aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Examining the nuclear mass surface of Rb and Sr isotopes
in the math
xmlns="http://www.w3.0rg/1998/Math/MathML">mrow>mi
>A/mi>mo>=/mo>mn=>104/mn>/mrow>/math> region
via precision mass measurements
[. Mukul, C. Andreoiu, J. Bergmann, M. Brodeur, T. Brunner, K. A. Dietrich, T. Dickel, I.
Dillmann, E. Dunling, D. Fusco, G. Gwinner, C. Izzo, A. Jacobs, B. Kootte, Y. Lan, E.
Leistenschneider, E. M. Lykiardopoulou, S. F. Paul, M. P. Reiter, J. L. Tracy, Jr., J. Dilling, and
A. A. Kwiatkowski
Phys. Rev. C 103, 044320 — Published 28 April 2021
DOI: 10.1103/PhysRevC.103.044320


https://dx.doi.org/10.1103/PhysRevC.103.044320

21
22
23
24
25
26
27

28
29
30

31
32
33
34

35
36
37
38

39
40
41
42
43

44

46

47

48

49

50

51

52

Examining the nuclear mass surface of Rb and Sr isotopes in A ~ 104 region via
precision mass measurement

I. Mukul"*, C. Andreoiu?, J. Bergmann?®, M. Brodeur?, T. Brunner'°, K. A. Dietrich’®, T. Dickel®7, I. Dillmann"8,
E. Dunling!?, D. Fusco''?, G. Gwinner!!, C. Izzo!, A. Jacobs"!2, B. Kootte"'!, Y. Lan!''2, E. Leistenschneider!-'2,
E. M. Lykiardopoulou''2, S. F. Paul"®, M. P. Reiter!">'3, J. L. Tracy Jr!, J. Dilling"!?, and A. A. Kwiatkowski!-8*

YTRIUMF, 4004 Wesbrook Mall, Vancowver, British Columbia V6T 2A3, Canada
2 Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 156, Canada
31I. Physikalisches Institut, Justus-Liebig-Universitit, Giefen 35392, Germany
4 Department of Physics, University of Notre Dame, Notre Dame, IN /6556, USA
® Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
S Ruprecht-Karls- Universitit Heidelberg, Heidelberg D-69117, Germany
TGSI Helmholtzzentrum, fiir Schwerionenforschung GmbH, Darmstadt 64291, Germany

8 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada

9 Department of Physics, University of York, York Y010 5DD, United Kingdom
19 Department of Physics, University of Waterloo, Ontario N2L 3G1, Canada

Y Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

2 Department of Physics and Astronomy, University of British Columbia,
Vancouver, British Columbia V6T 171, Canada and
13School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 8FD, U.K.
(Dated: April 5, 2021)

Background: The neutron-rich Ax~100, Na~62 mass region is important for both nuclear structure and nuclear
astrophysics. The neutron-rich segment of this region has been widely studied to investigate shape coexistence
and sudden nuclear deformation. However, the absence of experimental data of more neutron-rich nuclei poses a
challenge to further structure studies. The derivatives of the mass surface, namely, the two-neutron separation
energy and neutron pairing gap, are sensitive to nuclear deformation and shed light on the stability against defor-
mation in this region. This region also lies along the astrophysical r-process path, and hence precise mass values
provide experimental input for improving the accuracy of the r-process models and the elemental abundances.

Purpose: (a) Changes in deformation are searched for via the mass surface in the A=104 mass region at the
N=66 mid-shell crossover. (b) The sensitivity of the astrophysical r-process abundances to the mass of Rb and
Sr isotopic chains is studied.

Methods: Masses of radioactive Rb and Sr isotopes are precisely measured using a Multiple-Reflection Time-of-
Flight Mass Separator (MR-TOF-MS) at the TITAN facility. These mass values are used to calculate two-neutron
separation energies, two-neutron shell gaps and neutron pairing gaps for nuclear structure physics, and one-neutron
separation energies for fractional abundances and astrophysical findings.

Results: We report the first mass measurements of '**Rb and '**~1%°Sr with uncertainties of less than 45 keV /c?.
The uncertainties in the mass excess value for '°?Rb and °2Sr have been reduced by a factor of two relative to a
previous measurement. The deviations from the AME extrapolated mass values by more the 0.5 MeV have been
found.

Conclusions: The metrics obtained from the derivatives of the mass surface demonstrate no existence of a
sub-shell gap or onset of deformation in the N=66 region in Rb and Sr isotopes. The neutron pairing gaps
studied in this work are lower than the predictions by several mass models. The abundances calculated using the
waiting-point approximation for r-process are affected by these new masses in comparison with AME2016 mass
values.

I. INTRODUCTION 53

54

Nuclei far from stability are important for both nu- %
clear astrophysics and nuclear structure physics. The %
synthesis of nearly half of the elements heavier than iron
has been attributed to the rapid neutron-capture pro- %
cess [1-5] named the r-process for which an enormous %
flux of neutrons is required. The site for the r-process
has been a matter of discussion in the past [1, 4], as®

this site can be validated from a source of freshly syn-
63

64

65

* ishmukul@gmail.com 66

thesized elements, e.g. a neutron-star merger. Inciden-
tally, the multi-messenger astronomy of the recent binary
star merger GW170817 [6-8] showed the conditions for
r-process, and the kilonova AT2017gfo recorded in the
following days provided the evidence of synthesis of the
r-process elements, which validated neutron-star mergers
as one of the possible r-process sites. One of the detailed
analysis from AT2017gfo also identified strontium in the
merger of two neutron stars [9] and established its im-
portance in r-process calculations.

The formation of neutron-rich atoms is a competition
of neutron capture, [-decay, and photo-disintegration
[10]. Starting from a seed nucleus, neutron capture dom-
inates up to a so-called waiting point whose neutron sep-
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aration energy is low enough to allow 5-decay to becomeiss
dominant. The site for these waiting points in the nucleariz
chart is not known exactly. However, precise experimen-i»r
tal values for all the physical phenomena involved areus
required to pin down these sites. Abundance obtainedizs
by large-scale r-process network calculations are directlyiso
affected by the precision in measurement of the ground-ia
state properties of a nucleus, including atomic mass, (-13
decay properties, neutron capture rates, S-delayed neu-is
tron emission and fission distributions [11]. Of these vari-iz
ables, the atomic mass is considered to be highly sen-

sitive for the r-process path calculations [12]. Due to

the exotic nature of the r-process nuclei, their masses,;
are generally unknown (unmeasured or with large uncer-

tainties), and most calculations rely on the mass mod-

els. The commonly used models in r-process calcula- "
tions, e.g. Duflo-Zuker [13], Finite Range Droplet Model
(FRDM12) [14], Hartree-Fock-Bogoliubov (HFB-24) [15],
are generally optimized on the experimentally available
data with a root-mean-square error of less than 1 MeV."™
The mass data groups, for example, the atomic mass eval-"
uation (AME2016)[16], also publish extrapolated values
for exotic nuclei based on their large database. However,143
it is important to constrain mass models by providing:4

. . 5
more experimental values with good accuracy.

146
On the nuclear structure side, neutron-rich isotopes,,

in the A=100 region are known for changes in nuclear,,
shapes evident by measurements involving charge radii
[17-21], nuclear moments extracted from isotope shifts
and hyperfine structure studies by laser spectroscopy,,,
(18, 19, 21-23], and by theory [24, 25]. This region is,,
also explored with mass measurements [26-31] and its
derivative, two-neutron separation energy Sa,, which is ,
sensitive to nuclear structure changes [32]. In an iso-
topic chain of a constant proton number, S, decreases
smoothly with an increase in neutron number and drops
sharply at the crossing of closed neutron shell indicating
a magic neutron number. In case of a shape transition,
the slope of Sz, becoming positive gives a clear sign of
shape transition or change in structure.

6
157

158

161
In the neutron-rich A=100 region, a large change in,,

trend is found in the Ss,, values near N=62 between iSo-,4;
topic chains of krypton (Z=36) [27] and molybdenum,,
(Z=42) [29], creating a boundary of a deformed region.is
This deformed region also provides an opportunity to test;g
the functionality of various nuclear models against nu-,,,
clear deformation. The extrapolations from AME2016,
evaluation for rubidium (Z=37) and strontium (Z=38),,
isotopes suggest another structure change based on the,,
So,, surface near the N=66 mid-shell. This gives a strong;,,
impetus to explore nuclei crossing N=66 and search for,,,
other shape transitions in this region. -

The ideal and well-established tools for high-precisioniz
mass measurement of radioactive isotopes are ion trapsis
[33, 34]. We used TRIUMFs Ion Trap for Atomic andie
Nuclear science (TITAN) [35, 36] for our measurements,irr
which is a combination of different kinds of ion traps thatis
are optimized for fast and precise mass measurements ofire

short-lived nuclei. With a Multiple-Reflection Time-of-
Flight Mass Separator (MR-TOF-MS) [37, 38], TITAN
is able to suppress isobaric contaminants and simultane-
ously perform high-precision mass measurements. In this
article, we report the mass measurements of ??71%3Rb
and 9971058y using the MR-TOF-MS, where '°3Rb and
103=105Gy were measured for the first time. The effect of
the derivatives of the deduced mass surface on nuclear
structure and astrophysical r-process abundance calcula-
tions are reported here.

II. EXPERIMENTAL DETAILS

The experiment was performed using the recently com-
missioned MR-TOF-MS [37, 38] at the TITAN facility
at TRIUMF. The rare isotope beams of rubidium and
strontium were produced at the Isotope Separator and
Accelerator (ISAC) [39] facility at TRIUMF by imping-
ing 480 MeV protons of 9.8 pA intensity onto a uranium
carbide target [40]. The produced atomic species were
ionized by a surface ion source and, for Sr, TRIUMF’s
Resonant Laser Tonization Ton Source(TRILIS) [41]. The
singly charged ions were then accelerated to an energy of
20 keV and passed through a dipole magnet for mass se-
lection. The mass resolving power (m/dm) at this stage
is up to 3000 [39], which is sufficient for separating iso-
topes at a single mass unit. The filtered beam of inter-
est was directed toward the experimental area of TITAN
and injected into its radio-frequency quadrupole cooler
and buncher (TITAN RFQ) [42, 43]. The radioactive ion
beam (RIB) was accumulated inside the TITAN RFQ for
20 ms, extracted in cooled bunches, and sent toward the
MR-TOF-MS for mass measurement.

The initial sections of the MR-TOF-MS consist of an
injection trap [44], where ions were re-cooled by collision
with helium gas, for injection into the electrostatic time-
of-flight mass analyzer [45]. In the MR-TOF-MS, the
flight path and in turn time-of-flight for the ion bunches
was increased by trapping the ion bunch between two
electrostatic isochronous mirrors. The electric potentials
on mirrors were chosen such that the initial time spread
was preserved during this long travel path [46]. In this
way, a long time-of-flight was achieved inside a compact
device.

In the present experiment, the MR-TOF-MS was op-
erated in duty cycles of 20 ms. The ions were cooled in
the injection trap for nearly 13 ms, and in turn, were
injected into the mass analyzer section where they un-
derwent 396 isochronous turns before being detected by
a MagneTOF detector. A time-focus-shift (TFS) turn
[47] was used to focus the TOF onto the MagneTOF de-
tector. The FWHM of peaks produced by different iso-
topes in TOF spectra were nearly 20 ns FWHM after a
flight time of nearly 7.8 ms. The mass resolving power
achieved in this experiment was ~ 185,000. The typical
peak shape in the MR-TOF-MS spectra, shown in Fig. 1,
is well described by a Gaussian distribution. The time-
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Figure 1. A time-of-flight spectrum of '*Rb* and '03Sr™2*
ions after 386 turns inside TITAN’s MR-TOF-MS. (inset)20
Zoomed area containing '“*Sr* and '®*Rb™ ions on a logzn
scale. 31Sr'FT served as calibration species for conversionas,
from time to mass. The spectrum contains data from a sin-,,
gle file. Multiple files were recorded and analyzed for final,,,

masses. 235

236

of-flight spectra were calibrated to mass spectra using the
calibration function,

mlq=c (t—to) W™

with ¢ and ¢y being the calibration parameters, m, ¢ and,,,
t being the mass, charge and time-of-flight of the ion-of-,,,
interest (IOI), respectively. The time offset ¢, depended,,,
on delays due to signal processing and electronics used,,
and hence is constant for the experiment. ty=167(2) ns,,,
was determined before the start of the RIB experiment,,,
using ¥ Rb*, 8"Rb* and *3Cs* ions undergoing a single,,,
TFS turn. The parameter c is a device-specific parameter,,,
that depends on the energy of the ions and the total path,,,
length. ¢ was calculated using a precisely measured iso-,,.
baric reference ion present in each RIB measurement that,,
underwent the same number of turns as the ion of inter-
est. These reference ions are generally a stable atomic or,, |
molecular species in the same spectra and are tabulated,,
in Table I. s
Another technique used in this experiment was mass-,,
selective re-trapping [48], since the intensity of the 10T,
was 102 times less than the contamination. After a few,
turns inside the mass analyzer section, the IOl was dy-
namically re-captured inside the injection trap, with the
capture time chosen to optimize capture of the IOI while
rejecting unwanted species. Ions in the injection trap®®
were then re-cooled and released again into the mass an-
alyzer. This technique suppressed ion-ion interactions,sss
reducing systematic errors, and increased the dynamicess
range of the mass spectrometer. This technique was firstase
used in an experiment to study neutron deficient ytter-zeo
bium isotopes [49]. This method was successfully appliedas
at mass number 104 and 105. 262

The uncertainties in measured masses were calculated
as in [50]. The errors considered in our case were (a) the
standard error of the centroid of Gaussian fitted peaks
for calibrant and IO, (b) a statistical error of o /+/N for
Gaussian fitted peaks of calibrant, where o is the width
of Gaussian distribution and NV is the number of counts
in the peak, (c) the literature uncertainty of the calibra-
tion peak reported in AME2016 [16], and (d) the sys-
tematic uncertainty of the measurement device dm/ Msys
= 3 x 1077 [51]. This value is an upper limit derived
from measurements using stable ions of 3> K+, before
and after the experiment. The limit of systematic error
is governed by the electric ringing of the voltages caused
by the instabilities of the power supply used to eject ions
from the mass analyzer section to the MagneTOF detec-
tor. All the aforementioned errors were added in quadra-
ture to obtain the total error for each fitted spectrum.
The effect of ion-ion interaction was negligible since the
average ion count rate was less than one detected ion per
cycle.

The final mass values from this work are tabulated
in Table I, and are compared with literature values of
AME2016 [16] and, where possible, previous measure-
ments from ISOLTRAP’s Penning trap and MR-TOF-
MS [30].

III. RESULTS: MASS VALUES

The atomic masses of 2 ~103Rb and 2~ 1%5Sr were mea-
sured with the MR-TOF-MS. A few masses reported
herein have been previously measured with Penning trap
facilities at TITAN and other laboratories. For each mass
unit, we used a calibrant that has been measured very
precisely, with a few keV or less. In case of unavailabil-
ity of an atomic calibrant, a precisely known molecular
species was used.

The mass values in atomic mass units, obtained from
the data analysis, were converted into the mass excess
(ME) values defined as the difference between the cal-
culated mass M and atomic mass number A=N+Z, i.e.,
ME(N,Z) = (M(N,Z) — A(N, Z)), expressed in units
of keV/c?. The ME values from this work are tabulated
in Table I and plotted in Fig. 2, against the existing lit-
erature values [16]. The following subsections provide a
detailed comparison of direct mass measurements for Rb
and Sr isotopes with previous results if existing.

A. Rb and *Sr

99Rb has been measured using Penning Trap Mass
Spectrometer (PTMS) at TITAN [31] and ISOLTRAP
[29], resulting in an AME2016 value of -51121(4) keV /c?.
The ME value in this measurement was found to be -
51101(31) keV/c?, which agrees within 20 keV/c? (0.70)
of AME2016. At this mass unit, atomic **Mo™ (Ty ) =
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Table I. Half-lives [52] and mass excesses of 7'®*Rb and *°~'°°Sr isotopes measured using TITAN’s MR-TOF-MS. The corre-
sponding mass excess values M Errran and values from AM E2016 [53] (M Eamg2016), as well as their difference Arrran-ame2016-
The last column shows the results from a recent ISOLTRAP measurement [30]. The label # in the AME2016 values indicate
an extrapolated value. All ions were singly charged. All mass excess values have been rounded to nearest integer.

Isotope Half-life Calibration ion M ETiTAN M EavE2016 ATITAN-AME2016 M E1sOLTRAP
(ms) (keV /c?) (keV /c?) (keV /c?) (keV /c?)
PRb 54(4) Mo -51101(31) -51121(4) 20(31) -
10Rb 51(8) 100Ru -46243(30) -46247(20) 4(35) -46290(19)
101Rb 32(5) 1 Ru -42480(29) 428454 (200#) 365(202) -42558(28)
192Rb 37(5) 192Ru -37241(29) -37707#(300#) 466(301) -37253(83)
193Rb 23(13) 81Gr19F -33049(32) -33608# (401#) 559(402) -
998y 269(1) 99Mo -62509(31) -62521(5) 13(31) —~
100Gy 202(3) 100R Yy -59824(29) -59821(7) -3(30) -59827(27)
101Gy 118(3) 101Ry -55311(29) -55325(8) 14(30) -55315(21)
102Gy 69(6) 102Ry -52175(29) -52160(70) -15(76) -52160(67)
103Gy 53(10) 84gr 19 -47220(29) -4T420# (1984 ) 200(200) —~
104Gy 53(5) 1041y -43411(33) -44110#:(3004) 699(302) —~
105Gy 39(5) 105pq -37886(44) -38610#:(503#) 724(505) —~

65.9 h, uncertainty = 23 keV/c?) was used for calibrationzss
of the MR-TOF-MS spectrum. 204

998r has been measured extensively using PTMS, mea-2os
sured twice at TITAN [28, 31] and once at JYFLTRAP2ss
[26]. The mass value considering all measurements haves
been incorporated in AME2016 as -62521(5) keV /c?. Thess
MR-TOF-MS mass value for 9Sr is -62509(31) keV/c? 20
12 keV (0.40) within the AME2016 value. 300

B. 'Rb and '°°Sr 301

The atomic mass of °Rb was previously measuredso
using PTMS [29] and MR-TOF-MS [30] at ISOLTRAP:s
with values of -46247(20) and -46290(19) keV/c?, re-so
spectively. The value using PTMS at TITAN [31] wasaos
-46190(140) keV /c?, where the large uncertainty was at-sos
tributed to the high contamination. Our new mass ex-o7
cess value from MR-TOF-MS was found to be -46243(30)s0s
keV /c? which is in good agreement with AME2016 valuesos
of -46247(20) keV/c? (0.10). 10

100Gy has been measured using PTMS by ISOLTRAPsu
30] and TITAN [31]. The TITAN MR-TOF-MS values:
for 100Gr is -59824(29) keV/c? in agreement with thess
AME2016 value of -59821(7) keV /c? (0.10). The calibra-su
tion ion for A=100 was stable '""Rut with uncertaintyss
of 0.3 keV/cQ). 316

317

318

C. '"YRb and '°!'Sr

101Rb was previously measured using MR-TOF-MS®
at ISOLTRAP [30] with a value of -42558(28) keV/c?.
The AME2016 for '°'Rb is an extrapolated value of -so
42845(2004#). Our value of -42480(29) keV/c? deviatess:
by 78 keV/c? from ISOLTRAP and 365(202) keV/c?s»

(1.80) from AME2016 value.

101Gy was previously measured using PTMS at TITAN
[31] and ISOLTRAP [30], resulting in an AME2016 value
of -55325(8) keV/c?. The mass excess measured by the
TITAN MR-TOF-MS in this work is -55311(29) keV /c?,
which is in agreement with previous works within 0.50
deviation. The calibration ion for A=101 was stable
0IRu* with uncertainty = 0.4 keV/c?.

D. '“2Rb and '°°Sr

Our new ME of 192Rb was found to be -37241(29)
keV/c?, which is in close agreement with the ISOLTRAP
value of -37253(83) keV/c?. Both differ AME2016 value
of —37707(300#) keV/c?. The difference between TI-
TAN and AME2016 value is 466(301) keV/c? which is a
1.60 deviation.

1028y have been previously measured at ISOLTRAP
using PTMS and then this '92Sr mass was used as cali-
brant to determine °?Rb using MR-TOF-MS [30].

The ME value from ISOLTRAP PTMS for 12Sr is
-52160(67) keV/c?. We report a value of -52175(29)
keV/c? which is in agreement of 0.20 with ISOLTRAP.
The AME2016 used the ISOLTRAP value and thus
agrees well with this work. The uncertainty in our work
is reduced from the previous measurement of 67 keV/c?
to 29 keV/c?. The calibration ion at A=102 was stable
102Rut with uncertainty of 0.4 keV /c?.

E. '©Rb and '°*Sr

We report the first mass measurement of '*Rb and
103Gy, The values from AME2016 for '°3Rb,Sr are
extrapolated values. The mass excess of '°3Rb was
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Figure 2. (Color online) Mass excess difference between the value measured in this work and the value reported in AME2016
[16], i.e. M Eritan — M Eame2016 for (a)s7Rb and (b)ssSr isotopes. The shaded band indicates the AME2016 uncertainties
and slanted lines in shaded region denotes values from extrapolation. ME difference is also plotted for a previous measurement

from ISOLTRAP [30], published after the AME2016.

found to be -33049(32) keV/c?, which deviates fromss
AME2016 value of —33608(401#) keV/c® by 559(402)ss
keV/c? (1.40). The mass excess for 193Sr was found toss
be -47220(29) keV/c?, which agrees with AME2016 ex-3ss
trapolation value of —47420(198#) keV/c? within error
bars (1o). There was no atomic calibration ion present at
this mass, and therefore the stable molecule of 84Sr¥F+
was used for calibration (uncertainty 84Sr = 1.2 keV /25
and F = 0.9 eV/c?).
358
F. l0ig -
361
We report the first mass measurement of '°4Sr. Thess
AME2016 extrapolation is —44110(300#) keV/c?. MR-
TOF-MS was operated in mass-selective re-trappingss
mode for this measurement. The mass excess value forses
104Gy is —43411(33) keV/c?. The deviation from thess
AME2016 value is 698(302) keV/c? (2.30). 367
The calibration ion used for this mass was '"*In* (T} /s
= 1.8 min, uncertainty = 6 keV/c?), with a known isomersss
of 93.48 keV/c? and T} »=15.7 s [54]. We have followedsno
AME2016’s guidelines [16] for handling single isomer insn
calibration by adding half of the isomer’s energy to masss»
value. 373

G- 105 SI‘ 374

We report the first direct mass measurement of 1%°Sr.szs
The AME2016 value of —38610(503#) keV/c? is an ex-s
trapolated value. MR-TOF-MS was operated in mass-sr
selective re-trapping mode for this measurement. Thess
mass excess for 1°°Sr was found to be -37886(44) keV /c? a7
The deviation from AME2016’s extrapolation is 724(505)ss

keV/c? (1.40). The calibration ion used at this mass was
stable 19Pd* with uncertainty of 1.1 keV/c?. A cross
check with '%Ru* (Ty,2 = 4.4 hrs, uncertainty of 2.5
keV/c?) as calibrant agreed within 4 keV/c?).

IV. IMPACT ON THE MASS SURFACE AND

ITS DERIVATIVES

The nuclear mass surface is derived by plotting atomic
masses as a function of the proton (Z) and neutron (N)
numbers. The surface is generally smooth and continuous
if we neglect pairing effects. However, sudden changes in
the surface may be caused by shell closures or change in
shape or deformation of the ground state [32]. In order
to reveal such changes in nuclear structure, it is impor-
tant to study different derivatives of the mass surface,
e.g. one- and two- neutron separation energies (S,, and
San), two neutron shell gap energies (Asg,), and neutron-
pairing gap energies (D,,). Out of these, S, is a direct
input in astrophysical calculations. In the following sub-
sections, we will discuss these derivatives with our experi-
mentally observed values and compare them with existing
data and common mass models used for unknown masses
in nuclear structure and astrophysical calculations.

A. Nuclear Structure Discussion

An important metric for probing nuclear structure is
the two-neutron separation energy Sa,, [32], which is cal-
culated as Sy, = —M(A,Z) + M(A — 2,7Z) + M(2n).
So, removes the effect of odd-even staggering and gives
a smoother trend. It generally decreases smoothly and
continuously with increasing neutron number for an iso-
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topic chain. A kink occurs at the shell closures. Abruptss
changes in slope may occur at a shape change or onset ofses
deformation in the ground state of the nuclide. 396

The region around A=100 and N=60 has been known3s
for sudden shape transitions [55, 56]. A shape changes
from spherical to oblate to prolate was deduced from ex-39
perimental data on the charge radius [17] as well as by#o
calculating the potential energy surfaces [24, 25]. 401

The behaviour for Rb and Sr isotopes, along with*?
neighbouring Kr and Y, is shown in Fig. 3(a). This fig-*®
ure illustrates that in the isotopic chain of elements with**
7=36-39, there is a kink in the slope at N=>50 (shell clo-*®
sure), an abrupt increase in Ss,, values with a local max-**

imum at Na60 (onset of deformation and shape change),
and a smooth decrease thereafter. Isotopes with N>62
were not well measured in this region; thus, the AME2016
values in this area have large uncertainties and in some
cases are extrapolated. As our Rb and Sr measurements,
deviate from AMEZ2016, evaluated and tabulated, that
lead to different Ss,, values. From the N=50 shell, the
Son, value of Rb and Sr isotopes follow a smooth slope
till N=66 for Rb isotopes and N=67 for Sr isotopes, in
agreement with a previous measurement at ISOLTRAP
[30] up to N=65 for Rb isotopes and N=64 for Sr iso-
topes. The extrapolated values from AME2016 suggests
a small kink near N=64 indicating another change in nu-
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clear structure; however, the smooth trend in our mea-ss
sured values refutes this expectation. aaa

In order to flesh out minute structural information#s
from the So, curves, we plot their slope to reveal fea-+s
tures, such as clear indicators of shell gaps or deforma-+7
tions. The two-neutron shell gap energy is given byus
Agp(Z,N) = Son(Z,N) — S2,(Z, N — 2), which risess
sharply and forms peak-like structures at shell closures.sso
The As, can be negative showing sudden changes in slopess:
and the regions of deformation in the mass surface. a2

The Ay, values for Rb and Sr isotopes from this work 43
compared to AME2016 values, are shown in Fig. 3(b).ss
The shell closure at N=50 is clearly visible as a largesss
peak, followed by a dip at N=59 depicting the shapesss
transition. AME2016 values predict another smaller dipasr
near N=64; however, the new TITAN measurements forass
Rb and Sr isotopes give nearly a smooth flat slope in thesso
N=63-67 region that signifies the stability of the nuclearss
shape in the measured isotopes. 461

Previously, the theoretical mass models estimated the*?
mass surface in the experimentally unknown region tos:
further many astrophysical studies [13-15]. Therefore s
it is important to compare the validity of these models«es
with the new experimental data. We compared our mea-4es
sured Sy, values with the values from commonly usedss
mass models in r-process calculations, namely, Duflo-4e
Zuker [13], FRDM2012 [14] and HFB24 [15]. In addition,ss
we took values from four additional models, which belongso
to the class of self-consistent mean-field approaches [57]+n
with two different effective interactions, namely Skyrmear
and Gogny. We took two parametrizations of the Skyrmeasrs
interaction: UNEDFO [58] and UNEDF1 [59]. The for-s.
mer includes adjustments for spherical and deformed nu-ars
clei; and the latter is optimized for excitation energy ofs
fission isomers. For other interaction (Gogny), only D1S
parametrization is used [60, 61]. For Sr isotopes (beingus

even Z), a beyond mean-field approach is also used that
includes Gogny D1S in addition to a five-dimensional col-
lective Hamiltonian (5DCH) [62, 63]. The comparison of
So,, values from this work and those from the mass mod-
els are shown in Fig. 4(a).

Nuclear mass models for these masses are generally
optimized with known masses and heavily rely on atomic
mass databases. Most of the models compared in this
work follow the trend of experimental data; however, only
a few are able to reproduce the area of deformation or
shape transition, i.e. dip at N=59.

In the region of N>61, the difference between Ss,
values from this work and different mass models are
plotted in Fig. 4(b). As evident from this figure, the
DZ, FRDM12, and HFB24 model are in close agree-
ment to AME2016 measured and extrapolated values,
with FRDM12 having the largest deviation. These three
models tend toward the extrapolated values of AME2016
and thus overpredict two-neutron separation energies for
N=65-67.

The beyond-mean-field calculation in D1S-5DCH
agrees well with the experimental trend till N=58 and
then follows a continuous drop in binding energies
throughout the N=58-70 region. It fails to reproduce
the shape transition at N = 60 and under predicts the
separation energies beyond N=58. The calculations with
Gogny interaction (D1S) follows the trend of Sa,, energies
throughout but under-predict for N>60, with a larger off-
set than D1S-5DCH.

UNEDFO gives the closest description of Sy, values in
both Rb and Sr isotopes in this mass region. Rb iso-
topes follow the pattern well till N=66 whereas Sr iso-
topes start diverting from UNEDFO0 after N=66, where
UNEDFO is also inclined toward extrapolated values
and thus over predicts So, energies. This model also
predicted a smoother trend at N=66 (mid-shell) nuclei
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against AME2016 extrapolations, and the new mass val-
ues confirm the trend. UNEDF1 follows the trend for
both Rb and Sr isotopes, but there is an offset between
UNEDF1 values and the experimental data. In Sr iso-
topes, experimental data tend to go closer toward UN-
EDF1 values at N=66 and above.

So,, data in this work indicates that neutrons are less
bound for nearby 37Rb and 35Sr isotopes than expected
from mass models and thus gives a strong impetus to
update the mass models.

In order to further investigate any structure changes,
another important metric was considered, i.e., the neu-
tron pairing gap D,, [64], which can be quantified as the
difference between neutron separation energies of succes-
sive isotopes, given by D,,(N) = (=1)V L[S, (Z, N+1)—
Sn(Z,N)]. D, is a sensitive tool to measure the changes
in nuclear structure [65], and is directly related to the em-
pirical neutron pairing gap A%(N) = D,,(N)/2 [66], also
known as the odd-even staggering parameter. D,, values
for isotopes of Rb and Sr from this work and AME2016
are shown in Fig. 5(a). The main features in this figure
are (i) the sharp rise in D,, value at N=50, indicating
a shell closure, (i) the change in staggering pattern at
N=59, indicating shape change or onset of deformation,
and (iii) a consistent odd-even staggering after N=61,
indicating stability against shape changes.

There is no unusual change in D,, pattern in the vicin-
ity of N=66 for both Rb and Sr cases, indicating no fur-
ther shape change or shell-gap or onset of deformation.
Our new values gives evidence of reduced neutron pairing
in the mass surface near N=66 for the Rb isotopic chains.

We also compared the behaviour of D, values from
different mass models for St isotopes, as shown in Fig.534
5(b). We selected mass models, namely, Duflo-Zuker [13],”
FRDM2012 [14], HFB24 [15] and UNEDFO [58] that were”
having closer agreement with experimental So, values”
from this work. All of these models show a consistent™
pattern in this mass region, whereas, except UNEDFO,539
most of them over predict D,,. UNEDFO is the closest™
match till N=58 in the measured mass territory, after
which it over predicts relative to the extrapolated valuessa
in AME2016 at N = 65.

542

543

B. Astrophysical Discussion s
545
The neutron separation energy, S, is a sensitive in-ss
put for r-process calculations [12]. Tt is calculated fromss
atomic mass using S,(N,Z) = —M(N,Z) + M(N —ss
1,7) 4+ m,, where, m,, is the mass of the neutron. Thesw
neutron separation energies are directly used in the cal-sso
culation of neutron capture rates and photo-dissociationss:
rates. The latter’s exponential dependence highlights thess.
impact of masses on r-process calculations [1], as dis-sss
cussed in the following paragraphs. 554
To estimate the effect of the new masses on astrophys-sss
ical r-process abundances, we calculated fractional abun-sss
dances using the waiting-point approximation [2] for thess:
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Figure 6. (Color online) (a) Fractional r-process abundance
for Rb and Sr isotopes relative to most abundant isotopes
using waiting point approximation. Open circles are values
taken from AME2016. Filled circles denote a combination of
values calculated from AME2016 values and new TITAN mass
values from this work. (b) The ratio of fractional abundances
(Yame2016/YTiTAN) corresponding to values plotted in panel

(a).

isotopes of interest. At the equilibrium condition, the
rate of neutron capture is equal to the rate of photo-
disintegration, (n, v ) = (v, n). In this condition, the
abundance distribution along the isotopic chain is en-
tirely determined by the chemical potentials [10], and
the abundance yields of neighbouring nuclei can be cal-
culated using the Saha equation given by

Y; G, <A+1 2mh?

Y, " 2G, \~ A my kT

3/2
) e e
where Y; are the yields of the neighbouring nuclei in the
isotopic chain, G; are the astrophysical partition func-
tions, k is the Boltzmann constant, 7" is the temperature
in K, m,, is the atomic mass unit, and A is the mass num-
ber. The precise mass values are input in this equation
as neutron separation energy (Sp).

The partition functions G; were obtained from the
work of Rauscher et al. [67]. The data in this reference
has been tabulated for larger steps, and thus it was spline
interpolated for calculations. The temperature was var-
ied between 1-2 GK, neutron densities in the range of
102°-10%5cm =2 [2]. The calculations were compared for
S, calculated from this work and S,, from AME2016.
Fig. 6(a) displays the calculations with n,, = 102%¢m=3
and T = 1.2 GK, at which the biggest difference in abun-
dance pattern was observed.
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In order to calculate fractional yields for a completess
isotopic chain, the new TITAN mass values were replacedswo
with AME2016 extrapolations in the AME2016 values,sn
resulting in (AME20164+TITAN) values. The ratio ofs
yields from (AME2016+TITAN) values to the AME2016603
values is shown in the bottom part of Fig. 6. Thecos
lower yield due to new mass measurement may impacteos
the small r-process peak in A=100 mass region, and helpeos
in the understanding of the r-process. Moreover, the in-eo
creasing deviation of mass values from AME’s extrapo-eos
lated values suggests the need for mass measurements ofeo
more neutron-rich nuclei in this mass region. 610

As stated earlier, r-process network calculations relysu
on nuclear mass models in the unknown mass territory.e
With an increase in neutron number, most of the masses
model predictions deviate to large values and becomeses
less reliable. The sensitivity of masses on r-process nu-eis
cleosynthesis has been reviewed in Ref. [11], and 500 ke Vs
has been ascertained as an optimum limit for rms errores
in mass models. As discussed above, the new masses
from this work deviate by more than 500 keV/c? from
AME2016 extrapolations and the mass models frequentlysis
used in r-process calculations. As most mass models over-
predict the neutron separation energies of the Rb & Sre,
isotopes under investigation, a detailed network calcula-g,
tion is required for finding the impact of these massesgy
on r-process nucleosynthesis as suggested by our simpleg,
estimates from the Saha equation. 623

624
625
V. SUMMARY 626
627

We measured the masses of the isotopic chains of Rbes
and Sr using multiple-reflection time-of-flight mass spec-e2
troscopy: Rb in the range of A = 99-103 and Sr in thess
range of A = 99-105. Of these, '*Rb and '93~195Sr havess
been measured for the first time. These measurementses
reduced the uncertainties for new masses to less than 453
keV/c?. The deviation from AME2016 values with ourss
values for 13Rb is nearly 400 keV /c? and for 1037105Gy jggss
200-700 keV /c2. We also confirm the deviation of massess
value for '2Rb with respect to AME2016, as reportedss
by ISOLTRAP [30]. 638

We compared the newly measured values from thises

work with those from existing literature and theoret-
ical models through the nuclear mass surface and its
derivatives, namely, the neutron separation energy, the
neutron pairing gap, the two-neutron separation energy
and the two-neutron shell gap. For the measurements
in this work, we obtained lower pairing gaps and lower
neutron separation energies suggesting loosely bound
nuclei compared to values based on commonly used
mass models. This also indicates that neutron rich
isotopes of Z=37,38 will reach the neutron drip line
earlier than expected. Our findings also refute the
presence of a shell gap or the onset of deformation near
mid-shell N=66 in 37Rb and 3gSr isotopes. The new
mass values have a deviation of more than 0.5 MeV
from AME2016 extrapolations and nuclear mass models.
These new values also affect the calculated fractional
r-process abundance pattern as seen in the waiting-point
approximation calculation.
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