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The properties of toroidal hyperheavy even-even nuclei and the role of toroidal shell structure are
extensively studied within covariant density functional theory. The general trends in the evolution
of toroidal shapes in the Z ≈ 130 − 180 region of nuclear chart are established for the first time.
These nuclei are stable with respect of breathing deformations. The most compact fat toroidal
nuclei are located in the Z ≈ 136, N ≈ 206 region of nuclear chart, but thin toroidal nuclei become
dominant with increasing proton number and on moving towards proton and neutron drip lines.
The role of toroidal shell structure, its regularity, supershell structure, shell gaps as well as the role
of different groups of the pairs of the orbitals in its formation are investigated in detail. The lowest
in energy solutions at axial symmetry are characterized either by large shell gaps or low density of
the single-particle states in the vicinity of the Fermi level in at least one of the subsystems (proton
or neutron). Related quantum shell effects are expected to act against the instabilities in breathing
and sausage deformations for these subsystems. The investigation with large set of covariant energy
density functionals reveals that substantial proton Z = 154 and 186 and neutron N = 228, 308 and
406 spherical shell gaps exist in all functionals. The nuclei in the vicinity of the combination of these
particle numbers form the islands of stability of spherical hyperheavy nuclei. The study suggests
that the N = 210 toroidal shell gap plays a substantial role in the stabilization of fat toroidal nuclei.

I. INTRODUCTION

The studies of the nuclei at the limits are guided by
human curiosity, by the need to understand new physical
mechanisms governing nuclear systems in these extreme
conditions and by the demand for nuclear input in nu-
clear astrophysics. A number of questions related to the
physics at the limits emerge. These are: What are the
limits of the existence of nuclei? What are the highest
proton number Z at which the nuclear landscape and pe-
riodic table of chemical elements cease to exist? What
are the positions of proton and neutron drip lines? What
types of nuclear shapes dominate these extremes of nu-
clear landscape? They look deceivable simple but unique
answers on most of them are extremely difficult.

Recent systematic investigations of hyperheavy (Z ≥
126) nuclei performed in Refs. [1, 2, 4] have allowed
to shed some light on these questions. Emerging new
physics is summarized in Figs. 1 and 2. The increase
of Coulomb interaction with increasing proton number
Z leads to the fact that compact nuclear shapes such
as spherical, prolate and oblate (further ellipsoidal-like
shapes) become either unstable against fission or energet-
ically unfavored in hyperheavy nuclei with high Z values
(see Fig. 1). As a consequence, the lowest in energy so-
lutions in such nuclei are characterized by non-compact
toroidal shapes1. As illustrated in Fig. 2 the boundary
between ellipsoidal-like and toroidal shapes depend on
the combination of proton and neutron numbers. How-
ever, spherical shapes can be stable against fission in
some hyperheavy nuclei (see Refs. [1, 2] and Fig. 1). Al-
though these states are highly excited with respect to the

1 Toroidal nucleus is represented by a thin cylinder which has the
ends joining together [5].

lowest in energy states with toroidal shapes (as obtained
in axial calculations), they will become the ground states
if toroidal states are not stable with respect to multifrag-
mentation.

The state-of-the-art view on the nuclear landscape
born out in Refs. [1, 2] is shown in Fig. 2. Well known
nuclear structure with pronounced spherical shell gaps
at particle numbers 8, 20, 28, 50, 82 (and N = 126)
leading to the bands (shown by gray color) of spher-
ical nuclei in the nuclear chart along the vertical and
horizontal lines with these particle numbers is seen for
proton numbers below Z ≈ 120. With increasing pro-
ton number these classical features disappear and only
toroidal shapes are calculated as the lowest in energy
in axial relativistic Hartree-Bogoliubov (RHB) approach.
This region (shown in white color in Fig. 2) is penetrated
only by three islands (shown in gray color) of potentially
stable spherical hyperheavy nuclei; note that spherical
minima are highly excited with respect of the minima
corresponding to toroidal shapes. Thus, the richness of
nuclear structure seen in experimentally known part of
nuclear landscape is replaced by more uniform structure
of the nuclear landscape in the region of hyperheavy nu-
clei dominated by toroidal and spherical nuclei. Fig. 2
also reveals a substantial increase (equal to the area be-
tween extrapolated two-proton drip line for ellipsoidal
shapes and the two-proton drip line for toroidal shapes)
of nuclear landscape caused by the shift of two-proton
drip line towards more proton-rich nuclei on transition
to toroidal shapes. This transition drastically modifies
the underlying single-particle structure and as a conse-
quence lowers the energy of the Fermi level for protons
(see Ref. [4]).

It is necessary to recognize that the physics of toroidal
shapes plays an important role in classical and quantum
physics, chemistry and biology. There are numerous ex-
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FIG. 1. Schematic illustration of the physics of hyperheavy nuclei. Solid black line shows the deformation energy curve of the
466156 nucleus obtained in axial RHB calculations with covariant energy density functional (CEDF) DD-PC1 in Ref. [1]. Open
red circles indicate selected points on this curve for which neutron density distributions ρn are shown. The density distributions
in the minima A and B (C, E, and F) are shown in the plane which is perpendicular (along) the axis of symmetry. The density
colormap starts at ρn = 0.005 fm−3 and shows the densities in fm−3. The density profiles reflect their relative sizes with respect
of the spherical shape in the minimum D. See Fig. 9 in the present paper and Fig. 2 in Ref. [2] for these density profiles in their
actual sizes.

amples but let us mention only some of them. Stable
toroidal structures (micelles) play an important role in
the amphiphilic polymers in large parts of the parameter
space spanned by the degree of amphiphilicity, the tem-
perature, the density and the molecular stiffness with
respect to bending [6]. The wave propagation on the
surface of the torus represents a vivid example of light
behavior on curved surface of manifolds with interest-
ing topologies and has potential applications in photonic
structures [7]. The stability of toroidal drop freely sus-
pended in another fluid and subjected to an electric field
has been studied in Ref. [8]; this feature can play a role in
a number of phenomena and applications such as thun-
derstorm formation, microfluids, bioimaging and effec-
tive drug delivery. Biology finds the toroidal shape at
the cellular level when the reproduction of cells up to the
16th cell division creates a hollow torus called the morula
[9]. On a more microsocopic level, the DNA2 toroids
are formed from individual DNA molecules of individual
lengths [10].

The question of potential stability of toroidal nuclei has
first been raised by J. A. Wheeler (see references in Ref.
[5]). Later the toroidal shapes in atomic nuclei have been
investigated in a number of the papers (see, for example,
Refs. [5, 11–16] and references quoted therein). However,
in absolute majority of the cases such shapes correspond

2 DNA stands for deoxyribonucleic acid, the molecule that contains
the genetic code of organisms.

to highly excited states either at extreme values of an-
gular momentum in the nuclei across the nuclear land-
scape [13, 14, 17] or at spin zero in superheavy elements
[12, 15]. In the former case, calculated angular momenta
at which toroidal shapes appear substantially exceed the
values of angular momentum presently achievable at the
state-of-art experimental facilities [18]. So far, only the
experimental excitation function for the 7α de-excitation
of 28Si nuclei, revealing the resonance structures, may in-
dicate the population of toroidal high-spin isomers [19].
In the latter case, such states are unstable in superheavy
nuclei against returning to the shape of sphere-like geom-
etry (Ref. [15]). This is similar to shrinking instability
of uncharged toroidal droplets which are unstable due
to surface tension and transform into spherical droplets
[20]. The situation is different in atomic nuclei since this
shrinking instability is counteracted by Coulomb repul-
sion of the protons which increases with proton number
Z. Thus, toroidal shapes become the lowest in energy
solutions in hyperheavy nuclei with Z > 130 [1, 2, 11].

The present paper extends our previous investigations
of hyperheavy nuclei reported in Refs. [1, 2] and focuses
on a number of issues which have not been studied so
far. The presence of local minima A, B, C and D in de-
formation energy curve of the 466156 nucleus (see Fig.
1) is clearly due to the shell effects. So far, the under-
lying single-particle structure has been investigated only
for spherical shapes and only for four covariant energy
density functionals (see Sec. V in Ref. [2]). To estimate
theoretical uncertainties in the predictions of shell clo-
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FIG. 2. The distribution of ellipsoidal and toroidal shapes in the nuclear landscape obtained in the RHB calculations with
CEDF DD-PC1. The nuclei with ellipsoidal shapes are shown by the squares the color of which indicates the equilibrium
quadrupole deformation β2 (see colormap). Note that ellipsoidal shapes with the heights of fission barriers smaller than 2.0
MeV are considered as unstable (see the discussion in Sect. III of Ref. [3] and in Sect. XI in Ref. [2]). Two-proton and
two-neutron drip lines for toroidal nuclei are shown by solid black lines. White region between them (as well as the islands
inside this region shown in gray) corresponds to the nuclei which have toroidal shapes in the lowest in energy minimum for axial
symmetry (LEMAS). The islands of relatively stable spherical hyperheavy nuclei in the Z > 130 nuclei, shown in light grey
color, correspond to the solutions which are excited in energy with respect of the LEMAS corresponding to toroidal shapes.
Note that in the same nucleus two-neutron drip lines for spherical and toroidal shapes are somewhat different. This is the
reason why some islands of stability of spherical hyperheavy nuclei extend beyond the two-neutron drip line for toroidal shapes.
The extrapolation of the two-proton drip for ellipsoidal shapes, defined from its general trends seen in the Z < 120 nuclei,
is displayed by thick orange dashed lines. Similar extrapolation for two-neutron drip line of ellipsoidal shapes is close to the
two-neutron drip line of toroidal shapes (see Fig. 1 in Ref. [4]); thus it is not shown. Partially based on Fig. 24 of Ref. [2].

sures in hyperheavy nuclei at spherical shape we perform
such studies with ten most widely used CEDFs. This
also allows us to compare respective spherical shell gaps,
leading to the islands of potentially stable spherical hy-
perheavy nuclei, with the ones seen in experimentally
known nuclei as well as with those predicted for spheri-
cal superheavy nuclei. In addition, for the first time we
perform the detailed investigation of the single-particle
structure of hyperheavy toroidal nuclei.

The analysis of the single-particle structure presented
in Figs. 5 and 8 of Ref. [2] indicates the presence of large
spherical shell gaps at Z = 186 and N = 406. How-
ever, the investigations of Ref. [2] have been restricted
to the Z ≤ 180 nuclei. Thus, to better map this region
of potentially stable spherical hyperheavy nuclei, to in-
vestigate the potential role of these shell gaps as well as
to search for other regions of potentially stable spherical
hyperheavy nuclei we extended the calculations mapping
the nuclear landscape from Z = 180 to Z = 210.

Finally, because of numerical limitations the studies
of toroidal shapes in hyperheavy nuclei have been with
a single exception restricted to the Z ≤ 138 nuclei in
Refs. [1, 2]. Thus, we performed detailed investigation

of toroidal shapes corresponding to the lowest in energy
solution at axial symmetry in extremely large basis for
isotopic chains with Z = 136, 146, 156, 166 and 176.
This allows us to better understand their evolution with
particle numbers and to get some understanding about
their potential stability with respect of different types of
distortions.

The manuscript is organized as follows. The details of
theoretical calculations are discussed in Sec. II. Section
III is devoted to the analysis of the role of shell structure
and large shell gaps at spherical shape. The distribution
of the shapes of toroidal hyperheavy nuclei across the
nuclear landscape and major features of their shell struc-
ture are discussed in Sec. IV. Finally, Sec. V summarizes
the results of our work.

II. THE DETAILS OF THE THEORETICAL
CALCULATIONS.

The investigations of the properties of hyperheavy
even-even nuclei are performed within the axial reflec-
tion symmetric Hartree-Bogoliubov (RHB) framework
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(see Ref. [21]). Until specified otherwise, the calcula-
tions are performed with the DD-PC1 covariant energy
density functional [22]. This functional is considered to
be one of the best CEDFs today based on systematic and
global studies of different physical observables related to
the ground state properties and fission barriers [21, 23–
28].

The constrained calculations in the RHB code perform
the variation of the function

ERHB +
C20

2
(〈Q̂20〉 − q20)2, (1)

where ERHB is the total energy and 〈Q̂20〉 denotes the
expectation value of the mass quadrupole operator,

Q̂20 = 2z2 − x2 − y2. (2)

Here q20 is the constrained value of the multipole mo-
ment, and C20 the corresponding stiffness constant [29].
In order to provide the convergence to the exact value
of the desired multipole moment we use the method sug-
gested in Ref. [30]. Here the quantity q20 is replaced by

the parameter qeff20 , which is automatically modified dur-

ing the iteration in such a way that we obtain 〈Q̂20〉 = q20
for the converged solution. This method works well in our
constrained calculations.

The β2 quantity is extracted from the quadrupole mo-
ments:

Q20 =

∫
d3rρ(r) (2z2 − x2 − y2), (3)

via

β2 =

√
5

16π

4π

3AR2
0

Q20, (4)

where R0 = 1.2A1/3. The β2 values have a standard
meaning of the deformations of ellipsoid-like density dis-
tributions only for |β2| . 1.0 values. At higher β2 values
they should be treated as dimensionless and particle nor-
malized measures of the Q20 moments. This is because
of the presence of toroidal shapes at large negative β2
values and necking degree of freedom at large positive β2
values.

For each nucleus under study, the deformation energy
curves are calculated in the −5.0 < β2 < 3.0 range; such
large range is needed for a reliable definition of the type
of shape (toroidal or ellipsoidal) representing the lowest
in energy minimum for axial symmetry (LEMAS). Two
truncation schemes are used in the calculations based on
the analysis presented in Sec. III of Ref. [2] and addi-
tional analysis performed in this manuscript. All states
belonging to major shells up to NF=30 fermionic shells
for the Dirac spinors are taken into account when detailed
analysis of toroidal shapes in the Z = 136 − 176 region
and their underlying shell structure is performed. Note
that these calculations are extremely time-consuming.
As discussed in detail in Sec. III of Ref. [2] on the

example of the 466156 nucleus and verified by a simi-
lar analysis of a pair of the Z = 176 nuclei, this basis
provides sufficient numerical accuracy of the calculations
of toroidal shapes. However, the analysis of numerical
convergence in the 616210 nucleus reveals that the de-
scription of higher Z nuclei requires even large NF for a
proper description of LEMAS corresponding to toroidal
shapes. These facts were the reasons why we perform de-
tailed study of toroidal shape only up to Z = 176 and for
Z > 176 nuclei we focus mainly on ellipsoidal-like shapes
which require smaller basis as compared with toroidal
shapes (see Sec. III of Ref. [2] for a detailed comparison
of numerical convergence for toroidal and ellipsoidal-like
shapes). To save computational time the extension (as
compared with the results presented in Ref. [2]) of nu-
clear landscape to the Z = 182−210 region is performed
with NF = 26; this truncation scheme allows accurate
description of spherical and ellipsoidal shapes, reliable
definition of toroidal shapes as corresponding to LEMAS
but does not provide accurate enough description of their
energies and shapes in LEMAS.

To avoid the uncertainties connected with the defini-
tion of the size of the pairing window [40], we use the
separable form of the finite-range Gogny pairing inter-
action introduced in Ref. [41]. Its matrix elements in
r-space have the form

V (r1, r2, r
′
1, r
′
2) =

= −Gδ(R−R′ )P (r)P (r′)
1

2
(1− Pσ) (5)

with R = (r1 + r2)/2 and r = r1 − r2 being the center
of mass and relative coordinates. The form factor P (r)
is of Gaussian shape,

P (r) =
1

(4πa2)3/2
e−r

2/4a2 . (6)

The parameters of this interaction have been derived by a
mapping of the 1S0 pairing gap of infinite nuclear matter
to that of the Gogny force D1S. The resulting parameters
are: G = 728 fm3 and a = 0.644 fm [41]. This pairing
provides a reasonable description of pairing properties
in heaviest nuclei in which pairing properties can be ex-
tracted from experimental data [21, 42, 43].

III. SPHERICAL HYPERHEAVY NUCLEI: THE
ROLE OF SHELL STRUCTURE

Hyperheavy nuclei are stabilized by shell effects, i.e.,
by the large shell gap(s) or at least a considerably re-
duced density of the single-particle states in the vicinity
of the Fermi level. To better understand the impact of
shell gaps on the underlying structure of spherical nuclei
in the context of global description of nuclear structure,
Fig. 3 shows their evolution across nuclear chart. It starts
from well known gaps in doubly magic 56Ni, 100,132Sn and
208Pb nuclei and extends to the gaps in the hyperheavy
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FIG. 3. (a) and (b) Calculated proton (π) and neutron (ν) shell gaps ∆Egap in the doubly magic 58Ni, 100,132Sn and 208Pb
nuclei and shell-closure superheavy 304120 and hyperheavy 366138, 462154 and 592186 nuclei. Note that last three nuclei are
located in the centers of the islands of stability of spherical hyperheavy nuclei. Particle numbers corresponding to shell gaps
are indicated. Ten most widely used CEDFs, namely, NL1 [31], NL3 [32], NL3* [33], FSUGold [34], DD-ME2 [35], DD-MEδ
[36], DD-PC1 [22], PC-PK1 [37], PC-F1 [38] and TM1 [39] are employed in the calculations. The average (among ten used
CEDFs) size of the shell gap is shown by a solid circle while the gaps obtained for individual functionals are summarized in
Table I. Thin and thick vertical lines are used to show the spread of the sizes of the calculated shell gaps; the tops and bottoms
of these lines correspond to the upper and lower shell gaps among the considered set of CEDFs. Thin lines show this spread
for all employed CEDF’s, while thick lines are used for the subset of four globally-tested CEDFs (NL3*, DD-ME2, DD-PC1,
and PC-PK1). (c) and (d) The same as in panels (a) and (b) respectively, but with the sizes of the shell gaps and the spreads

in their predictions scaled with mass factor A
1
3 .

nuclei. In addition, it provides the evaluation of theoret-
ical uncertainties in their predictions by comparing the
results obtained with ten most widely used CEDFs.

Figs. 3a and b show that the average sizes of proton
Z = 154, 186 and neutron N = 228, 308 and 406 gaps ob-
tained in the calculations are larger than those (Z = 120
and N = 184) in classical region of superheavy nuclei3.
This suggests that spherical hyperheavy nuclei may be
more stable as compared with spherical superheavy nu-
clei (see the discussion of fission barriers in Refs. [1, 2]).
It is also interesting that theoretical uncertainties in the

3 Note that the central nucleus of the Z ≈ 138, N ≈ 230 island
of stability of spherical hyperheavy nuclei does not really show
Z = 138 shell gap in proton spectra (see discussion in Sect. V of
Ref. [2]).

sizes of shell gaps in hyperheavy nuclei are smaller than
those in experimentally known nuclei and in classical re-
gion of superheavy nuclei.

The absolute values of shell gaps do not tell full story
about their potential stabilizing effect since the single-
particle level density increases with mass number A. This
is a reason why scaled shell gap ∆EgapA

1/3 provides a
better measure (see discussion in Sect. III of Ref. [23]).
Scaled proton and neutron shell gaps are shown in Figs.
3(c) and (d). One can see that scaled proton Z = 154
and 186 shell gaps are significantly larger than scaled
Z = 120 shell gap in superheavy nuclei and that they are
close to the scaled Z = 82 shell gap in 208Pb (see Fig.
3(c)). On the contrary, scaled N = 228, 308 and 406
shell gaps are on average only slightly larger than scaled
N = 184 gap in superheavy nuclei but they are smaller
by a factor of approximately two than scaled N = 126
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shell gap in 208Pb (see Fig. 3(d)).

Large uncertainties in the predictions of the Z = 120
and N = 184 shell gaps and softness of potential en-
ergy surfaces leads to substantial differences in the pre-
dictions of ground state properties of superheavy nuclei
(see Ref. [23]). For many nuclei it is even impossible to
reliably predict whether the ground state will be spheri-
cal or oblate [23]. The situation is different in hyperheavy
nuclei where for ellipsoidal type shapes only potentially
stable spherical minima appear in the calculations be-
cause of larger scaled spherical shell gaps seen in Figs.
3(c) and (d).

Fig. 4 presents the extension of the map of the heights
of fission barriers around spherical shape from earlier
published range of Z = 120 − 180 (see Fig. 6a in Ref.
[1]) to the range of proton numbers from Z = 120 up to
Z = 210. The value of the fission barrier height EB is
defined as the lowest value of the barriers located on the
oblate and prolate sides with respect to spherical state
in the deformation energy curves obtained in axial RHB
calculations. One can see that the island of spherical hy-
perheavy nuclei previously labeled as ”Z ≈ 174, N ≈ 410
island” in Ref. [1] has been considerably extended up to
Z ≈ 206. In a given isotope chain of this island, the max-
imum of fission barriers heights is located at N = 406.
The highest fission barriers with the heights between
≈ 7.5 and ≈ 8.5 MeV are found in the Z = 186, 184,
182 and 180 isotopic chains. They are higher than those
obtained in the classical region of superheavy nuclei (see
Ref. [24]). Based on these results for fission barriers and
for the sizes of the Z = 186, N = 406 spherical shell
gaps, we relabel this island as ”Z ≈ 186, N ≈ 406 island
of spherical hyperheavy nuclei”. The extension of upper
boundary of nuclear landscape from Z = 180 to Z = 210
does not reveal other islands of spherical hyperheavy nu-
clei.

Similar to the results presented in Fig. 6 of Ref. [1]
the size of the Z ≈ 186, N ≈ 406 island of spherical hy-
perheavy nuclei and the stability of the elements in it
are expected to depend strongly on employed functional.
We have not attempted to map this region with other
than DD-PC1 functionals but some insight on this issue
can be obtained from the analysis of the heights of fis-
sion barrier EB of the central nucleus (592186) of this
region calculated with different functionals. These re-
sults are summarized in Table I. The FSUGold and next
three functionals (DD-ME2, DD-MEδ and DD-PC1) pro-
duce the highest calculated fission barriers: at 10.66 MeV
for FSUGold and clustered around EB ≈ 7.7 MeV for
other three functionals. These barriers are higher than
those produced in the covariant density functional theory
(CDFT) framework in the classical region of superheavy
nuclei (see Fig. 10 in Ref. [24]). These functionals are
also expected to produce the island of spherical hyper-
heavy nuclei which is comparable in size to that shown
in Fig. 4. The next five functionals (PC-PK1, NL3, PC-
F1, TM1 and NL3*) produce the cluster with EB ≈ 4
MeV (see Table I); this value is not far away from what

is obtained in the Z ≈ 116, Z ≈ 180 region of superheavy
nuclei (see Fig. 10 in Ref. [24]). For these functionals the
Z ≈ 186, N ≈ 406 island of stability of spherical hyper-
heavy nuclei is expected to be substantially smaller than
the one shown in Fig. 4. Finally, the lowest fission bar-
rier is produced by the NL1 functional; its value indicates
the instability of spherical hyperheavy nuclei. However,
the predictions of this functional have to be considered
as least reliable because of well known problems in its
isovector properties (see Ref. [32]).

The difference in the predictions of EB is in part re-
lated to the fact that the first group of functionals pre-
dicts the Z = 186 and N = 406 shell gaps which are
on average larger by ≈ 0.1 MeV and ≈ 0.5 MeV, re-
spectively, than those produced by the second group of
CEDFs (see Table I). Note also that the nuclear matter
properties and the density dependence are substantially
better defined for density-dependent (DD*) functionals
as compared with non-linear (NL* and TM1) and point-
coupling (PC-PK1 and PC-F1) ones [25]. As a conse-
quence, in general, they are expected to perform better
for large extrapolations from known regions.

Note that the axial RHB calculations for deformation
energy curves in the vicinity of spherical minimum indi-
cate nearly symmetric barriers with saddles at β2 ≈ ±0.2
(similar to Fig. 17(b) below). The experience in actinides
and superheavy nuclei tells us that octupole deformation
in fission barrier area typically does not develop for such
low deformations [3, 26, 44] [corresponding to inner fis-
sion barrier in actinides and superheavy nuclei] and this
result has been confirmed in octupole deformed RHB cal-
culations with CEDF DD-PC1 for spherical minimum of
several hyperheavy nuclei in Ref. [2]. The results pre-
sented in Fig. 6 for the 592186 nucleus are in line with
these expectations; the saddle of fission barrier is located
at β3 = 0.0 and octupole deformation does not affect the
spherical minimum in the calculations with DD-PC1 and
NL3* functionals.

The analysis of Ref. [2] indicates that the impact of tri-
axial deformation on the fission barriers around spherical
minima is relatively modest. This is the consequence of
the topology of potential energy surfaces which is similar
to those of volcanos (see Figs. 7). The central area around
spherical minimum is similar to caldera, the rim of which
is represented by the fission barrier. The area beyond the
rim (fission barrier) is fast down-sloping as a function of
quadrupole deformation β2. The saddles of axial fission
barriers (on oblate and prolate sides of spherical mini-
mum) are located at modest quadrupole deformation of
β2 ≈ 0.2. As a result, the distance between these two
saddles in the (β2, γ) plane plane is relatively small, so
that large changes in binding energy due to triaxiality
for nearly constant β2 values could not develop. As a
consequence, the lowest fission barrier around spherical
minimum obtained in axial RHB calculations is a good
approximation to the barrier obtained in the triaxial rel-
ativistic Hartree-Bogoliubov (TRHB) calculations. For
example, this is a case in the calculations with CEDF
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FIG. 5. Proton and neutron densities of the 584174 and 592186
nuclei. The figure is based on the results of spherical RHB
calculations.

DD-PC1 (see Fig. 7a). Even if the saddle of fission bar-
rier is located at γ 6= 0◦ and γ 6= 60◦, the energy lower-
ing in fission barrier height as compared with the lowest
fission barrier at these γ values is rather modest. For ex-
ample, in the calculations with the NL3* functional the
saddle of the fission barrier, located at γ = 22◦, is lower
than the fission barrier at γ = 0◦ by only 50 keV (see
Fig. 7b). Note also that the TRHB results clearly indi-
cate that spherical minimum of the nucleus under study
is relatively stable with respect to triaxial distortions.

Although the detailed studies have only been per-
formed with two functionals, representing one of the high-
est (DD-PC1) and one of the lowest (NL3*) fission bar-
riers obtained in the calculations (see Table I), it is rea-
sonable to expect that similar situation will hold also for
other functionals. This is because of the similarity of the
underlying shell structure. Thus, one conclude that the
impact of triaxiality and octupole deformation on EB of
spherical hyperheavy nuclei is either very small or nonex-
istent (see also the discussion in Refs. [1, 2]).

The density distributions at spherical shape for the

TABLE I. The heights of the fission barriers EB and the
sizes ∆E of spherical N = 406 (∆EN=406) and Z = 186
(∆EZ=186) shell gaps in the 592186 nucleus obtained with in-
dicated CEDFs. The functionals are ordered in such a way
that EB is decreasing.

CEDF EB [MeV] ∆EN=406 [MeV] ∆EZ=186 [MeV]
FSUGold 10.66 1.84 2.17
DD-ME2 7.73 2.11 2.43
DD-MEδ 7.72 1.98 2.68
DD-PC1 7.59 1.93 2.45
PC-PK1 4.35 1.61 2.37

NL3 4.28 1.43 2.15
PC-F1 3.87 1.41 2.45
TM1 3.86 1.38 2.29
NL3* 3.59 1.45 2.37
NL1 1.27 1.27 2.34

nuclei representing the centers of the islands of spherical
hyperheavy nuclei have been compared and discussed in
Sec. IV of Ref. [2]. However, the Z ≈ 186, N ≈ 406 island
(and, in particular, doubly magic 592186 nucleus corre-
sponding to large shell gaps at Z = 186 and N = 406) has
not been completely covered in that study because of the
restriction to the Z ≤ 180 nuclei. To fill this gap in our
knowledge, Fig. 5 compares proton and neutron density
distributions of the 584174 nucleus (studied in Ref. [2])
with those of doubly magic 592186 one. Neutron densi-
ties of these two nuclei are very similar; they are slightly
larger for the 584174 nucleus because of the occupation
of the 2j13/2 orbitals by four additional neutrons. The
differences are more visible for proton densities because
12 additional protons in the doubly magic 592186 nucleus
(8 in the 2g7/2 and 4 in 1j13/2 orbitals) occupy the or-
bitals which fill the density either in surface region (the
1j13/2 orbitals) or in-between central and surface regions
(the 2g7/2 orbitals) (see Ref. [45]). The increase of the
Coulomb repulsion in the Z = 186 nucleus as compared
with the Z = 174 one also plays a role in an enhancement
of proton density near the surface. As a consequence, the
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FIG. 6. Potential energy surfaces of the 592186 nucleus obtained in the reflection asymmetric (octupole deformed) RHB
calculations with indicated CEDFs. The energy difference between two neighboring equipotential lines is equal to 1.0 MeV.
Spherical minimum is indicated by a circle and the saddle point of the barrier around spherical minimum by solid black square.
The colormaps show the excitation energies (in MeV) with respect to the energy of the deformation point with largest (in
absolute value) binding energy. The calculations are performed with NF = 20. Note that the topology of potential energy
surfaces is almost the same in the calculations with NF = 20 and NF = 26. Thus, to save computational time these figures are
plotted with NF = 20.

=60 =30

0 0.1 0.2 0.3 0.4 0.5

2
cos( +30)

0

0.1

0.2

0.3

0.4

0.5

2
s

in
(

+
3

0
)

0

5

10

15

20

25
592

186 DD-PC1

(a)

=60 =30

0 0.1 0.2 0.3 0.4 0.5

2
cos( +30)

0

0.1

0.2

0.3

0.4

0.5

2
s

in
(

+
3

0
)

0

5

10

15

20

25
592

186 NL3*

(b)

FIG. 7. The same as in Fig. 6 but for potential energy surfaces obtained in triaxial RHB calculations.

semi-bubble structure becomes more pronounced in the
proton densities of the 592186 nucleus as compared with
the 584174 one.

IV. TOROIDAL NUCLEI

A. Distribution of shapes of toroidal nuclei across
the nuclear landscape

In our calculations the truncation of basis is performed
in such a way that all states belonging to the major shells

up to NF fermionic shells for the Dirac spinors are taken
into account. Accurate calculations of LEMAS require
extremely large fermionic basis and its size, defined by
NF , increases with the raise of proton and neutron num-
bers (see discussion in Sect. III of Ref. [2]). As a result,
the β2 values (and, thus, respective density distributions)
of the lowest in energy toroidal states have only been par-
tially mapped in the Z = 122 − 138 region (see Fig. 3
in Ref. [1]) in the axial RHB calculations with NF = 26.
For higher Z nuclei, existing calculations only confirm
that the lowest in energy solutions have always toroidal
shapes (see the discussion of Fig. 3 in Ref. [2]) but do not
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provide accurate β2 values.

To fill this gap in our knowledge, additional calcula-
tions are performed in the NF = 30 basis which pro-
vides quite accurate description of toroidal shapes in the
Z ≥ 140 hyperheavy nuclei (see Sect. III in Ref. [2]).
Such calculations are extremely time-consuming even in
axial RHB framework and thus they are carried out only
for restricted set of nuclei displayed in Fig. 8. These
are Z = 136, 146, 156, 166 and 176 nuclei. Apart of
few regions, the calculations are performed in step of
∆N = 10 to save computational time. Despite these
limitations they allow to understand the general features
of the distribution of toroidal shapes as well as the evo-
lution of underlying single-particle structure across the
nuclear chart.

The results of these calculations are presented in Fig.
8. To facilitate the discussion we are using here the def-
initions of tori as thin and fat employed in the physics
of toroidal liquid droplets [46]. Large/small ratio of the
radius R of toroid (called as ”major radius” in some pub-
lications [see, for example, Ref. [5]) to the radius d of its
tube (called as ”minor radius” in Ref. [5]) corresponds
to thin/fat tori. The lowest β2 values (β2 ≈ −2.2) are
obtained in the Z ≈ 136, N ≈ 206 region (see Fig. 8)
and these nuclei can be defined as fat toroidal nuclei be-

cause of small aspect ratio R/d. The absolute β2 values
increase on moving away from this region. Especially
large values of |β2| are obtained in proton-rich nuclei
with Z > 140 in the vicinity of two-proton drip line.
These toroidal shapes are characterized by very large ra-
dius of the torus and small radius of the torus tube and
thus these nuclei are described as thin toroidal nuclei.
Slightly smaller values of |β2| are seen in neutron-rich
N ≥ 310 nuclei. The aspect ratios R/d for these nuclei
are slightly smaller as compared with the ones in proton-
rich nuclei but these nuclei are still the representatives
of thin toroidal nuclei. Remaining nuclei shown by cyan,
dark and light green as well as grey colors in Fig. 8 are
characterized by β2 ranging from −2.5 to −3.7. A general
trend of the increase of torus radius R and the aspect ra-
tio R/d with increasing proton number is seen in Fig. 8.
It is a consequence of Coulomb repulsion: toroidal shapes
provide less compact distribution of charge as compared
with spherical ones and thus the Coulomb energy is sub-
stantially reduced for toroidal shapes as compared with
spherical ones (see discussion in Sect. XII in Ref. [2])).
The increase of proton number requires the increase of
torus radius in order to minimize the Coulomb energy by
creating less compact distribution of charge. Observed
features in the distribution of toroidal shapes, which are
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FIG. 9. Neutron ρν (left column) and proton ρπ (right col-
umn) density distributions of toroidal configurations in the
β2 = −2.25 minimum of the 348138 nucleus and in the min-
ima B and A of the 466156 nucleus (see Fig. 1).

the result of the competition of different energy minima
similar to the minima A and B shown in Fig. 1 (see also
Fig. 16 in Ref. [2]), have a root in underlying shell struc-
ture of toroidal hyperheavy nuclei (see Sec. IV B).

To get a better understanding of the relative properties
of proton and neutron density distributions, we compare
them in Fig. 9 for the 348138 and 466156 nuclei. Similar
to the situation at spherical shape (see, for example, Fig.
5), the maximum of proton density distribution ρmaxπ is
significantly smaller (ρmaxπ ≈ 2

3ρ
max
ν ) than the neutron

one ρmaxν and those maxima do not necessary appear at
the same distance from the center of toroid. The outer
edges of the proton and neutron density distributions ap-
pear at approximately the same distances from the center
of toroid. However, the diameter of the hole in the cen-
ter of proton density distribution is visibly larger than
the one in the case of neutrons. This is most likely the
consequence of the Coulomb repulsion acting on protons.
Thus, the diameter of toroid tube is smaller in the case
of protons as compared with the one for neutrons. Note
also that the density distribution in toroid tube is not
necessary symmetric with respect of its geometrical axis
of symmetry; this is especially visible in the case of pro-
ton density distributions presented in Figs. 9(b) and (d).
Detailed analysis reveals that this is a consequence of the

occupation of the single-particle orbitals characterized by
different spatial distributions of the single-particle densi-
ties.

Because of the presence of well pronounced minima
(similar to the minimum D in Fig. 1), the present axial
RHB calculations in extremely large basis confirm for the
first time the stability of toroidal Z ≥ 140 nuclei shown in
Fig. 8 with respect of so-called breathing deformations.
The breathing deformation [5] preserves the azimuthal
symmetry of the torus and it is defined by the radius
of torus and the radius of its tube. In our calculations,
this type of deformation is related to the β2 values (see
discussion in Ref. [1]). This result is clearly different as
compared with the ones obtained for classical uncharged
toroidal liquid droplets which are unstable with respect
of shrinking instabilities [20, 46, 47]. Because of surface
tension such droplet starts from toroidal shape but then
gradually shrinks by closing its interior hole and trans-
forms into spherical droplet [20, 46, 47]. In atomic nuclei,
this shrinking instability is counteracted by the Coulomb
force: the transition to a more compact spherical config-
uration leads to a substantial increase of the Coulomb
energy and thus it is not energetically favored in hyper-
heavy nuclei [2].

Another class of potential instabilities of toroidal nu-
clei is related to so-called sausage deformations [5]: they
make a torus thicker in one section(s) and thinner in an-
other section(s). This class of the instabilities is much
more difficult to describe in the density functional the-
ories since their consideration requires, in general, sym-
metry unrestricted computer codes. This fact combined
with the requirement for extremely large basis in high-Z
systems makes this problem numerically intractable with
existing computer codes for absolute majority of toroidal
nuclei. The only exception are fat toroidal nuclei located
in the Z ≈ 136, N ≈ 210 region for which (as illustrated
by the examples of the 354134 and 348138 nuclei discussed
in Refs. [1, 2]) the calculations for even-multipole sausage
deformations within the triaxial RMF+BCS codes are
possible [1]. However, even such calculations are ex-
tremely time-consuming and can be performed only for
a few nuclei.

In such a situation it is useful to get some insight from
the studies of classical liquid droplets. Thin toroidal
droplets exhibit Plateau-Rayleigh instabilities: when the
outer circumferences of toroid is equal to an integer (n)
times of the wavelength λc of unstable mode, the toroidal
droplet will eventually fission into n spherical droplets
[46] (see also Ref. [48] for the results obtained for liquid
toroidal droplets suspended in another liquid). Note that
in classical toroidal liquid droplets the Plateau-Rayleigh
instability disappears for sufficiently fat tori (R/d ≤ 2)
while the shrinking mode is present for all aspect ratios
[46]. These features have been confirmed in experimental
studies of stability of both toroidal droplets in a viscous
liquid [49] as well as melted polymer rings [50]. The in-
stability with respect of so-called sausage deformations
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FIG. 10. Proton and neutron single-particle energies, i.e., the diagonal elements of the single-particle Hamiltonian h in the
canonical basis [29], for the lowest in total energy solution in the 348138 nucleus calculated as a function of the β2 quantity.
Black solid and red dashed lines are used for positive- and negative-parity states, respectively. The dominant components
Ω[N,nz,Λ] of the wave functions (as calculated at LEMAS) are shown by blue and green colors for the positive- and negative
parity orbitals, respectively. The energies EF of the respective Fermi levels are shown by blue dotted lines. The vertical orange
lines and orange arrows are drawn at the β2 value corresponding to LEMAS. Shell gaps are indicated by encircled numbers.
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FIG. 11. The same as Fig. 10 but for the 466156 nucleus.

[5] in nuclear physics leading to multifragmentation4 is

4 In this context it would be interesting to see whether the ob-
served multifragmentation of high-spin configurations of 28Si into
7 α-particles [19] represents the analog of Plateau-Rayleigh in-
stabilities of toroidal droplets in nuclear physics.

an analog of the Plateau-Rayleigh instabilities. Thus,
these results suggest that such instabilities are less im-
portant for fat toroidal nuclei [characterized by low (in
absolute sense) values of β2 > −2.5 and located in the
Z ≈ 134, N ≈ 210 region (see Fig. 8)] but become more
critical (and probably fatal) for thin toroidal nuclei char-
acterized by large (in absolute sense) values of β2. The
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latter type of nuclei become dominant both with increas-
ing proton number Z and in proton- and neutron-rich nu-
clei (see Fig. 8). The former suggestion is in line with the
results of triaxial RMF+BCS calculations for the 354134
and 348138 nuclei, which have 4.4 and 8.54 MeV fission
barriers for non-axial distortions, respectively (see Ref.
[1]).

However, it is necessary to recognize that fully quan-
tum mechanical calculations based on the density func-
tional theory are needed for establishing the stability
of toroidal nuclei with respect of sausage deformations.
Toroidal liquid droplets have a uniform density and the
tube of torus has a cylindrical form [46]. On the con-
trary, the density functional theory (DFT) calculations
paint much more complicated picture. First, the density
rapidly changes across the tube of the torus with consid-
erable mismatch between proton and neutron densities
(see Fig. 9 in the present paper, Fig. 2(c) and (d) in Ref.
[1] and Fig. 9 in Ref. [51]) which are defined by the occu-
pation of underlying proton and neutron single-particle
orbitals. The description of such a situation on the level
of liquid-drop model would require the model based on
two (proton and neutron) fluids with the specification of
functional dependencies of their densities on the position
in the tube of the torus. Second, not in all cases the tube
of the torus is represented by a perfect cylinder (see Fig.
2 in Ref. [2]). This may lead to an enhanced stability
against sausage deformations since experimental studies
of toroidal liquid droplets show that oblong cross section
of the torus tube suppresses Plateau-Rayleigh instabili-
ties as compared with circular one [47]. Because of above
mentioned reasons the analysis of Ref. [5] indicating the
instability of toroidal nuclei with respect of sausage de-
formations in the liquid drop model should not be taken
at face value. Note also that this analysis considers only
the nuclei with Z < 120 in which toroidal shapes are
formed at high excitation energies with respect of the
ground states while the toroidal shapes in the majority of
hyperheavy nuclei are expected to be the ground states.
Moreover, the quantum shell effects can counterbalance
the potential instabilities towards sausage deformations
at some combinations of proton and neutron numbers
and deformations [1, 5].

B. Shell structure of toroidal hyperheavy nuclei

It is well known that the presence of large gaps in pro-
ton and neutron single-particle energies leads to an ex-
tra stability of nuclear systems. So far, the analysis of
toroidal shell structure at spin I = 0 has been performed
in light nuclei [5, 51], in the intermediate mass region
nuclei [52] and in superheavy Z ≈ 120 nuclei [15, 17].
Such an analysis was based either on phenomenological
toroidal single-particle potential (see Refs. [5, 51, 52])
or on Skyrme DFT calculations (see Refs. [15, 17, 51]).
Large gaps in the single-particle energies have been found
at toroidal shapes in all these regions. For example, in

light nuclei these energy gaps give rise to toroidal shells
at magic nucleon numbers N = 2(2m+ 1) with m being
integer satisfying the condition m ≥ 1 [5]. The extra sta-
bility associated with toroidal shells leads to local energy
minima at toroidal shapes in many nuclei either at spin
zero [5, 53] or in some high spin isomer states [51]. How-
ever, in all these nuclei such minima are located at high
excitation energies with respect of ellipsoidal-like ground
state.

However, the situation changes in hyperheavy nuclei
in which the ground states are expected to have toroidal
shapes. Thus, it is very important to investigate shell
structure of toroidal hyperheavy nuclei. In particular,
it would be interesting to see whether there are large
shell gaps or reduced density of the single-particle states
at specific particle numbers which could provide an extra
stability with respect of potential instabilities originating
from sausage deformations. One should also remember
that even if hyperheavy nuclei are unstable with respect
of sausage deformations in the liquid drop model, they
can be stabilized by quantum shell corrections. The best
known example of such a situation are superheavy nuclei:
they are unstable in the liquid drop model but are rela-
tively stable in fully quantum mechanical picture which
includes shell corrections [54, 55].

The analysis presented in Sec. IV A suggests that it is
more likely to get potentially stable toroidal nuclei when
their shapes in corresponding minima are characterized
by small absolute β2 values (or small aspect ratio R/d).
The toroidal 354134 and 348138 nuclei are representative
cases of such shapes (see Fig. 1 in supplemental material
to Ref. [1] and Fig. 19 in Ref. [2]). Triaxial RMF+BCS
calculations of Refs. [1, 2] suggest that these two nuclei
are expected to be relative stable with respect of non-
axial distortions (even-multipole sausage deformations)
with calculated fission barriers being equal to 4.4 and
8.54 MeV, respectively. Enhanced stability of the 348138
nucleus is a reason why we start the analysis of toroidal
shell structure from this nucleus which is characterized
by moderately compact toroidal shapes [see Figs. 9(a)
and (b)]. We also consider toroidal shell structure in the
466156 nucleus. The LEMAS of this nucleus is charac-
terized by non-compact toroidal shapes with large R/d
aspect ratio [see Figs. 9(e) and (f)], but there is also an
excited minimum B (see Fig. 1) which is characterized
by very compact toroidal shapes with very small hole in
the center [see Figs. 9(c) and (d)].

The Nilsson diagrams for these nuclei are shown in
Figs. 10 and 11. In order to illustrate the differences be-
tween shell structure of toroidal and ellipsoidal-like nu-
clei, bottom panels display proton and neutron single-
particle states in the very large energy and β2 ranges.
They are shown from the bottom of respective potentials
up to 4 MeV energy above the continuum threshold and
from β2 = −5.1, corresponding to toroidal nuclei with
large R/d aspect ratio, up to β2 = +3.5 in the 348138
nucleus and up to β2 = 2.25 in the 466156 nuclei. These
large positive β2 values correspond to pre-fissioning con-
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FIG. 12. The same as Fig. 10 but for the single-particle states located in the bottom part of nucleonic potential and in the β2
range from −5.1 up to 0.0. Toroidal shell gaps are shown by bold blue numbers. Encircled letters and green arrows are used to
indicate the pairs of the single-particle states which are almost degenerate in energy. The structure of these states are shown
in Table II.

TABLE II. The dominant components of the wave functions
of nearly-degenerate pairs of the single-particle states of same
parity indicated by the letters in Fig. 12. They are defined
at the β2 value corresponding to LEMAS. The states forming
the pair are shown in the columns labelled as ”1st state” and
”2d state”.

1st state 2d state
(a) 1/2[ 9,0,1] 3/2[ 9,0,1]
(b) 3/2[10,0,2] 5/2[10,0,2]
(c) 5/2[ 9,0,3] 7/2[ 9,0,3]
(d) 7/2[10,0,4] 9/2[10,0,4]
(e) 9/2[ 9,0,5] 11/2[ 9,0,5]
(f) 11/2[10,0,6] 13/2[10,0,6]
(g) 13/2[11,0,7] 15/2[11,0,7]
(h) 15/2[10,0,8] 17/2[10,0,8]
(i) 17/2[11,0,9] 19/2[11,0,9]
(j) 19/2[12,0,10] 21/2[12,0,10]
(k) 21/2[13,0,11] 23/2[13,0,11]
(l) 23/2[12,0,12] 25/2[14,1,12]

figurations with well pronounced neck (see, for example,
density distribution at the position F of Fig. 1). Middle
and top panels of Fig. 10 show the regions of interest in

blown-up scale. The analysis of these figures reveals the
general features which are discussed below.

Toroidal shell structure (especially the one for the
shapes with large R/d aspect ratio) has much more pro-
nounced regular features as compared with the shell
structure of ellipsoidal-like shapes in the range of the
β2 values from ≈ −1.15 up to ≈ 1.5 which looks quite
chaotic for deformed shapes [see Fig. 10(e) and (f) and
Fig. 11(e) and (f)]. At higher β2 values typical features
of shell structure of two-center shell model (see, for ex-
ample, Ref. [56]) are seen.

The bunching of the pairs of the orbitals of the same
parity with dominant structure of Ω[N,nz,Λ] and (Ω +
1)[N,nz,Λ] with N ≥ 9 and nz = 0 (see Table II)5 leads
to the appearance of toroidal shell gaps at particle num-
bers 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46 at the bottom
of proton and neutron potentials (see Fig. 12). These
gaps exist in a large range of the β2 values; this is con-
trary to the case of shell gaps for ellipsoid-like shapes
which are localized in deformation. They are also con-

5 The only exception is the last pair of the states shown in Table
II for which the 2d state has nz = 1.
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FIG. 13. The same as Fig. 10 but for the single-particle states located in the intermediate energy range of nucleonic potential
of the 348138 nucleus and in the β2 range from −3.0 up to −1.5. Encircled letters and green arrows are used to indicate the
pairs of single-particle states of opposite parity which are almost degenerate in energy. The structure of these states is shown
in Table III.

sistent with the ones obtained in the study of toroidal
shapes in light nuclei within toroidal harmonic oscilla-
tor shell model6 and Skyrme DFT (see Figs. 1, 5 and
6 in Ref. [51] and Fig. 12 in Ref. [5]). The energies of
these pairs of orbitals generally decrease with increas-
ing the absolute value of β2; the only exception from
this rule are several lowest pairs of orbitals located at
the bottom of neutron and proton potentials (see Fig.
12). Note that the pairs of the orbitals with dominant
structure of Ω[N,nz,Λ] and (Ω + 1)[N,nz,Λ] are almost
near-degenerate in energy at the bottom of potential and
that this near-degenaracy increases with increasing abso-
lute value of β2. There is also an alternation of the pairs
of the states with positive and negative parities with in-

6 This type of the model has been described before either as shell
model based on radially displaced harmonic oscillator potential
[5, 51] or harmonic oscillator toroidal shell model [52]. We ab-
breviate it here as toroidal harmonic oscillator shell model in
order to stress that the basis of it is formed by the eigenvectors
of radially displaced (toroidal) harmonic oscillator potential and
that in this respect it differs from standard shell model which
uses traditional harmonic oscillator for basis set expansion.

creasing energy (see Fig. 12). These features of the shell
structure dominate the physics of toroidal shapes in light
to medium mass nuclei (see Refs. [5, 51]).

The general features of the pairs of orbitals with dom-
inant structure of Ω[N,nz,Λ] and (Ω + 1)[N,nz,Λ] with
nz = 0 changes drastically in the energy ranges between
-20 MeV and 0 MeV for protons and between -25 MeV
and 0 MeV for neutrons (see Figs. 10, 11 and 13) for
β2 ≤ −1.8. First, their energies decrease almost linearly
with increasing absolute value of β2. Second, there is a
periodic pattern in the change of the orbitals: with in-
creasing energy two positive parity orbitals are followed
by two negative parity orbitals and then by two positive
parity orbitals and so on. Third, these orbitals form the
grating-like structure with almost equidistant in energy
spacing between them.

In the same energy range as discussed in previous para-
graph, there are other single-particle structures dictated
by the symmetries of the toroid. These are almost de-
generate in energy single-particle states of opposite par-
ity (see Fig. 13 and Figs. 10 and 11) with dominant
structures of the wave functions given by Ω[N,nz,Λ] and
Ω[N ′, n′z,Λ

′] where the following conditions N ′ = N ± 1,
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FIG. 14. The same as Fig. 11 but for the single-particle states active in the vicinity of the Fermi levels corresponding to the
minimum B of Fig. 1.

TABLE III. The dominant components of the wave functions
of the pairs of proton and neutron single-particle states of
opposite parity which are almost degenerate in energy. The
states forming the pair are shown in the columns labelled as
”parity= +” and ”parity= −”. These pairs are indicated in
Fig. 13. Note that the dominant components of the wave func-
tions are defined at the β2 value corresponding to LEMAS.

Neutron(ν) Proton(π)
1 2 3 4 5

parity= + parity= − parity= + parity= −
(a) 1/2[8,0,0] 1/2[ 9,0,1] 1/2[8,0,0] 1/2[ 9,0,1]
(b) 3/2[8,0,2] 3/2[ 9,0,1] 3/2[6,1,1] 3/2[ 9,0,1]
(c) 1/2[6,1,1] 1/2[ 7,1,0] 5/2[8,0,2] 5/2[ 7,1,2]
(d) 13/2[10,0,6] 13/2[ 9,1,6] 7/2[8,1,3] 7/2[ 9,0,3]
(e) 13/2[8,1,7] 13/2[11,0,7] 1/2[6,1,1] 1/2[ 7,1,0]
(f) 1/2[10,1,1] 1/2[ 9,1,0] 3/2[6,1,1] 3/2[ 7,1,2]
(g) 3/2[10,1,1] 3/2[11,0,1] 9/2[10,0,4] 9/2[ 7,1,4]
(h) 5/2[10,1,3] 5/2[ 9,1,2] 11/2[8,1,5] 11/2[ 9,0,5]
(i) 7/2[10,1,3] 7/2[11,0,3] 13/2[10,0,6] 13/2[ 9,1,6]
(j) 5/2[10,1,3] 5/2[ 9,2,3] 11/2[10,0,6] 11/2[ 9,1,6]
(k) 7/2[8,2,4] 7/2[11,1,4] 13/2[8,1,7] 13/2[11,0,7]
(l) 13/2[10,2,6] 13/2[11,1,6] 1/2[10,1,1] 1/2[ 9,1,0]

(m) 9/2[10,1,5] 9/2[ 9,2,5] 3/2[10,1,1] 3/2[11,0,1]
(n) 15/2[12,1,7] 15/2[11,2,7] 5/2[10,1,3] 5/2[ 9,1,2]
(o) 11/2[10,2,6] 11/2[11,1,6] 7/2[10,1,3] 7/2[11,0,3]
(p) 9/2[12,0,4] 9/2[11,1,4]
(q) 1/2[10,1,1] 1/2[ 7,2,1]
(r) 3/2[8,2,2] 3/2[ 9,1,2]

|Λ′ − Λ| = 0 or 1 and |n′z − nz| = 0 or 1 are typically
satified (see Table III). These states change their energy
very slowly when the β2 value is varied. Note that such
pairs of the states are also present in the Skyrme DFT
calculations of toroidal shapes in the 304120 nucleus (see
Figs. 3 and 4 in Ref. [17]).

The presence of the two types of the single-particle
states discussed in previous two items is mostly respon-
sible for the shell structure and shell gaps in the inter-
mediate energy range of proton and neutron potentials.
This leads to the existence of many gaps in the single-
particle spectra which are quite large. These are proton
Z = 120, 130, 134, 138, 140, 144 and 148 shell gaps
with typical size of approximately 1 MeV and neutron
N = 206, 210 and 214 shell gaps which are larger than 1
MeV in the 348138 nucleus [see Figs. 10a and (b)]. Similar
situation is also seen in the 466156 nucleus. In this nu-
cleus the bands of proton (Z = 130, 132, 134, 136), (Z =
142, 144, 146, 148), (Z = 156, 158) and (Z = 168, 170)
shell gaps are formed because of the presence of the
bunches of four single-particle states with relatively low
Λ values located between them. The energies of these
bunches slightly decrease with increasing absolute value
of β2 [see Fig. 11(a)]. Note that some of these gaps reach
almost 2 MeV in size. Smaller neutron gaps with size of
around 1 MeV and below are seen at N = 294, 296, 302,
314, 318 and contrary to proton subsystem they do not
form the bands of shell gaps [see Fig. 11(b)].

The obtained results for shell structure of toroidal nu-
clei allow us to understand its contribution into the sta-
bility of toroidal shapes with respect of breathing defor-
mations. For example, LEMAS in the 348138 nucleus
corresponds to the situation in which proton and neu-
tron Fermi levels are located in the middle of the region
of low density of single-particle states in the vicinity of
the Z = 134 and N = 210 gaps, respectively [see Figs.
10(a) and (b)]. Any increase or decrease of the β2 value
from the one corresponding to LEMAS will lead to the
increase of the density of the single-particle states in the
vicinities of respective Fermi levels. This effect is espe-
cially pronounced for the neutron subsystem. As a con-
sequence, the LEMAS corresponds to the largest or near-
largest (in absolute sense) negative proton and neutron
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shell correction energies, while the deviation (in terms of
β2) from total energy minimum will lead to the reduc-
tion of these energies. This contributes to the stability of
toroidal shapes with respect of breathing deformations.
However, as illustrated by the case of the 466156 nucleus,
the contribution of shell correction effects to the stability
of the nuclei is expected to depend on proton and neu-
tron numbers. In this nucleus, the neutron Fermi level at
LEMAS is located at high density of the neutron single-
particle states [see Fig. 11(b)], which likely leads to pos-
itive neutron shell correction energies. On the contrary,
shell correction energies will be large and negative in the
proton subsystem since the proton Fermi level is located
in the vicinity of large Z = 156 gap [see Fig. 11(a)]. Note
that this gap is so large that proton pairing collapses at
the β2 values near LEMAS; this is seen from the fact
that the energy of the proton Fermi level coincides with
the energy of the single-particle state located below the
Z = 156 gap. When pairing collapses, the transition
from Hartree-Bogoliubov formalism with pairing to the
Hartree formalism without pairing takes place [29]. In
the latter one, the Fermi level coincide with the posi-
tion of the highest occupied level in the lowest in energy
nucleonic configuration [18].

The same features are also active in respect of the sta-
bility of toroidal nuclei in sausage deformation degree of
freedom. This is because of two factors. First, the shell
gaps in breathing degree of freedom are also the shell gaps
in the sausage degree of freedom (see Sect. IVD in Ref.
[5]). Second, as shown in toroidal harmonic oscillator
shell model for particle numbers of interest, the increase
of sausage deformations σλ of multipolarities λ = 1, 2
and 3 from zero to some finite values leads to washing
out of these shell gaps and an increase of the density of
the single-particle states in the vicinity of the Fermi level
(see Figs. 21, 22 and 23 in Ref. [5]). Let us consider
the nuclei in which the proton and neutron Fermi lev-
els of the LEMAS solution are located in the region of
low density of the single-particle states. In these nuclei
the shell correction energy is negative at σλ = 0 but it
will either be reduced in absolute value or become posi-
tive when sausage deformations become non-zero. Thus,
the instability in the breathing degree of freedom which
exists on the level of liquid drop is counterbalanced in
these nuclei by the quantum shell effects. The balance
of these two contributions defines whether the toroidal
nucleus is stable with respect of sausage deformations
or not. Fully quantum mechanical calculations based
on DFT are needed to establish the stability of a given
nucleus with respect of sausage deformations. However,
the analysis of the shell structure and the level density
of the single-particle states in the vicinity of the proton
and neutron Fermi levels provides a useful information
on whether a given nucleus could potentially be stable
with respect of sausage deformations. For example, as
discussed above such an analysis for the 348138 nucleus
shows low densities of the single-particle states in the
vicinity of proton and neutron Fermi levels and indeed

the RMF+BCS calculations of Refs. [1, 2] reveal the sta-
bility of toroidal shapes in this nucleus with respect of
even-multipole sausage deformations.
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FIG. 15. Two-neutron (S2n(Z,N)) and two-proton
(S2p(Z,N)) separation energies given for different iso-
topic/isotonic chains as a function of the neutron/proton
number. The lines are labeled by respective proton [panel
(a)] and neutron [panel (b)] numbers.

Figures 10 and 11 reveal some global bunching of the
pairs of almost degenerate in energy single-particle states
of opposite parities. For example, such bunches of the
states are seen in the proton subsystem of the 348138
nucleus at the energies ≈ −19 MeV, ≈ −14 MeV, ≈ 0
MeV and ≈ 4 MeV for β2 = −5.0 (see Fig. 10(c) and
(e)). The density of the single-particle states is high in
these bunches and thus it is reasonable to expect that
the shell correction energy Eshell will be positive when
the Fermi level is located near or within these bunches.
For such a situation it is reasonable to expect that the
quantum shell effects will not help to stabilize toroidal
shapes with respect of sausage deformations. With de-
creasing absolute value of β2 the energies of these bunches
of the single-particle states go down (see Fig. 10(c) and
(e)). However, these bunches and the low density single-
particle structure between them persist down to β2 values
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corresponding to the transition from toroidal to concave
disk shapes. The density of the single-particle states is
low between these bunches and it is reasonable to expect
that for the majority of the combinations of particle num-
ber and β2 the Eshell values will be negative when the
Fermi level is located in this region. These features are
the manifestation of so-called supershell structure which
has been discussed in the case of ellipsoidal-like shapes
in Ref. [57].

There is a drastic difference in the behavior of neutron
and proton Fermi levels as a function of the β2 value (see
Fig. 10 and Fig. 11). The neutron Fermi level is more
or less constant as a function of β2. As a consequence,
the calculated two-neutron drip line for toroidal shapes
is close to the extrapolation of this line for ellipsoidal-like
shapes (see Fig. 2). On the contrary, the proton Fermi
level dives deeper into nucleonic potential with increasing
absolute value of β2; it is lower by approximately 5 MeV
for toroidal shapes with large aspect ratio as compared
with its position for biconcave disk shapes. As a conse-
quence, the transition to toroidal shapes in hyperheavy
nuclei creates a substantial expansion [the area between
black solid and orange dashed lines in Fig. 2] of the nu-
clear landscape.

There are drastic changes in the single-particle struc-

ture of the 348138 nucleus at β2 ≈ −1.15 and β2 ≈ −1.85
(see Figs. 10(c), (d), (e) and (f)). The first change is
related to the transition from biconcave disk shape to
toroidal one (which is equivalent to an opening of the
hole in the center of biconcave disk shape). The second
one is associated with the redistribution of the proton
density in the torus caused by the change of the occupa-
tion of the single-particle orbitals. This density is asym-
metric with respect of the axis of torus tube and has a
maximum closer to an outer edge of the torus for the β2
values ranging from ≈ −1.15 down to ≈ −1.85. However,
it becomes almost symmetric with respect of the axis of
the torus tube for β2 ≤ −1.85. Note that similar changes
in the single-particle structure are seen at β2 ≈ −1.1,
β2 ≈ −1.8 and β2 ≈ −2.7 in the 466156 nucleus (see Figs.
11(c), (d), (e) and (f)) and their origins are similar to the
ones discussed above in the 348138 nucleus.

In order to find potentially most stable toroidal nuclei,
two-proton S2p(Z,N) and two-neutron S2n(Z,N) sepa-
ration energies

S2n(Z,N) = B(Z,N)−B(Z,N − 2),

S2p(Z,N) = B(Z,N)−B(Z − 2, N), (7)

and the δ2n(Z,N) and δ2p(Z,N) quantities defined as

δ2n(Z,N) = S2n(Z,N)− S2n(Z,N − 2),

δ2p(Z,N) = S2p(Z,N)− S2p(Z − 2, N), (8)

are plotted in Fig. 15 for the region with (Z = 132 −
144, N = 204 − 228). Here B(Z,N) is the binding en-
ergy. The separation energies show a sudden drop at the
shell gaps, if they are large. If the variations of the level
density are less pronounced, the δ2n(Z,N) and δ2p(Z,N)
quantities related to the derivatives of the separation en-
ergies are more sensitive indicators of the localizations of
the shell gaps (see discussion in Appendix of Ref. [58]).
They also provide the information on average density of
the single-particle states.

The presence of the neutron gap at N = 210 for
toroidal shapes is visible in Figs. 15(a) and Fig. 16(a)
in the Z = 126 − 136 nuclei. The δ2n(Z,N) values for
neutron numbers away from N = 210 are low which are
indicative of high density of neutron single-particle states
below and above the N = 210 shell gap. These features
correlate with the ones seen in the Nilsson diagram [see
Fig. 10(b)].

On the contrary, the S2p(Z,N) and δ2p(Z,N) values
(see Figs. 15(b) and Fig. 16(b)) are relatively smooth
functions of proton number which indicates that the aver-
age density of proton single-particle states remains more
or less constant. However, on average the δ2p(Z,N) val-
ues are substantially higher than the δ2n(Z,N) ones; only
in the region of the peak of δ2n(Z,N) at N = 210 they
are comparable (see Fig. 16). This clearly indicates that
the density of proton single-particle states is low in a
wide range of proton numbers and this observation is sup-
ported by the comparison of Figs. 10(a) and (b). Note
that the peak of δ2p(Z,N) ≈ 1.3 MeV is seen for neutron
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numbers N = 204 − 212 (see Fig. 16(b)) suggesting an
extra stability of these nuclei.

The combination of proton and neutron shell effects
should lead to an enhanced stability of specific nuclei.
As a result, discussed above features are most likely rea-
sons why fission barrier is higher in the N = 210 348138
nucleus as compared with the N = 220 354134 one.

C. Functional dependence of the results

When considering the predictions for toroidal hyper-
heavy nuclei and their shell structure it is important to
evaluate their dependence on the employed functional.
So far all predictions for such nuclei presented in Refs.
[1, 2] and in the present paper were obtained with the
CEDF DD-PC1. To study functional dependence of the
predictions we perform additional calculations for the
348138 and 466156 nuclei with the NL3* [32], PC-PK1
[37], DD-ME2 [35] and DD-MEδ [36] functionals and
compare their results with the ones obtained with DD-
PC1 earlier. These five state-of-the-art functionals rep-
resent three major classes of CDFT models [21] and have
been globally tested in Refs. [21, 23, 25, 59, 60]. Note
that in this set of the functionals the CEDF DD-PC1
and PC-PK1 provide better description of binding ener-
gies on a global scale as compared with other functionals.

The deformation energy curves obtained with these
functionals are presented in Fig. 17. In both nuclei and
in terms of relative energies of the minima corresponding
to toroidal and ellipsoidal-like shapes there is a large sim-
ilarity of the results obtained with point-coupling models
DD-PC1 and PC-PK1 as well as with nonlinear meson-
nucleon coupling model NL3* on the one hand and those
obtained with density-dependent meson-exchange mod-
els DD-ME2 and DD-MEδ on the other hand. In the
latter type of the models, the toroidal shapes are less en-
ergetically favored with respect of ellipsoidal-like shapes
as compared with former models. For example, in the
348138 nucleus the fat toroidal shapes corresponding to
the minimum A are more (less) energetically favored as
compared with biconcave disk shapes corresponding to
minimum B in the calculations with DD-PC1 and PC-
PK1 (DD-ME2 and DD-MEδ) functionals. Note that
these two minima are located at approximately the same
energies in the calculations with the NL3* functional [see
Fig. 17(a)]. However, this difference in the predictions of
relative energies of the minima A and B is not principal
because the minimum B is not stable with respect of tri-
axial distortions in the calculations with DD-PC1 func-
tional (see Ref. [1]) and the same situation is expected for
other functionals because of the similarity of underlying
shell structure. On the other hand, the minimum A is
relatively stable with respect of even-multipole sausage
deformations in the calculations with DD-PC1 (see Refs.
[1, 2]) and because of similarity of underlying toroidal
shell structure (see discussion of Fig. 18 below) it is rea-
sonable to expect that this is also the case for remaining

functionals.

Similar situation to the 348138 nucleus holds also in the
466156 one. This is because toroidal shapes are more en-
ergetically favored as compared with ellipsoidal-like ones
in the calculations with CEDFs DD-PC1, PC-PK1 and
NL3* than in those employing DD-ME2 and DD-MEδ
functionals (see Fig. 17(b)). For example, the energy dif-
ference ∆Ediff between the minimum A corresponding
to thin toroidal shapes and the minimum D correspond-
ing to spherical shapes is approximately 117 MeV in the
calculations with the first group of the functionals and
only approximately 67 MeV in the calculations with the
second group. Note that these differences cannot be ex-
plained by the differences in nuclear matter properties
of the functionals since they are similar (quite different)
in the pair of the DD-PC1 and DD-ME2 (DD-PC1 and
PC-PK1) functionals (see Ref. [25]) which provide the
∆Ediff values which differ by 53.4 MeV (by only 6.5
MeV).

These differences between the functionals, related to
the relative energies of the minima corresponding to
toroidal and ellipsoidal-like shapes, are expected to af-
fect the position of the boundary between ellipsoidal-like
and toroidal shapes in the nuclear landscape (see Fig. 2
in the present manuscript and the discussion in Sec. XII
of Ref. [2]). However, this boundary depends not only
on relative energies of these two types of the shapes but
also on the stability of ellipsoidal-like shapes with respect
of fission (see Ref. [2]). There is a quite substantial de-
pendence of the fission barrier heights for ellipsoidal-like
shapes on CEDF with the PC-PK1 and NL3* (DD-ME2
and DD-PC1) functionals providing the lowest (highest)
barrier heights for superheavy nuclei among the CEDFs
considered in Ref. [4] and a similar situation is also ex-
pected in the hyperheavy nuclei.

Despite above mentioned differences there are large
similarities between the results of the calculations ob-
tained with five functionals. For the first time, the re-
sults presented in Fig. 17 confirm that the transition from
ellipsoidal-like to toroidal shapes with increasing proton
number Z does not depend on CEDF. The presence of
similar local minima in deformation energy curves (such
as the minima A, B, C and D in the 466156 nucleus and
the minima A and B in the 348138 nucleus) with similar
equilibrium β2 values presented in Fig. 17 clearly sug-
gest the similarity of underlying shell structure in all em-
ployed functionals. Note that in a few cases such minima
are shoulder-like in deformation energy curves without a
sufficient barrier on one side: these are the minimum C
in the calculations with NL3* and PC-PK1 and the min-
imum B in the calculations with NL3* [(see Fig. 17(b)].

The analysis of toroidal shell structure of the 348138
and 466156 nuclei obtained with the NL3*, PC-PK1, DD-
ME2 and DD-MEδ functionals reveals the same general
features as those discussed in Sec. IV B for the DD-PC1
functional. Thus we will focus on fine details of the shell
structure of these nuclei in the vicinity of the respective
Fermi levels at the LEMAS of the minimum A in these
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FIG. 17. The deformation energy curves obtained in ax-
ial RHB calculations with indicated CEDFs. The local and
global minima are indicated by the arrows with letters. The
same labelling of minima as shown in Fig. 1 is used for the
466156 nucleus.

two nuclei (see Fig. 17) since they are responsible for po-
tential stability of respective toroidal shapes. The Nils-
son diagrams for these four CEDFs are shown in Figs. 18
and 19; they can be compared with those obtained for
DD-PC1 and presented in Figs. 10(a) and (b) and Figs.
11(a) and (b). This comparison reveals significant sim-
ilarities between the results of the calculations obtained
with different functionals.

For example, in the 348138 nucleus the proton Fermi
level EF at LEMAS is located in the region of reduced
density of proton single-particle states between shell gaps
at Z = 134 and Z = 140 (see Fig. 10(a)) in the calcu-
lations with the DD-PC1 functionals. Similar situation
exists also in the calculations with NL3*, PC-PK1, DD-
ME2 and DD-MEδ CEDFs [see Figs. 18(a), (c), (e) and
(g)]. In this nucleus, the neutron Fermi level is located in
the middle of substantial N = 210 toroidal shell gap in
the calculations with DD-PC1 [see Fig. 10(a)], DD-ME2
and DD-MEδ (see Figs. 18(e) and (g)] but it is shifted
to the region of somewhat higher density of the neutron
single-particle states below the N = 214 toroidal shell
gap in the calculations with NL3* and PC-PK1 [see Fig.

18(b) and (d)]. These results suggest that two-proton
separation energies S2p(Z,N) and the δ2p(Z,N) quanti-
ties (see the discussion in the end of Sec. IV B) should be
very similar for all five employed functionals. The same is
true for related neutron S2n(Z,N) and δ2n(Z,N) values
obtained in the calculations with DD-PC1, DD-ME2 and
DD-MEδ which are expected to reveal the presence of the
N = 210 toroidal shell gap [see Fig. 16(b)]. However, it
is quite likely that the peak in the δ2n(Z,N) values vis-
ible at N = 210 in the calculations with DD-PC1 [see
Fig. 16(a)] will be moved to N ≈ 214 and substantially
washed out in the calculations with NL3* and PC-PK1.

Similar situation exists also in the 466156 nucleus. The
bands of proton (Z = 130; 132; 134; 136), (Z =142; 144;
146; 148), (Z = 156; 158; 160) and (Z = 168; 170) shell
gaps, formed because of the presence of the bunches of
single-particle states with relatively low Λ values located
between them, exist in all five functionals [see Figs. 11(a)
and 19(a), (c), (e) and (g)]. Note that some of these
gaps reach almost 2 MeV in size. The proton Fermi level
at LEMAS is located either in the middle of large Z =
156 shell gap in the NL3*, PC-PK1, DD-ME2 and DD-
MEδ functionals or at the bottom of this shell gap in the
DD-PC1 CEDF and thus shell correction energies will be
large and negative in proton subsystem in all functionals.

Smaller neutron shell gaps with the size of
around 1 MeV and below are seen at N =
294, 296, 302, 314, 318 in DD-PC1 [Fig. 11(a)], at N =
278, 290, 294, 300, 302, 314, 318 in NL3* [Fig. 19(b)], at
N = 296, 300, 302, 314, 326 in PC-PK1 [Fig. 19(d)], at
N = 292, 296, 298, 302, 308 in DD-ME2 [Fig. 19(f)], and
at N = 282, 298, 304, 306, 312 in DD-MEδ [Fig. 19(h)]
and contrary to proton subsystem they do not form the
bands of shell gaps. Considering relatively small size of
neutron shell gaps, larger (as compared with proton sub-
system) dependence of the predictions for neutron shell
gaps on the functional is expected. These differences are
not critical since in all functionals the neutron Fermi
level at LEMAS is located at high density of the neu-
tron single-particle states, which likely leads to positive
neutron shell correction energies.

The results presented in Fig. 17 clearly indicate the
stability of the nuclei under discussion with respect of
breathing deformation in all employed functionals. The
similarity of the shell structure in all five functionals
strongly suggests that the considerations provided in Sec.
IV B on potential stability with respect of sausage defor-
mations of the nuclei under study in the case of CEDF
DD-PC1 are also applicable for the NL3*, PC-PK1, DD-
ME2 and DD-MEδ functionals.

V. CONCLUSIONS

In conclusion, the detailed investigation of the proper-
ties of spherical and toroidal hyperheavy even-even nuclei
and their underlying shell structure have been performed
in the framework of covariant density functional theory.
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FIG. 18. The same as Figs. 10(a) and (b) but for the results obtained with indicated CEDFs. The vertical dashed orange lines
are drawn at the β2 values corresponding to LEMAS.
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The following conclusions have been obtained:

• Proton Z = 154, 186 and neutron N = 228,
308 and 406 spherical shell gaps exist in all em-
ployed CEDFs. Their combinations define the is-
lands of stability of spherical hyperheavy nuclei.
The sizes of these gaps (both actual ∆Egap and

scaled ∆EgapA
1/3) are larger than those of Z = 120

and N = 184 in superheavy nuclei. This sug-
gests that some spherical hyperheavy nuclei may
be more stable than superheavy ones. Systematic
theoretical uncertainties in the predictions of the
sizes of spherical shell gaps in hyperheavy nuclei
are smaller than those in superheavy nuclei and
experimentally known nuclei.

• Detailed calculations in extremely large basis have
allowed to establish for the first time the gen-
eral trends of the evolution of toroidal shapes in
the Z ≈ 130 − 180 region of nuclear chart. Al-
though they have been performed only for selected
Z = 136, 146, 156, 166 and 176 nuclei with the
step in neutron number of ∆N = 10, their dis-
tribution in the nuclear chart between two-proton
and two-neutron drip lines and deformation energy
curves of these nuclei are such that they allow to
safely extrapolate major conclusions to all nuclei
in above mentioned region. The most compact fat
toroidal nuclei are located in the Z ≈ 136, N ≈ 206
region (see Fig. 8). Thin toroidal nuclei with large
R/d aspect ratio become dominant with increasing
proton number and on moving towards proton and
neutron drip lines.

• All the nuclei in the Z ≈ 130 − 180 region located
between neutron and proton drip lines are expected
to be stable with respect of breathing deformations.
Because of numerical difficulties it is much more
problematic to answer the question on their stabil-
ity with respect of sausage deformations. However,
the analysis of theoretical and experimental studies
of toroidal liquid droplets as well as the results on
the stability of the 354134 and 348138 nuclei with
respect of even-multipole sausage deformations ob-
tained in Refs. [1, 2] suggest that fat toroidal nu-
clei located in the Z ≈ 136, N ≈ 210 region are
potentially more stable with respect of sausage de-
formations than thin toroidal nuclei located outside
of this region. Nevertheless, future fully quantum
mechanical calculations based on DFT are needed
to establish the stability of specific toroidal nuclei
since the quantum shell effects can counterbalance
the instabilities with respect of sausage deforma-
tions [5].

• Toroidal shell structure (especially the one for the
shapes with large R/d aspect ratio) has much more
pronounced regular features as compared with the
shell structure of deformed ellipsoidal-like nuclei.

Global bunching of the pairs of almost degener-
ate single-particle states of opposite parities leads
to an appearance of supershell structure. These
features are mostly driven by the existence of the
two classes of the pairs of the orbitals at toroidal
shapes. The pairs of the orbitals with dominant
structure of Ω[N,nz,Λ] and (Ω + 1)[N,nz,Λ] with
nz = 0 belong to the first class. The second
class is formed by almost degenerate in energy
single-particle states of opposite parities with dom-
inant structures of the wave functions given by
Ω[N,nz,Λ] and Ω[N ′, n′z,Λ

′] for which the condi-
tions N ′ = N±1, |Λ′−Λ| = 0 or 1 and |n′z−nz| = 0
or 1 are typically satisfied.

• As illustrated by discussed cases, at LEMAS large
shell gaps and/or low density of the single-particle
states appear at least in one of the subsystems (pro-
ton and/or neutron) in the vicinity of its Fermi
level. These shell gaps are also the gaps in breath-
ing and sausage degrees of freedom [5]. If the Fermi
level in a given subsystem is located in the vicin-
ity of the large shell gap or low density of the
single-particle states, quantum shell effects will act
against the instabilities in breathing and sausage
deformations. These stabilizing effects will be def-
initely enhanced if both proton and neutron sub-
systems are characterized by such features.

• However, the analysis of the Nilsson diagrams for
all nuclei calculated in Fig. 8 shows that in many
of these nuclei the level densities are high near the
proton and neutron Fermi levels at LEMAS. In re-
ality, such a situation becomes much more frequent
with increasing proton and neutron numbers and
respective rise of the single-particle level densities.
The reason is quite simple: the β2 value of LEMAS
is defined mostly by the competition of nuclear sur-
face tension and Coulomb interaction and the shell
correction effects play only a secondary role here.
As a result, such nuclei are expected to be unsta-
ble with respect of sausage deformations. Thus, it
is reasonable to expect the existence of the ”conti-
nent” of stability of toroidal nuclei in low-Z systems
which is replaced by the ”isolated islands” of their
stability in higher-Z nuclei located in the ”sea of
the instability”.

The problem of the stability of toroidal nuclei with
respect of sausage deformations emerges as a major ob-
stacle in their study. There are several possible ways
to investigate such instabilities. One is based on the
analysis of time evolution of the toroidal nucleus after
some external disturbance of equilibrium shape in time-
dependent Hartree-(Fock)-Bogoliubov framework formu-
lated in coordinate representation. However, the sizes
of thin toroidal nuclei are significantly larger that those
of ellipsoidal ones and the tube of the torus of such nu-
clei is characterized by a small radius and rapid change
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FIG. 19. The same as Figs. 11(a) and (b) but for the results obtained with indicated CEDFs. The vertical dashed orange lines
are drawn at the β2 values corresponding to LEMAS.
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of the densities. These factors would require very large
three-dimensional box with small step in each direction.
At present, it is not clear whether such calculations are
numerically feasible.

An alternative possibility is to rewrite existing RHB
computer codes in the basis of toroidal harmonic oscil-
lator potential and to study ”fission” barriers in respec-
tive sausage deformations. Since this is a native basis
for toroidal shapes, it is reasonable to expect that suf-
ficient numerical accuracy could be achieved at signifi-
cantly lower size of the toroidal harmonic oscillator basis
as compared with existing computers codes formulated
in the traditional harmonic oscillator basis which is more
suitable for ellipsoidal-like shapes. For example, in the
latter codes the NF = 20 fermionic shells are sufficient for
the description of spherical and ellipsoidal shapes in the
466156 nucleus but NF = 30 is required for the descrip-
tion of toroidal shapes [2]. The use of toroidal harmonic
oscillator basis would reverse the situation and hopefully
the basis with NF = 20 will be sufficient for the descrip-

tion of toroidal shapes near LEMAS and their instabil-
ities with respect of sausage deformations. Our experi-
ence tells us that numerical calculations in such a basis
are feasible with existing high performance computers.

The instabilities of toroidal nuclei with respect of
sausage deformations can potentially be studied by
means of three-dimensitional lattice (3D lattice) method
suggested in Ref. [61]. For example, this method has
been used for the investigation of the stability of linear
chain structure of three α clusters in 12C against bending
and fission in the framework of cranking CDFT in Ref.
[62].
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