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Abstract

Currently the RHIC Beam Energy Scan is exploring a new region of the Quantum Chromody-

namic phase diagram at large baryon densities that approaches nuclear astrophysics regimes. This

provides an opportunity to study relativistic hydrodynamics in a regime where the net conserved

charges of baryon number, strangeness, and electric charge play a role, which will significantly

change the theoretical approach to simulating the baryon-dense Quark-Gluon Plasma. Here we

detail many of the important changes needed to adapt both initial conditions and the medium to

baryon-rich matter. Then, we make baseline predictions (i.e. assuming a high-energy approach)

for the elliptical flow and fluctuations based on extrapolating the physics at LHC and top RHIC

energies to support future analyses of where and how the new baryon-dense physics causes these

extrapolations to break down. First we compare eccentricities across beam energies, exploring

their underlying assumptions; we find the the extrapolated initial state is predicted to be nearly

identical to that at AuAu
√
sNN = 200 GeV. Then we make exploratory predictions of the final

flow harmonic based on linear+cubic response. We discuss preliminary STAR results in order to

determine the implications that they have for linear+cubic response coefficients at the lowest beam

energy of AuAu
√
sNN = 7 GeV.
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I. INTRODUCTION

Since the Quark-Gluon Plasma was first measured experimentally in the early 2000’s,

the field has progressed significantly in understanding this nearly perfect fluid. Quantitative

theory-to-experimental-data comparisons are now possible at the Large Hadron Collider

(LHC) and Relativistic Heavy Ion Collider (RHIC) using event-by-event viscous relativistic

hydrodynamics [1–28]. At top beam energies where the number of baryons to anti-baryons is

approximately equal (i.e. the baryon chemical potential is µB ≈ 0), a small shear viscosity

to entropy density ratio of η/s ≈ 0.05 − 0.2 has been extracted from these comparisons.

It has been shown that the Quantum Chromodynamics (QCD) equation of state obtained

from lattice simulations can describe the data well [18, 29–31]. However, some of the largest

remaining uncertainties are the nature of the initial state immediately after two heavy ions

collide and how this state evolves to approach hydrodynamic behavior. Recent years have

seen success in constraining the initial state by comparisons to elliptical flow distributions

[32] and multiparticle cumulants [33].

Once the ultra-relativistic kinematics of top RHIC and LHC energies are relaxed to lower

beam energies, this well-established paradigm of heavy-ion collisions can be significantly

modified. Notably, the assumption of an equal number of baryons and anti-baryons at mid-

rapidity is violated, leading to nonzero baryon chemical potential (µB > 0) at lower beam

energies. These changes can significantly affect all the stages of the heavy-ion collision, and

the theoretical modeling must be adapted accordingly. A brief list of some of the most

obvious changes are:

• Initial conditions: At top collider energies, the mid-rapidity region is characterized

by very small x ∼ pT/
√
s which is dominated by gluons, leading to an initial state

with µB ≈ 0. Lower beam energies correspond to larger values of x, leading to a non-

negligible contribution of baryon stopping (µB > 0) and new valence quark degrees of

freedom in the initial state [34]. Additionally, the violation of high-energy “eikonal”

kinematics introduces a number of challenging corrections which are usually power-

suppressed, including a finite overlap time of the colliding nuclei [35, 36]. Approaches

including the multi-fluid approach [37], and more recently a one-fluid approach [38]

have been considered. Generally, it is thought that hydrodynamics must start at later

time for lower beam energies [39].
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• Equation of State: At finite baryon densities not only must all three conserved

charges be considered (baryon number B, strangeness S, and electric charge Q) [40–

43], but also the cross-over phase transition curves downward to lower temperatures

[40, 44, 45] and there may possibly be a critical point, which needs to be incorporated

into the equation of state [43, 46].

• Transport coefficients: At µB = 0 generally shear η/s and bulk viscosity ζ/s

are considered (although certain models also incorporate second order transport co-

efficients). However at µB > 0, not only do these quantities vary with the chemical

potentials µB, µS, µQ [47–49] (and possibly see effects from a critical point [50]), but

also new transport coefficients that describe the diffusion of the conserved charges

(BSQ) must be considered [51–55]. These new transport coefficients can also be af-

fected by the presence of a critical point. The energy dependence of the shear viscosity

has been investigated by the Bayesian analysis in Ref. [56].

• Freeze-out and Chemical Equilibrium: Lower beam energies generally also ap-

pear to lead to lower chemical freeze-out temperatures [57–61]. Additionally, N-Body

nucleonic interactions play a role that should be incorporated into hadronic transport

models [62, 63]. Finally, lower-beam energies are expected to see differences in the

lifetime of the hadron gas phase [35].

• Critical Fluctuations: If a critical point exists at low beam energies, critical fluc-

tuations must also be included within hydrodynamical models [64–73], although a

consensus of the exact description of this within relativistic viscous hydrodynamics

has not yet been reached.

While some hydrodynamic models are beginning to incorporate these effects [54, 74–76],

this is still very much a work in progress. Therefore, it will likely take some years before

it is possible to do the same systematic theory-to-experimental-data comparisons that have

already been performed at top collider energies where µB ≈ 0. Additionally, much of the

experimental data at the lowest beam energies still have large enough error bars to warrant

waiting for the completion of Beam Energy Scan II analysis.

In the meantime, it can be quite instructive to perform baseline calculations of bread-

and-butter observables such as flow harmonics in order to see how far our current knowledge
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of hydrodynamics at µB ≈ 0 can take us. In this paper we focus specifically on elliptical

flow, which is known to arise from a combination of linear and cubic response from the initial

state [77] and we use our best knowledge at high beam energies to extrapolate downwards.

We know that these extrapolations to low beam energies must eventually break down signif-

icantly, as the physics of the low-energy baryon-rich regime discussed above begins to play

an important role, but exactly where and how these new effects set in is unclear. Therefore,

an observation of large systematic deviations from these baseline predictions can indicate

the onset of these new physical mechanisms, and a quantitative analysis of such deviations

from the baseline can help to disentangle whether the new physics arises from changes in

the initial or final state. One of the largest uncertainties, though, is a clear understanding

of how response coefficients scale with the beam energy.

The rest of this paper is organized as follows. In Sec. II we lay out the theoretical

framework we will use to explore the beam energy dependence of the standard picture of

heavy-ion collisions. We lay out our choice of models in Sec. II A, the estimator + residual

approach to predicting the final flow harmonics in Sec. II B, and the initial state comparison

we will pursue in Sec. II C. In Sec. III we explore the energy dependence associated with

the initial state, both through its explicit dependence on the experimental cross section

and through potential secondary dependence on changing model parameters. In Sec. IV we

extract the linear+cubic response coefficients and residuals using two different methods and

determine their energy dependence. In Sec. V we detail three possible choices for how to

extrapolate from top RHIC and LHC energies down to lower beam energies. In Sec. VI we

use the established framework to extrapolate down the baseline predictions for v2{2} and

v2{4}/v2{2} for AuAu collisions at 54 GeV, 27 GeV, and 7 GeV. In particular, we explore in

Sec. VI A the possibility of extracting the response coefficients directly from data. Finally,

we conclude in Sec. VII with a summary of our main results.

II. FRAMEWORK

A. Model

The standard paradigm of heavy-ion collisions requires two stages of model input: one for

generating the initial conditions at the time τ0 at which hydrodynamic evolution begins, and
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another for the hydrodynamics and freeze-out. Our working hydrodynamic model consists

of the 2+1D event-by-event relativistic viscous hydrodynamics code, v-USPhydro [78, 79].

v-USPhydro utilizes the smoothed-particle implementation of hydrodynamics, and we use

the parameters τ0 = 0.6 fm, η/s ∼ 0.05, ζ/s = 0, TFO = 150 MeV. For the equation of

state, we use the most up-to-date Lattice QCD extractions PDG16+/EOS21 from [18], and

we treat freeze-out using the Cooper-Frye prescription. The hadron gas phase is currently

treated with direct decays using an adapted version of the decay component from AZhydro

code [80, 81] that includes all particles from the PDG16+. This setup has been compared

extensively to data across many beam energies and system sizes [11, 18, 20].

For the initial conditions we will primarily use the trento model [13, 82] to set the initial

energy density. The “standard” trento parameter set p = 0, k = 1.6, and σ = 0.51 has been

shown to describe the experimental data well [11, 13, 18, 82] and appears to produce similar

event geometries to the IP-Glasma model [12, 83] and EKRT [5]. We relax these three

trento parameters at lower beam energies to explore the flexibility of the model framework

to describe low-energy nuclear collisions.

In order to extract the response coefficients we compare trento+vUSPhydro calculations

from [18, 20, 84] versus the mckln+v-USPhydro calculations from [85–87] (where we use

the mckln code from [88, 89] to generate the initial conditions). One should note that the

mckln+v-USPhydro used an outdated equation of state and lower freeze-out temperature

than is typical but is still interesting to compare to see how sensitive the response coefficients

are to a completely different medium parameterizations.

B. Flow Estimators

In hydrodynamics, multiparticle correlations arise from the independent emission of par-

ticles at freeze-out which are mutually correlated with the event geometry (event plane).

The anisotropies of the single-particle distribution dN
d2p

are characterized by the complex flow

vectors

Vn ≡ vne
inψn (1)

which can be expressed in terms of a magnitude vn and phase ψn (event plane angle) for the

nth order harmonic. These single-particle flow vectors then form the building blocks for the

measured multiparticle correlations in a hydrodynamic picture. Similarly, the initial state
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immediately following a heavy ion collision can be characterized using a complex eccentricity

vector

En ≡ εne
inφn (2)

with magnitude εn and phase φn.

The near-perfect fluidity of the quark-gluon plasma has been shown [86, 90–95] to result

in a strong (nearly) linear mapping between the initial-state eccentricity vectors En and the

final-state flow vectors Vn for both the elliptical (n = 2) and triangular (n = 3) harmonics.

We emphasize that this nearly-linear mapping encompasses not just the magnitudes εn → vn,

but rather the entire complex vectors En → Vn. The strength of this linear mapping

motivates a decomposition of the final-state flow vector into a piece which can be predicted

directly from the initial-state geometry and a residual:

Vn ≡ f(En) + δn, (3)

with the vector function f of the initial state resulting in the best prediction of the final-

state flow when the residuals δn are minimized. A variety of estimator functions have been

tested [20, 77, 91, 95] to establish the dominance of linear response, with some sensitivity

to cubic response as well [20, 77]. Here we will briefly summarize the general discussion of

Ref. [77], focusing on the contributions of linear + cubic response in practice.

The optimal estimator function f(En) is the one for which the expectation value of the

residuals 〈
δ2n
〉

=
〈
f 2
n

〉
− 2 〈Re (Vn · fn)〉+

〈
v2n
〉

(4)

is minimized. Here we use the shorthand fn ≡ f(En) with magnitude fn. If the estimator

function fn depends on a set of parameters {κi}, then the minimization condition ∂
∂κi
〈δ2n〉 = 0

corresponds to

0 = Re

〈
(Vn − fn) · ∂

∂κi
f ∗n

〉
. (5)

In the case of linear + cubic response

f(En) = κ1,nEn + κ2,nε
2
nEn, (6)

the derivatives from (5) lead to

0 = Re 〈(Vn − fn) · f ∗n〉 = Re 〈δn · f ∗n〉 . (7)
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Eq. (7) holds not just for linear or linear + cubic response, but for a broad class of estimator

functions including polynomials of higher order.

Subject to the optimization condition (7), the optimized residuals (4) are given by

〈δ2n〉 = 〈v2n〉 − 〈f 2
n〉 (8)

and can be simply related to the Pearson coefficients Qn:

〈δ2n〉
〈v2n〉

= 1−Q2
n, (9)

with the Pearson coefficient being simply a measure of the scalar product between the

estimator fn and the resulting flow vector Vn:

Qn ≡
Re〈Vn · f ∗n〉√
〈v2n〉〈f 2

n〉
linear
=

〈vnεn cos (n [ψn − φn])〉√
〈ε2n〉〈v2n〉

. (10)

where the last equality holds only for linear response κ2,n = 0. The Pearson coefficient thus

quantifies how good the estimator function f(En) is at predicting the flow vector Vn by

measuring the magnitude of the residuals. The estimation becomes more accurate in the

limit when |Qn| → 1, and in the case of linear response, Qn → +1(−1) reflects a perfect

linear (anti-)correlation.

The optimization conditions (5) can also be solved simultaneously to determine the co-

efficients {κi} which provide the optimum prediction of the final-state flow vectors. For the

case of linear + cubic response (6) the result is [77]

κ1,n =
Re (〈ε6n〉 〈Vn · E∗

n〉 − 〈ε4n〉 〈Vn · E∗
n ε

2
n〉)

〈ε6n〉 〈ε2n〉 − 〈ε4n〉2
, (11a)

κ2,n =
Re (−〈ε4n〉 〈Vn · E∗

n〉+ 〈ε2n〉 〈Vn · E∗
n ε

2
n〉)

〈ε6n〉 〈ε2n〉 − 〈ε4n〉2
. (11b)

Finally, we note that the optimization condition (7) can be used to decompose the two-

and four-particle cumulants in terms of the estimator and residuals: For the two-particle
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cumulant we have

(vn{2})2 ≡ 〈v2n〉

= 〈|fn + δn|2〉

= 〈f 2
n〉+ 〈δ2n〉 (12a)

(vn{4})4 ≡ 2〈v2n〉2 − 〈v4n〉

= 2〈|fn + δn|2〉2 −
[
〈f 4
n〉+

(
〈v4n〉 − 〈f 4

n〉
)]

= 2
(
〈f 2
n〉+ 〈δ2n〉

)2 − 〈f 4
n〉 −∆n,4 (12b)

where we have used the condition (7) and defined a new quantity

∆n,4 ≡ 〈v4n〉 − 〈f 4
n〉. (13)

We note that ∆n,4 6= 〈δ4n〉, differing by mixed terms which are not needed for our calculation.

For the case of linear + cubic response (6), Eqs. (12) can be written

vn{2} =

√〈(
κ1,nεn + κ2,nε3n

)2〉
+
〈
δ2n
〉

(14a)

vn{4}
vn{2}

=

4

√
2

(〈(
κ1,nεn + κ2,nε3n

)2〉
+
〈
δ2n
〉)2

−
〈(
κ1,nεn + κ2,nε3n

)4〉−∆n,4√〈(
κ1,nεn + κ2,nε3n

)2〉
+
〈
δ2n
〉 , (14b)

where we emphasize the ratio vn{4}
vn{2} which is directly sensitive to the fluctuations of the flow

vector Vn.

In this manner we have decomposed the contributions to the final flow harmonics into

initial state effects (the eccentricities εn), final state effects (the response parameters κ1,n

and κ2,n), and the residuals δn and ∆n,4. The contributions εn from the fluctuating initial

state are made explicit, while the response coefficients encapsulate various medium effects

such as the lifetime of the hydrodynamic phase, transport coefficients and the equation of

state. Additionally, the residuals δn and ∆n,4 represent a mixture of both initial and final

state effects, encoding the remaining contributions of unknown origin to the observed flow.

The particular residuals δn and ∆n,4 calculated here are specific to linear + cubic response;
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a different choice of the estimator function f could move some part of these residuals into

additional explicit initial and final state factors. In Sec. IV we will extract κ1,n, κ2,n, δn, and

∆n,4 from the top three beam energies and extrapolate downwards to lower beam energies

in order to make baseline predictions for vn{2} and vn{4}
vn{2} if the high-energy paradigm were

to remain unmodified.

C. Comparison of trento and mckln Initial Conditions

One of the most stringent constraints for initial condition models is the necessity to match

the event-by-event fluctuations of v2 [33], which are characterized by the ratio of the four-

and two-particle cumulants:

vn{4}
vn{2}

= 4

√
1− Var(v2n)

〈v2n〉2
. (15)

As seen in Eq. (15), when the ratio v2{4}/v2{2} approaches 1 there are fewer fluctuations

in the system, whereas when v2{4}/v2{2} � 1 there are more fluctuations in the system.

In central collisions at top beam energies, linear response dominates and to a good approx-

imation we have
vn{4}
vn{2}

≈ εn{4}
εn{2}

, (16)

with the coefficient κ1,n canceling in the ratio. In mid-central collisions at top energies,

linear+cubic response dominates and one can still predict the cumulant ratio v2{4}/v2{2}

reasonably well using only κ1,2 and κ2,2 [20].

As a starting point, let us compare three prominent models (trento1, IP-Glasma, and

mckln) for the initial conditions at top collider energies both before and after hydrodynamic

evolution. As pointed out in Ref. [87], trento+v-USPhydro works best when compared to

the highest LHC beam energies, while mckln does not fluctuate enough on an event-by-

event basis to adequately describe the cumulant ratio v2{4}/v2{2} [89]. However, both

initial-state models give relatively comparable results for the RMS flow measured by the

two-particle cumulants v2{2} and v3{2}, and the fluctuations in mckln do provide a slightly

better fit to RHIC data for v2{4}/v2{2}. In the case of mckln+v-USPhydro, η/s must

change significantly more with beam energy to describe the data, such that η/s = 0.05 for

1 When we specify trento we assume the default parameters unless specified elsewhere
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FIG. 1. (Color online) Comparison of v2{4}/v2{2} STAR data to trento and mckln eccentricities

and hydro calculations from trento+v-USPhydro, mckln+v-USPhydro, and IP-Glasma+MUSIC.

STAR data is taken from [96] and the IP-Glasma+MUSIC data is from [97].

PbPb 5.02 TeV, η/s = 0.11 for PbPb 2.76 TeV, and η/s = 0.08 for AuAu 200 GeV. These

mckln+v-USPhydro simulations use the same initialization time τ0 = 0.6 fm and a lower

freeze-out temperature of TFO = 120 MeV compared to trento+v-USPhydro. Due to the

outdated equation of state and particle resonance lists used in the mckln simulations, we

do not believe any physical significance can be attributed to the variation of η/s versus

beam energy. Additionally, as previously mentioned the mckln+v-USPhydro are based on

an outdated equation of state so they are used only as a comparison to trento+v-USPhydro.

In the left panel of Fig. 1 we compare the STAR data [96] on AuAu collisions at 200 GeV

to both eccentricities and full hydrodynamic calculations using either the “IP-Glasma-like”

configuration of trento (p = 0) or actual IP-Glasma initial conditions. In central collisions

(which are dominated by initial state effects), we find that the results of the hydrodynamic

calculations trento+v-USPhydro and IP-Glasma+MUSIC are essentially equivalent. In very

peripheral collisions the predictions begin to deviate, which is expected since the two hydro-

dynamic models have very different assumptions and parameters. Additionally, we compare

these same results to the initial-state eccentricities ε2{4}/ε2{2} calculated in trento p = 0,

which also agree well with the data.

In the right panel of Fig. 1 we then compare the mckln scenario. In Ref. [13], it was dis-

cussed that trento with the setting p = −0.67 gives roughly equivalent initial eccentricities to

mckln. Here we compare the eccentricity fluctuations ε2{4}/ε2{2} produced by mckln versus
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the trento setting p = −1. Despite this being a more extreme value than the p = −0.67 value

preferred in Ref. [13], we still find that trento p = −1 produces nearly identical eccentricity

fluctuations to mckln. We conclude that we can replicate well the initial state produced with

mckln by instead running trento with p = −1 (and we prefer a more extreme value to test a

wider range of possibilities at the lowest beam energy). Previous calculations using the full

hydrodynamic evolution of mckln+v-USPhydro compare favorably to the STAR data, and

we further note that the initial-state eccentricities ε2{4}/ε2{2} in either model closely track

the final flow measurements in central collisions.

Overall, at RHIC energies trento p = 0, IP-Glasma, and mckln all provide a reasonable

description of the experimental data. Additionally, we find that trento with settings p = 0

and p = −1 seems to be a good proxy for IP-Glasma and mckln initial conditions, respec-

tively. Thus, in Sec. III on eccentricities we will compare the different values of p in trento

to explore the behavior of different initial condition models at lower beam energies.

III. BEAM ENERGY DEPENDENCE OF ε2 FLUCTUATIONS

As a first step, we study the beam energy dependence arising from the initial conditions

alone, as quantified by the eccentricity cumulant ε2{2} and cumulant ratio ε2{4}/ε2{2}.

We calculate these quantities using trento, but varying the parameter p which controls the

determination of the reduced thickness function TR between p = −1 (mckln-like), p = 0 (IP-

Glasma- / EKRT-like), and p = 1 (Glauber-like). We also consider possible modifications

at AuAu
√
sNN = 7 GeV to the other parameters in trento, such as the nucleon width σ

and parameter k controlling the tails of the multiplicity distribution.

√
sNN [GeV] σinelNN [mb]

200 42.3

54 35

27 33.2

7.7 31.2

TABLE I. Table of inelastic cross-sections used to calculate the eccentricities in trento for the Beam

Energy Scan energies. All are taken from Ref. [98] except for
√
sNN=54 GeV, which was set by

estimating using surrounding beam energies.
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In trento, the energy dependence of the initial conditions arises solely from setting the

experimentally-measured nucleon-nucleon inelastic cross section σinelNN [82]. This experimental

input is used to indirectly tune the effective partonic scattering cross section σgg which enters

the collision probability Pcoll = 1− exp
[
−σgg

∫
d3x ρA(~x) ρB(~x)

]
between two nucleons. As

seen in Table I, this energy dependence is particularly mild, decreasing only ∼ O (25%) over

two orders of magnitude in
√
sNN . The success of the mild energy dependence implemented

in trento in describing the initial conditions from top RHIC to LHC energies is attributable

to the fact that high-energy cross sections in QCD are energy independent at leading order.

In the high-energy (“eikonal”) limit s → ∞ of QCD, a scattering cross section σ can be

expanded in powers of the energy s as

σ =
(
µ2

s

)0
σeik +

(
µ2

s

)1
σsub−eik + · · · (17)

at leading order, with µ2 some fixed transverse scale to make the expansion parameter

dimensionless. This hierarchy of power-suppressed terms is accurate at leading order, with

certain higher orders in αs generating additional logarithmic dependence on the energy

through powers of ln s
µ2

. A systematic resummation of such logarithmic terms leads to a

small enhancement in the overall power of (µ2/s), but it does not overturn the leading-order

decrease of σsub−eik with energy [34, 99–102].

The leading term σeik is energy independent and thus survives in the eikonal approxima-

tion s→∞. The independence of σeik from the collision energy is equivalent to independence

with respect to the total rapidity interval ∆Y ∼ ln sNN

m2
N

and thus to boost invariance of the

initial state. As is well known, at high energy (synonymous with small x) the initial state

corresponding to σeik is dominated by abundant soft gluon radiation which constitutes the

initial energy density of a heavy-ion collision. The physics of baryon stopping [34], along with

spin dependence [101], medium-induced radiation [103], and many other effects are power

suppressed at high energies, belonging to the sub-eikonal cross section σsub−eik or higher-

order terms. As illustrated in Fig. 2, these contributions die off at top collider energies

to yield the well-known gluon-dominated initial state which is implemented in the various

models. But as the energy is lowered, the neglect of these sub-eikonal effects becomes a

poorer and poorer approximation.

All of the models considered here restrict themselves in some fashion to the gluon-

dominated physics contained in σeik, so naturally all of them will lead to a very mild energy
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Top
RHIC
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sNN

σ

FIG. 2. Cartoon plot of Eq. (17) illustrating the comparison between the energy-independent

cross section σeik and the energy-suppressed corrections σsub−eik at high energies. Shaded regions

sketch the kinematic regions of various collider programs, illustrating the dominance of σeik at LHC

and top RHIC energies in contrast to the Beam Energy Scan (BES) where the new mechanisms

contained within σsub−eik can become very important.

dependence. But this weak energy dependence of the initial state predicted in the various

models is in some sense artificial: a consequence of being tuned to the (approximately)

energy-independent initial conditions relevant for top collider energies. The initial state

does and must deviate from these predictions in significant ways at lower energies, as the

sub-eikonal physics (including baryon stopping in particular) becomes increasingly impor-

tant. The purpose here is to extrapolate these models down to lower energies to identify

where and how the deviations from eikonally-produced initial conditions occurs. We also

note that the different models incorporate the explicit energy dependence differently, so

matching trento p = 0 and p = −1 to other models like IP-Glasma and mckln as in Sec. II C

and then extrapolating downward in energy with trento is not the same as directly extrapo-

lating these original models themselves. For this reason, we will carefully refer to our initial

condition models as p = 0 (IP-Glasma-like) and p = −1 (mckln-like), rather than to the

actual IP-Glasma or mckln models as appropriate.

In Fig. 3 we plot the three scenarios: trento p = −1 (mckln-like), trento p = 0 (IP-

Glasma/EKRT-like), and trento p = 1 (Glauber-like). In Ref. [33] it was shown that the

comparison of v2{4}/v2{2} in ultracentral collisions could disfavor the Glauber model at

LHC energies. Here we find that even at RHIC
√
sNN = 200 GeV the Glauber-like model

(p = 1) is disfavored, and we are unaware of any final state effects that could correct such
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FIG. 3. (Color online) Comparison of ε2{4}/ε2{2} (left) and ε2{2} (right) for three descriptions

of the initial state in trento: p = −1 (mckln-like), p = 0 (IP-Glasma/EKRT-like), and p = 1

(Glauber-like). The 200GeV AuAu STAR data from Ref. [104] is shown in black. For the initial

state models, two different beam energies of AuAu
√
sNN = 200 GeV and

√
sNN = 7 GeV are

considered.

a significant initial-state disparity. As discussed previously, both mckln and IP-Glasma

provide a reasonable comparison of the STAR data [104] at 200 GeV. And for the reasons

we have anticipated above, we see that there is essentially no beam energy dependence

of ε2{4}/ε2{2} and ε2{2}. Curiously, the Glauber-like initial conditions (p = 1) appear

to have a slight increase in ε2{4}/ε2{2} at
√
sNN = 7GeV, whereas p = 0 and p = −1

are slightly suppressed at lower beam energies. The magnitudes of ε2{2} are also nearly

identical across beam energies, with the mckln-like setting p = −1 producing the largest

eccentricities, followed by the IP-Glasma-like p = 0 and then the Glauber-like p = 1. From

the eccentricities shown here, extrapolated from the eikonal models, one would anticipate

no significant changes in v2{4}/v2{2} and v2{2} due to the initial state when the beam

energies are decreased. These results are consistent with [7] where the eccentricities from

LHC run 1 and run 2 were compared, although only the 2 particle correlation was considered

in that paper. We note that the STAR data for v2{4}/v2{2} shown in Figs. 1-3 is obtained

from measurements of v2{2} and v2{4} reported separately, rather than reporting the ratio

directly. Unfortunately, this requires us to use error propagation to combine the uncertainties

in the two measurements; since these errors are correlated, this method likely overestimates

the true experimental errors. For this reason, we urge experimentalists to always report

directly the ratio and its uncertainties as well as the individual measurements.
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FIG. 4. (Color online) Comparison of STAR and PHENIX experimental data for v2{4}/v2{2} at

RHIC AuAu
√
sNN = 200 GeV.

PHENIX has also recently published new data on v2{2} and v2{4}, which we plot in Fig.

4 and compare to the aforementioned STAR data by again taking the ratio v2{4}/v2{2} and

propagating the individually-determined error bars. In this data, where no subevents are

considered, the PHENIX results are consistent with the STAR data. However PHENIX has

also calculated v2{4}/v2{2} in finer centrality bins, so the error bars are larger (the exception

being the most peripheral collisions). Since we are primarily concerned with central to mid-

central collisions in this paper, for this particular observable, we will focus on comparisons

to the STAR data throughout the rest of this paper.
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FIG. 5. (Color online) Comparison of PHENIX experimental data with and without subevents for

v2{4}/v2{2} at RHIC AuAu
√
sNN = 200 GeV.

We do, however, note that there are significant differences if subevents are considered,

which could significantly impact our choice in initial conditions. In Fig. 5 the red band
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is the PHENIX data for v2{4}/v2{2} without selecting on subevents, as in Fig. 4. Once

subevents are included, the ratio v2{4}/v2{2} moves substantially toward unity, although

there is still sizable overlap in the error bars. Thus, it would be very interesting to re-bin

the subevent data into larger centrality bins to reduce the size of the error bars in order to

further discriminate between initial conditions. This, however, is a task we must leave to

the experimentalists.
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FIG. 6. (Color online) Comparison of ε2{4}/ε2{2} (left) and ε{2} (right) for varied k fluctuations

value in trento where k=1.6 is the standard value from Bayesian analysis. Calculations done at

AuAu
√
sNN = 7 GeV.

In addition to the different p values mimicking different initial condition models, there

are still other changes which may occur at lower beam energies beyond the dependence

incorporated by changing the nucleon-nucleon cross section. For instance, multiplicity fluc-

tuations2 may change as one decreases the beam energy. Thus in Fig. 6 we also investigate

the influence of the trento parameter k which drives the multiplicity fluctuations. Generally,

we don’t see a strong dependence on k at
√
sNN = 7 GeV if k were to change with beam

energy.

Finally, we study the influence of the nucleon width parameter σ on ε2{4}/ε2{2} in Fig.

7. Generally, one would expect that QCD radiation induced by increasing the energy would

lead to a slow growth of the nucleon width [105, 106]. Conversely, there could potentially

be a small decrease in nucleon width at lower beam energies, although it is unclear a priori

how strong this effect might be. In Fig. 7, we find that varying σ does have some effect

2 Note that here we are not discussing net-baryon fluctuations, which arise from entirely different physics.
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FIG. 7. (Color online) Comparison of ε2{4}/ε2{2} (left) and ε{2} (right) for varied nucleon width,

σ, in trento where σ = 0.51 fm is the standard value from Bayesian analysis. Calculations done at

AuAu
√
sNN = 7 GeV.

on ε2{4}/ε2{2}. From Bayesian analysis in large systems, it was found that a value of

σ = 0.51 fm for p = 0 works well in trento [13]. However, in small systems there are some

indications that a smaller value of σ = 0.3 fm may be preferred [33]. In Fig. 7 we plot

σ = 0.2 fm, 0.3 fm, 0.5 fm. Thus, if there was a significant change in the size of the nucleons

with beam energies, one could expect this to influence v2{4}/v2{2}.

IV. BEAM ENERGY DEPENDENCE OF LINEAR+CUBIC RESPONSE

Our next step is to extract the estimator parameters κ1,n, κ2,n and residuals δn,∆n,4,

and to study their beam energy dependence. In Ref. [20] the system size dependence of

κ1,n, κ2,n was extracted, and it was found that for small systems a different type of estimator

was needed beyond linear+cubic response. However, since here we are only considering

AuAu collisions we can capture most of the needed physics with linear+cubic response.

Our ignorance of a more complete mapping between initial and final states is quantified in

the beam energy dependence of the residuals δn,∆n,4. Finally, we compare the response

coefficients extracted from both trento+v-UPShydro (by which we mean the IP-Glasma-like

p = 0) to actual mckln+v-USPhydro, but we only plot the latter out to 60% centrality due

to the lack of statistics there.

Throughout most of this paper we calculate the estimator coefficients κ1,2 and κ2,2 using

the expressions derived in Eq. (11), which optimize the linear + cubic estimation for the
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FIG. 8. (Color online) Comparison of vn vs. εn relationship using either calculated κ1,2 and κ2,2

from Eq. (11) to extracted ones using numerical methods shown in mid-central collisions (left) and

peripheral collisions (right) shown for trento+v-USPhydro at PbPb 2.76TeV.

vector eccentricities E2 and flow harmonics V2. However, it is also interesting to analyze the

role played by differences in the En and Vn event plane angles by comparing the calculation

of these coefficients from Eq. (11) versus a fit to only the magnitudes ε2 and v2. In Fig. 8 we

see that the two methods are nearly identical for 35 − 40% mid-central collisions, whereas

for 75−80% peripheral collisions, the regression method (magnitudes only) overpredicts the

flow v2 arising from the initial ε2 by about ∼ 20%. Because the calculated method explicitly

minimizes the magnitude of the residuals 〈δ2n〉, the regression method necessarily provides a

less accurate prediction for the final-state flow.
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FIG. 9. (Color online) Comparison of calculated κ1,2 (left) and κ2,2 (right) from Eq. (11) to

extracted ones using numerical methods (linear regression) across centralities shown for trento+v-

USPhydro at PbPb 2.76TeV.
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In Fig. 9 we show the estimator coefficients κ1,2 and κ2,2 extracted from the calculated

values (11) and from the magnitude-only regression method. The trends of the two coeffi-

cients are similar for the two methods, with the regression method slightly overestimating

the linear contribution and underestimating the cubic contribution. The over-estimation of

the linear coefficient is greatest in peripheral collisions, resulting in the overprediction of

the elliptic flow consistent with Fig. 8. From this, we conclude that while comparing the

magnitudes of the eccentricities and flow harmonics tells the correct qualitative story about

mapping the initial state onto the final state, the event plane angles play an important role

in quantitatively constraining these predictors. For this reason, we will consider only the

optimized calculation (11) which includes the event plane angles in forming the linear +

cubic map.

In Figs. 10-13 we plot the estimator parameters and residuals for the top-energy heavy

ion collisions at RHIC and the LHC (AuAu 200 GeV, PbPb 2.76 TeV, and PbPb 5.02 TeV).

We also include these quantities linearly extrapolated down to AuAu 7 GeV using the

approaches as described in Sec. V and as visualized in Fig. 16. In Sec. V we compare a few

different approaches to extrapolating these coefficients down to lower beam energies, but let

us note for now that the different methods appear to be relatively robust, regardless of the

extrapolation method.
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FIG. 10. (Color online) Linear coefficient κ1,2 for elliptical flow across beam energy extracted using

trento+ v-USPhydro. Extrapolated values for AuAu 7 GeV shown in brown dashed lines.

In Fig. 10 the calculated linear response coefficients are shown for both the trento p = 0

and mckln models. While there are some differences between the two models, the orders

of magnitude are comparable, and both illustrate that κ1,2 is anticorrelated with centrality
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class. Additionally, both models exhibit a hierarchy with higher beam energies generating

larger linear response coefficients. This hierarchy is clearest in central collisions but shows

some signs of converging in peripheral collisions. This strong energy hierarchy indicates that

decreasing the beam energy suppresses linear response.
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FIG. 11. (Color online) Cubic coefficient κ2,2 for elliptical flow across beam energy extracted using

trento+ v-USPhydro. Extrapolated values for AuAu 7 GeV shown in brown dashed lines

Similarly, in Fig. 11 we show the cubic response coefficients κ2,2. For trento, κ2,2 appears

to see little to no change across beam energy. We reiterate that in trento, hydrodynamics

was able to reproduce the experimental data with a single fixed set of parameters such as

the shear viscosity η/s ∼ 0.05. In contrast, for mckln it was necessary to vary the shear

viscosity η/s across beam energy in order to reproduce experimental data; as a result, the

cubic response coefficient exhibits a much stronger beam energy dependence. This suggests

that the cubic response coefficients are sensitive to energy-dependent changes in the medium

parameters.

Unlike the estimator coefficients κ1,n, κ2,n which have definite interpretations as origi-

nating from the properties of the final state, the residuals 〈δ2n〉 as defined in Eq. (8) are

measures of our ignorance. As was previously found in Ref. [33], we see in Fig. 12 that

the absolute magnitudes of the optimized residuals are rather small, indicating that the

linear+cubic estimator is performing well.3 The residuals do, however, grow significantly

for peripheral collisions; this is consistent with the picture from the deterioration of the

Pearson coefficients Qn from Eq. (10) in that region. These trends are comparable between

3 Note however from Eq. (14) that the contributions of the residuals to the cumulants scale more closely

with
√
〈δ2n〉 and 4

√
∆n,4 than with the residuals themselves, so one should not infer that these corrections

are vanishingly small.
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FIG. 12. (Color online) Residual contribution to 〈v22〉 for elliptical flow across beam energy ex-

tracted using trento+ v-USPhydro. Extrapolated values for AuAu 7 GeV shown in brown dashed

lines.

trento and mckln. In both models, the variation in the residuals with beam energy is small,

particularly in central collisions. In peripheral collisions a discernible splitting between the

energy dependence of the residuals is seen, but the behavior is quite different for trento and

mckln. For trento there is a systematic hierarchy with the residuals at lower beam energies

being somewhat smaller than at higher energies. In contrast, the residuals for mckln are not

ordered with beam energy; they do, however, track the different values of η/s. For instance,

PbPb 2.76 TeV has the largest viscosity of 0.11 and also has the largest residual, whereas

PbPb 5.02 TeV has the smallest viscosity of 0.05 and also a very small residual.
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FIG. 13. (Color online) Residual contribution to 〈v42〉 for elliptical flow across beam energy ex-

tracted using trento and mckln + v-USPhydro. Extrapolated values for AuAu 7 GeV shown in

brown dashed lines

In Fig. 13 the new residual ∆2,4 contribution is shown, which has a similar centrality
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dependence to what is seen in Fig. 12 for 〈δ22〉. For p = 0, both residuals peak around

60− 70% centrality, and lower beam energies correlate with smaller residuals with the peak

shifting towards small centrality classes. The energy dependence for mckln is also similar to

what was seen in Fig. 13, and in all cases the residual ∆2,4 is very small.
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FIG. 14. (Color online) Direct trento+v-USPhydro hydrodynamical calculations (solid black)

versus the predicted vn{2} from linear+cubic response (red long dashed) and the reconstructed

vn{2} from linear+cubic response+residual (blue short dashed). Calculations are performed for

PbPb 5.02 TeV with initial conditions using trento p = 0.

Having determined the response coefficients, we can visualize directly how well the lin-

ear+cubic estimator is able to reproduce the final flow harmonics across beam energies. In

Fig. 14 we compare the linear+cubic estimator Eq. (6) from the initial state with the calcu-

lated flow harmonics, and by adding the residuals back in, we can fully account for the final

state flow. As seen previously, we again observe that the linear+cubic estimator is least

successful in peripheral collisions, where the residual makes a more significant contribution

to the final state flow harmonics.

Similarly, in Fig. 15 we plot the cumulant ratio v2{4}/v2{2} which is a measure of the

event-by-event fluctuations of the elliptic flow harmonic v2 as shown in Eq. (15). Here we

compare the fluctuations as predicted from just a pure linear estimator (κ2,2 = 0) with those

using a linear+cubic estimator (6) and the full final-state flow after running hydrodynamics.4

For all three cases at top RHIC and LHC energies, the linear+cubic response reproduces

well the flow fluctuations from 0 − 60% centralities. From these plots we conclude that

4 Note that the optimized coefficients for linear response only differ from the expressions for κ1,n given in

Eq. (11). Here we have used the correct optimized linear response coefficients as derived in Ref. [77].
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FIG. 15. The cumulant ratio v2{4}/v2{2} calculated for the top RHIC and LHC energies using full

hydrodynamics (black), linear response only (blue), and linear+cubic response (red). Calculations

are performed for AuAu 200 GeV collisions (top), PbPb 2.76 TeV collisions (middle), and PbPb

5.02 TeV collisions (bottom) with initial conditions using trento p = 0.

the contributions from the residuals is of O (5%) and likely within the uncertainties of the

measurement. As such, when we later make predictions for v2{4}/v2{2} at lower beam

energies we will not include the residuals.
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FIG. 16. (Color online) Extrapolation of κ1,2 down to lower beam energies using a linear fit

either considering all 3 beam energies, linear fit with just the lowest 2, or a fit with the format

a+b log[
√
sNN ] where a and b are constants. The calculations here use initial conditions generated

by trento with p = 0, and the plot is for the 10− 15% centrality bin.

V. EXTRAPOLATION TO LOW BEAM ENERGIES

The last step is to use the information we have computed above for the top three RHIC

and LHC energies in order to extrapolate to lower beam energies. Knowing that all of these

model calculations incorporate the weak energy dependence present at these kinematics, we

take a naive approach and simply compute a linear fit to the top beam energies. This is

illustrated for the energy dependence of the linear response coefficient κ1,2 in Fig. 16. On

these scales, the AuAu 200 GeV data from RHIC sit at less than 10% the energy of the

LHC data, so a downward linear extrapolation will change the parameters very little from

AuAu 200 GeV to 7 GeV, as seen in Fig. 16. We compare a few different approaches to

such an extrapolation, including a linear fit to all three energies versus to only the lower

two energies. Incorporating the statistical error bars into the extrapolation, as opposed to

using only the central values, also did not make a significant difference in the extrapolated

parameters.

Given that we expect new physical mechanisms to play a role in the medium description

at the lower beam energies, it seems appropriate to also consider a fit which deviates steeply

from linearity at low energies. As a toy model for the onset of such behavior at low energies,

we also compare to a log fit a + b log[
√
sNN ], where a and b are constants. It may be that

other functions which deviate significantly at low energies would work better, but given the
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present lack of published data in this region it is impossible to make a more sophisticated

fit. Incorporating new data from additional beam energies will certainly help in constraining

these extrapolations, which we leave for future work.

While this naive extrapolation is far from able to encapsulate all the physics required to

study the lowest beam energies, there are certain aspects that this approach does capture.

For instance, basing the mapping coefficients on the higher beam energies will ensure that

a shorter lifetime at lower beam energies is taken into account. Since collisions at 5.02 TeV

reach significantly higher maximum temperatures (T ∼ 600 MeV vs. T ∼ 400 MeV at

200 GeV) and we keep the freeze-out temperature fixed at TFO = 150 MeV, extrapolating

downwards to lower beam energies ensures that the hydrodynamic lifetime is shorter. Addi-

tionally, our results will be applicable in the region of the phase diagram where η/s ∼ const.

VI. RESULTS

Using our newly extrapolated response coefficients, we are now able to make baseline

predictions for the lower beam energies. While preliminary results have been shown in a

proceedings from STAR [107], we are still waiting on the final published data to make direct

comparisons to our results. (In fact, as discussed below, we may be able to use the published

data to extract these coefficients.)

We first consider the linear extrapolations as shown in Fig. 17, where the fit using all

three top RHIC + LHC energies is shown on the left and the fit to only the 200 GeV and

2.76 TeV energies is shown on the right. We use these fits to extrapolate the two-particle

cumulant down to 54 GeV, 27 GeV, and 7 GeV by using trento p = 0 initial conditions

at these energies, together with the extrapolated values of κ1,2, κ2,2, and 〈δ22〉. For the

extrapolations based on both the all-energy and two-energy fits, there is almost no beam

energy dependence. This is consistent with both the expected weak energy dependence in

the eikonal approximation (see Fig. 2) to the initial state eccentricities (see Figs. 3-7) and

to the small lever arm to extrapolate down from 200 GeV (see Figs. 10-13). We do not show

the cumulant ratio v2{4}/v2{2} for these fits because the results look nearly identical across

beam energies, regardless of the method of linear extrapolation.

However, given that the assumption of an equal number of baryons and anti-baryons at

top RHIC and LHC energies must break down at lower energies and associated changes are
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FIG. 17. (Color online) Direct trento+v-USPhydro hydrodynamic calculations for AuAu 200 GeV

(solid black) versus the predicted v2{2} from extrapolating the linear+cubic response coefficients

and residual to lower energies. Here we compare a linear extrapolation to fits of all beam energies

(left) versus lowest two beam energies (right). Baseline predictions are made for 54 GeV (red long

dashed), 27 GeV (blue dot dashed), and 7 GeV (brown short dashed).

200GeV trento+v-USPhydro

54GeV

27GeV

7GeV

log fit (a)

0 20 40 60 80
0.00

0.02

0.04

0.06

0.08

Centrality (%)

v 2
{2
}

(b)

200GeV trento+v-USPhydro

54GeV

27GeV

7GeV

log fit

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

Centrality (%)

v 2
{4
}/
v2

{2
}

FIG. 18. (Color online) Direct trento+v-USPhydro hydrodynamic calculations for AuAu 200 GeV

(solid black) versus the predicted v2{2} (left) and v2{4}/v2{2} (right) from extrapolating the

linear+cubic response coefficients and residual to lower energies. Here we assume an logarithmic

extrapolation a + b log[
√
sNN ] designed to mimic the onset of significant sub-eikonal physics at

lower energies. Predictions are made for 54 GeV (red long dashed), 27 GeV (blue dot dashed), and

7 GeV (brown short dashed).

anticipated in the equation of state and transport coefficients, it is perhaps more realistic to

anticipate the onset of a much stronger energy dependence at the lower RHIC beam energies.

Accordingly, in Fig. 18 we allow the response coefficients to follow the toy logarithmic
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extrapolation, which allows for a significant suppression of v2{2} with decreasing beam

energy. These results appear to be much more consistent with the preliminary results from

STAR [107]; that data may provide early evidence for a dramatic change in the behavior of

the response coefficients at lower beam energies associated medium effects at finite baryon

densities. However, even with this significant change in the behavior at lower energies,

we see in the right panel of Fig. 18 that the effects largely cancel for the cumulant ratio

v2{4}/v2{2}, leading to only a slight suppression at lower beam energies. This conclusion

could change, however, with the addition of significant new effects in the initial state such

as a change in the effective nucleon width σ (see Fig. 7) or in the final state such as changing

transport coefficients.

A. Extracting the Response Coefficients from Data

Finally, we explore the possibility of extracting the response coefficients directly from

comparisons between initial conditions and data, without simulating hydrodynamics at all.

When the initial state eccentricities and the final-state flow harmonics are both calculated

in theory, the expressions given in Eqs. (11) provide the optimized estimator parameters

which minimize the residuals. But for a given model of the initial state, cumulants of

the eccentricities εn{2} and εn{4}/εn{2} can also be directly compared with the measured

cumulants of final-state flow in order to study the response of the system. Moreover, the

independent information provided by the two-particle cumulant v2{2} and the cumulant

ratio v2{4}/v2{2} can help to constrain the estimator parameters (such as κ1,2, κ2,2 for

linear+cubic response) which relate the measured flow to the chosen initial state model.

For simplicity’s sake, we do not vary the residuals since these are unknown factors in the

mapping and additionally, we do not consider the residuals for v2{4}/v2{2} because they

are two separate sources (〈δ2〉 and ∆2,4) of uncertainty, which mostly cancel out when the

ratio is taken.

Consider the impact of varying these parameters separately to predict AuAu
√
sNN = 7.7

GeV, as shown in Fig. 19. We compare our linear extrapolation using the 3-energy fit

(red long dashed line) with the prediction if the linear response coefficient was halved,

κ1,2 → κ1,2/2 (blue dashed line). Modifying the linear response coefficient in this way

significantly decreases v2{2}, making it more in line with the STAR preliminary results
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FIG. 19. (Color online) Direct trento+v-USPhydro hydrodynamic calculations (solid black) versus

the predicted vn{2} from linear+cubic response (red long dashed) and the reconstructed vn{2}

from linear+cubic response+residual (blue short dashed). Calculations at PbPb 5.02TeV.

[107]. However, at the same time, this change also significantly decreases the cumulant

ratio v2{4}/v2{2}, which disagrees with the preliminary STAR data. On the other hand, if

we modify only the cubic response coefficient by a factor of 2, κ2,2 → κ2,2/2, we see that

there is actually a small increase in the cumulant ratio v2{4}/v2{2}. This change may in

fact be in agreement with the preliminary STAR data, but the error bars there are still

large enough that it is difficult to say for sure. However, now the opposite problem results:

when halving the cubic response, there is only a mild decrease in v2{2}, which is likely

still too large compared to the preliminary STAR results. Finally, if both linear and cubic

response coefficients are halved, then we find both a significant suppression of v2{2} and

a v2{4}/v2{2} which is relatively unchanged. This behavior appears to be similar in both

observables to what is seen in the preliminary STAR results (and, interestingly, also to the

predictions of our toy logarithmic extrapolation shown in Fig. 18).

Taken together, these simple exercises suggest that it is feasible to constrain the linear

and cubic response coefficients by directly comparing a model of the initial state to data.

Once the final STAR data is published and available to the public, these types of studies

could be quite useful in determining the type of flow response to the initial state one expects

at different beam energies. Additionally, because these parameters encode the information

about the final-state medium response to an initial state geometry, if they can be constrained

directly from data then they can shed light on the new physical mechanisms which can be

driving the change in the system. Future studies varying the choices of medium properties
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such as the equation of state, transport coefficients, and hydrodynamic expansion time could

compute their impact on the experimentally-constrained response coefficients to help extract

what physics is driving the change in system response at lower beam energies.

VII. CONCLUSIONS

In this paper we have studied the energy dependence of various parameterizations of

the initial conditions of heavy ion collisions, finding almost no change in the eccentricities

with energy. This null result, however, is assuredly an artifact of the gluon-dominated

physics of top RHIC and LHC energies being hard-coded into the various models through

their underlying assumptions. Deviations from this underlying physics associated with lower

beam energies can change the picture of the initial state, for instance through additional

changes in model parameters like the nucleon width or multiplicity fluctuations. We found

that changes in such secondary parameters with beam energy can have a mild effect on

the initial-state eccentricities. It is unclear how more dynamical approaches such as that

of Refs. [36] and [38] would affect the initial eccentricities – or even if a well-defined initial

eccentricity could be constructed for such a scenario – but we leave these considerations for

future work.

We have also extracted the linear+cubic response coefficients across top RHIC and LHC

energies using two different initial condition models: trento p = 0 which approximates the

eccentricities produced by the IP-Glasma model, and mckln. Using these response coeffi-

cients, we extrapolated down to lower beam energies using either a linear or logarithmic

fit to make baseline predictions from which to measure the expected deviations. We note

here that a large uncertainty exists for the low energy extrapolation and only future studies

with realistic viscous hydrodynamics with BSQ conserved charges can full answer that ques-

tion. The most naive approach is a linear fit to top beam energies that showed almost no
√
sNN dependence for v2{2}, in contrast to preliminary STAR results [107]. This scenario

essentially assumes that the physics of top RHIC and LHC energies will continue unabated

down to small
√
sNN , which must surely be wrong at some finite energy. If the results from

STAR hold into a published version this clearly demonstrates that STAR physics changes

significantly at lower beam energies and the hydrodynamic models must change accordingly

(as detailed in the Introduction) even for beam energies as high as
√
sNN = 54 GeV.
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In contrast, since we expect finite baryon densities to lead to significant changes in the

medium (and thus the medium response coefficients), a more severe extrapolation to low

energies may be appropriate. To this end, we used a toy logarithmic extrapolation of the

response parameters down from top collider energies, leading to a more significant suppres-

sion in v2{2} while leaving the cumulant ratio v2{4}/v2{2} nearly unchanged; this scenario

appears to be more in line with the preliminary STAR results. We also tested various ap-

proaches to the extraction these response coefficients, finding that the event plane angles

can have significant effects on the quality of the predictions, so we emphasize that Eqs.

11 should be used to extract the linear+cubic response coefficients instead of numerical

techniques which take into account only the magnitudes.

Comparing results from STAR and PHENIX, we find that there are hints of differences in

v2{4}/v2{2} if subevents are used to remove non-flow effects. However, since the centrality

bins used for these calculations are quite fine the error bars are too large to determine

this with confidence. Additionally, the error bar are likely enhanced because we cannot

take into account correlated error in our error propagation. Thus, we would encourage

experimentalists to determine the error bars for the ratio v2{4}/v2{2} (as was done for

5.02TeV in ATLAS [108]) to determine the effect of subevents.

We also explored the ability to extract or constrain the response coefficients to a given

initial state model by direct comparison to experimental data. In the case of the STAR

preliminary data [107], a suppression of both the linear and cubic response coefficients

appear to be necessary in order to be in the right ballpark; if only one of these coefficients

is suppressed then this would fail the constraints of simultaneously fitting both v2{2} and

v2{4}/v2{2}. When the final STAR data becomes public, we can refine this method to

directly extract the response coefficients from the experimental data and set the stage for

further modeling to understand the microscopic origin of the change in system response,

including the equation of state, transport coefficients, and lifetime of hydrodynamics. This

approach provides an exciting opportunity to disentangle the changes in the underlying

physics with beam energy and may even help to determine the influence a critical point

could have on the measured flow harmonics.
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