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We examine nucleon-nucleon realistic interactions, based on their SU(3) decomposition to SU(3)-
symmetric components. We find that many of these interaction components are negligible, which,
in turn, allows us to identify a subset of physically relevant components that are sufficient to de-
scribe the structure of low-lying states in 12C and related observables, such as excitation energies,
electric quadrupole transitions and rms radii. We find that paring the interaction down to half of
the SU(3)-symmetric components or more yields results that practically coincide with the corre-
sponding ab initio calculations with the full interaction. In addition, we show that while various
realistic interactions differ in their SU(3) decomposition, their renormalized effective counterparts
exhibit a striking similarity and composition that can be linked to dominant nuclear features such
as deformation, pairing, clustering, and spin-orbit effect.

I. INTRODUCTION

Ab initio calculations aim to describe nuclear features
while employing high-precision interactions that describe
two- and three-nucleon systems (often referred to as “re-
alistic interactions”), such as those derived from meson
exchange theory [1, 2] (e.g. CD-Bonn [3]), chiral effective
field theory [4–6] (e.g. NNLOopt [7] and N3LO [8]), or
J-matrix inverse scattering (JISP16 [9, 10]). As such cal-
culations do not depend on any information about the nu-
cleus in consideration, these methods can be used in nu-
clear regions where experimental data is currently sparse
or not available, e.g., along the pathways of nucleosyn-
thesis and toward a further exploration of exotic physics
of rare isotopes.

While realistic interactions build upon rich physics at
the nucleon-nucleon (NN) level, it is impossible to iden-
tify terms in the interaction that are responsible for emer-
gent dominant features in nuclei, such as deformation,
pairing, and clustering. These features, which are re-
vealed in even the earliest of data on nuclear structure,
have informed many successful nuclear models such as
Elliott’s SU(3) model [11–13] and Bohr collective model
[14] with a focus on deformation, as well as algebraic
[15, 16] and exact [17] pairing models. Recently, we have
shown that calculations that consider Hamiltonians that
build upon the ones used in these earlier studies and,
in addition, allow for configuration mixing [18–20], yield
results that are consistent with the ones in the ab ini-
tio symmetry-adapted no-core shell model (SA-NCSM)
[21, 22]. In particular, the no-core symplectic model
(NCSpM) has offered successful descriptions for exci-
tation energies, monopole and quadrupole transitions,
quadrupole moments, and rms radii for a range of nu-
clei (from A=8 to A=24 systems, including cluster ef-
fects in the 12C Hoyle state) [18, 19, 23], by employing
quadrupole-quadrupole (Q ·Q) and spin-orbit interaction
terms. In Ref. [20], exact solutions to the shell model
plus isoscalar and isovector pairing have been provided
for low-lying 0+ states and, e.g., the energy of the low-
est isobaric analog state in 12C has been shown to agree

with the corresponding ab initio findings. Therefore, it
is interesting to trace this similarity in outcomes down
to specific features of the realistic interactions.

In this paper, we provide new insight into correla-
tions within realistic interactions through the use of the
deformation-related SU(3) symmetry. Specifically, we
show that only a part of the nucleon-nucleon interac-
tion appears to be essential for the description of nuclear
dynamics, especially at low energies. When expressed
in the SU(3) symmetry-adapted basis, the interaction –
given as SU(3) tensors – shows a clear preference toward
a specific subset of tensors, allowing us to determine its
dominant components. Most importantly, these features
appear regardless of the underlying theory used to con-
struct the interaction. Furthermore, an almost univer-
sal behavior is revealed by “soft-core” potentials such
as JISP16, or by the renormalized (“softened”) coun-
terparts of “harder” interactions that use, e.g., Okubo-
Lee-Suzuki (OLS) [24, 25] and Similarity Renormaliza-
tion Group (SRG) [26] renormalization techniques. And
further, to complete the picture, we show that these fea-
tures are directly linked to the important physics, i.e.,
deformation, clustering, pairing, and spin-orbit effects,
that drove the development of earlier, and considerably
simpler, schematic models.

The importance of various interaction components is
studied in SA-NCSM calculations. In particular, we
study nuclear structure observables of 12C, such as the
low-lying excitation spectrum, B(E2) reduced transition
probabilities and root mean square (rms) radii. We com-
pare the results that use the entire interaction with those
that use interactions that have been selected down to
their dominant components. The agreement observed for
all these observables is remarkable, even when a small
fraction of the interaction is used.
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II. THEORETICAL METHOD

A. SA-NCSM framework

It was shown in the recent study by Dytrych et al. [22]
that only a few dominant configurations in symmetry-
adapted (SA) basis are sufficient to describe most of the
physics in nuclei. Similar patterns were also seen in, e.g.,
Refs. [27]. These configurations correspond to equilib-
rium shapes with their vibrations and rotations that can
be described within the SA collective basis. This lays the
foundation of the ab initio SA-NCSM, which is a no-core
shell model with an SU(3)-coupled or Sp(3,R)-coupled
symmetry-adapted basis (for a recent review, see Refs.
[21, 22] and the references therein). Similarly to NCSM
[28, 29], it uses a harmonic oscillator (HO) basis, where
the HO major shells are separated by a parameter ~Ω.
The model space is capped by an Nmax cutoff which is
the maximum total number of oscillator quanta above
the lowest HO configuration for a given nucleus. The
SA-NCSM utilizes a non-relativistic nuclear Hamiltonian
with translationally invariant interactions plus Coulomb
interaction. Since we work in lab coordinates, we re-
move the spurious center-of-mass excitation states from
the low-lying spectrum with a Lawson term [30, 31]. The
model calculates eigenvalues and eigenvectors of the nu-
clear interaction Hamiltonian and subsequently uses the
eigenvectors for calculations of the nuclear observables.
The results approach the exact value as the Nmax in-
creases, and at the Nmax → ∞ limit they become inde-
pendent of the HO parameter ~Ω. Within a given com-
plete Nmax model space, the SA-NCSM results exactly
match those of the NCSM for the same interaction. The
use of symmetries in SA-NCSM allows one to select the
model space by considering only the physically relevant
subspace, which is only a fraction of the corresponding
complete Nmax space.

In the SA-NCSM, the SA basis is constructed using an
efficient group-theoretical algorithm for each HO major
shell [32]. While we do not use explicit construction of
conventional NCSM bases, for completeness, we show the
unitary transformation from a two-particle JT -coupled
basis state to an SU(3)-coupled state:

|ηrηsωκ(LS)ΓMΓ〉

=
1√

1 + δηrηs
{a†

(ηr 0)
1
2

× a†
(ηs 0)

1
2

}ωκ(LS)ΓMΓ |0〉

=
1√

1 + δηrηs

∑
lrls
jrjs

ΠjrjsLS〈(ηr 0)lr; (ηs 0)ls‖ωκL〉

×

 lr ls L
1/2 1/2 S
jr js J

 {a†r × a†s}ΓMΓ |0〉 , (1)

where we use conventional labels r(s) = {η(l 1
2 )jt = 1

2}
and Γ = JT , with η = 0, 1, 2, . . . is the HO shell

number and Πj =
√

2j + 1, and with a†
(η 0)

1
2

≡ a†
η

1
2

being the creation operator that creates a particle of
spin 1

2 in a HO major shell η corresponding to an (η 0)
state in the SU(3) basis. We use SU(3) quantum num-
bers, ω ≡ (λµ) = (ηr 0)× (ηs 0), ω̃ ≡ (µλ), and κ dis-
tinguishes multiple occurrences of the same total orbital
momentum L for a given ω. The two states are coupled
through reduced SU(3) Clebsch-Gordan coefficients 〈; ‖〉
[33, 34]. S is the total intrinsic spin of the two particle
system and we use Wigner 9-j symbol.

To provide a more detailed description of the SU(3)
quantum numbers ω, as discussed in Ref. [21], the single-
particle HO basis states |ηlml〉, can be expressed by
|ηzηxηy〉, with ηz + ηx + ηy = η. For a given HO shell
η, the complete shell-model space is then specified by all
distinguishable distributions of ηz, ηx and ηy. E.g., for
η = 2, there are 6 distinct distributions, (ηz, ηx, ηy) =
(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1) and
(0, 0, 2). Each of these configurations can be occupied
by maximum of two spin- 1

2 particles of the same type.
Adding (ηz, ηx, ηy) for all particles yields (ηtotz , ηtotx , ηtoty ),

with SU(3) quantum numbers given by λ = ηtotz − ηtotx
and µ = ηtotx − ηtoty . For example, in the case of 2 parti-
cles in η = 2, if both are in (2, 0, 0) configuration, then
ηtotz = 4, ηtotx = 0 and ηtoty = 0, hence (λµ) = (4 0), if
one of the particles is in (2, 0, 0) and the other is in (1,
1, 0), then ηtotz = 3, ηtotx = 1 and ηtoty = 0, resulting
in (λµ) = (2 1). Thus, by indicating the difference be-
tween the HO quanta in each direction, these labels relay
important information about nuclear deformation.

B. SU(3) interaction tensors

NN interactions can be divided into components that
respect certain symmetries, such as rotational invari-
ance. Two-body isoscalar (charge-independent) in-
teractions are typically given in a representation of
a JT -coupled HO basis, |rsΓMΓ〉, that is, V Γ

rstu =
〈rsΓMΓ = 0|V |tuΓMΓ = 0〉. This takes advantage of the
fact that the interaction transforms as a scalar under ro-
tations in coordinate and isospin space, that is, it is an
SO(3)× SU(2)T tensor of rank zero (J0 = 0, T0 = 0).

Analogously, the interaction can be represented
in an SU(3)×SU(2)S×SU(2)T -coupled HO basis
|ηrηsωκ(LS)ΓMΓ〉 shown in Eq. (1). The correspond-
ing interaction matrix elements are similarly given
as V Γ

(χωκLS)fi
≡ 〈(χωκ(LS)ΓM)f |V |(χωκ(LS)ΓM)i〉,

with χ ≡ {ηrηs} and with symmetry properties
V Γ

(χωκLS)if
= V Γ

(χωκLS)fi
. The initial and final values

of (χωκLS)if can be different, i.e., the SU(3)×SU(2)S
rank of V is non-zero. In addition, since J0 = 0, we have
L0 = S0, thus the label L0 will be henceforth omitted.
Using that the interaction can be represented as a sum
of SU(3)×SU(2)S tensors, V =

∑
ρ0ω0κ0S0

V ρ0ω0κ0S0 ,
the matrix elements can be further reduced with respect
to SU(3) and the spin-isospin space (for T0 = 0),

V ρ0ω0κ0S0

(χωS)if ;T ≡
〈
(χωS)f ;T ||V ω0κ0S0 ||(χωS)i;T

〉
ρ0

(see
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FIG. 1: Relative strengths s (in %) for the SU(3)-coupled JISP16 (top) and N3LO (bottom) NN interactions and their effective
counterparts with ~Ω = 15 MeV and 20 MeV, respectively, in the Nmax = 6 model space. The “eff. JISP16” is obtained by the
OLS technique for A=12, while “eff. N3LO” is by SRG with λSRG = 2.0 fm−1. T is the isospin of the two nucleon system. A
set of (λ0µ0)S0 quantum numbers and its conjugate correspond to each of the interaction terms. Only terms with >1% relative
strength for each T are shown; there are more than 120 terms with less than 1% strength for this model space.

Appendix).Here, the superscripts show the rank of the
SU(3)×SU(2)S tensor, and ρ0 is the multiplicity that
distinguishes between multiple occurrences of ω0 for the
same ωi and ωf .

The following conjugation relations hold for the
SU(3)× SU(2)S tensors,

V ρ0ω0κ0S0

(χωS)if ;T = (−)Si−Sf+S0(−)ωf−ωi
√

dimωf
dimωi

V ρ0ω̃0κ0S0

(χωS)fi;T

V ρ0ω0κ0S0

(χωS)ii;T
= (−)S0V ρ0ω̃0κ0S0

(χωS)ii;T
, (2)

where

dimω =
1

2
(λ+ 1)(µ+ 1)(λ+ µ+ 2). (3)

To simplify the equations in the paper, we introduce a
symmetrized tensor,

vρ0ω0κ0S0

(χωS)if ;T = (−)ωi−Si−T
√

dimωiV
ρ0ω0κ0S0

(χωS)if ;T , (4)

with a conjugation relation,

vρ0ω0κ0S0

(χωS)if ;T = (−)S0vρ0ω̃0κ0S0

(χωS)fi;T
. (5)

We note that, in the case when χi = χf , ωi = ωf , and

Si = Sf , we will use the notation vρ0ω0κ0S0

(χωS);T .

C. Strength of SU(3) interaction tensors

The significance of the various SU(3) tensors can be
estimated by their Hilbert-Schmidt norm, which is anal-
ogous to the norm of a matrix A defined as ||A|| =√∑

ij AijAji. In particular, the strength of a Hamilto-

nian H can be estimated by the norm σH constructed as
[36–41]

σ2
H =

〈
(H − 〈H〉)†(H − 〈H〉)

〉
=
〈
H2
〉
− 〈H〉2 , (6)

where 〈. . .〉 ≡ 1
N Tr(. . . ) specifies the trace of the Hamil-

tonian matrix divided by the N number of diagonal ma-
trix elements. In the present study, H is a two-body
Hamiltonian, and N enumerates all possible two-particle
configurations.

For given Tf = Ti = T and a |χ∗ωκ(LS)ΓMΓ〉 basis
with χ∗ ≡ {ηrηs}, ηr ≤ ηs, the norm σω0κ0S0;T of each
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FIG. 2: Excitation energy of the first 2+ and 4+ states in 12C
from SA-NCSM calculations (connected lines) as a function of
the fraction of the terms kept in the interaction, and compared
to experiment [35] (labeled as “Expt.”). Results for Nmax =
6, 8, 10, and 12 are shown for various selections of the JISP16
interaction with ~Ω = 15 MeV. Specifically, the value 1 on the
abscissa indicates the full interaction (100%) was used, while
an abscissa value of 0.4 implies that only the most significant
40% of the tensors were retained, etc.

SU(3)-symmetric tensor is determined using Eq. (6):

σ2
ω0κ0S0;T =

1

N
∑

(χ∗ωS)f,iρ0

1

Π2
TS0

dimω0
|vρ0ω0κ0S0

(χωS)if ;T |
2

−(V ω0κ0S0;T
c )2, (7)

where the number of two-particle basis states
N and the average monopole part V ω0κ0S0

c =〈
V ω0κ0(L0=S0S0)Γ0=0MΓ0

=0
〉

are given, respectively,
as

N =
∑

χ∗ωκLSJMJ

1 =
∑
χ∗ωS

Π2
S dimω, (8)

V ω0κ0S0
c =

1

N
∑
χ∗ωκ
LSJρ0

Π2
JΠL

ΠS0T

√
dimω

(−1)S0+L+J−T−ω

×
{
L S J
S L S0

}
〈ωκL;ω0κ0L0‖ωκL〉ρ0

vρ0ω0κ0S0

(χωS);T . (9)

For a given isospin T , the strength of the entire Hamil-
tonian HT is determined by the strengths of its compo-
nents, σ2

HT
=
∑
ω0κ0S0

σ2
ω0κ0S0;T . We can then define

a relative strength for each SU(3)-symmetric component
(ω0κ0S0) as

s2
ω0κ0S0;T =

σ2
ω0κ0S0;T

σ2
HT

=
σ2
ω0κ0S0;T∑

ω0κ0S0
σ2
ω0κ0S0;T

. (10)

Using Eq. (13), we can decompose any two-body in-
teraction into SU(3)-symmetric components. The contri-
bution of each of the components within the interaction

is given by its relative strength (10) (see Fig. 1 for the
realistic JISP16 and N3LO interactions). As can be seen
from these results, only a small number of SU(3) tensors
dominate the interaction, with the vast majority of the
components having less than 1% of the total strength.
The most dominant term, i.e., (λ0 µ0) = (0 0) is the
one that preserves the SU(3) symmetry, which provides
a further support of the successful Elliott model [11, 12].
Various dominant terms will be discussed in detail in Sec-
tion III B. Similar behavior is observed for other interac-
tions. It should be noted that in the JT -coupled basis, no
such dominance of interaction matrix elements is appar-
ent. This exercise demonstrates a long-standing principle
that holds across all of physics; namely, one should work
within a framework that is as closely aligned with the
dynamics as possible [43].

III. RESULTS AND DISCUSSIONS

A. Observables in 12C

The decomposition of the interaction in the SU(3) ba-
sis allows us to choose sets of major components to con-
struct new selected interactions. These interactions can
be used for calculations of various nuclear properties that
can then be compared to the results from the initial inter-
action. In this way, we can examine how sensitive specific
nuclear properties are to the interaction components.

Several selected interactions were constructed for this
study. The selection is done by ordering the interaction
tensors from the highest relative strength to the lowest
and then including the largest ones to add up to 60 -
90% of the initial total strength. Depending on the Nmax

of the interaction the number of selected SU(3) tensors
differs. For example, JISP16 interaction in Nmax = 10,
~Ω=15 MeV has overall 169 unique (λ0µ0)S0 tensors,
out of which 51 largest ones account for about 80% of
the total strength. After selection the total strengths
are not rescaled to the initial interaction. Throughout
this work we will refer to selected interactions in terms
of the fraction of interaction tensors kept, that is the
number of SU(3)-symmetric components in the selected
interaction relative to the number of all such components
in the initial interaction for a given Nmax and ~Ω.

Analysis of the results shows that low-lying excitation
energies of 12C are not sensitive to the number of selected
SU(3) tensors, given that the most dominant ones are in-
cluded in the interaction (Fig. 2). With only half of the
interaction tensors the excitation energies essentially do
not differ from the corresponding results that use the full
interaction, and even with less than 30% of the interac-
tion components the deviation for most of the values is
insignificant. The comparatively large deviation in 4+

energy for Nmax = 6 that happens when about 20% of
the SU(3) components are used is likely due to the small
model space. This issue disappears in higher Nmax val-
ues, and even Nmax = 6 results for the 2+ state compare
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FIG. 3: Same as Fig. 2, but for the rms radius (in fm) of the 12C ground state (experimental value from Ref. [42]) and the B(E2:
2+
1 → 0+

1 ) value (in e2fm4) (experimental value from [35]) as a function of the fraction of the terms kept in the interaction.
SA-NCSM calculations use various selections for the JISP16 interaction for ~Ω = 15 MeV and different Nmax model spaces.

remarkably well to the initial interaction for all selections.

The selected interactions yield very close results to the
initial one for other observables as well. For example,
the 12C rms radius of the ground state and the B(E2:
2+ → 0+) have very low dependence on the selection
(Fig. 3), with variations nearly inconsequential com-
pared to the deviations from the experiment (the under-
prediction of these observables for the JISP16 interac-
tion has been addressed, e.g., in Ref. [31]). Specifically,
the values are essentially the same when half of the in-
teraction components are used. With less than 30% of
interaction components, the difference from the initial in-
teraction results is less than 2% for rms radius and less
than 7% for B(E2). Thus, small deviations start to ap-
pear only at significantly trimmed interactions, indicat-
ing that the long-range physics is mostly preserved when
only the dominant interaction terms are used.

In addition, vital information about the nuclear struc-
ture can be found through analysis of the (λµ)S configu-
rations that comprise the SA-NCSM wavefunction. This
uncovers the physically relevant features that arise from
the complex nuclear dynamics as shown in Ref. [21].
In other words, the wavefunctions contain a manage-
able number of major SU(3) components that account for
most of the underlying physics. Indeed, we find that cal-
culations with various selected interactions largely pre-
serve the major components of the wavefunction (Fig. 4).
For the ground state of 12C calculated in the Nmax = 12
model space the probability amplitude for each set of the
quantum numbers (λµ)S almost does not change when
a little less then half (46%) of the JISP16 interaction
tensors are used for the calculations. Even with about
quarter (26%) of the tensors, the SU(3) structure remains
the same with only a slight difference in the amplitudes.
It should be noted that, the (λµ)S here are not to be con-
fused with the ones in Fig. 1, as they correspond to the
many-body states of 12C. In particular, (0 4)0 is the low-

est particle configuration in the HO basis, that is, 4 par-
ticles in (ηz, ηx, ηy) = (1, 0, 0) and 4 particles in (0, 1, 0).
As shown in Fig. 4, this accounts for almost half of the
probability amplitude of the ground state wavefunction.
The first three (λµ)S in the figure correspond to the 0p-
0h configurations, among which the (0 4)0 is the most
deformed and has the lowest spin. The dominance of
configurations with largest deformation and lowest spin
has been shown in Ref. [21].

As mentioned above, the dependence on the HO pa-
rameter ~Ω disappears at the Nmax → ∞ limit, how-
ever, even for comparatively small Nmax model spaces,
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fraction of the interaction components kept, 46% and 26%).
Only states with probability amplitudes > 0.003 are shown.
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kept) JISP16 interaction.
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FIG. 6: Excitation energies of the first 2+ and 4+ states for
12C from SA-NCSM calculations with Nmax = 6 and Nmax

= 8 model spaces using full JISP16 interaction (“All”) and
its selected counterpart (with 37% of the tensors kept), with
~Ω = 15, 20 and 25 MeV, and compared to experiment.

there is often a range of ~Ω values, which achieves con-
vergence for selected observables, while typically larger
Nmax model spaces are required outside this range. For
long-range observables, such a range often falls closely
to an empirical estimate given by ~Ω = 41/A1/3 [14],
which is 18 MeV for 12C. We investigate the dependence
of the ground state rms radius of 12C on ~Ω using differ-
ent selections (Fig. 5). We examine small model spaces,
where the ~Ω dependence is large and its effect on the
interaction selections is expected to be enhanced; yet, we
ensure that these model spaces provide results close to
the Nmax =12 outcomes (see Nmax =6 and 8 results in
Figs. 2 and 3). Comparing to the full interaction, the re-
sults indicate that, indeed, small deviations are observed

-5
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FIG. 7: Energies of the proton-neutron system for the
positive-parity lowest-lying states (< 30 MeV), calculated in
the SA-NCSM in Nmax =12 model space using the JISP16
interaction, with all terms kept (100%) as compared to a se-
lection that keeps only 26% of the terms, for ~Ω=15 MeV.

for values around ~Ω = 18 MeV, and the deviations be-
come larger at higher (less optimal) ~Ω values (Fig. 5).
Similarly, the excitation energies for ~Ω = 15 MeV cal-
culations are much less sensitive to the interaction selec-
tion (Fig. 6),whereas the deviation in the results between
the initial and selected interactions increases for higher
~Ω. However, this difference gets smaller with increasing
model space. To summarize, the selection of the interac-
tions affects the calculations with optimal ~Ω values the
least.

It is interesting to examine how the selection of NN in-
teractions affects the nucleon-nucleon physics. As a sim-
ple illustration, we study the Hamiltonian for the proton-
neutron system and its corresponding eigenvalues. (We
note that states beyond the lowest 1+ state are scattering
states, but they appear in a shell model energy spectra
as distinct states; however, the idea here is to examine if
there is any loss of information in the selected NN inter-
action, which in turn guides ab initio calculations.) In
addition to T = 0 states, we consider T = 1 states, which
can also inform the proton-proton and neutron-neutron
systems. To do this, we look for deviations in the cor-
responding eigenvalues as compared to those computed
with the full interaction.

In particular, we observe that only about quarter
of the SU(3)-symmetric interaction components (the
most dominant ones) can reproduce, with high ac-
curacy, the energies that use the full interaction for
most of the low-lying states of the proton-neutron sys-
tem (Fig. 7). To estimate the difference in ener-
gies, we calculate the root mean square error (RMSE),

RMSE =

√
1
Nd

∑Nd
i

(
Eiall − Eisel

)2

where Eall and Esel

are the eigenenergies calculated with the initial and se-
lected interactions, respectively, the summation is over
all positive- or negative-parity states and Nd is the to-
tal number of states. For negative-parity 0 ≤ J ≤ 5
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states up through energy with 30 MeV, we find RMSE
to be about 0.9 - 1.2 MeV depending on ~Ω, whereas
for positive-parity states, it is between 0.5 and 0.9 MeV.
Similar RMSE values are seen even for the higher lying
spectrum up to 50 MeV. As it can be seen from Fig.
7, the main deviations come from the second and third
1+ and 3+ states indicating that certain states are more
sensitive to the selection than others.

B. Dominant features in realistic interactions

There are various techniques of renormalization such
as OLS and SRG that are employed to “soften” the real-
istic interactions, which in turn can be used in compara-
tively smaller model space. In short, these techniques
transform the two-body Hamiltonian into an effective
Hamiltonian for given A that decouples from high-energy
physics, while preserving the symmetries of the initial
Hamiltonian. The OLS technique is described in detail
in Ref. [25], whereas specific details for the SRG are
available in Ref. [26].

Comparing the SU(3) decompositions of initial interac-
tions to their renormalized (effective) counterparts shows
that the same major SU(3) tensors remain dominant after
renormalization (Fig. 1). In the case of JISP16 the ten-
sors with the largest relative strengths practically do not
change. The renormalization has a larger impact on the
N3LO interaction where the spread over various tensors
is larger. Here, only a few SU(3)-symmetric components
change significantly while the others change slightly. It
should be noted that the two effective counterparts of the
interactions resemble each other (Fig. 1). A similar be-
havior is observed for, e.g., the AV18 [44] and CD-Bonn
interactions [21].

Examining the largest contributing tensors of realistic
interactions we can link them to the monopole opera-
tor (the HO potential), Q · Q, spin-orbit, pairing and
tensor forces. The key idea is that the position and mo-
mentum operators, ~r and ~p respectively, have an SU(3)
rank (1 0), and conjugate (0 1) (to preserve hermitic-
ity), with SU(2)S rank zero (S0 = 0, that is, the op-
erator does not change spin). The HO potential oper-
ator (∼ r2 = ~r · ~r) has orbital momentum L0 = 0 and
spin S0 = 0, and its SU(3) rank is obtained by coupling
(1 0)× (1 0), (1 0)× (0 1) and conjugates. For L0 = 0, the
SU(3) Clebsch-Gordan coefficients for these couplings are
non-zero only for total (λ0 µ0) = (2 0), (0 2) that, in turn,
define the SU(3) ranks of the HO potential.

The quadrupole operator Q, given by the tensor prod-
uct of ~r, has L0 = 2 and S0 = 0. Here, the SU(3) Clebsch-
Gordan coefficients restrict the total (λ0 µ0) to (2 0) and
(1 1) (and conjugates), which define the SU(3) rank of Q
[19]. Consequently, the Q · Q operator, which describes
the interaction of each nucleon with the quadrupole mo-
ment of the nucleus, will have L0 = 0 and spin S0 = 0,
along with SU(3) rank of (4 0), (2 0), (2 2) and (0 0)
(and conjugates). Similarly, the spin-orbit operator has

(λ0 µ0) = (1 1), L0 = 1 from the orbital momentum op-
erator and S0 = 1 from the spin operator.

The idea of the pairing interaction in nuclei is that
the configurations with paired nucleons are energetically
favored. The SU(3) ranks of the pairing interaction are
derived in Ref. [45], which shows that a large number
of pairing interaction tensors have λ0 = µ0 SU(3) rank.
Lastly, the nuclear tensor force originates mainly from
the one-pion exchange and it depends on the orientation
of the spins with regard to the relative coordinate vector
joining the two nucleons (see, e.g., Ref. [46]). Similarly
to the quadrupole operator, the tensor force has L0 = 2
and SU(3) rank of (2 0) and (1 1) (and conjugates), but
with S0 = 2, coming from the tensor coupling of the spin
operators.

Indeed, the scalar (0 0) S0=0 dominates for a variety
of realistic interactions, and especially in their effective
counterparts (see Fig. 1). As mentioned above, this sug-
gests a dominant Elliott SU(3) symmetry. This may have
important implications for various models that employ
the SU(3) symmetry, such as the ones is Refs. [47–53].
The next important components are typically (2 0), (4 0)
and (2 2)S0=0 and their conjugates. These SU(3) modes
are the ones that appear in the Q · Q interaction, while
(λ0 λ0) configurations dominate the pairing interactions
within a shell [45]. The dominant (2 0) and (1 1)S0 = 2
modes, and conjugates, can be linked to the tensor force.
Finally, the (1 1)S0=1 can be linked to the spin-orbit
force. These features, we find, repeat for various realistic
interactions and, more notably, the similarity is found to
be further enhanced for their renormalized counterparts.
Given the link between the phenomenon-tailored interac-
tions and major terms in realistic interactions, it is then
not surprising that both ab initio approaches and ear-
lier schematic models can successfully describe dominant
features in nuclei.

IV. CONCLUSIONS

Realistic NN interactions expressed in SU(3) basis
show a clear dominance of only a small fraction of terms.
We performed ab initio calculations of several observables
in 12C using interactions that were selected down to the
most significant terms and compared them to the calcu-
lations with the initial interactions. We found that for
the small ~Ω values even the interactions with less than
half of the terms produce almost the same results as the
initial interaction for the low-lying spectrum, B(E2) val-
ues and rms radii of 12C. The selection appears to affect
more the calculations that use interactions with higher
~Ω values in small model spaces, however the deviations
between the initial and selected interaction results de-
crease as the model space becomes larger. In addition,
the eigenvalues of the proton-neutron system for all of
the positive and negative parity states below 30 MeV
change only slightly with as few as the quarter of the
initial interaction terms.
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By analyzing the most dominant terms of various re-
alistic interactions, we found that they can be linked to
well known nuclear forces. In particular, inspection of
these terms allowed us to link them to the widely used
HO potential, Q ·Q, pairing, spin-orbit and tensor forces.
Moreover, we saw that after renormalization the NN in-
teractions, regardless of their type, have mainly the same
dominant terms with similar strengths, indicating that
the renormalization techniques strengthen the same dom-
inant terms in all interactions.
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APPENDIX

In standard second quantized form, a one- and two-
body interaction Hamiltonian is given in terms of fermion

creation a†jm(1/2)σ and annihilation ãj−m(1/2)−σ =

(−1)j−m+1/2−σajm(1/2)σ tensors, which create or anni-
hilate a particle of type σ = ±1/2 (proton/neutron) in
the HO basis.

In Eq. (11), V Γ
rstu is the two-body antisym-

metric matrix element in the JT -coupled scheme
[V Γ
rstu = −(−)r+s−ΓV Γ

srtu = −(−)t+u−ΓV Γ
rsut =

(−)r+s−t−uV Γ
srut = V Γ

turs]. For an isospin nonconserv-
ing two-body interaction of isospin rank T , the coupling
of fermion operators is as follows, {{a†r × a†s}JT × {at ×
au}JT }(0T ), with V

(T )JT
rstu matrix elements.

V = −1

4

∑
rstuΓ

√
(1 + δrs)(1 + δtu)ΠΓV

Γ
rstu{{a†r × a†s}Γ × {ãt × ãu}Γ}(Γ0MΓ0

)

=
∑

(χ∗ωS)fi
ρ0ω0κ0S0

(−1)ω0−ωf+ωi√
(1 + δηrηs)(1 + δηtηu)

1

ΠS0

√
dimωf
dimω0

V ρ0ω0κ0S0

(χωS)f,iT
×

∑
ρ′0

Φρ′0ρ0
(ω0ωiωf ){{a†ηr × a

†
ηs}

ωfSfT × {ãηt × ãηu}ωiSiT }ρ
′
0ω0κ0(L0=S0S0)Γ0=0MΓ0

=0, (11)

where dim ω is defined in Eq. 3 and the phase matrix
Φρ′0ρ0

(ω0ωiωi) accommodates the interchange between
the coupling of ω0 and ωi to ωf , so for SU(3) Clebsch-
Gordan coefficients we have [54]

〈ω0κ0L0M0;ωiκiLiMi|ωfκfLfMf 〉ρ0
=
∑
ρ′0

Φρ0ρ′0
(ω0ωiωf )〈ωiκiLiMi;ω0κ0L0M0|ωfκfLfMf 〉ρ′0 . (12)

For the special case when ρ = 1, that is, where
the SU(3) coupling {ωi × ω0} → ωf is unique,
the phase matrix reduces to a simple phase factor

(−1)(λ0+µ0)+(λi+µi)−(λf+µf ). Finally, the interaction re-
duced matrix elements in a SU(3) × SU(2)S × SU(2)T -
coupled HO basis are given as,
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V ρ0ω0κ0S0

(χωS)fi;T
= (−)Sf+S0ΠTS0

dimω0

dimωf

∑
J(κL)if

(−)Li+JΠ2
JΠLf

{
Lf Sf J
Si Li S0

}
〈ωiκiLi;ω0κ0L0‖ωfκfLf 〉ρ0

V Γ
(χωκLS)fi

= (−)Sf+S0ΠTS0

dimω0

dimωf

∑
J(κL)if

(−)Li+JΠ2
JΠLf

{
Lf Sf J
Si Li S0

}
〈ωiκiLi;ω0κ0L0‖ωfκfLf 〉ρ0

×

ΠLiLfSiSf

∑
lrlsltlu
jrjsjtju

√
(1 + δrs)(1 + δtu)

(1 + δηrηs)(1 + δηtηu)
Πjrjsjtju〈(ηr 0)lr; (ηs 0)ls‖(ωκL)f 〉 ×

〈(ηt 0)lt; (ηu 0)lu‖(ωκL)i〉

 lr
1
2 jr

ls
1
2 js

Lf Sf J


 lt

1
2 jt

lu
1
2 ju

Li Si J

V Γ
rstu, (13)

where V Γ
(χωκLS)fi

is a two-body interaction in a SU(3)-

JT -coupled scheme; as mentioned above 〈; ‖〉 are reduced

SU(3) Clebsch-Gordan coefficients [33, 34], and we use
SU(2) Wigner 6-j and 9-j symbols.
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