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In the context of the ongoing search for the QCD critical point at the Relativistic Heavy-Ion Col-
lider, we study the equation of state near the critical point in the temperature and baryon chemical
potential plane. We use the parametric representation introduced in earlier literature, which maps
the universal 3D Ising equation of state onto the QCD phase diagram using several non-universal
parameters. We focus on the quartic cumulant of the baryon number, or baryon number susceptibil-
ity χB

4 , which can be accessed experimentally via net-proton fluctuation kurtosis measurements. It
was originally predicted, through universality arguments based on the leading singular contribution,
that χB

4 and net-proton kurtosis should show a specific non-monotonic behavior due to the critical
point. In particular, when following the freeze-out curve on the phase diagram by decreasing beam
energy, the kurtosis is expected to dip, and then peak, when the beam energy scan passes close to
the critical point. We study the effects of the non-universal and thus far unknown parameters of the
Ising-to-QCD mapping on the behavior of χB

4 . We find that, while the peak remains a solid feature,
the presence of the critical point does not necessarily cause a dip in χB

4 on the freezeout line below
the transition temperature. The critical point contribution to the dip appears only for a narrow set
of mapping parameters, when subleading singular terms are sufficiently suppressed.

I. INTRODUCTION

One of the current major thrusts of the nuclear physics
program is to map out the phase diagram of Quantum
Chromodynamics (QCD) and specifically look for a crit-
ical point in the transition from a hadron resonance gas
into deconfined plasma of quarks and gluons. Because
the location of the QCD critical point is yet unknown,
searches are currently ongoing across the relevant region
of the QCD phase diagram. At high temperatures and in-
termediate baryon chemical potentials, relativistic heavy-
ion collisions are able to scan the phase diagram by sys-
tematically decreasing the collision energy. This is the
motivation behind the second phase of the Beam Energy
Scan (BES-II) at Relativistic Heavy-Ion Collider (RHIC)
(see, e.g., Ref. [1] for a recent review). At lower tem-
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peratures and higher baryon chemical potentials, useful
information can be extracted from the study of neutron
stars and neutron star mergers. In fact, it appears that
there may even be significant overlap in the phase dia-
gram pertaining to the lowest beam energies in heavy-ion
collisions and neutron star mergers [2, 3].

Lattice QCD calculations cannot be performed at fi-
nite µB [4]; therefore, it is currently not possible to de-
termine the location of the critical point from first prin-
ciples. Thus, experimental searches for the critical point
are central to determining its location [3, 5]. The main
strategy is based on the search for certain non-monotonic
dependence of fluctuations on an experimental variable,
such as the collision energy

√
s, as the critical region is

traversed during the scan of the QCD phase diagram [6–
9]. The nonmonotonic behavior of fluctuation measures
is directly related to the divergence of susceptibilities at
the critical point. Therefore, susceptibilities of conserved
charges are of major interest for first principle lattice cal-
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culations (see, e.g., Ref. [10] for a review). In the case
of heavy-ion collisions, there are three conserved charges:
baryon number (B), strangeness (S), and electric charge
(Q), whereas in neutron star (mergers) only B and Q are
conserved, because the typical time scales are sufficiently
large for weak processes to become relevant.

Baryon number susceptibilities diverge at the critical
point [11], and are, therefore, the most promising observ-
ables in its search. Since experiments measure multiplic-
ities of charged particles, the closest quantities to baryon
number susceptibilities, or cumulants, are the net-proton
number cumulants, which show similar critical behav-
ior [8, 12, 13]. Electric charge fluctuations contain a sin-
gular contribution from net-proton fluctuations, but this
effect is diluted by pions and therefore it is expected to
be milder [12]. Additionally, higher order cumulants are
the most sensitive to critical behavior because they scale
with higher powers of the correlation length [8, 9] in the
vicinity of the critical point. However, experimental mea-
surements currently are only available up to the fourth
cumulant [5, 14] at large baryon densities with reasonable
error bars.1

At µB = 0, it is possible to calculate the higher order
BSQ susceptibilities on the lattice and then use them to
reconstruct the lower order ones at small finite baryon
densities, although with large numerical uncertainties
[10, 16, 17]. Alternatively, effective models exist that can
reproduce lattice QCD results and do include a critical
point at finite baryon density [18].

Another approach is to make use of the fact that the
QCD critical point is expected to be in the same univer-
sality class as the 3D-Ising model [19–24]. Using this ap-
proach, a specific non-monotonic behavior of the fourth
cumulant of net-proton number as a function of

√
s was

proposed as a potential critical point signature in Ref. [9].
This prediction has sparked interest in the community,
especially in light of the BES-II and its Fixed Target Pro-
gram [25, 26], which is intended to provide larger statis-
tics and reach lower collision energies.

The baryon number susceptibility, which has a similar
behavior, can be obtained from the equation of state by
differentiating the pressure at fixed temperature:

χB4 (T, µB) =

(
∂4p

∂µ4
B

)
T

. (1)

Due to the mapping between the QCD and the 3D Ising
model critical equations of state, the leading divergence
at the critical point comes from the fourth derivative of
the Gibbs free energy G, i.e., the third derivative of the
critical order parameter (the magnetization M) with re-
spect to the ordering (magnetic) field h at constant re-
duced temperature r:

χIsing
4 (r, h) =

(
∂4G

∂h4

)
r

=

(
∂3M

∂h3

)
r

. (2)

1 The data for the sixth cumulant [15] are also available but with
large statistical error bars and only at vanishing baryon densities.

Taking only the leading singular contribution, the pre-
dicted behavior for χB4 along a freeze-out curve (location
of freezeout point as a function of

√
s) starting at µB = 0

and passing close to the critical point is as follows. From
its value at µB = 0, χB4 is expected to decrease at in-
creasing µB , then move upwards and reach a peak in
the vicinity of the critical point. This peculiar, doubly
non-monotonic behavior has motivated the experimental
search for the critical point in the past years, also due to a
quite similar behavior observed in the measured quantity

κσ2 = κ4/κ2 , (3)

where κ, σ =
√
κ2 and κ4 are the kurtosis, variance

and quartic cumulant of the net-proton number distri-
bution. Indeed, the data from the STAR experiment [14]
show κσ2 decreasing and then swinging upwards as the
collision energy decreases, which resembles the behavior
predicted in Ref. [9]. Although this similarity is indeed
quite promising, other explanations have been proposed
for the dip, such as global conservation of baryon number
– which is expected to play a bigger role at low collision
energies where the system is smaller [27, 28]. Transport
models that do not include any criticality, but do ac-
count for charge conservation, are able to reproduce the
decrease at finite µB [29]. On the other hand, the dip also
arises when extrapolating χB4 to finite µB in lattice QCD
through a Taylor series [16, 17]. This suggests that at
least some contribution to the experimentally observed
dip comes from the equilibrium equation of state, which
may, in principle, be due to the approach to the critical
point.

The specific non-monotonic behavior predicted in
Ref. [9] and described above focuses on the leading con-

tribution to χB4 , given by χIsing
4 . In the parametric equa-

tion of state we use in this paper, due to the mixing of
r and h variables in the mapping of 3D Ising to QCD
equation of state, there are also subleading critical con-
tributions. The peculiarity of the QCD equation of state,
as we see below in more detail, is that the leading contri-
bution is suppressed by the smallness of the slope α1 of
the phase-separating line in the T, µB plane at the crit-
ical point. Therefore, unless the r, h mixing is also sup-
pressed, the subleading critical contribution could domi-
nate in a significant part of the critical region, thus qual-
itatively changing the prediction.

In this work we investigate this effect by comparing
two choices of the mixing parameters, which show qual-
itatively different behavior of χB4 near the critical point.
One choice is a common “default” choice in the litera-
ture, where the r, h mixing is not suppressed. Another
choice is motivated by the recent work in Ref.[30], which
argues that close to the chiral (small quark mass) limit,
the mixing is suppressed. While in the latter choice we
recover the pattern of χB4 behavior similar to Ref. [9],
in the former, the subleading terms significantly changes
that pattern. While the peak of χB4 is a robust feature in-
dependent of the parameter choice, the dip at µB < µBC
is sensitive to the choice. It is worth pointing out that
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we explored several other parameter choices, not shown
here, and that the dip disappears in almost all of them.
The second parameter choice shown here is one of the
few in which the dip is still visible. The reason for this
will become clear below.

This paper is organized as follows. In Section II we
quickly summarize the procedure developed in Ref. [31]
to construct equations of state for QCD with a built-in
criticality in the correct universality class. In Section III
we present a discussion of the dependence of the critical
region size and shape on the different parameters, fo-
cusing on the contribution from the leading divergence.
In Section IV we present our results for several differ-
ent choices of the parameters in the Ising-to-QCD map,
which lead to our conclusions, summarized in Section VI.

II. PARAMETRIC EQUATION OF STATE

In this work, we utilize the procedure for constructing
a family of equations of states with a critical point devel-
oped in Ref. [31]. This parametric family is constructed
in such a way that all its members match lattice QCD
results at µB = 0 (up to order O(µ4

B)) and contain a crit-
ical point in the 3D Ising model universality class. We
note that the implementation of the critical behavior is
essentially the same as in Ref. [9].

The procedure can be summarized as follows:

i. Define a parametrization of the 3D Ising model EoS
in the vicinity of the critical point, imposing the cor-
rect critical behavior. Express the magnetization M ,
the magnetic field h and the reduced temperature
r = (T − Tc)/Tc in terms of the new parameters
(R, θ) with [32–35]:

M = M0R
βθ ,

h = h0R
βδh̃(θ) , (4)

r = R(1− θ2) ,

where M0 ' 0.605 and h0 ' 0.364 are normalization
constants, h̃(θ) = θ(1+aθ2+bθ4), with a = −0.76201
and b = 0.00804, and β ' 0.326, δ ' 4.80 are 3D
Ising model critical exponents [33]. The parameters
are within the range R ≥ 0 and |θ| ≤ θ0, where

θ0 ' 1.154 is the first nontrivial zero of h̃(θ).

ii. Map the phase diagram of the 3D-Ising model onto
the TµB plane of QCD, choosing the location of the
critical point. A simple linear map [36] requires six
parameters, and can be written as:

T − TC
TC

= w (rρ sinα1 + h sinα2) , (5)

µB − µBC
TC

= w (−rρ cosα1 − h cosα2) , (6)

where (TC , µBC) are the coordinates of the critical
point, and (α1, α2) are the angles between the hori-
zontal (fixed T ) lines on the QCD phase diagram and

the h = 0 and r = 0 Ising model axes, respectively.
Finally, w and ρ are scaling parameters for the Ising-
to-QCD map: w determines the overall scale of both
r and h, while ρ determines the relative scale be-
tween the two.

As in Ref. [31], we reduce the number of parameters
to four by imposing that the critical point is located
on the chiral transition line given by lattice QCD
calculations [37]:

T = T0 + κ2 T0

(
µB
T0

)2

+O(µ4
B), (7)

which allows us to fix the values of TC and α1 by
choosing µBC only.

In order to be consistent with previous work, we use
the same input from lattice QCD as in Ref. [31].
Although recently new results on the QCD transition
line have become available2 [38, 39], we note that
utilizing these new results would not have any effect
on the conclusions presented here.

iii. Impose exact matching to lattice QCD at µB = 0
at the level of the coefficients of Taylor expansion of
the pressure through:

T 4cLAT
n (T ) = T 4cNon-Ising

n (T ) + T 4
Cc

Ising
n (T ) , (8)

where cLAT
n are the coefficients calculated from the

lattice, and cIsingn determine the contribution to the
former due to the presence of the critical point.
Eq. (8) is thus the definition for the coefficients
cNon-Ising
n required to match the given critical equa-

tion of state to lattice data without changing the
singular behavior at the critical point. The proce-
dure is carried out up to order O(µ4

B).

iv. Reconstruct the full QCD pressure as:

P (T, µB) = T 4
∑
n

cNon-Ising
n (T )

(µB
T

)n
+ PQCD

crit (T, µB) , (9)

where PQCD
crit (T, µB) is the critical pressure from the

3D-Ising model mapped onto QCD. For additional
details, we again refer the reader to Ref. [31].

With the procedure summarized here, the constructed
EoS (i.e. the pressure, from which all needed derivatives
can be calculated) by construction meets the initial re-
quirements, and depends on the non-universal mapping

2 Both in this work and in Ref [31], we assume that the QCD
transition line is a parabola, with curvature κ2 determined in
Ref. [37]. Recent results from lattice QCD [38, 39] are consistent
with this value of the curvature, and predict the next to leading
order parameter κ4 which is consistent with 0 within error-bars.



4

between 3D-Ising model and QCD through the specific
choice of parameters.

In the following we focus on the observable effects of
a critical point on the 4-th order susceptibility of the
baryon number in Eq. (1). For this purpose we can safely
limit ourselves to the critical contribution to χB4 , because
in the region we consider it largely exceeds any possi-
ble contribution from non-critical-point-related physics.
Moreover, since the procedure we just summarized stops
at order O(µ4

B), the total contribution obtained in our
approach differs from the critical one by a constant in
µB , i.e. a function depending on the temperature only.
Thus, a similar plot for the total contribution would show
the same features.

III. THE SIZE AND SHAPE OF THE CRITICAL
REGION

While the divergence of χB4 at the critical point
is present for any choice of parameters due to the
parametrization in Eq. (4), the extent of the region in
the phase diagram where its magnitude is large (either
positive or negative) is a nonuniversal property of the
theory – the “size of the critical region” – which cannot
be inferred from universality arguments. It is nonethe-
less of crucial importance, as it can ultimately determine
whether the critical behavior can be observed in experi-
ments.

Here we describe how the parameters of the mapping
control the size of the critical region. We define the crit-
ical region as the region where the leading singular part
of the equation of state dominates over the regular part.
This comparison cannot be done on the pressure itself,
since the critical contribution to the pressure vanishes
at the critical point (as r2−α). A reasonable measure of
the critical region should be based on a quantity which
diverges at the critical point, such as the baryon suscep-
tibility, χB2 = Pµµ or, in our case, χB4 = Pµµµµ (where
Pµ = ∂(p/T 4)/∂(µB/T ) at fixed T ). We shall estimate
the size of the critical region along the crossover, h = 0,
line. The singular part of χB4 at h = 0 is given by

χsing
4 ∼ AGµµµµ(r, 0) ∼ AGhhhh(r, 0)h4µ (10)

∼ Arβ(1−3δ)

(
s1

wTCs12

)4

(11)

∼ A
(

∆µB
ρwTCc1

)β(1−3δ)(
s1

wTCs12

)4

.

where PQCDcrit (T, µB) = AG(r, h), Gµ = ∂G/∂(µB/T ),
si = sinαi, ci = cosαi and s12 = sin(α1 − α2), A is an
overall constant and hµ = ∂h/∂µB at fixed T . Compar-
ing this to the regular contribution of order χreg

4 ∼ 1,
we find for the extent of the critical region in the µB
direction:

∆µB ∼ TCρwc1
(
A1/4

TC

s1
ws12

) 4
β(3δ−1)

. (12)

Therefore, while increasing ρ increases the size of the
critical region, the effect of increasing the parameter w
is very weak. For the mean-field value of β = 1/2 and
δ = 3, the w dependence is completely absent, while
for the values β = 1/3, δ = 5 approximating the exact
values of 3D Ising model exponents one finds a very weak
dependence ∆µB ∼ w1/7.

To determine the extent in the vertical, i.e. µB =
const = µBC direction, we note that this corresponds to
a finite ratio h/r = −ρc1/c2. Thus, the scaling variable
r/h1/(βδ) → 0 as we approach the critical point, and we
can set r = 0 when determining the magnitude of χ4:

χsing
4 ∼ AGµµµµ(0, h) ∼ AGhhhh(0, h)h4µ (13)

∼ Ah(1−3δ)/δ

(
s1

wTCs12

)4

(14)

= A

(
c1∆T

wTCs12

)(1−3δ)/δ (
s1

wTCs12

)4

.

The condition χsing
4 ∼ 1 then gives

∆T ∼ TC
(
A

T 4
C

) δ
3δ−1 s1

c1

(
s1
ws12

) δ+1
3δ−1

. (15)

The dependence on w is given by ∆T ∼ w− δ+1
3δ−1 . For the

mean-field value of δ this corresponds to w−1/2 and for
δ = 5 to w−3/7.

IV. RESULTS AND DISCUSSION

We now employ the procedure described in Section II
to calculate the susceptibilities of the baryon number.
We summarize our parameter choices in Table I. We fix
the location of the critical point sufficiently far from the
µB = 0 axis to allow for maximum freedom in our pa-
rameter choice but still within the range of the Taylor
expansion of O(µ4

B). To satisfy those criteria we use
µBC = 420 MeV, which results in TC ' 138 MeV and
α1 ' 4.6◦, and study several values of the parameters
(w, ρ). In addition, we consider two different choices for
the relative angle between the (r, h) axes. First, we keep
the two axes orthogonal (α2 − α1 = 90◦), as this has
been a common “default” choice in the literature. Then
we examine the case with the angle between the two axes
α2 − α1 = −3◦. This second choice is motivated by the
fact that, in the chiral limit, the angle difference van-
ishes (as quark mass to power 2/5) and 0 < α2 < α1 for
sufficiently small quark mass 3, according to Ref. [30].
Note that, according to Eqs. (12) and (15), a small value
for s12 yields a larger critical region size for the same w

and ρ: ∆µB ∼ s−6/7
12 and ∆T ∼ s−3/7

12 .

3 This can be seen explicitly in the Random Matrix Model of the
QCD phase diagram [21, 30].
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FIG. 1. Density plots of the critical contribution to χB
4 (T, µB) in the (T, µB) plane with a critical point located at (TC '

138 MeV, µBC = 420 MeV), and with α2 − α1 = 90◦, for (top to bottom) w = 0.5, 1, 2 and (left to right) ρ = 0.5, 1, 2. The
critical point is indicated by a red dot, while the chiral/deconfinement transition line is represented by the solid orange line.
The yellow and green areas correspond to positive values (the regions where it is the largest are indicated in yellow) of χB

4 ,
while the blue ones correspond to negative values (darker blue in the regions where it is largest in magnitude).

µBC TC α1 α2 − α1 w ρ

I. 420 MeV 138 MeV 4.6◦ 90◦ 0.5, 1, 2 0.5, 1, 2

II. 420 MeV 138 MeV 4.6◦ −3◦ 0.5, 1, 2 0.5, 1, 2

TABLE I. The two sets of parameter choices we employ in
this work. Notice that, as detailed in the main text, TC and
α1 are not free parameters, but they follow from the choice
of µBC due to the constraints from Eq. (7).

We now investigate the behavior of the critical contri-
bution to χB4 over the QCD phase diagram, with focus on
the region close to the critical point T = 130− 160 MeV
and µB = 250− 450 MeV4.

4 We point out that, with the current linear mapping between the
Ising model and QCD phase diagrams, this second parameter
choice would give rise to a pathological equation of state with
negative baryon density. However, this is not relevant for the
results presented here, since we only consider the critical contri-
bution to the equation of state, and not the full one. It would
be interesting to explore whether a different, non-linear mapping
could lead to a non-pathological equation of state with this pa-
rameter choice, which is one of the very few which leads to a dip
in χB

4 . We leave this investigation for future work.

In Figs. 1 and 2, density plots of the critical contri-
bution to χB4 (T, µB) in the (T, µB) plane are shown for
w = 0.5, 1, 2 and ρ = 0.5, 1, 2 in the case of α2−α1 = 90◦

and w = 0.5, 1, 2 and ρ = 0.125, 0.25, 0.5 in the case of
α2 − α1 = −3◦, respectively. The yellow and green ar-
eas correspond to positive values (the regions where it
is the largest are indicated in yellow) of χB4 , while the
blue ones correspond to negative values (darker blue in
the regions where it is largest in magnitude). The orange
curve shows the QCD transition line from Eq. (7). The
red dot marks the critical point.

We note that the color function is not the same for
Figs. 1 and 2. The color schemes are such that a factor
10 in the value of χB4 separates the two figures, for the
same color. This is because, due to the dependence of
χB4 on s12, this quantity is overall significantly larger in
all the plots of Fig. 2 than in those of Fig. 1.

We would like to point out the following relevant fea-
tures in Figs. 1 and 2:

i. A smaller value of w leads to a larger critical region
in the T direction, for both values of the relative
angle α2 − α1. This follows from Eq.(15);

ii. The main effect of ρ is to stretch the critical region
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FIG. 2. Density plots of the critical contribution to χB
4 (T, µB) in the (T, µB) plane with a critical point located at (TC '

138 MeV, µBC = 420 MeV), and with α2−α1 = −3◦, for (top to bottom) w = 0.5, 1, 2 and (left to right) ρ = 0.125, 0.25, 0.5.
The critical point is indicated by a red dot, while the chiral/deconfinement transition line is represented by the solid, orange
line. The yellow and green areas correspond to positive values (the regions where it is the largest are indicated in yellow) of
χB
4 , while the blue ones correspond to negative values (darker blue in the regions where it is largest in magnitude).

in the µB direction. Indeed, the size of the critical
region along µB increases linearly with ρ, while the
one in the T direction is not affected by ρ according
to Eqs. (12) and (15).

iii. It is most interesting to compare our findings to what
was originally anticipated in Ref. [9] based on the
leading singular contribution. While the pattern in
Fig. 2 is in agreement with the leading singularity
prediction, in Fig. 1 that prediction only holds ex-
tremely close to the critical point.

Away from the critical point the subleading singu-
lar terms modify the pattern. In Fig. 1 for ρ = 2.0
and in Fig. 2 the main effect is the bending of the
negative lobe away from the crossover line. The
downward bending in Fig. 2 is a consequence of
0 < α2 < α1, while the upward bending in Fig. 1
is a consequence of α1 < α2 < 180◦, as explained in
Ref.[30].

As a result, in Fig. 1, the critical contribution to
the dip to the left of the critical point is absent,
except in the extremely close vicinity of the critical
point. Instead, the approach to the critical point
from the left is characterized by a peak instead of a

dip. Furthermore, for smaller ρ values, an additional
negative lobe appears below the critical point for
larger µB .

To understand the effect of the choice of α2 on the sig-
nificance of the subleading singular contributions to χB4
we observe, let us examine the Ising-to-QCD mapping
more closely. Eqs. (5), (6), allow us to convert the deriva-
tives with respect to µB in the definition of χB4 in Eq. (1)
into derivatives with respect to Ising variables h and r:

∂µB =
1

w ρTCs12
(s1 ∂h + s2 ∂r) . (16)

Since h corresponds to the most relevant perturbation
at the critical point (h has the largest scaling dimen-
sion), the dominant contribution to the derivative ∂µB
sufficiently close to the critical point comes from ∂h.
Since α1 is small, when α2 is not small, the contribu-
tion of ∂h is suppressed by s1/s2 compared to ∂r. This
is precisely the case in Fig. 1. While taking only the
most divergent terms corresponds to setting ∂µB ∼ ∂h,

and hence χB4 ∼ χIsing
4 from Eq. (2), the full expression

for χB4 contains many additional subleading, less singu-
lar terms which involve ∂r. The subleading terms will
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become negligible sufficiently close to the critical point,
but if the leading contribution is strongly suppressed this
may not happen until we are extremely close to the criti-
cal point, as seen in Fig. 1. Thus, the pattern of the TµB
dependence of χB around the critical point is significantly
affected by the subleading terms in this scenario.

On the other hand, when α2 is small, as for our choice
α2 ≈ 1.6◦, the pattern is indeed more similar to the one
described in Ref. [9]. This can be seen in Fig. 2, especially
when ρ = 0.5.

After analyzing the general behavior of χB4 over the
QCD phase diagram, we now wish to determine the im-
pact that its features can have on experimental measure-
ments. We shall make a simplifying assumption that
net-proton kurtosis has a similar critical behavior to χB4 ,
following the argument of Ref. [12]. In the following
we study the behavior of χB4 along exemplary freeze-
out trajectories, which are roughly parallel to the chi-
ral/deconfinement transition line from Eq. (7):

TF(µB) = T0 + κ2 T0

(
µB
T0

)2

−∆Tshift , (17)

where ∆Tshift indicates the shift in temperature down-
ward from the transition line. In Fig. 3 we show the be-
havior of the critical contribution to χB4 along such lines,
with shifts ∆Tshift = 1, 2, 4 MeV. In the different panels,
we consider the cases with α2 − α1 = 90◦ (top row) and
α2 − α1 = −3◦ (bottom row), and with the parameter
choices w = ρ = 0.5 (left column) and w = 2, ρ = 0.5
(right column).

The choice that displays a dip for µB < µBC is the
one with w = ρ = 0.5, α2 − α1 = −3◦ and only in the
close vicinity of the transition line, i.e., for ∆Tshift =
1, 2 MeV. Fig. 2 suggests that this would be the case
also for smaller values of ρ, as we note that the lower the
value of ρ, the more apparent the downward bending is of
the negative (blue) lobe. Since this behavior follows from
our choice for the angle α2, we consider in the top panel
of Fig. 4 different choices for the angle α2. We focus on
lines parallel to the transition line, with ∆Tshift = 1 MeV,
and keep w = ρ = 0.5 in all cases.

We consider a handful of choices for the angle α2. We
include the ones corresponding to Fig. 1 (α2 ' 94.6◦)
and Fig. 2 (α2 ' 1.6◦), as well as α2 ' −5.4◦, 0◦, 2.6◦.
In the bottom panel of Fig. 4 we show the orientations
of the r = 0 axis corresponding to the different values of
α2 we used. As anticipated, only in the cases satisfying
0 < α2 < α1 a dip for µB < µBC is seen. Moreover,
we consider in this plot a shift ∆Tshift = 1 MeV between
the chemical freeze-out line and the chiral transition line.
With larger separation, a dip would be harder to observe,
as shown in Fig. 3.

V. EXPERIMENTAL CONSIDERATIONS

In our current study we focused on the equilibrium
properties of the QCD equation of state that can lead to

the potential discovery of the QCD critical point. How-
ever, because heavy-ion collisions are inherently dynam-
ical systems, direct comparison with experimental data
would require an event-by-event relativistic viscous hy-
drodynamics model with BSQ conserved charges [40, 41]
and critical fluctuations coupled to a hadronic transport
code.

While important efforts are being made along these
lines in terms of new hydrodynamical models [42–48],
transport coefficients [49–55], critical fluctuations [7, 56–
59], and freeze-out [60–65], the full dynamical descrip-
tion does not yet exist at this time. In the meantime,
a number of attempts have been made to quantify ef-
fects such as critical slowing down and memory, finite
volume/lifetime, number of particles, decays, charge con-
servation, kinematic cuts, low statistics etc [28, 66–77].
Yet further studies have looked into the influence of far-
from-equilibrium initial conditions and potential attrac-
tors at the critical point [48] and the influence of viscous
effects across a first order phase transition line [78].

Another remaining question that is very relevant
to this study is the temperature difference between
hadronization and freeze-out. Earlier attempts were
made in dynamic models to quantify either the time
scale or temperature range in the difference between
hadronization and freeze-out [79–88]. Generally, this de-
pends on the number of hadrons in the system [89] and
their corresponding interactions [90–93]. However, given
enough particles that appear near the phase transition
that are strongly interacting, it is possible to reach chem-
ical equilibrium on very short time scales [94–98].

VI. CONCLUSIONS

In this work we have studied the fourth order suscep-
tibility, χB4 , of the baryon number in QCD in the pres-
ence of a critical point in the 3D Ising model universal-
ity class. We found that some features of the T− and
µB−dependence of χB4 could be significantly affected by
sub-leading, less singular terms in the critical behavior.
In all cases that we studied, we found a diverging peak
at the critical point. However, only in the special case
of 0 < α2 < α1 (which also implies a wide critical re-
gion that is extended along the chiral phase transition)
do we obtain a dip as one approaches the critical point
along an exemplary freezeout curve below the transition
temperature. In this case, at temperatures significantly
lower than the transition the dip moves to smaller µB
and fades away.

One of the main conclusions which can be drawn from
this study is that the peak in net-proton kurtosis is a
more robust signature of the critical point than the dip.
In principle, the observation of a dip could help determine
or constrain the value of the parameter α2 as well as the
deviation ∆Tshift of the freezeout temperature from the
crossover line (e.g., by 0 < α2 < α1, ∆Tshift < few MeV).
Strictly speaking, this would be possible only provided



8

ΔTshift = 1 MeV

ΔTshift = 2 MeV

ΔTshift = 4 MeV

w = 0.5

ρ = 0.5

α2 - α1 = 90°

250 300 350 400 450

-500

0

500

μB [MeV]

χ4

ΔTshift = 1 MeV

ΔTshift = 2 MeV

ΔTshift = 4 MeV

w = 2

ρ = 0.5

α2 - α1 = 90°

250 300 350 400 450

-10

-5

0

5

10

15

μB [MeV]

χ4

ΔTshift = 1 MeV

ΔTshift = 2 MeV

ΔTshift = 4 MeV

w = 0.5

ρ = 0.5

α2 - α1 = - 3°

250 300 350 400 450

0

200

400

600

800

1000

μB [MeV]

χ4

ΔTshift = 1 MeV

ΔTshift = 2 MeV

ΔTshift = 4 MeV

w = 2

ρ = 0.5

α2 - α1 = - 3°

250 300 350 400 450

0

50

100

150

μB [MeV]

χ4

FIG. 3. Profile of the critical contribution to χB
4 along lines parallel to the chiral transition line, and separated by ∆Tshift =

1, 2, 4 MeV. The top and bottom rows correspond to α2 − α1 = 90◦ and α2 − α1 = −3◦, respectively.

that other potential experimental contributions to the
dip (the baseline) are under control.

It is important to emphasize that this study only con-
siders the equilibrium equation of state and it would be
interesting and important to explore these issues further
in dynamical models. For example, as has been observed
in Refs.[60, 66, 68], critical slowing down, charge con-
servation and memory effects may help to preserve the
signatures of critical fluctuations down to lower temper-
atures below the critical region.
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