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A microscopic description of the interaction of atomic nuclei with external electroweak probes
is required for elucidating aspects of short-range nuclear dynamics and for the correct interpreta-
tion of neutrino oscillation experiments. Nuclear quantum Monte Carlo methods infer the nuclear
electroweak response functions from their Laplace transforms. Inverting the Laplace transform is
a notoriously ill-posed problem; and Bayesian techniques, such as maximum entropy, are typically
used to reconstruct the original response functions in the quasielastic region. In this work, we present
a physics-informed artificial neural network architecture suitable for approximating the inverse of
the Laplace transform. Utilizing simulated, albeit realistic, electromagnetic response functions, we
show that this physics-informed artificial neural network outperforms maximum entropy in both the
low-energy transfer and the quasielastic regions, thereby allowing for robust calculations of electron
scattering and neutrino scattering on nuclei and inclusive muon capture rates.

I. INTRODUCTION

Electron scattering experiments are powerful tools
to simultaneously investigate the short- and long-range
many-body dynamics of atomic nuclei. These experi-
ments contributed to demonstrating the limitations of
an independent particle picture of the nucleus that fails
to provide a fully quantitative description of atomic nu-
clei [1]. At large momentum transfer, the large excess
of neutron-proton correlated pairs with respect to the
proton-proton and neutron-neutron pairs has highlighted
the importance of the tensor component of the nuclear
interaction and the interplay between nucleonic and par-
tonic degrees of freedom [2–4]. The field has experienced
a renewed interest also in view of its interplay with high-
precision measurements of neutrinos and their oscilla-
tions [5]. This is the main focus of the accelerator-based
neutrino oscillation program, which includes ongoing ex-
periments such as NOvA [6] and T2K [7] and planned
ones such as DUNE [8] and Hyper-K [9]. Nuclear tar-
gets are utilized in the detectors to increase the event
rate. Hence, the determination of oscillation parame-
ters requires accurate theoretical calculations of neutrino-
nucleus interactions in a broad range of energy spanning
from tens of MeVs to few GeVs, in which a variety of reac-
tion mechanisms are at play [10–12]. We also note that
neutrino experiments utilizing the Liquid Argon Time
Projection chamber technology have reached a degree of
sophistication suitable to identifying short-range corre-
lated pairs of nucleons [13].

In the low-energy regime, the inclusive lepton-nucleus
cross section is dominated by coherent scattering, ex-
citations of low-lying nuclear states, and collective
modes. Coherent elastic neutrino-nucleus scattering
(CEνNS), recently computed within nuclear ab-initio ap-
proaches [14], is relevant to test standard-model predic-

tions, for supernova physics, and for enabling valida-
tion of dark-matter detector background and detector-
response models [15]. At energies on the order of hun-
dreds of MeV, the leading mechanism is quasielastic (QE)
scattering, in which the probe interacts primarily with in-
dividual nucleons bound inside the nucleus. Corrections
to this leading mechanism arise from processes in which
the lepton couples to interacting nucleons, via nuclear
correlations and two-body currents.

The inclusive lepton-nucleus scattering cross section
is completely determined by the electroweak response
functions, which hold all information about the dynam-
ics of the nuclear target. The Green’s function Monte
Carlo (GFMC) method [16] has been successfully em-
ployed to compute the electromagnetic, neutral-current,
and charged-current response functions of 4He and 12C in
the QE region, up to moderate values of the momentum
transfer [17–20] and the muon capture rates of 4He and
3H [21]. These calculations have unambiguously demon-
strated the importance of properly treating nuclear cor-
relations and meson exchange currents even for QE kine-
matics. Within this approach, the electroweak response
functions are inferred from their Laplace transforms, de-
noted as Euclidean responses, that are estimated during
the GFMC imaginary time propagation. Retrieving the
energy dependence of the response functions from their
Euclidean counterparts is nontrivial.

The maximum entropy method (MaxEnt) [22, 23] has
been extensively employed to retrieve the energy depen-
dence of the electroweak response functions. Despite its
success in the QE region, MaxEnt appears to be inad-
equate to precisely reconstruct the low-energy structure
of the nuclear response functions. In Ref. [18], experi-
mental inputs on the low-lying nuclear transitions have
been utilized to properly describe the longitudinal elec-
tromagnetic responses of 12C in the low-energy region.
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A comparison between GFMC and exact Faddeev re-
sults for the 3H muon capture rate has contributed to
exposing the shortcomings of MaxEnt in reconstruct-
ing the charged-current response functions near the nu-
clear breakup threshold, corresponding to energies of few
MeVs [21]. In addition, although heuristics have been
used, to the best of our knowledge there is no rigorous
way to propagate the statistical uncertainties of the Eu-
clidean response into the response function and to quan-
tify the systematic errors due to the approximate inver-
sion of the Laplace transform. These errors would prop-
agate into the GFMC estimates of lepton-nucleus cross
sections and are critical for informative comparisons with
experiments.

In recent years, an increase in available computing re-
sources has been accompanied by a prodigious rise of
techniques based on machine learning (ML), which are
now ubiquitous in physics [24]. Within low-energy nu-
clear physics, artificial neural networks (ANNs) have
been used to devise a global statistical model for β−

halflives [25], nuclear masses and charge radii [26, 27],
as well as to estimate ground state energies and radii
of nuclei by using results from no-core shell model and
coupled-cluster calculations [28, 29]. Gaussian process
emulators were used in Ref. [30] for Bayesian model
mixing in order to predict bound nuclides between sil-
icon and titanium. The authors of Ref. [31] represent
the deuteron’s wave function with ANNs. In Ref. [32]
ANNs were used to model the Jastrow correlator of A ≤ 4
nuclei. Several works have demonstrated that ML ap-
proaches are suitable for solving inverse problems [33, 34].
In particular, Refs. [35, 36] utilized ANNs to recover the
electron single-particle spectral density in the real fre-
quency domain from the fermionic Green’s function in
the imaginary time domain. The same problem was tack-
led in Ref. [37] by utilizing an Adams-Bashforth resid-
ual ANN. In both cases, the ANN approaches have been
found to outperform MaxEnt implementations.

In this work we develop a novel ANN architecture suit-
able for approximately inverting the Laplace transform of
realistic nuclear electromagnetic response functions, sim-
ilar to those computed with the GFMC method. The
simulated responses utilized in the training dataset ex-
hibit a sharp Gaussian peak corresponding to the low-
energy elastic transition and an asymmetric broad peak
in the QE region. The positions, heights, and widths of
these two peaks are modeled consistently with their en-
ergy and momentum transfer behavior as measured by
electron-scattering experiments. In contrast to previous
approaches, we incorporate physics-grounded constraints
into the neural-network architecture and use an entropic
cost function. We demonstrate an improved accuracy of
the inversion in the low ω region with increased robust-
ness to noise as compared with MaxEnt techniques. This
robustness is especially relevant in view of applications
of nuclear quantum Monte Carlo methods to the calcu-
lations of the electroweak response functions of larger
nuclei relevant to the neutrino-oscillation program, in-

cluding 16O and 40Ar. One such approach, the auxiliary
field diffusion Monte Carlo [38], suffers from a more se-
vere sign problem than the GFMC; this will in turn result
in noisier Euclidean response functions.

This work is organized as follows. In Sec. II we state
the problem to be solved and discuss the relevant features
of the nuclear electromagnetic responses. In Sec. III we
describe our ML algorithm. In Sec. IV we present our
results, and in Sec. V we discuss our conclusions.

II. NUCLEAR RESPONSES

In the one-photon exchange approximation, the inclu-
sive electron-nucleus scattering cross section can be ex-
pressed in terms of the longitudinal and transverse re-
sponse functions, RL(q, ω) and RT (q, ω), respectively,
where q and ω are the electron momentum and energy
transfers. The response functions encode all information
on nuclear structure and dynamics and are defined as

Rα(q, ω) =
∑
f

〈
0|j†α(q, ω)|f

〉
〈f |jα(q, ω)|0〉

×δ(Ef − ω − E0),
(1)

for α = L, T . In Eq. (1), |0〉 and |f〉 represent the initial
and final nuclear states of energies E0 and Ef , respec-
tively, and jL(q, ω) and jT (q, ω) are the electromagnetic
charge and current operators, respectively.

A direct calculation of Rα(q, ω) requires evaluating all
of the individual transition amplitudes induced by the
charge and current operators and is therefore impractical
except for very light nuclear systems [39, 40]. The use
of integral transform techniques has proven helpful in
circumventing these difficulties. One such approach is
based on the calculation of the Euclidean response [41],
which corresponds to the Laplace transform

Eα(q, τ) =

∫ ∞
0

dω e−ωτRα(q, ω) . (2)

Fixing the intrinsic energy dependence of the charge and

current operators to the QE peak, ωQE =
√

q2 +m2−m,
where m denotes the mass of the nucleon, one can express
the Euclidean responses as ground-state expectation val-
ues

Eα(q, τ) = 〈0|j†α(q, ωQE)e−(H−E0)τ j(q, ωQE)|0〉,

where H is the nuclear Hamiltonian. These expectation
values can be evaluated by using the GFMC method on a
uniform grid of nτ imaginary-time points [17, 41]. A set
of noisy estimates for Eα(q, τi) can be obtained by per-
forming independent imaginary-time propagations, from
which the average Euclidean response Ēα(q, τi) and the
covariance Cij between the data at τ = τi and τ = τj can
be readily estimated [18]. Note that, in general, the co-
variance matrix C is nondiagonal because of correlations
among the imaginary-time points.
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Problem statement and the MaxEnt approach

In addition to the imaginary time T = [τ1, · · · , τnτ ],
we discretize the continuous variables ω on nω grid
points and thus define Ω = [ω1, · · · , ωnω ] and the kernel
K(ωi, τj) = e−ωiτj∆ωi, where ∆ωi is the discretization
width at ωi. Dropping, for simplicity, the momentum
transfer dependence and the subscript α of the response
functions, we can rewrite the Laplace transform of Eq. (2)
in the compact matrix form

E(T ) = K(Ω, T )R(Ω),

where E(T ) ∈ Rnτ , R(Ω) ∈ Rnω , and K(Ω, T ) ∈
Rnτ×nω . The response function can thus be formally (for
an appropriate definition of ·−1) recovered by

R(Ω) = K(Ω, T )−1E(T ). (3)

However, the inversion of K(Ω, T ) is numerically unsta-
ble because of the exponentially small tails in the kernel
function for large ω. Retrieving the response function
from noisy GFMC estimates of E(τ) involves significant
difficulty; widely different response functions can corre-
spond to very similar Euclidean responses.

Several algorithms have been developed for approxi-
mately inverting the Laplace transform by using prior
knowledge about the solution. Arguably the most robust
and popular of these is MaxEnt [22, 23], which has been
used to reconstruct the (smooth) energy dependence of
the nuclear response functions around the QE peak [18–
20]. Within MaxEnt, the solution of the inverse prob-
lem is the response function that maximizes the poste-
rior probability P (R|E) (i.e., the conditional probabil-
ity of R(Ω) given E(T )). Bayes’ theorem states that
the posterior probability is proportional to the product
P (E|R)×P (R), where P (E|R) is the likelihood function
and P (R) is the prior probability, containing information
about the response function to be reconstructed. Argu-
ments based on the central limit theorem show that the
asymptotic limit of the likelihood function is given by
P (E|R) ∝ exp(−χ2/2), where

χ2 =

nτ∑
i,j=1

(
E(τi)− Ē(τi)

)
C−1ij

(
E(τj)− Ē(τj)

)
. (4)

Since the response functions are positive and normaliz-
able, they can be interpreted as probability distributions.
The principle of maximum entropy states that the val-
ues of a probability distribution are to be assigned by
maximizing the entropy, which is defined by

S =

nω∑
i=1

(
R(ωi)−M(ωi)−R(ωi) ln

(
R(ωi)

M(ωi)

))
∆ωi .

(5)
The positive-valued M(ω) is the default model and en-
codes our prior knowledge about R(ω) in the absence
of data. The entropy measures how much the response

function differs from the model. It vanishes when R(ω) =
M(ω) and is negative when R(ω) 6= M(ω).

MaxEnt improves upon the standard χ2 minimization
by using the prior information, whereby R(ω) can be in-
terpreted as a probability distribution. For given Ē(τi),
Cij , and default model M(ωi), the response functions are
found minimizing the quantity

Q =
1

2
χ2 − αS , (6)

where α is a fixed parameter that controls the relative
importance between the entropy and the error terms. De-
spite its tendency to underfit the data [42], in this work
we adopt the historic MaxEnt approach [43], which con-
sists in choosing α so that χ2 = nτ . On the other hand,
the more sophisticated classic MaxEnt [44] and Bryan
MaxEnt [22]—both relying on the probability P (α|E)
to determine α – tend to overfit the data since P (α|E)
is evaluated only approximately in practice [45, 46]. In
general, the arbitrariness in choosing α prevents a robust
reconstruction of the rich structure that characterizes the
low-ω region of R(ω), without running the risk of over-
fitting E(τ) and hence causing spurious oscillation in the
reconstructed response function.

III. PHYSICS-INFORMED NEURAL
NETWORK

As mentioned in the preceding section, the inversion
of K(Ω, T ) is numerically unstable, and retrieving R(Ω)
from E(T ) is an ill-posed inverse problem. To overcome
this difficulty, we seek an approximate solution by de-
signing a physics-informed neural network, which we dub
“Phys-NN,” that is suitable for finding a controlled ap-
proximation R̂(Ω) for the right-hand side of Eq. (3).

A. The Phys-NN model

To model R̂(Ω), we start by constructing a set R of
basis functions that takes into account the physics of the
problem, while being as broadly applicable as possible.
Note that each term in the matrix K(Ω, T ), is propor-
tional to e−τjωi and therefore a reasonable choice to cap-
ture its structure is the Gaussian kernel basis, defined
as

φ(x, µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R . (7)

Finding the location and the scale of the Gaussian kernel,
denoted by µ ∈ R and σ > 0, respectively, is part of
the ML training problem. The first layer of the neural
network, whose architecture is displayed in Fig. 1, takes
as input the nτ -dimensional vector E(T ). To form a basis
for each E(τ), we apply nη Gaussian units of the form (7),
where nη is a hyperparameter. We then contract these
Gaussian units with the resulting hidden layer outputs



4

<latexit sha1_base64="AB2UZ2L/wJ7Je4bylxiQIi3oisQ=">AAACk3icbVHLattAFB0rfSTuy0nIqpuhppBujBQaEugmtA1kU0ihTgKWEKPRtT14HmLmysUI/Um26T/1bzKSvaicXhjmcM65D+7NCikchuHfXrDz7PmLl7t7/Vev37x9N9g/uHGmtBzG3Ehj7zLmQAoNYxQo4a6wwFQm4TZbfGv02yVYJ4z+hasCEsVmWkwFZ+ipdDC4PI6RlWml0+avP6WDYTgK26BPQbQBQ7KJ63S/t4hzw0sFGrlkzk2isMCkYhYFl1D349JBwfiCzWDioWYKXFK1o9f0o2dyOjXWP420Zf/NqJhybqUy71QM525ba8j/aZMSp+dJJXRRImi+bjQtJUVDmz3QXFjgKFceMG6Fn5XyObOMo99Wp8sMdDtBh2waojHSdeksMzKv+/1Yw29ulGI6r+JsCbyeRIlHXm1qGUmrYVTXW745w9bXNcaeXtt9gj9PtH2Mp+DmZBSdjsKfn4cX55tD7ZL35AM5JhE5IxfkilyTMeFkSe7JA/kTHAVfgq/B97U16G1yDkkngh+PhKLMnQ==</latexit>

E(⌧n⌧
)

<latexit sha1_base64="QwmRiaKYNwhpsvnGyt4Afepr+IE="></latexit>

E(⌧1)

<latexit sha1_base64="zNmtERc3jJXsWYeIFPRMB2hQH4Y=">AAAClHicbVFNixNBEO2MX2v8ShS8eGkMwnoJM6K4Bw8Li+BJVjG7C5kh1PRUkib9MXTX7BKG+Sle9Tf5b+yZ5OBkLWh4vPeqq6iXl0p6iuM/g+jO3Xv3Hxw9HD56/OTps9H4+YW3lRM4E1ZZd5WDRyUNzkiSwqvSIehc4WW+OWv1y2t0Xlrzg7YlZhpWRi6lAArUYjRO10D19+Y4tRpXsEjeLkaTeBp3xW+DZA8mbF/ni/FgkxZWVBoNCQXez5O4pKwGR1IobIZp5bEEsYEVzgM0oNFndbd7w98EpuBL68IzxDv2344atPdbnQenBlr7Q60l/6fNK1qeZLU0ZUVoxG7QslKcLG8PwQvpUJDaBgDCybArF2twICicqzdlhabboEe2A8la5ft0nltVNMNhavBGWK3BFHWaX6No5kkWUFDbv6zi9SRpmgNfyKLz9Y1tRDt7aAjxJIdh3AYX76bJh2n87f3k9GQf1BF7xV6zY5awj+yUfWHnbMYEu2E/2S/2O3oZfYrOos87azTY97xgvYq+/gX9jszK</latexit>

R̂(!1)

<latexit sha1_base64="NG28Jr5uQzsWcwlSdVllEaf8OYI="></latexit>

R̂(!n!
)

<latexit sha1_base64="v7PW/tlZCcWQXFplKME3iUDPHEU="></latexit>

f(!1)

<latexit sha1_base64="VRbJDl3QmHSOibb40FKRq0/9Zpo=">AAACl3icbVFNa9tAEF0raZO6X07aS8lliSmkFyOVluTWQKDkmECdBCwhVquRvXg/xO4oxRX6L722/yj/pivZh8rJwMLjvTf7hpmslMJhGD4Mgp3dZ8/39l8MX756/ebt6ODwxpnKcphyI429y5gDKTRMUaCEu9ICU5mE22x50eq392CdMPoHrkpIFJtrUQjO0FPp6H1xEhsFc5bWOl2j5lM6GoeTsCv6GEQbMCabukoPBss4N7xSoJFL5twsCktMamZRcAnNMK4clIwv2RxmHmqmwCV1N35DP3omp4Wx/mmkHft/R82UcyuVeadiuHDbWks+pc0qLM6SWuiyQtB8HVRUkqKh7S5oLixwlCsPGLfCz0r5glnG0W+slzIH3U3QI9tANEa6Pp1lRubNcBhr+MmNUkzndZzdA29mUeKRV9u/jKT1OGqaLd+CYefrG2NPr+2+wZ8n2j7GY3DzeRJ9nYTXX8bnZ5tD7ZMjckxOSEROyTm5JFdkSjj5RX6TP+Rv8CH4FnwPLtfWYLDpeUd6FVz/A6bxzmQ=</latexit>

f(!n!
)

<latexit sha1_base64="pW70q24uruotN3XAGvnEhCloOWw=">AAACknicbVFNa9tAEF2rH0ndjzhtb70sNYX0YqTS0tBTSij00EMKdRKwhBmtxvbi/RC7owQj9Et6bX9U/01Xsg+V04GFx3tvdoZ5eamkpzj+M4ju3X/w8ODw0fDxk6fPjkbHzy+9rZzAqbDKuuscPCppcEqSFF6XDkHnCq/y9XmrX92g89KaH7QpMdOwNHIhBVCg5qOjdAVUf2lOUoJqnrydj8bxJO6K3wXJDozZri7mx4N1WlhRaTQkFHg/S+KSshocSaGwGaaVxxLEGpY4C9CARp/V3eYNfxOYgi+sC88Q79h/O2rQ3m90HpwaaOX3tZb8nzaraHGa1dKUFaER20GLSnGyvD0DL6RDQWoTAAgnw65crMCBoHCs3pQlmm6DHtkOJGuV79N5blXRDIepwVthtQZT1Gl+g6KZJVlAQW3/sorX46Rp9nwhic7XN7YBbe2hIcST7IdxF1y+myQfJvH39+Oz011Qh+wVe81OWMI+sjP2lV2wKROsYj/ZL/Y7ehl9ij5H51trNNj1vGC9ir79BfWpy+o=</latexit>
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FIG. 1: Schematic overview of the Phys-NN approach.

multiplied by weights wi,j to obtain the output associated
with ωi. Formally, the Phys-NN is given by

f(E(T );θ) =



nτ∑
j=1

W1,j

nη∑
k=1

φ(E(τj), µj,k, σj,k)

...
nτ∑
j=1

Wnω,j

nη∑
k=1

φ(E(τj), µj,k, σj,k)


,

(8)
where we use θ = (µ,σ,W ) to denote the collection

of training parameters µ,σ ∈ Rnτ×nη and W ∈ Rnω×nτ .
We can express Eq. (8) componentwise by

f (ωi) =

nτ∑
j=1

Wi,j

nη∑
k=1

φ(E(τj), µj,k, σj,k), i = 1, . . . , nω.

In order to ensure that the response function is positive
for all ω ∈ Ω, the output is passed through an exponen-
tial function, and the final approximation of the response
functions is given by

R̂(Ω;θ) =
1

N0
ef(E(T );θ) .

The normalization factor N0 ensures that the integral
of R̂(Ω;θ)) coincides with E(τ0), so that the output of
the Phys-NN automatically satisfies the sum rule of the
response function.

B. Simulated data

To train the Phys-NN, we use two distinct datasets
of physically meaningful R(ω), E(τ) pairs that are sim-
ulated as follows. The responses belonging to the first
dataset—a few of which are displayed in Fig. 2—are char-
acterized by a single asymmetric peak, corresponding to
the QE reaction mechanism, modeled by a skew-normal
distribution

RQE(ω) = NQE φ(ω, ωQE, σQE)Φ

(
α(ω − ωQE)

σQE

)
,

where φ(ω, ωQE, σQE) is the Gaussian density defined in
Eq. (7) and

Φ(x) =
1

2

(
1 + erf

(
x√
2

))
is the Gaussian’s cumulative distribution function. The
values of NQE, σQE, and α are obtained according to
arguments based on the scaling of the response func-
tions [47].

First, we sample the variable q, corresponding to the
momentum transfer, from a uniform distribution between
100 and 700 MeV. Consistent with non-relativistic cal-
culations of the electromagnetic response functions, we
assume that ωQE = q2/(2mN ) + ε, where mN is the nu-
cleon mass and ε = 25 MeV is the nuclear binding. A
suitable definition for the QE region corresponds to the
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interval ψ = [−1, 1] for the scaling variable. Hence, in the
non-relativistic case, the width of the QE peak is approx-
imately 2qkF /mN , and we take the Fermi momentum to
be kF = 180 MeV, according to Ref. [48]. In the simu-
lated responses, we encode this behavior by allowing 20%
fluctuations of σQE around its central value 2qkF /mN .
The height of the quasielastic peak is NQE/σQE and NQE

guarantees that RQE(ω) is normalized to unity. The
skewness parameter α is randomly sampled between 2
and 10—the normal distribution is recovered for α = 0.
This interval has been chosen to reproduce the typical
asymmetry displayed by the electromagnetic responses
of light nuclei.

As shown in Fig. 3, the responses belonging to the
second dataset exhibit two distinct peaks, corresponding
to the elastic (EL) and QE transitions, namely, REL(ω)+
RQE(ω). The elastic transition contributes in the low ω
region, and it is characterized by a δ-like peak centered
at ωEL = q2/(2MA), with MA ≈ 4mN being the mass
of the 4He nucleus. We model the EL response with a
Gaussian distribution

REL(ω) = φ(ω, ωEL, σEL),

where σEL is uniformly sampled between 5 and 10 MeV
to get a much narrower peak than the QE one. The in-
tegrated strength of the EL transition is proportional to
the square of the elastic transition form factor FEL(q).
Inspired by the sum-of-Gaussians parameterizations of
FEL(q) in Ref. [49], we sample NEL proportional to

e−
γ
2 q

2

, where we take γ = 400 MeV to reproduce the
low-momentum behavior of FEL(q) for the 4He nucleus.
A direct consequence of this choice is that the strength
of the EL peak decreases with the momentum transfer.
Consistent with the one-peak case, we enforce the nor-
malization

E(τ0) =

∫
dω (REL(ω) +RQE(ω)) = 1 .

The response functions are conveniently tabulated on
a uniform ω grid between 0 and 2 GeV with nω = 2000.
The corresponding Euclidean responses are obtained by
numerically integrating R(ω). Since the simulated re-
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FIG. 2: Training data examples of response functions
exhibiting a single asymmetric QE peak.
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FIG. 3: Training data examples of response functions
characterized by an EL narrow peak in addition to the

QE peak.

sponse are smooth functions of ω, the numerical inte-
gration error on the Euclidean responses is smaller than
10−5. To mimic the statistical error of GFMC calcula-
tion, we “corrupt” the simulated E(τ) by adding stochas-
tic noise [36]:

E(τi) + εi , (9)

where εi are independent samples from a Gaussian distri-
bution with mean zero and standard deviation σ. Con-
sistent with GFMC calculations of the Euclidean electro-
magnetic responses of 4He, which typically involve the
sampling of ≈ 2.5 million GFMC configurations for each
value of imaginary-time, we take σ = 10−4 in most of our
tests.

For each of the one-peak and two-peaks cases, we gen-
erate a total of 500, 000 pairs (Rk(Ω), Ek(T )) ∈ Rnω+nτ
of responses and corresponding Euclidean responses,
which we then partition into training (T), validation (V),
and test/out-of-sample (O) datasets. The one-peak and
two-peaks test datasets comprise 1, 000 pairs each; the
combined test dataset is just the union of these two sets.
We use 80% and 20% of the remaining data for training
the network and validation, respectively. Since MaxEnt
is relatively slow—-taking about 5 seconds to perform
one inversion of the Laplace transform—-our comparison
is limited to the test dataset.

C. Training

Values for the parameters θ are found by the standard
supervised learning approach of approximately solving

min
θ

1

|T|
∑
k∈T

`
(
Ek(T ), Rk(Ω), R̂k(Ω;θ)

)
(10)

by using a minibatch-based stochastic gradient descent
procedure to minimize an empirical loss function. Our
overall objective in Eq. (10) is the average loss over the
|T| points in the training set. For each data and model
output, we employ a loss function that is the sum of a
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response cost and a Euclidean cost,

`(Ek, Rk, R̂k) = γRSR(Rk, R̂k) + γEχ
2
E(Ek, R̂k),

where γR, γE > 0 are user-defined parameters. The re-
sponse cost is defined according to the entropy measure
of Eq. (5), namely

SR(R, R̂) =
nω∑
i=1

(
R(ωi)− R̂(ωi)−R(ωi) ln

(
R(ωi)

R̂(ωi)

))
∆ωi, (11)

and ensures that the reconstructed response functions are
close to the original ones. The Euclidean cost, which is
aimed at aligning the Laplace transform of R̂(Ω;θ) with
the original Euclidean response, is the reduced χ2 per
degrees of freedom

χ2
E(E, R̂) =

1

nτ

nτ∑
j=1

1

σ2
j

(
E(τj)− Ê(τj)

)2
. (12)

Compared with Eq. (4), in Eq. (12) we have assumed a
diagonal covariance matrix, with the diagonal elements
corresponding to variance of the independent Gaussian
distributions of Eq. (9): σ2

j = σ2 = 10−8 for all j. This
assumption can be easily relaxed when dealing with cor-
related data. We evaluate Ê(T ;θ) = K(T ,Ω)R̂(Ω;θ) by
using a simple trapezoidal rule

Ê(τj) =

nω∑
i=1

e−ωiτj R̂(ωi)∆ωi. (13)

As discussed in the following section, the positive val-
ues of γR and γE are chosen to compensate for the fact
that χ2

E(E, R̂) is typically much larger than the entropy

SR(R, R̂).
Since the inversion of the Laplace transform is an ill-

posed problem, there are many response functions whose
Laplace transform are compatible with the original Eu-
clidean responses. Consequently, there are instances in
which χ2

E is small even when the reconstructed response
is not similar to the original one, leading to potential in-
stabilities in the minimization procedure. To tame this
behavior, we split the training into two phases.

In the first phase, we take γR = 107 and γE = 10−7 and
optimize the network using the Adam [50] optimizer with
a learning rate of 10−3. Since γR � γE , the entropy re-
sponse cost dominates the loss function and drives the re-
constructed response functions close to the original ones.
Once the SR has reduced significantly, we enter the sec-
ond phase of the optimization, where we keep γR = 107

but increase the relative importance of the Euclidean cost
by taking γE = 1 so that Phys-NN learns to keep the
Laplace transform of the response function close to the
original Euclidean response. Reducing the learning rate
in the second phase to 10−5 is necessary in order to keep
the reconstructed response functions close to the optimal
ones found in the previous phase.

The neural-network variants are implemented in
Python 3.6 by using TensorFlow 2.0 libraries [51]. Train-
ing, validation, and testing are performed using sys-
tems with NVIDIA Tesla V100 SXM2 GPUs with 32GB
HBM2 hosted at Argonne’s Joint Laboratory for System
Evaluation. Each model is trained with a wall clock time
of approximately 4 hours.

IV. RESULTS

We consider three realizations of Phys-NN that differ
in the datasets used for training, validation, and testing
purposes: one-peak data only, two-peak data only, and
combined one-peak and two-peak data. We quantify the
accuracy of our approach using three metrics averaged
over the associated test/out-of-sample dataset O. We
use the average entropy

SR =
1

|O|
∑
k∈O

SR(Rk, R̂k),

with the entropy SR defined in Eq. (11), as well as the
average reduced χ2

E ,

χ2
E =

1

|O|
∑
k∈O

χ2
E(Ek, R̂k),

with χ2
E defined in Eq. (12). We also employ a metric R2

R
for the response functions, which is defined as an average
over |O| terms of the form

R2
R(Rk, R̂k) =

∑nω
i=1(R̂k(ωi)−Rk(ωi))

2∑nω
i=1(R̂k(ωi)− R̄k(ω))2

. (14)

A. Out-of-sample tests

The values for the three testing metrics for the single-
peak, two-peak, and combined datasets are listed in Ta-

TABLE I: Phys-NN and MaxEnt testing metrics SR,

1−R2
R, and χ2

E for the one-peak, two-peak, and
combined datasets. The standard errors on the last
digit of χ2

E are given in parentheses. The scale is set
according to the results of Phys-NN.

1 −R2
R χ2

E SR

×10−4 ×10−4

Phys-NN

One-peak 0.42 1.171(13) 0.72
Two-peak 9.04 3.220(87) 9.16
Combined 0.61 2.335(14) 3.66

MaxEnt

One-peak 29.7 1.015 (1) 60.4
Two-peak 84.8 1.016 (1) 107
Combined 57.2 1.015 (1) 83.7
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ble I. For both Phys-NN and MaxEnt, the one-peak re-
constructions are the closest to their original inputs, the
two-peak reconstructions are the worst, and the com-
bined dataset reconstructions rest between those of the
other two datasets. This behavior is not unexpected,
since the response functions characterized by two peaks,
with the EL one in the low-ω region, are notoriously more
difficult to reconstruct than those having a single broad
QE peak.

For Phys-NN, the one-peak response function metrics

1 − R2
R and SR are on the order of 10−5. The reduced

χ2 is also close to one; smaller values indicate potential
overfitting [52]. When reconstructing responses belong-
ing to the two-peak dataset, we observe slightly worse,
although still satisfactory, performance compared with
the one-peak case, as quantified by the larger values of

all three metrics; for the combined dataset, χ2
E is only

slightly larger than 2.
In Table I one can see in what ways Phys-NN outper-

forms MaxEnt: both the 1−R2
R and SR values obtained

with MaxEnt are significantly worse, up to two orders of
magnitude, than those of Phys-NN. This is a clear indi-
cation that Phys-NN captures the energy dependence of
the response functions better than does MaxEnt. Since
historic MaxEnt finds the optimal response function by
fixing α of Eq. (6) so that χ2

E = 1, it is not surprising
that MaxEnt’s reduced χ2 values are closer to one than
those found by Phys-NN. As evidenced by the other two
metrics, because of the ill-posed nature of the problem,
achieving χ2

E ≈ 1 does not guarantee an accurate recon-
struction of the original response functions.

To further examine the performance of Phys-NN and
MaxEnt, in Fig. 4 we display box plots of the distribu-

tions of the 1−R2
R, SR, and χ2

E metrics for the one-peak
(top row) and two-peak (bottom row) datasets. Consis-
tent with the results listed in Table I, for both Phys-NN

and MaxEnt, the one-peak 1−R2
R and SR distributions

are narrower and centered on smaller values than are the
two-peak ones, while the combined dataset results are in-
termediate between the two. Since Phys-NN is trained
to keep the reconstructed response function as close as
possible to the original ones, we observe a much smaller

spread of 1−R2
R and SR values compared with MaxEnt.

This behavior, which is exhibited across the one-peak,
two-peak, and combined datasets, provides additional
support for Phys-NN’s reconstruction performance.

Because the historic MaxEnt algorithm is based on χ2
E

minimization, the resulting distributions of χ2
E for both

the one-peak dataset and the two-peak dataset are nar-
row and centered on one. The spread associated with
the Phys-NN results is larger. To investigate correlations

between χ2
E and SR, in Fig. 5 we show scatter plots for

the one-peak and two-peak datasets. Some correlation is
visible in the Phys-NN results, displayed in the top two
panels, especially for the two-peak dataset. Conversely,
the MaxEnt scatter plots show no correlation between

χ2
E and SR, since the χ2

E values are relatively constant

around one, even for widely different SR. The correla-

tions between χ2
E and 1−R2

R exhibit an almost identical
pattern and are thus not included here.

Direct comparison of Phys-NN and MaxEnt outputs
is presented in Fig. 6, where we display the Phys-NN
best (left panels), average (central panels), and worst
(right panels) reconstructed response functions, accord-
ing to the SR values of the Phys-NN results, and the
corresponding Euclidean responses from the one-peak
dataset. Here, the training is performed on the com-
bined dataset, to better test whether Phys-NN is able
to learn how to simultaneously reconstruct one-peak and
two-peak response functions. The uncertainty associated
with the random initialization of the Phys-NN parame-
ters is estimated by performing ten independent training
procedures, each corresponding to a distinct random seed
used by the training procedure. We gather the predic-
tions obtained from each of these ten runs to estimate
the error band displayed by the shaded area in Fig. 6.
Not only the best and the average but also the worst
response functions reconstructed with the Phys-NN are
in better agreement with the original ones than are those
obtained with the MaxEnt algorithm. The Laplace trans-
form of the Phys-NN response functions are also in ex-
cellent agreement with the original Euclidean responses:

the χ2
E values are 1.071, 0.902, and 1.834 for the best,

average, and worst reconstructions, respectively. As dis-

cussed previously, by design the MaxEnt χ2
E values are

all very close to one.

An analogous pattern emerges in the two-peak dataset.
In this case, the best and the average Phys-NN responses,
represented in the left and central of Fig. 7, respectively,
are in excellent agreement with the original ones. Only
minor discrepancies are visible in the worst reconstruc-
tion, displayed in the right panels. Although larger than

in the one-peak case, the Phys-NN reduced χ2
E values are

more than satisfactory: the values for the best, average,
and worst reconstructions are 1.102, 1.024, and 6.996,
respectively. This behavior is reflected in the excellent
agreement between the original and reconstructed Eu-
clidean responses. On the other hand, despite the Max-

Ent values for χ2
E again being very close to one, MaxEnt

consistently fails to resolve the EL peak in the low-energy
region. In addition, it often yields QE peaks that are
shifted to higher energy transfer than in the original re-
sponse functions.

Among the shortcomings of the MaxEnt technique,
the most problematic is probably its poor performance
in the low-energy transfer region. The results shown in
Fig. 7 clearly indicate that Phys-NN performs much bet-
ter there. To quantify this behavior, we define an ω-
dependent entropy, SR(ω), by restricting the integral of
Eq. (11) to an interval of 5 MeV around each value of
the energy transfer grid ωi in the region 0 < ω < 200
MeV. First, we compute SR(ω) for all the responses in
the test datasets; then we calculate the average and the
standard error of this quantity, displayed by the shaded
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FIG. 4: Box plots of (left) R2, (middle) χ2
E , and (right) SR for the Phys-NN and MaxEnt methods. The top and

bottom rows refer to the one-peak and two-peaks datasets, respectively. The line in the middle of the box denotes
the median, and the box represents the range between the 25% and 75% quantiles. Whiskers cover the area between

the 1% and 99% quantiles; data beyond these whiskers are outliers and are indicated by circles.

areas in Fig. 8 for the one-peak (left panel) and two-peak
(right panel) case. The Phys-NN results are consistently
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FIG. 5: Correlation plots of χ2
E versus SR as obtained

with the Phys-NN (top row) and MaxEnt (bottom row)
methods. The left and right columns refer to the

one-peak dataset and the two-peak dataset,

respectively. The reference lines indicate the median χ2
E

and SR values.

below the MaxEnt ones, indicating better reconstruction
performance for both one-peak and two-peak data. This
fact will likely have important implications for GFMC
calculations of the inclusive lepton-nucleus cross section
in the low-energy regime.

B. Predictions on noisier inputs

An important feature of any reconstruction technique
is its robustness to the noise level of the input Euclidean
response functions. We analyze how the performance of
the Phys-NN and MaxEnt methods deteriorate when the
standard deviation of the Gaussian noise of Eq. (9) is in-
creased from σ = 10−4 to σ = 10−3. For the results in
this section, we indicate the dataset used for training by
including the training data standard deviation in paren-
theses. Training is always done on the combined dataset,
and the training strategy and hyperparameters are un-
changed from those used for the noise level σ = 10−4.

In Fig. 9 we compare sample reconstructed response
functions when the noise on the input Euclidean is in-
creased from σ = 10−4 to σ = 10−3. In both the one-peak
(top panel) and two-peak (bottom panel) response, Max-
Ent clearly is more susceptible to the increased noise level
than is Phys-NN. In the one-peak case, MaxEnt(10−3)
significantly overestimates the height of the QE peak and
shifts its maximum to higher energies compared with the
original response function; this behavior is not present
in the Phys-NN reconstructions. In the two-peak case,
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FIG. 6: Comparison between the Phys-NN and MaxEnt reconstructions for the one-peak dataset. The top row
displays the response functions and the bottom row the corresponding Euclidean responses.
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Phys-NN captures the EL peak in the low-energy region
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FIG. 8: Energy-dependent entropy for the Phys-NN and
MaxEnt results for the one-peak (left panel) and

two-peak (right panel) datasets.

for both values of σ. On the other hand, the MaxEnt re-
construction, already not fully satisfactory for σ = 10−4,
fails to reproduce the EL peak for σ = 10−3. As with the
one-peak case, for this higher noise level MaxEnt(10−3)
overestimates the height QE peak, and its position is
shifted toward higher energies than in the original re-
sponse function.

To further quantify these results, we calculate the
change in the entropy due to the increase in the noise
level in the input in the test dataset. The average val-
ues of SR obtained from Phys-NN and MaxEnt calcula-
tions are plotted in Fig. 10. We observe that the change
in the entropy due to the increase in the noise level is
one order of magnitude larger for MaxEnt than that for
Phys-NN(10−3). In Fig. 10, we also report results for
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Phys-NN(10−4), obtained by training Phys-NN on the
low-noise data. In this case, the entropies increase by
4.00×10−4 and 51.3×10−4 for the one-peak and two-peak
test datasets, respectively. While still a significant im-
provement compared with MaxEnt, the results for Phys-
NN(10−4) are not as good as those obtained by Phys-
NN(10−3). We conclude that Phys-NN is able to capture
the main characteristics of the response functions even
from noisier Euclidean responses. We note that it is ben-
eficial to be able to train on a set of responses having
noise levels comparable to those of the target Euclidean
responses.

V. CONCLUSIONS

This work introduces Phys-NN, a physics-informed
ANN approach to approximately invert the Laplace
transform and reliably reconstruct the electromagnetic
response functions of atomic nuclei from their corre-
sponding Euclidean responses.

We train, validate, and test Phys-NN, using 1 mil-
lion response functions that exhibit the same features as
those measured in electron scattering experiments. Half
of the simulated responses are characterized by a single
asymmetric broad peak in the quasielastic region; the
other half possess an additional sharp Gaussian peak to
model the low-energy transfer elastic transition. Unbi-
ased Gaussian noise (σ = 10−4) is added to the Eu-
clidean responses to simulate the statistical error of typi-
cal GFMC calculations for the 4He nucleus. For training,
we use a loss function with two terms. The first, inspired
by the MaxEnt method, is an entropic loss to keep the re-
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FIG. 9: Phys-NN and MaxEnt reconstruction
performance with increasing level of noise in the input

Euclidean responses for one-peak (top row) and
two-peak (bottom row) datasets.
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FIG. 10: Change in the entropy from increasing the
standard deviation of the Gaussian noise in the input

Euclidean responses from σ = 10−4 to σ = 10−3.

constructed response functions close to the original ones.
To avoid flat directions and improve the convergence of
the optimization, we include a second term that seeks
to keep the Laplace transform of the reconstructed re-
sponses close to the input Euclidean responses.

On a test dataset independent of that used in the
training, we demonstrate that Phys-NN significantly out-
performs MaxEnt in terms of both the SR and 1 − R2

R
metrics, especially on response functions characterized
by two peaks. Direct examination of the reconstructed
responses shows that Phys-NN is capable of capturing
the low-energy structures of the responses that are often
completely missed by MaxEnt. We also find that Phys-
NN better reproduces the position and height of the QE
peak. Phys-NN produces about an order of magnitude
improvement over MaxEnt in an energy-dependent en-
tropy measure, especially for energy transfer up to 200
MeV. This feature of Phys-NN is promising for the reli-
able reconstruction of the low-energy structure of nuclear
response functions and muon capture rates from GFMC
calculations of the Euclidean responses.

Our results show that Phys-NN is robust on a num-
ber of levels. First, Phys-NN has only two hyperparam-
eters (the number of ANN Gaussians and the learning
rate), and the relatively small amount of validation data
used for determining values for these proved to be suffi-
cient. Second, the Phys-NN outputs from ten indepen-
dent training trials show remarkably little spread among
the predicted responses, indicating a desirable insensitiv-
ity within the training process employed. We stress that
the associated uncertainty bands do not represent the full
theoretical error of our predictions, which in principle re-
quires propagating the statistical errors of the Euclidean
response through the response functions. In future work,
we intend to include full uncertainty quantification and
propagation by leveraging the linearity of the Laplace
transform. Third, when deployed on noisier testing data,
Phys-NN maintains its advantage over MaxEnt.

In addition to the Laplace transform, primarily uti-
lized within the GFMC method, the Lorentz kernel is
commonly used in the nuclear physics community [53].
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While initially restricted to light nuclear systems [54–56],
its domain of applicability has recently been extended
to study electron-nucleus interactions of medium-mass
nuclei [57–59]. Similarly the Gaussian kernel has been
found to be applicable in quantum algorithms with near-
optimal computational cost to study the problem of spec-
tral density estimation [60]. We plan on generalizing the
Phys-NN method to accommodate the inversion of both
the Lorentz and Gaussian kernels, with the goal of im-
proving existing techniques.
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