-isobars, Kaiser [36] could not con-
firm such large values for esym,4. Instead, Kaiser found
esym,4 ' 1.5 MeV at nsat, which is still about three times
larger than the FFG contribution. Moreover, Kaiser
found contributions to the energy per particle whose
fourth derivative with respect to δ are singular at δ = 0.
This was further substantiated by analytic MBPT cal-
culations based on an S-wave contact interaction, which
gave rise to a singular term ∝ δ4 log |δ|—a term that only
contributes to the ANM EOS when δ 6= 0 and δ 6= 1, and
which will be referred to as the leading-order logarithmic
term in the following.

Subsequently, Wellenhofer et al. performed a more de-
tailed analysis of such divergences by examining the δ
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TABLE I. Nonlocal N3LO NN and N2LO 3N interactions
used in the MBPT calculations of Ref. [27]. The interac-
tions are based on the N3LO NN potential EM 500 MeV [38]
evolved to the SRG resolution scale λ. The low-energy cou-
plings cD and cE were subsequently fit to the triton binding
energy and the charge radius of 4He in Ref. [39] for different
combinations of λ and the 3N cutoff Λ3N. The 3N two-pion
exchange is governed by the πN low-energy couplings c1, c3,
and c4, which were taken from the NN potential, except for
H7 which uses the values obtained from the NN partial-wave
analysis (PWA) of Ref. [40]. Hamiltonian H6 has been ex-
cluded as discussed in Section IV B of Ref. [27].

label λ [ fm−1] Λ3N [ fm−1] 3N c1,3,4 cD cE
H1 1.8 2.0 NN potential +1.264 −0.120
H2 2.0 2.0 NN potential +1.271 −0.131
H3 2.0 2.5 NN potential −0.292 −0.592
H4 2.2 2.0 NN potential +1.214 −0.137
H5 2.8 2.0 NN potential +1.278 −0.078
H7 2.0 2.0 PWA [40] −3.007 −0.686

dependence of the nuclear EOS as a function of density
and temperature [37]. They found that the asymmetry
expansion is hierarchically ordered, i.e., the lower-order
coefficients are dominant at high temperature and low
density, but the expansion diverges at δ = 0 with alter-
nating sign in the zero-temperature limit. Around satu-
ration density, their results indicate that the convergence
of the series expansion is restored for T & 3 MeV. More-
over, they have argued that the logarithmic term at lead-
ing order considerably improves the isospin-asymmetry
expansion at zero temperature and suggested to include
this term in future fits of the EOS.

While mathematically well-defined, it is not clear
whether the aforementioned divergence of the series ex-
pansion in δ substantially impacts the practical usability
of the expansion (1), because corrections remain small
at nuclear densities. Our knowledge of the symmetry
energy, and, more fundamentally, of the nuclear interac-
tion itself, is limited by experimental precision and by
the theoretical understanding of strongly interacting sys-
tems. As a consequence, while the series expansion in the
isospin asymmetry can be determined with high accuracy
when the nuclear interaction and the many-body treat-
ment are fixed (with numerical limitations as discussed
in Ref. [37]), current theoretical uncertainties reduce our
ability to accurately determine high-order contributions
in general. In this paper, we analyze the impact of these
uncertainties on the determination of the symmetry en-
ergy.

III. NUCLEAR-MATTER EQUATION OF
STATE

In this work, we use the explicit ANM calculations
of Ref. [27] at zero temperature to study the impor-
tance of non-quadratic contributions to the symmetry

energy. Specifically, we analyze their results obtained
with the improved (angle averaging) approximation for
normal ordering 3N forces and in a Hartree-Fock single-
particle spectrum. The MBPT calculations in Ref. [27]
are based on the set of six chiral NN and 3N interac-
tions summarized in Table I. These interactions are also
commonly used in nuclear-structure calculations [41–50].
They combine the N3LO NN potential EM 500 MeV [38]
evolved to lower momentum scales λ using the similarity
renormalization group (SRG) with bare N2LO 3N forces
regularized by a nonlocal regulator with momentum cut-
off Λ3N. Hebeler et al. then fit the two 3N low-energy
couplings cD and cE for the different combinations of
λ and Λ3N shown in Table I to the triton binding en-
ergy as well as the charge radius of 4He [39]. Assuming
N2LO 3N forces provide a sufficiently complete opera-
tor basis, and the long-range low-energy couplings c1, c3,
and c4 are SRG-invariant, this approach captures dom-
inant contributions from induced three–body forces due
to the SRG transformation. Note that the ci’s appear
both in the NN and 3N interactions at N2LO. As dis-
cussed in Ref. [27], the spread in the energy per particle
obtained from these nuclear interactions can serve as a
simple uncertainty estimate—though with limited statis-
tical meaning.

A. Energy per particle

The energy per particle in PNM obtained in Ref. [27]
is depicted in the upper panel of Fig. 1 by blue dots (the
lower panel represents the ratio of the energy per par-
ticle over the FFG energy). In this work, we perform
least-squares fits of nonlinear functions to the MBPT
data. Each fit parameter is guided by a (Bayesian) prior,
which distinguishes our parametric fits1 from a standard
χ2 minimization (see the Supplementary Material [29] for
more details). The parametric fits result in the posterior
distributions shown as dark (light) red bands correspond-
ing to 68% (95%) confidence intervals in Fig. 1.

In Fig. 1, we also provide comparisons with the vari-
ational calculation of Ref. [51] (APR), Fock-space for-
mulated Quantum Monte Carlo (QMC) calculations of
Ref. [31] (Wlazlowski et al. 2014), and continuum QMC
calculations using auxiliary field diffusion Monte Carlo of
Ref. [52] (Tews et al. 2016). These calculations were not
only conducted using different many-body approaches,
but also different nuclear interactions: the APR result
uses the Argonne v18 (AV18) NN potential [54] and the
Urbana IX (UIX) 3N force [55], Ref. [31] employs the
nonlocal momentum-space chiral N3LO NN interactions
of Ref. [56] combined with N2LO 3N forces as specified
in Ref. [57], and Ref. [52] uses local coordinate-space chi-
ral interactions constructed in Refs. [58–60]. The first

1 These fits were performed using the lsqfit Python package [53]
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FIG. 1. Comparison of the MBPT predictions for the (a)
energy per particle in PNM [27] (blue points) with the APR
EOS [51] (green squares), QMC calculations Wlazlowski et al.
(2014) [31] (cyan triangles), and Tews et al. (2016) [52] (black
dots) using different chiral EFT Hamiltonians with NN and
3N forces. The latter points include simple estimates for the
EFT truncation error of the chiral expansion. We also show
our fit posterior at 68% (95%) confidence level as dark (light)
red bands. (b) The same comparison but with a different
scaling.

two calculations do not provide theoretical uncertain-
ties, while the latter estimates the standard EFT uncer-
tainty [61]. Note that, in general, order-by-order calcula-
tions are required for estimating EFT truncation errors.
Such calculations are not possible with the chiral Hamil-
tonians given in Table I.

When comparing the approaches using chiral EFT in-
teractions, the QMC calculations of Ref. [52] agree with
the MBPT approach employed in this work within uncer-
tainties above n ≈ 0.08 fm−3, while QMC finds slightly
higher energies at lower densities. In contrast, the QMC
calculations of Ref. [31] find a higher PNM energy per
particle at all densities, by about ≈ 1 MeV. We also
compare the ratio ePNM/e

FFG
PNM as a function of neutron

Fermi momentum kF for the various calculations in the
bottom panel of Fig. 1. In the figure, we can identify the

density region where the ratio exhibits a plateau, indi-
cating a similar scaling of ePNM and eFFG with kF. For
the MBPT calculation, we find the ratio at the plateau
to be ≈ 0.42(1) in PNM at momenta kF ≈ 1.3(2) fm−1,
which describes densities at ≈ nsat/2.

The comparison of the different results in Fig. 1 pro-
vides a qualitative illustration of the uncertainties origi-
nating from the nuclear interactions as well as from the
different many-body approaches. While the MBPT re-
sults of Ref. [27] provide a simple uncertainty estimate,
they do not quantify EFT truncation errors, which can
be significant at n & n0. Future order-by-order calcula-
tions of ANM will enable statistically robust EFT uncer-
tainty estimates using the Bayesian framework recently
developed by the BUQEYE collaboration [62, 63]. In the
present analysis, however, such systematic ANM calcula-
tions are not available. Therefore, we follow the approach
in Ref. [27], and consider the spread of the EOSs due to
the Hamiltonians in Table I as an uncertainty estimate.

B. Landau mass contribution to the symmetry
energy

Non-trivial contributions to the symmetry energy can
arise due to the effective mass, see for instance Eq. (6).
Therefore we characterize these effects here before com-
mencing our analysis of the energy per particle. For this
purpose we start with the single-particle energy ετ (k) in
a Hartree-Fock spectrum (as in Ref. [27]),

ετ (k, n, δ) ≈ k2

2mτ
+ Σ(1)(k, n, δ) . (7)

The first term in Eq. (7) is the single-particle kinetic en-
ergy, while the second term Σ(1) denotes the spin-isospin-
averaged first-order self-energy. We refer the reader to,
e.g., Refs. [27, 64] for more details.

The momentum dependence of the nuclear interactions
can be absorbed by modifying the nucleon mass, which
gives rise to the so-called in-medium effective mass and
the Landau mass. Specifically, Eq. (7) can be approxi-
mated as,

ετ (k, n, δ) ≈ k2

2m∗τ (k, n, δ)
+ Σ(1)(k = 0, n, δ), (8)

where the in-medium effective mass is defined as [65],

m∗τ (k, n, δ)

mτ
=

k

mτ

(
dετ (k, n, δ)

dk

)−1
. (9)

Finally, the Landau mass is defined as the effective
mass (9) evaluated at k=kF.

Several comments regarding the features of the single-
particle energies, the in-medium effective mass, and the
Landau effective mass are given in Appendix A. Here,
we focus on the description of the Landau mass as a
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TABLE II. Fit parameters of the inverse Landau mass con-
sidering linear and quadratic density expansions. The fits
are compared to three Skyrme-type interactions: NRAPR [4],
LNS5 [66], and SAMI [67].

κsat/nsat κsat,2/n
2
sat κPNM/nsat κPNM,2/n

2
sat

[fm3] [fm6] [fm3] [fm6]

linear 3.33(18) − 0.89(19) −

quadratic 6.25(35) −16.9(16) 2.63(14) −11.1(19)

NRAPR [4] 2.75 − 1.40 −

LNS5 [66] 4.12 − 2.19 −

SAMI [67] 3.03 − 2.87 −

function of the density n and asymmetry parameter δ.
We consider the following functional form:(

m∗τ
m

(n, δ)

)−1
= 1 +

(
κsat
nsat

+ τ3δ
κsym
nsat

)
n

+

(
κsat,2
n2sat

+ τ3δ
κsym,2
n2sat

)
n2 , (10)

where τ3 = 1(−1) for neutrons (protons). Note that we
have neglected terms of higher order in δ in Eq. (10). The
parameters κsat, κsat,2, κsym, and κsym,2 are obtained
from fitting the expression (10) (in SNM and PNM) to
the results computed using Eq. (9). The details of our
parametric fits is discussed in the supplementary mate-
rial. The relevant fit parameters, pα, are

pα = {κsat/nsat, κsat,2/n2sat, κPNM/nsat, κPNM,2/n
2
sat} .

(11)
These fit parameters are determined from the predicted
Landau effective masses for each of the six Hamiltoni-
ans. The results of the fits for the inverse of the Landau
mass are given in Table II, where we have considered
both, a linear and a quadratic fit function. The prior
distribution for each of the fit parameters is given by a
normal distribution with mean 0 and standard deviation
100, providing an uninformative prior. The fits are com-
pared to three Skyrme-type interactions: NRAPR [4],
LNS5 [66], and SAMI [67] that satisfy the following con-
ditions: 0.6 6 m∗/m(SNM) 6 0.7, ∆m∗/m > 0 and
40 MeV < Lsym < 60 MeV.

In Fig. 2, we compare the posterior distribution func-
tions for the Landau mass in SNM (top panel) and PNM
(bottom panel), and the input data. The predictions
from the six Hamiltonians are plotted as solid lines, and,
at each density, we calculate the centroid and 1σ interval
given the six Hamiltonians (black points with error bars).
The ±1σ (±2σ) contours of the posterior, correspond-
ing to the 68% (95%) confidence region, are depicted in
red (light red) for the quadratic fit and dark blue (light
blue) for the linear fit. We fit the models to the data in
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FIG. 2. Results of the Bayesian parametric fits of the Lan-
dau mass in (a) SNM and (b) PNM. The 68% (95%) confi-
dence levels for the posterior distribution functions are shown
as dark-shaded (light-shaded) bands. The black lines repre-
sent the individual Hamiltonians, and the black points show
the average over the six Hamiltonians with ±1σ uncertainty
bands.

the range n = 0.15 − 0.17 fm−3 for the linear fit (3 data
points) and from n = 0.07− 0.20 fm−3 for the quadratic
fit (14 data points). These values are chosen to allow for
the ranges to be as large as possible while, at the same
time, ensuring that the fits reproduce the data around
saturation density. While the quadratic fit performs well
even outside the fit interval, down to n ≈ 0.05 fm−3 in
SNM and PNM, the linear fit does not because of the
strong curvature of the Landau mass. The differences be-
tween the linear and quadratic fits are further analyzed
in Sec. V.

The fact that the Landau mass induces non-trivial con-
tributions to the symmetry energy can be seen by explic-
itly including it in the effective kinetic energy

t∗(n, δ) =
tsatSNM

2

(
n

nsat

)2/3 [ m

m∗n(δ)
(1 + δ)5/3

+
m

m∗p(δ)
(1− δ)5/3

]
. (12)
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We will now present our generalized framework to an-
alyze the EOS, using the Landau mass appearing in
Eq. (12), in the following sub-section.

C. Energy expansion in the isospin asymmetry
parameter δ

A general expression for the expansion (1) of energy
observables in nuclear matter was suggested in Ref. [37],
from which we consider all contributions up to δ4, includ-
ing the logarithmic term, and rewrite it as

y(n, δ) ≈ ySNM(n) + ysym,2(n)δ2 + ysym,4(n)δ4

+ ysym,log(n)δ4 log |δ| , (13)

see Eq. (27) of Ref. [37] for more details. In the follow-
ing, we will treat this expression as a parametrization
of the EOS’s δ dependence, in which the coefficients are
determined by parametric fits, rather than a formal ex-
pansion in δ. The term ysym,log,4δ

4 log |δ| originates from
the second-order contribution in the many-body expan-
sion, as explained in Ref [37].

The corresponding contribution to the symmetry en-
ergy ysym is defined as

ysym(n) = yPNM(n)− ySNM(n) . (14)

The non-quadratic contribution to the symmetry energy
is defined as

ysym,nq(n) = ysym(n)− ysym,2(n) . (15)

Note, that since the logarithmic term vanishes in SNM
and PNM, it also does not contribute to the non-
quadratic term (15).

The quantity y in Eq. (13) can be the energy per parti-
cle e, as originally suggested by Kaiser [36], or any other
energy contribution. For instance, it can be the potential
energy y = epot or the effective potential energy y = epot∗

defined as

epot(n, δ) = e(n, δ)− t(n, δ) , (16)

epot∗(n, δ) = e(n, δ)− t∗(n, δ) , (17)

where t and t∗ are the kinetic and effective kinetic energy,
see Eq. (12), respectively. In the following, we use these
notations for analyzing the δ-dependence of the total,
potential, and effective potential energies.

IV. META-MODEL FOR SYMMETRIC AND
NEUTRON MATTER

To describe the MBPT data for the energy per particle
in SNM and PNM, we use in this work a functional form
described by a meta-model (MM) for nuclear matter sim-
ilar to the one suggested in Ref. [17], but generalized to a
potential energy with non-quadratic δ dependence. The
MM is adjusted to MBPT data sampled on a given grid

in the asymmetry parameter δ [27]. This is in contrast
to Ref. [37], who used a finite difference method [68] on
an adjustable grid to determine all derivatives with re-
spect to δ of interest. The MM, instead, provides a flex-
ible polynomial-type approach to nuclear matter, which
allows us to accurately determine the higher-order coef-
ficients in the δ expansion, even for the fixed grid consid-
ered here.

For SNM and PNM, the energy per particle in the MM
reads

eMM
α (n) = t∗α(n) + epot∗α (n) , (18)

where α stands for either SNM or PNM. The kinetic en-
ergy is determined by Eq. (12) with the Landau mass,
see Sec. III B. The potential energies are expanded about
nsat in terms of the parameter

x ≡ n− nsat
3nsat

as follows

epot∗SNM(n) =

N∑
j=0

1

j!
vSNM,jx

j + vlow−nSNM xN+1e
−bsat n

n
emp
sat ,

epot∗PNM(n) =

N∑
j=0

1

j!
vPNM,jx

j + vlow−nPNM xN+1e
−bPNM

n

n
emp
sat ,

where the second term on the right-hand side is a low-
density correction. This correction represents the low-
density contribution of all higher-order terms neglected
in the summation, and scales like xN+1 at leading order,
where N is the upper limit of the power in the density
expansion. In the original nucleonic MM of Ref. [17],
the low-density EOS correction was simply parameter-
ized by a fixed coefficient b = bsat = bPNM ≈ 6.93. In
the improved MM considered here, we introduce two pa-
rameters (bsat and bPNM) controlling the density depen-
dence of the low-density corrections in PNM and SNM
separately. It was suggested in Ref. [17] that using an
expansion up to N = 4 allows for the reproduction of the
pressure and sound speed of about 50 known energy den-
sity functional (EDF) up to about 4nsat. In principle, it
is not necessary to consider such a high N in the present
analysis. The inclusion of high-order contributions, how-
ever, affects the determination of the low-order ones, as
discussed in Ref. [69], even if the data does not constrain
the high-order terms themselves.

Imposing that the energies per particle vanish at
n = 0 fm−3, we obtain the following relations

epot∗α (n) =

N∑
j=0

1

j!
vα,j x

j uα,j(x) , (19)

where

uα,j(x) = 1− (−3x)N+1−je−bαn/n
emp
sat , (20)

α indicates either SNM or PNM, and the corresponding
bsat or bPNM.



7

In the MM, the coefficients vα,1 to vα,N are related to
the nuclear empirical parameters (NEPs), such as Esat,
Ksat, Esym, Lsym, etc. These relations between the MM
parameters and the NEPs are given in Appendix B for
both SNM and PNM. Here we only note that these re-
lations represent another difference to the original nucle-
onic MM of Ref. [17], where the isovector coefficients were
determined assuming a quadratic isospin-asymmetry de-
pendence of the symmetry energy. The isovector contri-
bution of the present MM is built on the global symmetry
energy (3), which allows for possible non-quadratic con-
tributions to the symmetry energy. These contributions
will be estimated from the difference between the global
symmetry energy and its quadratic contribution, as de-
tailed in Sec. V.

In our MM there are five NEP in SNM, including nsat,
and five additional NEP in PNM. Considering the two pa-
rameters controlling the low-density EOS, bsat and bPNM,
there is a total of 12 parameters that need to be deter-
mined. Note, that these parameters carry uncertainties
that reflect the current lack of knowledge of the nuclear
EOS. In our Bayesian fits, we use the priors for the NEP
from the analysis presented in Refs. [17, 70] and summa-
rized in Table III. Here, we additionally vary the parame-
ters bsat and bPNM to reproduce the low-density behavior
of the energy per particle in SNM and PNM.

We show the fitted parameters in Table III. Note, that
both the posterior and prior of each parametric fit is a
normal distribution with mean value and standard devi-
ation (printed in parenthesis). The posteriors we obtain
for the NEPs may depend on the exact representation
of the data points, i.e., if the data is equidistant in n or
kF. To gauge the sensitivity to this choice, we investi-
gate in the following three possible data representations.
Figure 3 shows the results for these so-called scalings.

Since we require our fit to provide a representation of
low-density nuclear matter (with a fair weight for the low-
density points) in order to fix bsat and bPNM, we adopt
for scaling 1 the representation of e/eFFG as a function
of the Fermi momentum kF. Scaling 1 provides the best
representation for analyzing the low-density properties of
the energy per particle because an equidistant grid in kF
leads to a very dense data set at low densities. Note that,
as mentioned in Sec. III, the original MBPT data [27] is
provided on an equidistant grid in kF. The scaling of
the y-axis normalizes the energies to the same order of
magnitude at all kF. For scaling 2, we choose the rep-
resentation of e/eFFG on an equidistant grid in density.
We use cubic splines to interpolate the energies per par-
ticle from the original Fermi momentum grid to a equally
spaced density grid. By switching from the equidistant
grid in momentum to one in density, scaling 2 reduces the
weight for the low-density data points and, therefore, is
more appropriate to fit the NEPs, which are determined
around saturation density. Finally, scaling 3 represents
the energy per particle on an equidistant grid in density,
as it is more often presented in the literature. Hence, the
only difference to scaling 2 is the normalization of the en-

ergy. The results for each of the three scalings are shown
in Fig. 3 for SNM and PNM, while the posteriors for the
NEPs are given in Table III. Note, that the NEP nsat is
only meaningful in SNM, while its uncertainty influences
the determination of the NEPs in PNM. In our approach,
we therefore vary nsat in PNM within the posterior un-
certainty obtained from the fit in SNM. In this way, the
NEP in PNM naturally include the uncertainty in nsat.

In the case of Scaling 1, when simultaneously vary-
ing the 12 MM parameters, we find bSNM = 17(5) and
bPNM = 42(4) as well as the values for the 10 NEP given
in Table III. The density dependence of the low-density
correction is, thus, very different in SNM and PNM, in
contrast to the original MM of Ref. [17]. We find some
differences between the NEPs obtained from scaling 1
and scalings 2 and 3. These differences are usually small
compared to the uncertainties, except for Qsat in SNM,
as well as QPNM in PNM. We note that the fits from
scalings 2 and 3 are identical and, hence, the scaling of
the energy with respect to eFFG has a negligible effect.

Finally, we fix the values for bsat and bPNM from scal-
ing 1, and re-fit all remaining NEP considering scaling 3.
The results are referred to as scaling 3∗. Fixing bSNM

and bPNM has the largest impact on Qsat and QPNM, as
expected, but differences between scaling 3 and 3∗ are
small compared to the overall uncertainties. Hence, we
conclude that the parameters bSNM and bPNM do not have
a significant impact on the determination of the NEPs,
and can be fixed from the fit to low-density matter (scal-
ing 1). We stress that for the higher-order NEPs Zsat

and ZPNM our analysis simply returns the prior, which
implies that they are not constrained by our data. This
is because the density range of the MBPT data is limited
to densities n . 0.21 fm−3. However, they contribute to
the uncertainty of the other NEPs [69].

For the NEPs describing nuclear saturation we ob-
tain from scaling 3, nsat = 0.161(7) fm−3, Esat =
−15.17(57) MeV, and Ksat = 226(18) MeV. The re-
sults are consistent with the original analysis in Ref. [27],
which obtained nsat = 0.143 − 0.190 fm−3, Esat =
−(15.1− 18.3) MeV, and Ksat = 223− 254 MeV using a
Hartree-Fock spectrum. However, our uncertainties are
generally smaller because we explicitly guide the fits in
Fig. 3 by empirical (or “expert”) knowledge [17] through
prior distributions of the fit parameters. In PNM, where
empirical constraints are lacking, the fits are therefore
closer to the MBPT data.

V. SYMMETRY ENERGY

Using the results obtained in Secs. III B and IV, we now
determine the properties of the symmetry energy and the
relative contributions of the quadratic and non-quadratic
terms.
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TABLE III. Priors and posteriors of the NEP from analyses of SNM and PNM. We report results for the different scalings
described in the text. Values within parentheses represent the error bars at the ±1σ level. NEPs for the following three
Skyrme-type interactions are given: NRAPR [4], LNS5 [66] and SAMI [67].

Scaling nsat Esat Ksat Qsat Zsat bsat

(fm−3) (MeV) (MeV) (MeV) (MeV)

prior 0.160(10) −15.50(100) 230(20) −300(400) 1300(500) 0(50)

1 0.166(8) −15.48(58) 211(14) −573(133) 1055(474) 17(5)

2 0.163(8) −15.07(57) 227(18) −172(243) 1287(499) 9(5)

3 0.163(8) −15.07(57) 227(18) −172(243) 1287(499) 9(5)

3* 0.161(7) −15.17(57) 226(18) −306(186) 1324(497) 17†

NRAPR [4] 0.161 −15.85 226 −363 1611

LNS5 [66] 0.160 −15.57 240 −316 1255

SAMI [67] 0.159 −15.93 245 −339 1330

Scaling nsat EPNM LPNM KPNM QPNM ZPNM bPNM

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

prior − 16.00(300) 50(10) 100(100) 0(400) −500(500) 0(50)

1 0.166(8)†† 16.61(93) 48(5) 40(37) −320(224) −388(494) 42(4)

2 0.163(8)†† 16.30(93) 47(5) 75(40) 34(285) −504(497) 15(9)

3 0.163(8)†† 16.30(93) 47(5) 75(40) 34(285) −504(497) 15(9)

3* 0.161(7)†† 16.16(89) 46(5) 57(34) −110(206) −450(492) 42†

NRAPR [4] 0.161 18.33 65 108 −52 −236

LNS5 [66] 0.160 15.29 57 130 −34 −416

SAMI [67] 0.159 13.32 47 127 35 −873

† Fixed parameter. †† Quoted values are the nsat priors considered in PNM and obtained from SNM posteriors.

A. Global symmetry energy esym

The global symmetry energy esym is determined from
our fits in PNM and SNM, see Eq. (3) and Sec. IV, and
the contributions of the potential energies epotsym, and epot∗sym

are obtained from esym following,

epotsym(n) = esym(n)− tPNM(n) + tSNM(n) , (21)

epot∗sym (n) = esym(n)− t∗PNM(n) + t∗SNM(n) . (22)

We use the fits of the Landau mass discussed in Sec. III B
to determine t∗, including its uncertainties, as explained
in the following.

We present these quantities in Fig. 4 as functions of
the density n. For esym, the data points are obtained
from the PNM and SNM data, and their uncertainties
are defined by the arithmetic average of the PNM and

SNM error bars. For the model, we employ the symmetry
energy determined from the MM, which is defined as

eMM
sym(n) = eMM

PNM(n)− eMM
SNM(n) . (23)

The results shown in Fig. 4 are obtained from the best
fits to SNM and PNM (scaling 3∗ in Table III), where the
width of the bands is defined as the arithmetic average of
the widths in SNM and PNM. The model results, there-
fore, depend on the choice of prior in SNM and PNM, in
particular, on the prior knowledge of the saturation den-
sity and energy considered in SNM, see the discussion of
Fig. 3. For this reason, the MM uncertainty for the sym-
metry energy is slightly smaller than the uncertainty of
the data in Fig. 4. At nuclear saturation density, nsat =
0.161(7) fm−3, the data suggest esym = 30.70(140) MeV,
while the MM leads to esym = 31.33(106) MeV. Our val-
ues for the symmetry energy are in good agreement with
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FIG. 3. Comparison of the Bayesian inference results for the MM of this work (red bands) with the MBPT data (blue points)
for SNM (panels (a),(b),(c)) and PNM (panels (d),(e),(f)) and the three different scalings described in the main text. The
bands are given at the 65% (dark-shaded) and 95% confidence level (light-shaded), whereas the data points are shown with the
±1σ uncertainty estimate.
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FIG. 4. Results for the (a) symmetry energy, esym(n), (b) its potential contribution epotsym, and (c) the effective potential epot∗sym

using (21) - (22). The meaning of the individual bands and points is the same as in Fig. 3. In the right panel, the light- and
dark-shaded red bands and the data (blue points) correspond to calculations where the Landau mass is represented by a linear
polynomial. The black squares (without error bars) and the black dashed lines (enclosing a band) represent calculations where
the Landau mass is represented by a quadratic fit.

the fiducial value of 31.6± 2.7 MeV in Ref. [71], with the
recent Bayesian analysis in Refs. [62, 63] that fully quan-
tifies correlated EFT truncation errors with chiral NN
and 3N interactions up to N3LO, 30.9(11) MeV at the
canonical saturation density, with the value of 30(3) MeV
in Ref. [72] (E1), and the range 29−35 MeV obtained in
Ref. [73]. Similarly, we predict Lsym = 46.2(49) MeV,
while Lsym = 58.9(160) MeV was found in Ref. [71],
Lsym = 58.4(48) MeV in Refs. [62, 63] at the canonical

saturation density, and the range Lsym ∈ [43, 67] MeV in
Ref. [73]. The determination of Lsym, however, is sensi-
tive to the densities at which the value is extracted as
well as to the interactions employed.

The data for epotsym and epot∗sym are obtained from esym
using Eqs. (21) and (22). In the case of epot∗sym , the ef-
fective mass is fixed to be the best fit using either the
linear or the quadratic density expansion (depicted by
dashed lines in the right panel), and the uncertainty of
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epot∗sym is defined as the arithmetic average of the uncer-
tainties of esym, t∗PNM and t∗SNM. Therefore, the un-
certainty of epot∗sym also includes the uncertainties in the
Landau mass parameters κsat and κPNM. We observe
that there is a large impact of the Landau mass on epot∗sym ,

compared to epotsym with the bare mass. At nsat, we ob-

tain epotsym = 18.1(7) MeV and epot∗sym = 25.7(14) MeV.
Hence, the Landau mass increases the potential part of
the symmetry energy by about 30− 40% as discussed in
the introduction. These numbers are compatible with the
expectations for the complementary contribution from
the kinetic energy. We find tPNM(nemp

sat )− tSNM(nemp
sat ) =

13.0 MeV and t∗PNM(nemp
sat )− t∗SNM(nemp

sat ) = 5.4(13) MeV.

For epot∗sym , we expect a difference when using either a
Landau mass that is linear or quadratic in density, see
Fig. 2. In Fig. 4 we show two results for epot∗sym . The
blue data points and the dark-shaded (light-shaded) red
bands correspond to the results at 68% (95%) confidence
level when using a Landau mass linear in density. The
black squares and the black-dashed lines, encompassing
the corresponding 68% confidence interval, represent cal-
culations with a Landau mass quadratic in density. In-
terestingly, the values for epot∗sym obtained from these two
functions for the Landau mass differ only by about 1.8%,
which is quite small. We, therefore, use only the linear
fit for the Landau mass in the following.

B. Quadratic contribution to the symmetry energy

The quadratic contribution to the symmetry energy,
esym,2, is defined in Eq. (2) as the local curvature in
the isospin-asymmetry parameter δ in SNM. In the fol-
lowing, we extract esym,2 using this expansion around
SNM, but also suggest obtaining esym,2 from an expan-
sion around PNM. We demonstrate that both definitions
provide comparable results.

1. Expansion around SNM

The quadratic contribution to the symmetry energy
is defined by Eq. (2) relative to the SNM EOS. To de-
termine this contribution directly from the MBPT data,
we employ Eq. (1) up to the fourth order in δ, and fit
the coefficients esym,2 and esym,4 using a standard least-
squares minimization. The fits are performed in the
range, δ = 0.0 − 0.5. We have checked that the results
are insensitive (within variations of about 0.1 MeV) to
the upper limit of this range—as long as it is chosen to
be δ > 0.5.

For the model, we express esym,2(n) as a function of
the density using the MM contribution to the quadratic

symmetry energy,

eMM
sym,2(x) =

5

9
tSNM(x) +

N∑
j=0

xj

j!

[
vsym2,juj(x, δ = 0)−

vSNM,j

(
uj(x, δ = 0)− 1

)
(1 + 3x)bsym

]
,(24)

where the parameters vsym2,i are determined using
a Bayesian parametric fit (that was introduced in
Sec. III A), as before for other quantities. Their rela-
tion to the quadratic symmetry energy NEPs are given
in Appendix B. The parameter bsym ≡ bPNM − bSNM is
fixed by the 3∗ fit.

The contributions to the symmetry energy due to the
potential energy are determined from the following ex-
pressions,

epotsym,2(n) = esym,2(n)− 5

9
tSNM(n) , (25)

epot∗sym,2(n) = esym,2(n)− 5

9
tSNM(n)

[
1 + (κsat + 3κsym)(

n

nsat

)
+ (κsat,2 + 3κsym,2)

(
n

nsat

)2]
.(26)

Our results for esym,2, epotsym,2, and epot∗sym,2 are shown in

the first row of Fig. 5. At nemp
sat , we find esym,2(nemp

sat ) =

30.0(4) MeV, epotsym,2(nemp
sat ) = 17.7(4) MeV and

epot∗sym,2(nemp
sat ) = 26.4(1.7) MeV (with the linear density-

dependent model for the Landau mass). The large value

of epot∗sym,2(nemp
sat ), almost 90% of esym,2(nemp

sat ), originates
from the isospin dependence of the Landau mass, en-
coded by κsym.

From the fit model (24), we obtain an estimate for the
NEPs that govern the quadratic contribution to the sym-
metry energy at the inferred value of nsat. The values are
given in the first row of Table IV. Our result for Esym,2 is
about 1 MeV below the total symmetry energy, Esym—
the difference is due to non-quadratic contributions.

2. Expansion around PNM

An alternative approach is to determine the contribu-
tion esym,2 from an expansion around PNM. Since the
MBPT approach used here is able to explore asymmetric
matter with arbitrary δ, we can test the accuracy of this
alternative expansion.

To this end, we introduce the parameter

η = 1− δ = 2np/n , (27)

which is twice the proton fraction. Equation (1) can now
be re-expressed in terms of the this parameter,

e(η) = ePNM − 2(esym,2 + 2esym,4)η + (esym,2 + 6esym,4)η2

−4esym,4η
3 + esym,4η

4 +O(η5) . (28)
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FIG. 5. Comparison of the extracted esym,2, epotsym,2, and epot∗sym,2 using Eqs. (24), (25), and (26) (panels (a), (b) and (c)) and via
an expansion around PNM, i.e., using Eq. (31) (panels (d), (e) and (f)). Panels (g), (h) and (i) show the difference between
the δ and η expansions.

TABLE IV. Posteriors of empirical parameters obtained from the analysis of the δ and η expansions for esym,2. Values
inside parentheses represent error bars at the ±1σ level. Results for the following three Skyrme-type interactions are given:
NRAPR [4], LNS5 [66] and SAMI [67].

Expansion nsat Esym,2 Lsym,2 Ksym,2 Qsym,2 Zsym,2 bsym

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

Prior - 31.50(350) 50(10) −130(110) −300(600) −1800(800)

δ (SNM) 0.161(7)† 30.16(83) 47(3) −146(43) 90(334) −1865(793) 25††

η (PNM) 0.161(7)† 30.02(82) 46(3) −149(46) 93(352) −1875(793) 25††

NRAPR [4] 0.161 32.78 60 −123 312 −1836

LNS5 [66] 0.160 29.15 51 −119 286 −1672

SAMI [67] 0.159 28.16 44 −120 372 −2180

† Priors taken from the SNM posteriors in Table III. †† Fixed value.

From Eq. (28), it follows then

ePNM
sym,2(n) = −3

4

∂e

∂η

∣∣∣∣
η=0

− 1

4

∂2e

∂η2

∣∣∣∣
η=0

. (29)

We determine ePNM
sym,2 and ePNM

sym,4 from fitting the func-
tion

e(n, η) = ePNM(n) + a1(n)η + a2(n)η2 +O(η3) .(30)

with

ePNM
sym,2(n) = −1

4
[3a1(n) + 2a2(n)] , (31)

ePNM
sym,4(n) = +

1

8
[a1(n) + 2a2(n)] , (32)

at each density to the computed energies per particle
at η = 0.0, 0.1, 0.2, and 0.3. Again, we also perform a
Bayesian fit using Eq. (24). The two quantities are shown
in the second row of Fig. 5, together with the potential
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terms epot,PNM
sym,2 and epot∗,PNM

sym,2 . The NEPs obtained from

Eq. (24) are given in the second row of Table IV. Note,
that the differences between the NEPs extracted around
SNM [using Eq. (2)] and around PNM [using Eq. (29)] are
much smaller than the uncertainties of these NEPs, which
demonstrates that the two approaches are consistent with
one another. This is further illustrated in the third row
of Fig. 5, where the difference between eSNM

sym,2 and ePNM
sym,2

is shown to be consistent with zero and a small width
of about 1.5 MeV at nsat. Note that the width here
is calculated as the arithmetic average of the widths of
eSNM
sym,2 and ePNM

sym,2.
Determining the quadratic contribution to the symme-

try energy from an expansion around PNM might be ben-
eficial because PNM can usually be computed with much
higher accuracy since the uncertainties in the 3N inter-
actions are reduced. Furthermore, such an extraction is
useful for microscopic approaches in which a small pro-
ton impurity can be treated more easily than SNM, e.g.,
the auxiliary-field diffusion Monte Carlo approach [72].

C. Non-quadratic contribution to the symmetry
energy esym,nq and esym,4

We now evaluate the contribution of the non-quadratic
terms, defined by Eq. (15), using the expansions around
SNM and PNM, respectively. For the global symme-
try energy, we use our model (23), while for describing
the quadratic contribution we use the fit (24). Figure 6
shows our results for the expansion around SNM (blue)
and the expansion around PNM (red). Both expansions
agree, and the differences are smaller than the uncer-
tainties by a factor of 2 − 3. We also show results for
the six Hamiltonians. Their spread is much smaller than
the uncertainties of the data or the model. This is be-
cause the latter are computed as arithmetic averages of
the error bars of the global symmetry energy and the
quadratic contribution. Such an average neglects the cor-
relations between the two, leading to an overestimation
of the error-bars. At nemp

sat , we obtain from our model
esym,nq = 1.3(10) MeV, epotsym,nq = 0.6(10) MeV, epot∗sym,nq =
−0.5(22) MeV. For the individual Hamiltonians, we ob-
tain esym,nq = 0.74+0.11

−0.08 MeV, epotsym,nq = 0.04+0.11
−0.08 MeV,

epot∗sym,nq = −1.02+0.11
−0.08 MeV, where the error bars are due

to the different Hamiltonians.
We find that these non-quadratic contributions rep-

resent a correction of about 3 − 5% to the symmetry
energy. They originate mainly from the kinetic energy,
since epotsym,nq remains close to zero across all densities.
Our model estimates for the non-quadratic contributions
to the symmetry energy and the NEPs are summarized in
Table V. We also compare the present NEPs to the three
selected Skyrme interactions, showing a good agreement
between the microscopic results and the EDF approaches.

We calculate the quartic contribution to the symme-
try energy esym,4 using Eq. (32), and show the result-
ing NEPs in Table V. We find that the quartic term to

the symmetry energy accounts for about 60 − 70% of
the total non-quadratic contribution, while the remain-
ing 30 − 40% originate from higher-order contributions.
The convergence of these additional contributions is dis-
cussed in Ref. [37]. We stress that this does not include
any logarithmic contribution because such a contribution
would vanish in PNM.

A recent analysis based on a general EDF approach—
which was optimized to the properties of finite nuclei—
concluded that quartic terms ∝ δ4 have little impact
on nuclei [74]. The result was interpreted as a conse-
quence of the fact that the asymmetry δ in finite nu-
clei is small: for Z > 8 it varies between −0.33 and
+0.38 in the latest Atomic Mass Data Center mass table
AME2016 [75]. A quartic term was, however, found to
be important to correctly reproduce the PNM energy per
particle. In order to reproduce the PNM energy per par-
ticle predicted in Ref. [31], Ref. [74] found a quartic term
of esym,4 = 2.635 MeVat n = 0.1 fm−3. This term was the
only non-quadratic contribution considered in Ref. [74],
and is consistent within our upper 68% confidence inter-
val for the non-quadratic contribution to the symmetry
energy. The higher value for esym,4 obtained in Ref. [74]
might be related to the larger value in the PNM energy
per particle obtained in Ref. [31], as shown in Fig. 1.
This affects the symmetry energy because the contribu-
tion esym,4 is needed to correctly reproduce the PNM
EOS. Both, the PNM energy per particle in Ref. [31] and
esym,4 obtained in Ref. [74] are ≈ 1 MeV higher than the
values we obtain in the this work.

D. Logarithmic contribution to the symmetry
energy esym,log

The leading-order logarithmic contribution to the sym-
metry energy, see Eq. (13), was suggested to be of the
form δ4 log |δ| [36, 37]. It, therefore, vanishes in both
SNM and PNM, and data at finite isospin asymmetry are
required to determine its magnitude. Such a logarithmic
term would appear by a characteristic arch-like struc-
ture in the δ-dependent residuals between the data and
a model without the logarithmic term. Figure 7 shows
these residuals as a function of δ at three different den-
sities. For asymmetric matter, we use

ymodel(n, δ) = ySNM(n) + ysym,2(n)δ2 + ysym,nq(n)δ4 ,
(33)

where eSNM, esym,2 and esym,nq are given by Eqs. (18),
(24), and (15). Note that in the model (33), the fourth-
order δ term also includes possible higher-order contribu-
tions (like, for instance, a δ6 term) contained in the term
ysym,nq. The different panels in Fig. 7 show the resid-

uals at three densities, n = 0.06, 0.12, and 0.16 fm−3

(from the top to the bottom panel), and for the three
choices for the variable y: e, epot, and epot* (from left
to right) as a function of the isospin asymmetry δ. The
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FIG. 6. Non-quadratic terms (a) esym,nq, (b) epotsym,nq and (c) epot∗sym,nq calculated via an expansion around SNM (blue) and PNM
(red). For panel (c), the Landau mass is described by a linear fit. The coloured lines depict results for the six individual
Hamiltonians.

TABLE V. Posteriors of non-quadratic and quartic NEPs obtained from the analysis of esym,nq using the δ and η expansions,
and esym,4 obtained from the η expansion only. For the extraction of esym,nq via the η expansion, the values inside the square
brackets are obtained from a fit to the data in order to provide a direct comparison to the corresponding analysis of esym,4.
Values in parenthesis represent the ±1σ uncertainties. The NEPs for the following three Skyrme-type interactions are given:
NRAPR [4], LNS5 [66], and SAMI [67].

Non-quadratic Esym,nq Lsym,nq Ksym,nq Qsym,nq Zsym,nq

contribution (MeV) (MeV) (MeV) (MeV) (MeV)

SNM 1.2(15) 0(6) −24(58) 106(426) 91(1057)

PNM 1.3(15) 1(6) −20(60) 103(441) 101(1058)[
0.84(7)

] [
0.7(8)

] [
− 9(13)

] [
32(151)

] [
167(958)

]
NRAPR [4] 1.40 5 6 −1 −12

LNS5 [66] 1.70 6 9 −4 1

SAMI [67] 1.08 3 2 2 −24

Quartic Esym,4 Lsym,4 Ksym,4 Qsym,4 Zsym,4

contribution (MeV) (MeV) (MeV) (MeV) (MeV)

PNM 1.00(8) 0.6(6) −7(12) 69(145) 33(956)

NRAPR [4] 0.95 3 4 −1 −6

LNS5 [66] 1.17 5 6 −4 3

SAMI [67] 0.70 2 2 1 −15

squares (shaded bands) represent the mean (68% confi-
dence level) of the residuals. The presence of logarithmic
terms would appear as a systematic deviation of the these
residuals from zero in asymmetric matter. However, this
is not what we observe at the three considered densi-
ties and for all energy observables. Instead, we find the
residuals to be compatible with zero and almost flat as a
function of the isospin asymmetry. This is also the case
for the results for each Hamiltonian, which we show as

coloured lines. The results for the individual Hamilto-
nians vanish on average, but the uncertainty bands re-
main quite sizable, about ±1−2 MeV around saturation
density. Therefore, our findings suggest that there is no
statistically significant indication for a net logarithmic
contribution to the symmetry energy for the chiral NN
and 3N Hamiltonians used in this work.

Our conclusion about the strength of the logarithmic
term is not in contradiction with the findings presented
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FIG. 7. Residuals R of the model, see Eq. (33), with respect to the data as a function of the asymmetry parameter δ for
different values of the density: n = 0.06 fm−3 (panels (a),(b),(c)), n = 0.12 fm−3 (panels (d),(e),(f)), and n = 0.16 fm−3 (panels
(g),(h),(i)). The results are shown for the two different calculations of ysym,2 and ysym,nq—the expansions around PNM (red)
and SNM (blue). The different columns correspond to e, epot, and epot,∗. The coloured lines depict the residuals of the fit for
each Hamiltonian. In the last column, the black-dashed lines represent the upper and lower limits of the uncertainty in the
residuals, respectively, by disregarding the uncertainties in the effective masses.

in Refs. [36, 37]. The logarithmic term in Ref. [37] was
found to improve the description of the isospin depen-
dence of the energy per particle by at most ≈ 0.1 MeV,
shown for one Hamiltonian2 in Fig. 9 of Ref. [37]. Such
contributions of the order of ≈ 0.1 MeV are small com-
pared to the overall theoretical uncertainties in this work,
which we estimate by analyzing the six Hamiltonians in
Table I.

VI. IMPACT ON THE NEUTRON-STAR
CRUST-CORE TRANSITION

In this section, we study the impact of the non-
quadratic contribution to the symmetry energy on the
crust-core transition in neutron stars, for which the sym-
metry energy plays an important role [77–79]. This tran-
sition occurs at the core-crust transition density ncc with
an isospin asymmetry δcc that is determined by the beta-
equilibrium. The parameters ncc and δcc can be obtained
from uniform matter by determining the density at which

2 This is the n3lo450 interaction constructed in Refs. [38, 57, 76],
which is not considered in this work.
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FIG. 8. Predictions for beta equilibrium in low-density uni-
form matter obtained by solving Eq. (35), and for the spin-
odal density by solving Eq. (34). The intersection denotes the
crust-core transition, as indicated by a dot in the inset. The
quadratic approximation (red band) is compared to the case
where quartic contributions are included (blue band).

matter becomes unstable with respect to density fluctu-
ations (spinodal instability) [77].
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In multi-component matter, e.g., matter that consists
of neutrons and protons, this spinodal density is deter-
mined from the curvature (Hessian) matrix C, defined as
the second derivative of the energy density with respect
to the component densities [77]. From the eigenvalues
of C, one can determine the stability of matter: if all
eigenvalues are positive, i.e. if C is positive semi-definite,
the matter exhibits a local stability against density fluc-
tuations of all components in any combination, while a
change of sign for any eigenvalue triggers an instability
with respect to density fluctuations indicated by its asso-
ciated eigenvector. The change of sign of the eigenvalues
can be extracted from the determinant of C, which reads
in nuclear matter,

det C(n, δ) =
∂µn
∂nn

∂µp
∂np
− ∂µn
∂np

∂µp
∂nn

, (34)

where µn and µp are the neutron and proton chemical
potentials. For simplicity, we have neglected the finite-
size contribution from the Coulomb interaction as well
as the gradient density terms induced by the finite range
of nuclear interactions. It is expected that these terms
reduce the spinodal density by only ≈ 0.01 fm−3 [77, 79].

In sub-saturation asymmetric matter, the equilibrium
state is the state that satisfies the chemical potential
equilibrium µn = µp + µe, at fixed baryon number
n = nn + np and charge neutrality ne = np. At zero
temperature, and considering relativistic electrons, this
system of equations reduces to a single non-linear equa-
tion,√

m2
e +

(
3π2

2
(1− δβ)n

)2/3

= 2
∂e(n, δβ)

∂δ
, (35)

whose solution, δβ(n), is obtained by using a combination
of the bisection and the secant methods implemented in
the Python package of Ref. [80]. Then, we define the
crust-core transition as the solution (ncc, δcc) to both,
the instability onset criterion, det C = 0, and the beta
equilibrium condition, e.g., Eq. (35). Equivalently, ncc
is defined as the spinodal density in beta equilibrium,
where δcc = δβ(ncc). Figure 8 shows the intersection
between these two determinations. We investigate the
purely quadratic approximation for the symmetry energy,
with the NEPs given in Table IV, and with the quartic
terms from Table V included. For all cases, the refer-
ence MM in SNM is determined by the best fit given in
Table III for the scaling 3∗.

When we include quartic contributions, the spinodal
density in neutron-rich matter is increased compared to
the case where only the quadratic term is considered.
This is because the quartic term increases the symme-
try energy. For the same reason, the isospin asymme-
try is decreased when non-quadraticities are included.
Our results are summarized in Table VI, and depicted
in Fig. 8 by the blue and red points. They are in agree-
ment with the predictions of, e.g., Refs. [78, 79] with
Lsym,2 ≈ 45 MeV. From the comparison of our results

TABLE VI. Crust-core transition density and isospin asym-
metry, ncc and δcc, respectively, for the purely quadratic case
(δ2 only) and for the case including the quartic contribution
(δ2 + δ4), see Eq. (33).

Model ncc (fm−3) δcc

δ2 only 0.083(5) 0.944(5)

δ2 + δ4 0.087(4) 0.935(6)

with and without the quartic term, we find that the tran-
sition density changes by ≈ 5% while δcc changes by only
≈ 1%.

VII. SUMMARY AND CONCLUSIONS

We have analyzed the properties of asymmetric nuclear
matter based on MBPT calculations [27] for six com-
monly used chiral EFT Hamiltonians with NN and 3N
interactions. The global symmetry energy, i.e., the dif-
ference between EOS in the limits of PNM and SNM, as
well as its quadratic and quartic contributions have been
determined with theoretical uncertainty estimates. We
have calculated the quadratic contribution to the sym-
metry energy from the usual expansion around SNM, and
have also employed a non-standard approach using an ex-
pansion for small proton fractions around PNM. The two
approaches are in excellent agreement. Furthermore, we
have investigated the strength of the non-quadraticities
as well as their model dependence. The non-quadratic
contribution to the symmetry energy was found to be
0.74+0.11

−0.08 MeV (and −1.02+0.11
−0.08 MeV for the effective

potential part). We have then investigated the leading-
order logarithmic term to the symmetry energy, and ob-
tained residuals between our best fit (including quadratic
and quartic contributions) and the data to be compatible
with zero. In particular, we found that all residuals where
flat in the isospin asymmetry δ, indicating no systematic
deviation from zero as expected for a logarithmic contri-
bution. However, we also saw that present uncertainties,
indicated by the dispersion of the six Hamiltonians of
about 1 − 2 MeV, are too large to precisely determine
its strength. For a more recent and complementary ap-
proach, see Ref. [81], where the authors have extracted
high-order terms using precise modified finite difference
methods.

We analyzed the impact of our results on the deter-
mination of the crust-core transition in neutron stars
using a simple model in the thermodynamic limit. We
found that the crust-core transition density is increased
by ≈ 5%, and the associated isospin-asymmetry δ de-
creased by ≈ 1% when non-quadraticities are included.
Hence, these contributions are only small corrections, but
need to be included for a precise calculation of the core-
crust transition properties.
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To gauge the full theoretical uncertainties of the non-
quadratic contributions to the symmetry energy, future
analyses need to explore a wider range of nuclear interac-
tions and additional asymmetric-matter calculations us-
ing different many-body approaches and regularization
schemes. In particular, this requires the development of
improved chiral NN and 3N interactions up to N3LO [82–
84], which will enable order-by-order analyses of the
neutron-rich matter EOS with statistically meaningful
uncertainty estimates derived from chiral EFT [62, 63].

Finally, at densities beyond those explored in this
work, heavier baryonic degrees of freedom, such as hy-
perons, could become relevant. The development and
improvement of models that include such degrees of free-
dom is a crucial task for future work, e.g., along the lines
of Refs. [85, 86]; see also Refs. [87, 88] for recent reviews.
Our work provides a framework, e.g., Python codes [28]
and Supplemental Material [29] related to our data, for
future investigations of the isospin-dependence of nuclear
matter.
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versité de Lyon. R.S. and J.M. are both supported
by the CNRS/IN2P3 NewMAC project, and are also
grateful to PHAROS COST Action MP16214 and to
the LABEX Lyon Institute of Origins (ANR-10-LABX-
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Appendix A: Analysis of the single particle
spectrum and the effective mass

In Sec. III B we introduced the single particle energies,
the in-medium effective mass and the Landau effective
mass. In this appendix we quantitatively discuss several
of their properties.

First, we consider the single particle energies calcu-
lated from Eq. (7). Figure 9 shows the single-particle
energy εn(k) in SNM and PNM evaluated at nemp

sat . The
left (right) panel depicts the NN-only (NN+3N) results,
and the vertical lines mark the position of the neutron

Fermi momentum in SNM (kF,SNM = 1.33 fm−3) and

PNM (kF,PNM = 1.68 fm−3) associated with the nuclear
saturation density, nemp

sat . The different curves show the
results for the six Hamiltonians H1 to H7 specified in Ta-
ble I. The spread is larger in SNM (about 15 MeV) com-
pared to PNM (about 5 MeV) because the 3N short- and
intermediate-range contributions governed by cD and cE
do not contribute to the PNM EOS for nonlocal regula-
tor functions. As expected, SNM is more attractive than
PNM, as a result of the attractive contributions from the
T = 0 channels, which are absent in PNM.

Let us now move on the the in-medium effective masses
calculated using Eq. 9. The effective masses in SNM and
PNM are shown in Fig. 10 as functions of the momentum
k at a fixed density nemp

sat . The effective masses are lower
in SNM compared to PNM, in agreement with BHF cal-
culations [32, 89, 90]. We find that the inclusion of 3N
forces leads to several interesting effects on the effective
mass: (a) 3N forces generate a stronger momentum de-
pendence compared with NN-only calculations, and (b)
3N forces have a larger impact on PNM than on SNM.
Furthermore, the dispersion among the different Hamil-
tonians is slightly larger when 3N forces are included.
From Fig. 10, we find for the Landau mass m∗n/m(δ=
0) = 0.64(2) in SNM and m∗n/m(δ=1) = 0.88(4) in PNM
when 3N forces are included. The difference between the
Landau mass in PNM and SNM at saturation density,
defined as

Dm∗n,sat = m∗n(nsat, δ = 1)−m∗n(nsat, δ = 0) , (A1)

is about Dm∗n,sat = 0.24(5) at nsat.

In Fig. 11, we show the Landau mass (left) and its
inverse (right) considering NN-only forces (dashed lines)
and NN and 3N forces (gray bands) in SNM and PNM as
a function of the density, n. The difference of the Landau
masses in PNM and SNM, Dm∗n(n), increases with den-
sity, and is found to be about 0.24 at saturation density,
see also Fig. 10. While it is usually found that the Lan-
dau mass decreases with density [32, 89, 90], we find that
in PNM the Landau mass first decreases at lower density,
but increases again for n > 0.1 fm−3 (except for Hamil-
tonian H3, which has a higher momentum cutoff applied
to the 3N forces). This effect is due to the inclusion of
3N interactions in the Hamiltonian.

Because many energy density functional (EDF) ap-
proaches approximate the inverse of the Landau mass
by a linear function in density [30], we show the inverse
Landau mass in the right panel of Figure 11. In contrast
to the EDFs approaches, we find that the density depen-
dence of the inverse Landau mass is not linear, and that
3N forces enhance the nonlinear behavior.

Finally, we study the splitting of the neutron and pro-
ton Landau masses in ANM, defined as

∆m∗sat(δ) = m∗n(nsat, δ)−m∗p(nsat, δ) . (A2)
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FIG. 9. The neutron single-particle energies εn(k) as a function of the momentum k calculated at nemp
sat , and extracted from the

MBPT calculations of Ref. [27]. The different colors correspond to the six Hamiltonians as labeled in the legend. We show the
single particle energies obtained from (a) only NN forces and (b) when including 3N contributions. In each panel, we present
results for both SNM and PNM.
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FIG. 10. Same as Fig. 9 but for the neutron effective mass as function of the momentum k.

In PNM (δ = 1), this splitting can be expressed in terms
of the difference Dm∗sat, see Eq. (A1), as

∆m∗sat
m

(PNM) ≈
Dm∗n,sat

m
+O

((
κsym + κsym,2

1 + κsat + κsat,2

)2
)
.

(A3)
From our fits estimated in Sec. III B, we can estimate that
the neglected terms account for about 5% of the splitting
(more precisely, 7% for the linear fit of the effective mass,
and 3% for the quadratic fit), which is small consider-
ing the present uncertainty of this quantity. The split-
ting of the Landau mass is, thus, approximately given
by the difference of the Landau mass between PNM and
SNM. The splitting of the Landau mass obtained here
is compatible with the one obtained in the literature for
BHF [32, 91, 92] and Dirac-BHF [89, 90] approaches.

Appendix B: Mapping between meta-model and
Empirical parameters.

In Sec. IV, the meta-model (MM) was introduced in
SNM and PNM. Here, the MM coefficients, vα,1 to vα,N ,
are related to the nuclear empirical parameters (NEPs),
such as Esat, Ksat, Esym, Lsym, etc. The NEPs for SNM
are defined by the density expansion

eSNM(n) = Esat + 1
2Ksatx

2 + 1
6Qsatx

3

+ 1
24Zsatx

4 + . . . , (B1)

whereas the NEPs for PNM are defined by

ePNM(n) = EPNM + LPNMx+ 1
2KPNMx

2

+ 1
6QPNMx

3 + 1
24ZPNMx

4 + . . . . (B2)

In this appendix we give the relations between the MM
parameters and the NEPs. For the isoscalar parameters
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FIG. 11. (a) Landau effective mass and (b) its inverse in SNM and PNM as a function of the density. The black-dashed lines
represent the upper and lower limits when only NN forces are considered, while the grey-shaded regions show the results with
3N forces included. The different colors correspond to the six Hamiltonians as labeled in the legend.

controlling the SNM EOS, we have

vSNM,0 = Esat − tSNM(1 + κsat + κsat,2) , (B3)

vSNM,1 = −tSNM(2 + 5κsat + 8κsat,2) ,

vSNM,2 = Ksat − 2tSNM(−1 + 5κsat + 20κsat,2) ,

vSNM,3 = Qsat − 2tSNM(4− 5κsat + 40κsat,2) ,

vSNM,4 = Zsat − 8tSNM(−7 + 5κsat − 10κsat,2) ,

while the isovector parameters describing the PNM EOS
are

vPNM,0 = EPNM − 2
2
3 tSNM(1 + κPNM + κPNM,2) , (B4)

vPNM,1 = LPNM − 2
2
3 tSNM(2 + 5κPNM + 8κPNM,2) ,

vPNM,2 = KPNM − 2
5
3 tSNM(−1 + 5κPNM + 20κPNM,2) ,

vPNM,3 = QPNM − 2
5
3 tSNM(4− 5κPNM + 40κPNM,2) ,

vPNM,4 = ZPNM − 2
11
3 tSNM(−7 + 5κPNM − 10κPNM,2) .

Moreover, In Sec. V B 1, we encountered the quadratic
contribution to the symmetry energy as given by the MM,
see Eq. 24. The MM parameters appearing in this expres-
sion are related to the quadratic symmetry energy NEPs
as follows:

vsym2,0 = Esym2 −
5

9
tsatSNM[1 + κsat + 3κsym + κsat,2 + 3κsym,2] , (B5)

vsym2,1 = Lsym2 −
5

9
tsatSNM[2 + 5(κsat + 3κsym) + 8(κsat,2 + 3κsym,2)] ,

vsym2,2 = Ksym2 −
10

9
tsatSNM[−1 + 5(κsat + 3κsym) + 20(κsat,2 + 3κsym,2)] ,

vsym2,3 = Qsym2 −
10

9
tsatSNM[4− 5(κsat + 3κsym) + 40(κsat,2 + 3κsym,2)] ,

vsym2,4 = Zsym2 −
40

9
tsatSNM[−7 + 5(κsat + 3κsym)− 10(κsat,2 + 3κsym,2)] .

These relations generalize the ones in Ref. [17] for a
quadratic density-dependent Landau mass.
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