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Recently, Chatterjee et al [Phys. Rev. C 101, 034902 (2020)] used a hadronic transport model
to estimate the resolution with which various experimental quantities select the impact parameter
of relativistic heavy ion collisions at collision energies relevant to the Beam Energy Scan (BES)
program at the Relativistic Heavy Ion Collider (RHIC). Measures based on particle multiplicity at
forward rapidity were found to be significantly worse than those based on midrapidity multiplicity.
Using the same model, we show that a slightly more sophisticated measure greatly improves the
resolution based on forward rapidity particles; this improvement persists even when the model is
filtered through a realistic simulation of a recent upgrade detector to the STAR experiment. These
results highlight the importance of optimizing centrality measures based on particles detected at
forward rapidity, especially for experimental studies that search for a critical point in the QCD
phase diagram. Such measurements usually focus on proton multiplicity fluctuations at midrapid-
ity, hence selecting events based on multiplicity at midrapidity raises the possibility of nontrivial
autocorrelations.

I. INTRODUCTION

A central goal of relativistic heavy ion collision physics
is to probe the nonperturbative regime of quantum chro-
modynamics (QCD) by exploring the phase diagram of
partonic matter as a function of thermodynamic vari-
ables. At very high temperatures achievable at the
Large Hadron Collider or Relativistic Heavy Ion Col-
lider (RHIC), the quark-gluon plasma (QGP) is formed,
a phase in which colored partons are the dynamical de-
grees of freedom [2–5]. Collisions at progressively lower
energies form matter with lower temperature and higher
baryochemical potential, eventually reaching conditions
at which the system is in the hadronic gas phase, in which
partons are confined. Understanding the nature of the
transition between QGP and hadronic matter has been a
central goal of the Beam Energy Scan (BES) program at
RHIC [6, 7]. Of particular interest is a possible critical
point (CP) [8–20] at the terminus of the line character-
izing a first-order phase transition on the QCD phase
diagram, sketched in figure 1.

In an infinite system in equilibrium, measured mo-
ments of conserved quantities such as charge or baryon
number are directly sensitive to the correlation length
of the system. A non-monotonic energy dependence
of higher-order moments (e.g. the kurtosis) of the
net baryon distribution may reveal the a QCD criti-
cal point [22, 23]. The STAR Collaboration has mea-
sured [24] the first four moments of the net-proton (a
stand-in for net-baryon) distribution in heavy ion col-
lisions at collision energies

√
sNN = 7.7 − 200 GeV,

recently reporting non-monotonic behavior at the 3σ
level [25]. This may suggest that the discovery of one
of the long-sought features of bulk QCD is within reach.

However, great care must be taken in this analysis of
small effects, to avoid nontrivial autocorrelations associ-
ated with event selection. In particular, the protons and

FIG. 1. The QCD phase diagram, showing various states of
QCD matter as functions of baryon chemical potential (µB)
and temperature (T). The CP location (and existence) is at
this time not confirmed. [21]

antiprotons used to construct the net-proton distribution
are measured in the rapidity range |y| < 0.5. A critical
feature of the observation is that the interesting behavior
only occurs for the most central collisions, where central-
ity is estimated by the multiplicity of charged particles–
except for protons and antiprotons– with pseudorapidity
|η| < 1. In other words, one looks at (possibly correlated)
fluctuations in the multiplicities of protons and antipro-
tons as a function of charged particle (except proton and
antiproton) multiplicity. Exclusion of the protons and
antiprotons from the centrality measure does not triv-
ially remove autocorrelations (by which we mean mea-
surement of an event-wise quantity while selecting events
with a measure directly related to that quantity), since
very few (anti)protons are “direct.” Almost all are de-
cay products of higher-mass baryons (e.g. ∆++ or N∗)
whose sibling decay products are pions or other charged
particles which are counted in the centrality measure.



2

A recent study by Chatterjee, et al. [1] based on a
hadronic transport model concludes that the effect of
these autocorrelations on the higher-order moments anal-
ysis is small. However, the model employed in the study
does not itself include critical fluctuations, so it is un-
clear how general this theoretical conclusion is. In any
event, it would be useful to check the robustness of the
experimental observation by using a centrality estimator
based on particles not emitted at midrapidity.

The STAR experiment has recently commissioned the
Event Plane Detector (EPD) [26] to upgrade its capa-
bilities in the BES program. The EPD provides highly-
segmented coverage for charged particles emitted in a
wide pseudorapidity range (2.1 < |η| < 5.1) and full az-
imuth. An analysis that used the EPD for a centrality
estimate would be free of potential autocorrelations dis-
cussed above.

Chatterjee and collaborators [1] report that the
summed multiplicity in the EPD acceptance would be
a poor estimator of event centrality, because participant
and spectator contributions are anticorrelated. In what
follows, we extend the study of Chatterjee and demon-
strate that a slightly more sophisticated treatment of the
signal in the EPD region improves the resolution substan-
tially. We show that this improvement persists even when
the model is filtered through a realistic simulation of the
STAR EPD, and that the detector can provide a measure
of centrality with only slightly lower resolution than that
from the STAR Time Projection Chamber (TPC, with
coverage in the pseudorapidity range |η| < 1), but with
no autocorrelation.

The paper is structured as follows: In Section II we
describe the construction of global centrality estimators
from collision data or the output of transport calcula-
tions. We then discuss the EPD and limitations imposed
by finite spatial and particle number resolution. We then
present an EPD-based centrality estimator that uses sim-
ple weights for the different regions of the EPD. In Sec-
tion III, we compare the resolution of various centrality
estimators both from midrapidity and forward rapidity
regions. In Section IV we summarize and discuss the rel-
evance these findings have for future centrality selection
in the forward region of STAR.

II. METHODS

The Ultra-Relativistic Quantum Molecular Dynamic
(UrQMD) model is a microscopic transport model used
to simulate relativistic heavy ion collisions in the same
energy ranges as the BES data [27]. For this study, we
used 55k events per center of mass energy for Au+Au
collisions at

√
sNN = 7.7, 11.5, 14.5, and 100k events for

19.6 GeV.
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FIG. 2. Charged particle pseudorapidity distributions for
BES energies of

√
sNN = 19.6 (magenta triangle), 14.5 (blue

triangle), 11.5 (red square), 7.7 (black circle) GeV. There is
no centrality selection for these distributions. The EPD ac-
ceptance is shown as a green box.

A. Calculation of global centrality estimators

Our aim is to explore the connection between experi-
mental global observables, generically designatedX, with
the impact parameter of the collision. Naturally, this
connection depends on the collision model. Glauber mod-
els [28] have been successfully used to make associate
particle multiplicities at midrapidity in high-energy col-
lisions. However, at lower energies (relevant to the RHIC
BES program), the spectator-participant paradigm be-
comes less justified. Furthermore, the longitudinal dy-
namics of baryon stopping, which drives the physics of
the forward direction covered by upgrade detectors [26],
requires a dynamical transport model.

We use the UrQMD transport model [27, 29], as was
used by Chatterjee [1]. For a given impact parameter b,
the model begins with realistic non-smooth initial condi-
tions and a Monte-Carlo approach; subsequent evolution
of the collision is based on string dynamics and hadronic
rescattering to produce final-state particles that would
be measured in a detector.

In the mid-rapidity region, we compute two quanti-
ties calculated by Chatterjee for reference. The first is
XRM1, defined as the charged-particle multiplicity in the
pseudorapidity range |η| < 0.5. The second is XRM3,
the charged particle multiplicity with |η| < 1.0, exclud-
ing protons and antiprotons. These centrality estimators
have been used in several analyses at RHIC [24, 30, 31].

Within the EPD acceptance, the natural analog to
these measures is XFWD, the charged-particle multiplic-
ity in the range 2.1 < |η| < 5.1. For completeness and
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FIG. 3. The sum of all charged particle yields in the EPD ac-
ceptance (XFWD) vs impact parameter b for the four collision
energies considered in this paper.

to compare to Chatterjee, we calculate this quantity as
well, but two problems with XFWD must be considered:
it cannot be unambiguously measured in the EPD as the
EPD is essentially a segmented calorimeter [26]; which
we discuss this in more detail in section II B, and most
importantly, the nontrivial dynamics of stopping drives
yields in the forward direction. These dynamics depend
on the collision energy as the spectator region ranges
within the EPD acceptance (see Figure 2). They also
depend on centrality, which varies the relative contribu-
tions of participants and spectators. This can be seen in
Figure 3, which is the total charged particle yield in the
EPD acceptance (XFWD) versus the impact parameter
for a variety of energies. In this figure we see that the
correlation between forward multiplicity and impact pa-
rameter decreases with decreasing collision energy due to
the contribution from spectators and participants within
the EPD acceptance. However, due to the segmentation
of the EPD in η, it is possible to separate the different
contributions, as can be seen in Figure 4. In section II C,
we present a novel approach to use this nontrivial behav-
ior to craft an observable centrality estimator with strong
correlation to impact parameter at forward rapidity.

B. EPD Simulation

The STAR TPC, which covers mid-rapidity in the
experiment, measures individual charged particles with
90% efficiency [32], so a centrality measure based on
multiplicity is appropriate. This is not the case for
the STAR EPD, which consists of 744 tiles of 1.2-cm-
thick scintillator [26]. When a relativistic charged parti-
cle passes through a tile, it deposits a small amount of
energy, dE1, probabilistically according to the Landau
distribution ρ(dE1). This distribution is characterized

FIG. 4. The sum of charged particle yields for a given EPD
ring using simulated UrQMD events at

√
sNN = 7.7 GeV.

Ring 1 is the ring closest to the beam-pipe and Ring 16 is the
closest to mid-rapdity. The precise acceptance boundaries for
each ring are listed in Table I.

EPD Ring |ηl| |ηh| EPD Ring |ηl| |ηh|

1 5.09 4.42 9 2.81 2.69
2 4.42 4.03 10 2.69 2.59
3 4.03 3.74 11 2.59 2.50
4 3.74 3.47 12 2.50 2.41
5 3.47 3.26 13 2.41 2.34
6 3.26 3.08 14 2.34 2.27
7 3.08 2.94 15 2.27 2.20
8 2.94 2.81 16 2.20 2.14

TABLE I. List of the low (|ηl|) and high (|ηh|) values for the
|η| ranges of each EPD ring [26].

by two parameters: the most probable value (dEMPV)
for energy loss and a width (dEWID); both the energy
scale and the relative width (dEWID/dEMPV) are deter-
mined by the thickness of the scintillator. For the EPD,
dEWID/dEMPV ≈ 0.2 [26].

As is the practice experimentally, we will quantify the
signal in a tile by normalizing to the peak in the single-
particle distribution:

ζ ≡ dE

dEMPV
. (1)

The single-particle distribution dP1

dζ then peaks at unity

and has Landau width ∼ 0.2. Figure 5 shows the simu-
lated distribution for a tile that is dominated by one or
two particles crossing per collision event.

Depending on the collision energy and centrality, N >
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FIG. 5. A low-flux tile which is dominated by either one or
two particles passing per collision events. The coloured peaks
show the 1 (grey) and 2 (red) particle Landau distributions,
whereas the spectrum (black circles) is a sum of the convo-
luted distributions (green line).

1 charged particles may pass through a tile in a given
collision event, each leaving energy independently. The
total energy in such events follows a distribution:

dPN
dζ

(ζ) =

∫ ∞
0

dζ1
dP1

dζ
(ζ1)

dPN−1
dζ

(ζ − ζ1) . (2)

The total energy deposited into each tile is recorded; for
every collision event, the distribution is a weighted sum
of dPN

dζ , seen for N ≤ 5 as the histogram in Figure 6

(distributions for N = 1, 2, 3, 4, 5 are shown as shaded
curves). This distribution has been shown to reproduce
the EPD experimental measurements closely [26].

In general, the more particles that pass through a tile
in a collision event, the larger the measured ζ will be.
It can seem natural to construct EPD-based centrality
measures analogous to those used in the TPC by sub-
stituting ζ for multiplicity. However, the most probable
value for dPN

dζ is not found at ζ = N , and there is clearly

considerable overlap between dPN

dζ distributions. Indeed,

for a low-flux tile (c.f. Figure 5), it is most accurate to
assume N = 1 in any collision event for which ζ > 0.
Assuming N = ζ (which is not even correct “on average”
as the Landau distribution does not have a well-defined
mean) in this case only builds in unwanted noise for an
event-wise centrality measure. Even in the high-flux tile
of Figure 6, a ζ = 4 event is most likely caused by three
particles having passed through the tile.

How these effects influence the correlation between a
centrality estimator and the true impact parameter de-
pends on the collision model and the detector geometry.
Using the UrQMD model, the collisions are assumed to

FIG. 6. A high-flux tile which experiences a range of particle
multiplicities, resulting in a spectrum (black circles) that is
a sum of convoluted Landau distributions (green line). The
coloured peaks show the 1 (grey), 2 (red), 3 (blue), 4 (purple)
and 5 (dark grey) particle Landau distributions.

take place at the center of the STAR experiment (for
simplicity) and, upon emission, charged particles are as-
sumed to propagate in a straight line until they strike
the EPD. A precise geometric model of the active ele-
ments of the EPD [26] is used to register the passage of
charged particles through each tile. Each charged parti-
cle deposits energy according to the Landau distribution,
as discussed above, with the net signal from a tile being
the sum of all deposited energy.[33]

Figure 7 shows the (anti-)correlation between the im-
pact parameter from the model and the sum of the sig-
nals (Xζ ≡

∑
i ζi) from the 744 EPD tiles for 19.6 GeV

Au+Au collisions. The “noise” effect of Landau fluctu-
ations is clear in the extended tail of the distribution at
large Xζ , reducing the correlation.

The effect of these fluctuations may be reduced by
“truncating” the signal from each tile, replacing a tile’s
signal with:

ζ ′ ≡

{
ζ, if ζ < Mx

Mx, otherwise
(3)

We chose the value of Mx = 3 for all energies and central-
ities for this paper, though this could be tuned based on
an analysis of the most probable value of the number of
particles that will pass through a given tile. The result
of applying this methodology can be seen in Figure 8,
which plots Xζ′ ≡

∑
i ζ
′
i versus impact parameter. The

Pearson coefficient is about 0.98, as compared to only
0.39 for the correlation in Figure 7.
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FIG. 7. Xζ value versus impact parameter for
√
SNN = 19.6

GeV UrQMD simulations. The extended tail of the distribu-
tion is due to Landau fluctuations.
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FIG. 8. Xζ′ value versus impact parameter for
√
sNN = 19.6

GeV UrQMD simulations. The truncation of ζ (from Equa-
tion 3) reduces the noise from Landau fluctuations seen in the
correlation between Xζ and b in Figure 7.

C. A new centrality estimator using ring weights

As we discuss in detail in section III, the 16 rings of
the EPD (corresponding to different |η| ranges listed in
Table I) can be affected quite differently as the impact
parameter of the collision is varied. Indeed, depending
on the collision energy, the signal in some rings may in-
crease as b is increased, while the signal in others may

decrease. Thus their contributions to the simple sum Xζ′

discussed may partly cancel, reducing the sensitivity of
this measure to collision centrality.

The differential response can be accounted for– indeed,
even be exploited to increase sensitivity– by constructing
a new simple measure that weights each ring’s “contribu-
tion” differently. Below, we consider two ways to quantify
this contribution.

1. Weighted sum of ζ′

First, we define a ring’s contribution to be the sum of
the truncated signals in each tile in the ring:

Cr ≡
∑

tile j in
ring r

ζ ′j (energy-loss based) (4)

where we have indicated explicitly that the ring’s con-
tribution is based on energy loss (in the next section,
we will discuss an analogous, particle based approach).
Since we consider symmetric collisions occurring mid-way
between the EPD wheels, ring r on the wheel positioned
at z = −375 cm is summed with ring r on the wheel at
z = +375 cm.

Based on these contributions, we define our centrality
measure as a weighted sum:

XW,ζ′ ≡
16∑
r=1

WrCr +W17 (5)

where Wi are parameters determined below.

We wish to maximize the correlation between Xζ′ and
some global quantity G (for the moment, G is the im-
pact parameter, b, but we generalize the discussion in
section IV). A figure of merit may be the squared resid-
ual, summed over events:

χ2 =

Nevents∑
j=1

(XW,ζ′,j −Gj)2, (6)

where XW,ζ′,j and Gj are respectively the values of the
estimator and global quantity (e.g. impact parameter)
for event j.

Maximizing χ2 yields 17 linear equations:

17∑
q=1

Aq,tWq = Bt (7)
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where:

Aq,t =

Nevents∑
j=1

Cq,jCt,j for q, t = 1...16 (8)

A17,t =

Nevents∑
j=1

Ct,j for t = 1...16 (9)

A17,17 = Nevents (10)

Bt =

Nevents∑
j=1

GjCt,j for t = 1...16 (11)

B17 =

Nevents∑
j=1

Gj (12)

Since A is a symmetric, real, 17 × 17 matrix it can be
easily inverted to find the unique best parameters Wt.

2. Weighted sum of particles

As discussed above, an EPD tile measures in a given
event the energy deposited in the tile, and not the number
of particles that actually passed through the tile. How-
ever, it is natural to ask whether the sensitivity would be
improved if a ring’s contribution would be the number of
charged particles passing through tiles in that ring, i.e.
if Cr in equation 4 would be redefined:

Cr ≡
∑

tile j in
ring r

Nj (particle based) (13)

Here, Nj is the number of particles that passed through
tile j in the event.

Analogous to XW,ζ′ a weighted-sum centrality mea-
sure XW,FWD may then be constructed from the contri-
butions of equation 13, with the weights determined by
equations 6-12.

III. RESULTS

With the mathematical formalism described in Section
II C, we can examine the performance of the EPD as it
pertains to relating signals within the detector to the
impact parameter using UrQMD.

A. Correlations between yields and b

In order to apply the formalism described in the previ-
ous section, we will compare the two mid-rapidity observ-
ables (XRM1 and XRM3) with four forward rapidity ob-
servables (Xζ′ , XW,ζ′ , XFWD, and XW,FWD), where only
the observables designated by W use the linear weight
method formalized above. The weights determined by

FIG. 9. The weights for both forward η particles and ζ′ when
using the linear weight scheme from Section II C, by EPD ring.
The sign change in ring weights is motivated by spectator
proton intrusion into the EPD’s acceptance window, as can
be seen in Figure 2.

this method versus EPD ring number can be seen in Fig-
ure 9, with the acceptance of the EPD rings detailed in
Table I. The sign of the weights changes when mov-
ing from a distribution that is dominated by spectators
versus participants. In Figure 9, we can see that the
EPD ring this occurs in changes as the collision energy
changes due to the change in beam rapidity (see Fig-
ure 2). The weights for EPD distributions with ζ ′ are
very similar to those required by the raw particle counts.
These weights were then used to determine the corre-
lation between {XW,FWD, XW,ζ′} and b, the results of
which can be seen in Figure 10.

Figure 3 is in agreement with the conclusions of the
Chatterjee analysis [1], and indicates that a summation
of the yield over the EPD acceptance is a poor observable.
However, when we apply the linear weighting technique
described in Section II C, we recover a much more usable
correlation between forward η particle yields and b. This
is summarised in Figure 10. For all the energies under
consideration, XRM3 (middle row) is well correlated with
the impact parameter, whereas Xζ′ from the EPD (bot-
tom row) shows a decreasing correlation with decreasing
energy. However, the linear weighted XW,ζ′ (top row)
shows that the correlation is restored.

Experimentally, the centrality is not determined by a
model dependent relationship between a global observ-
able and the impact parameter, but rather by consider-
ing the global observable’s distribution quantiles (though
it should be noted that real world analyses include a
Glauber model as the efficiency of recording an event
only approaches 100% for the most central collisions [28]).
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FIG. 10. Correlation between the impact parameter, b, and
three observables: XW,ζ′ (top), XRM3 (middle), Xζ′ (bot-
tom), for four different collision energies.

This indicates that, as long as a global observable is rea-
sonably correlated with the impact parameter, the cen-
trality distribution based on this selection criteria will
also be reasonable.

In Figure 11, the impact parameter distributions that
are determined by using the appropriate quantiles for the
global variables are shown along with distributions that
result from directly using the quantiles of the impact pa-
rameter distribution. For

√
sNN= 19.6 GeV, all methods

performed similarly (quantified in Section III B). The
mid-rapidity observables, XRM1 and XRM3, have b dis-
tributions which peak within the b distribution slices and
do not change drastically as the collision energy decreases
from 19.6 GeV to 7.7 GeV. The forward observables with-
out any weighting, XFWD and Xζ′ , have distributions
which no longer lie under the b distribution slices at the
lower energies; this suggests a poor centrality resolution
for these observables in the lower energy ranges of the
BES program. This potential loss in resolution, how-
ever, can be compensated for by applying the weighting
scheme discussed in section II. We see that the distribu-
tions for XW,FWD and XW,ζ′ are under the b distribution
slices for all collision energies under consideration.

B. Centrality Resolution

From the b distributions in Figure 11, we determined
the centrality resolution for all X. As in [1], we employ
the centrality resolution metric Φ:

FIG. 11. The impact parameter distributions for centrality se-
lections 0 - 5%, 20 - 30% and 90 - 100%. The black histograms
are the b impact parameter distributions if the centrality se-
lection is determined from the impact parameter directly. The
green circles are determined using XRM1 (closed) and XRM3

(open), the triangles are determined using Xζ′ (open blue)
and XW,ζ′ (closed red), and the squares are determined using
XFWD (open blue) and XW,FWD (closed red).

FIG. 12. Centrality resolution for collision energies
√
sNN

= 19.6, 14.5, 11.5, and 7.7 GeV. The observables based on
mid-rapidity multiplicity are XRM1 (green closed circles) and
XRM3 (dark green open circles). The observables based on
unweighted distributions from the forward region are XFWD

(blue open square) for particle yield and Xζ′ (blue open tri-
angle) for truncated energy loss in the EPD. The observables
based on linear weights are XW,FWD (closed dark red square)
and XW,ζ′ (closed red triangle).
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Φi ≡
σ2
bX,i

σ2
bi

(14)

where σ2
bi

is the variance from the impact parameter dis-
tribution for a given centrality range i when centrality is
determined by b, and σ2

bX,i
is the variance from the im-

pact parameter distribution for the same centrality range
i where centrality is determined by X.

Results for Φ can be seen in Figure 12. At the
top RHIC energies, all centrality methods perform sim-
ilarly. The resolution at lowest energies is poorest for
unweighted distributions in the forward region (XFWD

for particle yield, and Xζ′ for truncated energy loss
in the EPD), but this resolution is clearly recovered
when we apply the linear weights detailed in Section
II C (XW,FWD and XW,ζ′ , respectively). Both XRM1

and XRM3 are based on mid-rapidity multiplicities. The
anomalous, upward point at the 5-10% range is due to
the smaller centrality bins used for our two most central
selections, which increases the standard deviation of the
distributions.

The poor performance of XFWD and Xζ′ , which agrees
with the conclusions in [1], is due to spectator proton in-
trusion into the EPD’s acceptance. If we do not weight
the EPD rings which are dominated by the spectator pro-
tons yield, which have positive correlation with b, with a
different sign than the EPD rings where we are dominate
by participants, which have a negative correlation, they
will cancel out. This is the entire purpose of the method-
ology in section II C; thus the correlation weights found
for rings with spectators will have inverted signs com-
pared with those rings with only participants (Figures 2
and 9). The linear weight method recovers the centrality
resolution lost by the simple sum method of XFWD and
Xζ′

IV. SUMMARY AND DISCUSSION

Observables in heavy-ion experiments can suffer from
auto-correlation effects if the particles used to construct
the observable are from the same acceptance as the event
centrality is defined (e.g. κ and S for net-proton mul-
tiplicity being studied as part of the STAR BES pro-
gram) [34]. For observables analysed at mid-rapidity,
such as those measured using the TPC in the STAR ex-
periment, it would thus be preferable to select centrality
using a forward detector. The EPD is the prime candi-
date for a forward centrality selection detector at STAR,
but at the lower collision energies of the BES there is sig-
nificant spectator proton intrusion into the η acceptance
window of the EPD. It had been suggested that this spec-
tator intrusion could potentially degrade the centrality
resolution of the EPD due to the inverse correlation effect
on particle yields with b in those η regions where the EPD
and spectator protons coincide [1]. However we showed

that by treating the particle yield correlations from the
EPD rings individually, instead of simply summing the
yield from the total EPD acceptance, we can account for
correlations with both participants and spectators in an
event. This treatment leverages the spectator protons in
the EPD acceptance range as a relevant marker for global
quantities (such as b).

In this paper, we outlined a method of applying a lin-
ear weight to the rings (Equation 5) as one example of
a procedure that improves the centrality resolution by
properly weighting the contribution from each EPD ring
based on minimizing the residual between a global ob-
servable and the EPD rings. Results from this method
were shown for correlations with b, but the method is
sufficiently general that weighting may be found for any
global quantity G; for instance, the method could also be
employed to weigh the EPD ring contributions as they
correlate with XRM3 or V.

More sophisticated methods than the simplest one we
described in section II C are certainly possible and are
under development.

Using this method we recovered the centrality reso-
lution in the forward η region that is lost in the lower
energy ranges of STAR BES when simply considering a
sum of the yields over the entire EPD η range. Further,
EPD simulation shows no marked degradation of central-
ity resolution when comparing centrality using the linear
weighted sum of particles in the EPD acceptance range
(XW,Fwd) versus simulated energy deposition in the EPD
itself (XW,ζ′). This strongly suggests the EPD can be
used as a reliable centrality detector in STAR BES en-
ergy ranges of

√
sNN = 7.7, 11.5, 14.5, 19.6, and 200

GeV, which would greatly reduce the possibility of auto-
correlations in analyses of observables at mid-rapidity.

We conclude by briefly considering the implication of
this study in an experimental analysis, in which the true
impact parameter is unknown. Any estimate of the im-
pact parameter resolution of any measurable estimator is
then completely model-dependent; Xζ′ may in fact be the
best estimator in reality, despite being the worst in the
UrQMD calculations (c.f. figure 12). In such a case– es-
pecially if even a years-long program of high-quality data
results in a subtle wiggle in fluctuations at only the 3σ
level [25]– nontrivial effects of autocorrelations must be
ruled out in a model-independent way, not relying solely
on transport calculations [1]. The experimental proce-
dure must be to (1) perform the analysis, using a com-
mon estimator (e.g. XRM3) to select on centrality; (2)
in a kinematic region far from the fluctuation measure-
ment, construct a weighted estimator by following the
procedure of section II C 1, where the common estimator
is used as the global quantity G in equations 11-12; (3)
repeat the analysis, using the new estimator (e.g. XW,ζ′)
to select on centrality. Persistence of the signal when us-
ing the new estimator would lead to greater confidence
that autocorrelations are not influencing the signal itself.
Such confidence would be most welcome for the subtlest
signals of fundamental physics of QCD.
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