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The semimicroscopic particle-hole dispersive optical model (PHDOM) is 

adopted for a description of main properties of Isoscalar Giant Multipole 

Resonances (up to 𝐿 = 3) in medium-heavy closed-shell nuclei. The main 

properties are characterized by the strength distribution, transition density, partial 

and total probabilities of direct one-nucleon decay. The model is implemented to 

describe characteristics of the mentioned resonances in the 208Pb nucleus, taken 

as an example. Calculation results are compared with available experimental data. 

 

I. INTRODUCTION 

 

A detailed description of any giant resonance (GR) [1, 2] includes the following 

characteristics: (i) strength distribution for a large excitation-energy interval; (ii) 

energy-dependent double transition density (which depends only on nuclear 

structure) and projected one-body transition density (associated with a given one-

body probing operator), and; (iii) partial and total probabilities of direct one-

nucleon decay. In order to get such a description, within theoretical approaches, 

the main relaxation modes of high-energy particle-hole-type ((p-h)-type) states 



associated with GRs should be together taken into account. These relaxation 

modes include Landau damping, coupling of the mentioned (p-h)-type states to the 

single-particle continuum, and the coupling to many-quasiparticle configurations 

(the spreading effect). The recently developed particle-hole dispersive optical 

model (PHDOM) [3] accounts for the above-described relaxation modes. PHDOM 

is a microscopically-based extension of the standard [4] and non-standard [5] 

versions of the continuum-random-phase approximation (cRPA) to taking the 

spreading effect into account. Within the PHDOM, which is a semimicroscopic 

model, Landau damping and coupling to the continuum are considered 

microscopically (in terms of a mean field and p-h interaction), while the spreading 

effect is treated phenomenologically (in terms of a properly parameterized energy-

averaged p-h self-energy term). The imaginary part of this term determines the real 

part via a dispersive relationship. The current PHDOM version has been 

implemented to describe the simplest photo-nuclear reactions accompanied by 

excitations of the Isovector Giant Dipole Resonance in a number of neutron-closed 

-shell nuclei [6], the main properties of the Isoscalar Giant Monopole Resonance in 
208Pb [7, 8], properties of Isobaric Analog Resonance and its overtone in the 

mentioned parent nucleus [9]. Week violations of model unitarity (caused by the 

method of taking the spreading effect into account) and methods of unitarity 

restoration have been studied in Ref. [8]. 

In the present work, we adopt the PHDOM current version for a description 

of the main properties of the Isoscalar Giant Multipole Resonances (ISGMPRs) (up 

to 𝐿 = 3) together with the overtones of Isoscalar Giant Monopole and 

Quadrupole Resonances in medium-heavy closed-shell nuclei. A cRPA-based 

description of isoscalar bound states, including the 1! spurious state related to 

center-of-mass motion, is also taken into consideration. The model is implemented 

to describe characteristics of the mentioned resonances in the 208Pb nucleus, taken 

as an example. Calculation results are compared with available experimental data. 



This work is motivated by the following possibilities: 1) to check abilities of the 

model in describing the strength distribution of isoscalar non-spin-flip GRs with 

taking into account the isobaric symmetry and translation invariance of the model 

Hamiltonian (integral characteristics of the distribution are compared with related 

results obtained within the microscopic RPA-based approach of self-consistent  

Hartree-Fock (HF)  using Skyrme-type forces (SF) [2, 10]); 2) to get a microscopic 

input (the projected energy-dependent one-body transition density [7]) for an 

analysis (based on the Distorted Wave Born Approximation) of (α,α’)-scattering 

cross sections of ISGMPRs excitation [11, 12] (as a rule, the quasi-classical 

collective-model (energy-independent) transition densities are used in such an 

analysis (see, e.g., Ref. [13, 14])), and; 3) to realize the unique ability of the model 

in describing the branching ratios for direct one-nucleon decay of ISGMPRs. The 

above-listed points allow us to point out that the use of PHDOM opens new 

possibilities in describing properties of non-spin-flip isoscalar GRs when compared 

with widely used (HF-based RPA +SF) approaches (see, e. g., the review paper of 

Ref. [15]). Some preliminary results of the present study are given in Ref. [16]. 

In Section II, we give the PHDOM basic equations and relations for describing 

ISGMPRs. Choice of model parameters, calculation results and a comparison with 

available experimental data are presented in Section III. Section IV contains a 

discussion of the results and conclusive remarks. 

 

II. BASIC EQUATIONS AND RELATIONS 

 

Since the PHDOM is an extension of the cRPA versions to taking the spreading 

effect into account, most of the equations and relations of these approaches are 

similar. So, the basic equation for implementing the PHDOM is the Bethe-

Goldstone-type equation for the energy-averaged (local) p-h Green function. In 



applying to the description of ISGMPRs in spherical nuclei, this Green function (or 

p-h propagator) can be expanded in spherical harmonics:  

𝐴&(𝑟, 𝑟′, ω) = ∑ (𝑟𝑟′)!"𝐴&#(𝑟, 𝑟$, ω)#% 𝑌#%(𝑛1⃗ )𝑌#%∗ (𝑛1⃗ ′) ,                    (1) 

where ω is the excitation energy. If the p-h interaction responsible for long-range 

correlations in the isoscalar and isovector non-spin-flip channels is taken in the 

form of Landau-Migdal forces  

𝐹(𝑟', 𝑟") → (𝐹(𝑟') + 𝐹′𝜏'𝜏")𝛿(𝑟' − 𝑟") ,                                  (2) 

one gets the equation for the p-h propagator radial components: 

𝐴&#(𝑟, 𝑟$, ω) = 𝐴#(𝑟, 𝑟$, ω) + ∫𝐴#(𝑟, 𝑟', ω)𝐹(𝑟')𝐴&#(𝑟', 𝑟$, ω) 𝑑𝑟' 𝑟'"⁄  .     (3) 

Here, the radial component (𝑟𝑟$)!"𝐴#(𝑟, 𝑟$, ω) of the “free” p-h propagator, which 

relates to the model of non-interacting and independently damping p-h excitations, 

is the key quantity in the PHDOM-based description of corresponding ISGMPR. The 

explicit expression for this quantity is discussed below. As a comment to Eq. (3), we 

note that weak mixing of 𝐿 ≠ 0 ISGMPRs with respective Isoscalar Giant Spin-

Multipole Resonances due to the mean-field spin-orbit part is neglected. 

The p-h propagator of Eq. (3) determines the corresponding component of the 

energy-averaged double transition density 𝜌(𝑟,𝑟′, ω) =

∑ (𝑟𝑟$)!"	#% 𝜌#(𝑟, 𝑟$, ω)𝑌#%(𝑛1⃗ )𝑌#%∗ (𝑛1⃗ ′)		by the relation: 

𝜌#(𝑟, 𝑟$, ω) =‒
'
)
Im𝐴&#(𝑟, 𝑟$, ω)	.                                     (4) 

In accordance with the spectral expansion of the p-h propagator, the double 

transition density of Eq. (4) determines the energy-averaged strength function 

𝑆#(ω) related to an isoscalar non-spin-flip external field (probing operator) 

𝑉#%(𝑟) = 𝑉#(𝑟)𝑌#%(𝑛1⃗ ) (𝑉#(𝑟) is supposed to be a real quantity): 

𝑆#(ω) = ∫𝑉#(𝑟) 𝜌#(𝑟, 𝑟$, ω)𝑉#(𝑟$)𝑑𝑟𝑑𝑟$	.                            (5) 

It is noteworthy that due to the method of treating the spreading effect within 

PHDOM, the double transition density cannot be factorized in terms of one-body 



transition densities. Within the model, the strength function of Eq. (5) can be 

evaluated in a simpler way. For this aim, we define the so-called effective field 

𝑉D#(𝑟, ω) by the integral relation: 

∫𝐴&#(𝑟, 𝑟$, ω)𝑉#(𝑟$)𝑑𝑟$ = ∫𝐴# (𝑟, 𝑟$, ω)𝑉D#(𝑟$, ω)𝑑𝑟$	.																				(6) 

In accordance with Eqs. (3) and (6), the effective field obeys the equation,  

𝑉D#(𝑟, ω) = 𝑉#(𝑟) +
*(,)
,! ∫𝐴#(𝑟, 𝑟

$, ω)𝑉D#(𝑟$, ω)𝑑𝑟′ ,                       (7) 

which is simpler than Eq. (3). An alternative expression for the strength function 

follows from Eqs. (4)-(6): 

𝑆#(ω) = − '
)
𝐼𝑚	𝑃#(ω)	,                                              (8) 

where 𝑃#(ω) is the respective polarizability: 

𝑃#(ω) = ∫𝑉#(𝑟)𝐴#(𝑟, 𝑟$, ω)𝑉D#(𝑟$, ω)𝑑𝑟𝑑𝑟$ .                         (9) 

Since the methods, used for describing hadron-nucleus scattering 

accompanied by GR excitation, employ only one-body transition density (see Refs. 

[11-13]), it is desirable to factorize approximately the double transition density of 

Eq. (4). It can be done in terms of the projected (one-body) transition density 

𝜌."(𝑟, ω) related to a given probing operator and defined as follows [7]: 

𝜌."(𝑟, ω) = ∫𝜌#(𝑟, 𝑟$, ω)𝑉#(𝑟$)𝑑𝑟$/𝑆#
'/"(ω) .                     (10) 

Using Eqs. (5) to (10), one gets the following expressions, which are formally valid 

also in cRPA: 

𝑆#(ω) = J∫ 𝜌." (𝑟, ω)𝑉#(𝑟)𝑑𝑟K
"

 ,                                    (11) 

'
,!
𝜌."(𝑟, ω) = − '

)
Im𝑉D#(𝑟, ω)/(𝐹(𝑟)𝑆#

'/"(ω)) .                     (12) 

All the considered quantities related to ISGMPRs are determined, in fact, by 

elements of the “free” p-h propagator 𝐴# = 𝐴#001 + 𝐴#
22̅ (below the indexes “𝑛” and 

“𝑝” related to the neutron and proton subsystems are, as a rule, omitted for brevity 



sake). We note here that the basic Eqs. (3) and (7) are derived in the approximation: 

(𝑁 − 𝑍) ≪ 𝐴, where 𝐴 = 𝑁 + 𝑍 is the number of nucleons. The expression for the 

“free” p-h propagator, in which the continuum and spreading effect are 

approximately taken into account, has been derived for closed-shell nuclei in a 

rather general form [3]. This expression adopted in Ref. [7] to describe within the 

PHDOM the Isoscalar Giant Monopole Resonance (i.e., to get the quantity 

𝐴#45(𝑟, 𝑟$, ω)) contains: the occupation numbers 𝑛6; the single-particle radial 

bound-state wave functions 𝑟!'𝜒7(𝑟) and energies 𝜀6, with 𝜇 = 𝑛,,7, 𝑗6, 𝑙6, (𝜇) ≡

𝑗6, 𝑙6 being the set of bound-state quantum numbers, and; the Green functions 

𝑔(9)(𝑟, 𝑟$, 𝜀 = 𝜀6 ± ω) of the single-particle radial Schrodinger equation, which 

contains the complex term,	[−𝑖𝑊(ω) + 𝒫(ω)]𝑓6𝑓:;(𝑟)), added to a mean field, 

with 𝑊(ω) and 𝒫(ω) being the imaginary and real parts of the intensity of the 

energy-averaged p-h self-energy term responsible for the spreading effect, and 

𝑓:;(𝑟) and 𝑓6	 are the Woods-Saxon function and its diagonal matrix element, 

respectively. The expression for 𝐴#(𝑟, 𝑟$, ω) can be obtained from that for 

𝐴#45(𝑟, 𝑟$, ω) , given in details in Ref. [7], by the substitution of the kinematic 

factors:  

𝑡(9)(6)
#45 = ("<#=')

$
!%

√?)
𝛿(9),(6) → 𝑡(9)(6)

# = '
√"#='

〈(𝜆)‖𝑌#‖(𝜇)〉	.            (13) 

The results of strength function calculations can be verified, using the weakly 

model-dependent energy-weighted sum rule 𝐸𝑊𝑆𝑅# = ∫ω𝑆#(ω)𝑑ω [1]: 

𝐸𝑊𝑆𝑅# =
'
?)

ℏ!

"%
𝐴 〈eA."(,)

A,
f
"
+ 𝐿(𝐿 + 1) e."(,)

,
f
"
〉	.                   (14) 

Here, the averaging 〈… 〉 is performed over the nuclear density 𝑛(𝑟) = 𝑛0(𝑟) +

𝑛2(𝑟). In the next Section, the strength functions 𝑆#(ω) calculated for the 208Pb 

nucleus are presented in terms of the relative energy-weighted strength functions 

(fractions of 𝐸𝑊𝑆𝑅#) 

𝑦#(ω) = ω𝑆#(ω) 𝐸𝑊𝑆𝑅#⁄ 	,                                        (15) 



normalized by the condition 𝑥# = ∫𝑦#(ω)𝑑ω = 1. (We omit the factor (2𝐿 + 1) 

in Eq. (14) in accordance with the definition used for strength functions of Eqs. (5) 

and (8).) 

The choice of the radial part of probing operators 𝑉#(𝑟) used for describing 

ISGMPRs within PHDOM depends on nature of the considered resonance. The 

position dependences of 𝑉#4",B(𝑟) are taken as 𝑟#, because the Isoscalar Giant 

Quadrupole and Octupole Resonances (ISGQR and ISGOR, respectively) are related 

to main-tone collective excitations. The signature of these excitations is a nearly 

nodeless radial dependence of projected transition densities 𝜌."(𝑟, ω) (Eqs. (10) 

and (12)) taken at 𝜔 = 𝜔#(2CDE) - the energy of the main maximum of the 

respective strength function. The Isoscalar Giant Monopole and Dipole Resonances 

(ISGMR and ISGDR, respectively) can be considered as the overtone excitations. 

The respective main tones are related to the spurious states (SS): the 0+ ground 

state and the 1! state associated with center-of-mass motion. The signature of an 

arbitrary overtone is appearance of an extra-node in the radial dependence of the 

projected transition density taken at the main maximum of the overtone GR 

strength function. To suppress excitation of the above-mentioned spurious states, 

the radial dependence of the probing operators is taken as 𝑉#45(𝑟) = 𝑟" − 𝜂5〈𝑟"〉 

and 𝑉#4'(𝑟) = 𝑟(𝑟" − 𝜂'〈𝑟"〉). To avoid violation of PHDOM unitarity, the 

parameter 𝜂5 is taken equal to unity [8]. Spurious isoscalar 1! excitations are 

described by the polarizability 𝑃#4';; (ω) related to the isoscalar dipole operator, 

having the radial part 𝑉#4';; (𝑟) = 𝑟. From the condition, that the mentioned 

polarizability related to this operator has a maximum at ω = ω#4';;  close to zero 

excitation energy, one gets the strength of the isoscalar part of Landau-Migdal 

forces [17] (see Section III and Appendix A). Being determined by the effective field 

𝑉D#4';; (𝑟, ω → ω#4';; ), the radial part of the 1! spurious-state transition density 

𝜌#4';; (𝑟)/𝑟" (see Section III and Appendix A) might be used to find the parameter 

𝜂' in the expression for the radial part of the second-order isoscalar dipole probing 



operator from the condition ∫𝑉#4' (𝑟)𝜌#4';; (𝑟)𝑑𝑟 = 0. Among the overtones of 

real isoscalar GRs, the overtones of monopole and quadrupole GRs (ISGMR2 and 

ISGQR2, respectively) have the lowest excitation energies [17, 7]. The radial part of 

the respective probing operators 𝑉#FG(𝑟) = 𝑟"(𝑟" − 𝜂#FG	〈𝑟"〉) (𝐿 = 0, 2) contains 

the adopted parameter 𝜂#FG. To suppress main-tone excitation, this parameter can 

be found from the condition: ∫𝑉#FG(𝑟)𝜌."(𝑟, ω#(2CDE))𝑑𝑟 = 0. The main-tone GR 

is placed at the distant low-energy “tail” of the corresponding overtone. All the 

above-considered overtones are related to “breathing” modes of nuclear 

excitations. 

The ability to estimate quantitatively probabilities of direct one-nucleon decay 

of GRs belongs to unique features of PHDOM. Within the model (as in case of the 

non-standard cRPA version), the effective-field method is used for such estimations 

[6, 8, 9]. The strength function for direct one-nucleon decay of ISGMPR into the 

channel µ, corresponding to population of the one-hole configuration 𝜇!' in the 

product nucleus, is determined by the squared amplitudes of “direct+semidirect” 

reactions induced by the external field 𝑉#%(𝑟)	[8]: 

𝑆#,6↑ (ω) = ∑ 𝑛7(9) (𝑡(9)(6)
# )"| ∫ 𝜒I4I#=J,(9)

∗ (𝑟)𝑉D#(𝑟, ω)𝜒6(𝑟)𝑑𝑟|" .       (16) 

Here, 𝑟!'𝜒IK5,(9)(𝑟) is the radial one-nucleon continuum-state wave function, 

having the standing-wave asymptotic behavior. Being normalized to the δ-function 

of the energy in the 𝑊 = 𝒫 = 0 limit, this wave function obeys the mentioned 

Schrodinger equation, in which the above-described complex term is added to the 

mean field. The partial branching ratio for direct one-nucleon decay of the ISGMPR 

into the channel µ, 𝑏#,6	↑ , is determined by the strength functions of Eqs. (16), (8), 

and (9): 

𝑏#,6↑ = ∫ 𝑆#,6↑ (ω)𝑑ω	/ ∫ 𝑆#(ω)𝑑ωL$!L$!
	.                             (17) 



Here, 𝜔'" = ω' − ω" is an energy interval, that includes the considered GR. The 

total branching ratio, 𝑏#,MFM↑ = ∑ 𝑏#,6↑6  (summation on the neutron and proton 

subsystems is also included), determines the branching ratio for statistical (mainly 

neutron) decay: 𝑏#↓ = 1 − 𝑏#,MFM↑ . Note that in the cRPA limit (𝑊 = 𝒫 = 0)      

𝑏#,MFM↑ = 1 and  𝑏#↓ = 0.  

 

III. DESCRIPTION OF ISGMPRs 

 

Within the current PHDOM version employed for describing the main 

characteristics of ISGMPRs in the medium-heavy closed-shell nuclei, the following 

input quantities are used: 1) a realistic (Woods-Saxon-type) phenomenological 

partially self-consistent mean field 𝑈(𝑥) (described in details in Ref. [18]); 2) the 

non-spin-flip part of  Landau-Migdal p-h interaction (Eq. (2)) with the isovector 𝐹′ 

and isoscalar 𝐹(𝑟) strengths related to the mean field due to approximate 

restoration of isospin symmetry and translation invariance of the model 

Hamiltonian, respectively, and; 3) the phenomenological imaginary part 𝑊(ω) of 

the intensity of an energy-averaged p-h self-energy term responsible for the 

spreading effect. 

1) The mean field 𝑈(𝑥) contains the isoscalar part 𝑈5(𝑥), including the central 

and spin-orbit terms, the isovector and Coulomb parts 𝑈'(𝑥) and 𝑈O(𝑥), 

respectively, are taken as: 

𝑈(𝑥) = 𝑈5(𝑥) + 𝑈'(𝑥) + 𝑈O(𝑥) ,                                    (18) 

𝑈5(𝑥) = −𝑈5𝑓:;(𝑟, 𝑅, 𝑎) + 𝑈PQ
'
,
AR&'
A,

𝑙𝑠 ,                           (19) 

𝑈'(𝑥) =
'
"
𝜏(B)𝑣(𝑟) ,  𝑈O(𝑥) =

'
"
J1 − 𝜏(B)K𝑈O(𝑟)	.                (20) 

Here, 𝑅 = 𝑟5𝐴'/B, 𝑟5 and 𝑎 are the size and diffuseness parameters, respectively; 

𝑈5 and 𝑈PQ are the strength parameters related to the isoscalar central and spin- 

orbit terms, respectively (the quantity 𝑙𝑠	is	taken	in	the	fraction	of ħ2); 𝑣(𝑟) =



2𝐹′𝑛(!)(𝑟) is the symmetry potential calculated self-consistently via the neutron-

excess density 𝑛(!)(𝑟) = 𝑛0(𝑟) − 𝑛2(𝑟), and; 𝑈O(𝑟) is the mean Coulomb field 

which is also calculated self-consistently via the proton density 𝑛2(𝑟).   

2) The isoscalar and isovector strengths of the non-spin-flip part of Landau-

Migdal p-h interaction are taken as 𝐹(𝑟) = 𝐶𝑓(𝑟) and 𝐹$ = 𝐶𝑓$, 𝐶 = 300 MeVfm3. 

From the above-given expression for the symmetry potential, it follows that 

Landau-Migdal parameter 𝑓′ can be related to mean-field parameters. The 

isoscalar strength 𝑓(𝑟) is parameterized in accordance with Ref. [19] as: 

𝑓(𝑟) = 𝑓CS + J𝑓T0 − 𝑓CSK𝑓:;(𝑟) .                                 (21) 

The small parameter 𝑓T0 is usually taken as an universal quantity, while the main 

parameter 𝑓CS in Eq. (21) is found for each considered nucleus from the condition, 

that the energy ω#4';;  of the spurious isoscalar dipole state is close to zero (see 

Section II). The spurious-state energy and strength can be found by 

parameterization of the inverse polarizability of Eq. (9) related to spurious isoscalar 

dipole excitations: 

[𝑃#4';; (ω → 0)]!' = [ω" − (ω#4';; )"]/(2𝑥#4';; 𝐸𝑊𝑆𝑅#4';; ) .               (22) 

In this expression, which follows from the spectral expansion for the p-h Green 

function taken at low excitation energies (see Eqs. (A1), and (A2) of Appendix A), 

the quantity 𝑥#4';;  is the spurious-state fraction of the respective energy-weighted 

sum rule of Eq. (14), 𝑥#4';; = 𝜔#4';; (𝑀#4'
;; )"/𝐸𝑊𝑆𝑅#4';;  , with  𝑀#4'

;;  being the 

spurious-state excitation amplitude. The reasonable choice of parameters 𝑓CS and 

𝑓T0 means that within the model used, the spurious-state energy is close to zero 

and the spurious-state fraction of 𝐸𝑊𝑆𝑅#4';;  is close to unity. Here, we show also 

the expression for the 1! spurious-state transition density (see Eqs. (A2), and (A3) 

of Appendix A) 

𝜌#4';; (𝑟) = 𝑟" e	𝑉�#4';; (𝑟, ω → 0)−𝑉#4';; (𝑟)f𝑀#4'
;;  /	e𝐹(𝑟)𝑃#4';; (ω → 0)f	,   (23) 



previously used (Section II). 

Actually, the outlined method for the 1! spurious state description can be 

used for the evaluation, within cRPA, of the energy ω#	UFPP, strength 

𝑥#	UFPP𝐸𝑊𝑆𝑅# ω#	UFPP⁄ , and transition density 𝜌#UFPP(𝑟) of any isoscalar collective state 

below the nucleon-escape threshold. In this case, the calculated inverse 

polarizability can be presented in the form 

�𝑃#(ω → ω#	UFPP)�
!'
= Jω − ω#	UFPPKω#	UFPP/(𝑥#UFPP𝐸𝑊𝑆𝑅#) ,               (24) 

which allows to find the collective-state energy and strength. The latter is usually 

described in terms of the reduced EL-transition probability (𝐵(𝐸𝐿), 0= → 𝐿))/𝑒", 

where 𝑒 is the proton charge [1]. This quantity is related to the collective-state 

strength as follows: 

𝑥#	UFPP𝐸𝑊𝑆𝑅# ω#	UFPP⁄ = ?
"#='

(𝐵(𝐸𝐿), 0= → 𝐿))/𝑒" .                    (25) 

Factor 4 in this expression appears due to isobaric structure of the external field 

related to 𝐸𝐿-transitions (𝐿 ≠ 1): 𝑉V# ∼
C
"
(1 − 𝜏(B)). Eq. (23) taken at ω → ω#	UFPP 

can be directly used to get the expression for the collective-state transition density 

in terms of the related effective field. 

3) Following Refs. [6-9], we take the imaginary part of the intensity of the 

energy-averaged p-h self-energy term responsible for the spreading effect as three-

parametric function of the excitation energy: 

2𝑊(ω) = � 0, ω < ∆	;																																																						
𝛼 (ω − ∆)" [1 + (ω − ∆)" 𝐵"⁄ ]⁄ , ω ≥ ∆	.                   (26) 

Here the adjustable parameters 𝛼, ∆ and 𝐵 can be called as the strength, gap and 

saturation parameters, respectively. The use of Eq. (26) for evaluation of the real 

part, 𝒫(ω), by means of the proper dispersive relationship [3] leads to a rather 

cumbersome expression, which can be found in Ref. [20]. The above-mentioned 

adjustable parameters are found from the PHDOM-based description of observable 



total width (FWHM) and, to some extent, peak energy for considered ISGMPRs in 

a given nucleus. 

The strength (𝑈5, 𝑈PQ, 𝑓′) and geometrical (𝑟5, 𝑎) mean-field parameters 

together with the parameters 𝑓CS, 𝑓T0 of Eq. (21) are the independent input data 

used in implementation of PHDOM for describing ISGMPRs in medium-heavy 

closed-shell nuclei. For the 208Pb nucleus taken as an appropriate example, the 

above-listed parameters are found from a description of observable single-

quasiparticle spectra in the respective even-odd and odd-even nuclei. Table 1 

contains the mean-field parameters, the p-h interaction parameters and also 

adjustable (“spreading”) parameters. The latter determine the quantities 𝑊(ω) 

and 𝒫(ω) (Fig. 1). Thus, all the main characteristics of ISGMPRs (including 𝐿 = 0, 2 

overtones) are described without the use of additional parameters. 

In presenting the ISGMPR main characteristics calculated within the current 

PHDOM version for the 208Pb nucleus, we start from the relative energy-weighted 

strength functions 𝑦#(ω) of Eq. (15). These functions are shown in Fig. 2 for ISGMR 

and ISGMR2, Fig. 3 for ISGQR and ISGQR2, and Fig. 4 for ISGDR and ISGOR. In    

Tables 2, 3, the following ISGMPRs parameters deduced from calculated strength 

functions 𝑆#(ω) of Eqs. (8), and (9) are given together with available experimental 

data: the fraction of 𝐸𝑊𝑆𝑅#, 𝑥#, evaluated for a large excitation-energy interval 

𝜔'"; the main peak energy (energies), ω#(2CDE); the centroid energy ω�#	evaluated 

for a given energy interval within PHDOM and cRPA in a comparison with the 

results of the self-consistent microscopic approach of HF-based RPA using the SkT1 

Skyrme force associated with m∗/m = 1 [10]; the total width (the full width at half 

maximum) 𝛤#(*:W%), and; the parameters 𝜂# and 𝜂#FG used in the definition of the 

respective probing operator. The ISGMPRs parameters evaluated within cRPA 

(Tables 2, 3) are obtained with the use of the small (energy-independent) 

“technical” value 2𝑊 = 10 keV.  



The 1! spurious-state parameters deduced from the calculated polarizability  

𝑃#4';; (ω) of Eqs. (9), (22) ω#4';; ≅ 20 keV and 𝑥#4';; ≅ 93 % are related to the chosen 

parameters 𝑓CS and 𝑓T0. As an example of describing within cRPA low-energy 

isoscalar collective states (phonons) according to Eqs. (24), and (25), we present in 

Table 4 the calculated characteristics of 3! and 2= collective states in 208Pb. 

The next main characteristic of the considered GRs is the projected transition 

density of Eq. (10),	𝜌."(𝑟, 𝜔). Evaluated within PHDOM these densities taken at the 

peak energy of respective ISGMPR in 208Pb are shown in Figs. 5-8. In Figs. 7 and 8, 

the 1! spurious-state and low energy 3! transition densities calculated within cRPA 

are also shown. 

Turning to direct one-nucleon decay of the considered ISGMPRs (Section II), 

we show the partial and total branching ratios, 𝑏#,6↑  and 𝑏#↑, evaluated within the 

PHDOM for 208Pb. The neutron branching ratios are given in Table 5 with indication 

of the respective excitation-energy intervals. The calculated partial branching 

ratios for direct one-proton decay of ISGDR are compared with available 

experimental data in Table 6. 

 

IV. DISCUSSION OF RESULTS. CONCLUSIVE REMARKS 

 

In the previous Section, we presented the PHDOM-based description of main 

properties of six ISGMPRs in the 208Pb nucleus. The cRPA-based description of a few 

low-energy bound isoscalar (p-h)-type states (including the 1! spurious state 

related to centre-of-mass motion) is also given. Most of input quantities (enough 

for a cRPA-based description of isoscalar and isovector non-spin-flip GRs), namely, 

the mean-field parameters and (p-h)-interaction strengths are taken from 

independent data with accounting for fundamental symmetries of the model 

Hamiltonian (Table 1). Only two specific parameters 𝛼 and 𝐵 (Table 1) have been 

adjusted to get within the model a reasonable description of experimental total 



width and, to some extent, the peak energy of considered GRs. As it seen from 

Table 2, the peak energies of the monopole, quadrupole and octupole resonances 

is well described, while the peak energy of high-energy dipole resonance is about 

1.5 MeV higher than the experimental value. As for the widths of these resonances, 

the calculated ISGMR width is closer to the upper boundary of the experimental 

value, the ISGQR width is closer to the lower boundary of the experimental value. 

The high-energy components of ISGDR and ISGOR widths are significantly smaller 

than the experimental data, which are rather contradictive. The scatter of 

respective experimental data doesn’t allow now to check more deeply abilities of 

the model. The strength-function calculations are verified by the use of respective 

energy-weighted sum rules (Tables 2-4). The spreading shift related to the centroid 

energy of considered GRs is found relatively small (0.2-0.6 MeV), as it follows from 

comparing the centroid energies evaluated within the PHDOM and the cRPA (Table 

2). The spreading shift related to the ISGMPR peak-energy (Table 2) is in a 

qualitative agreement with the energy dependence of the real (dispersive) part of 

the intensity of the energy-averaged (p-h) self-energy term 𝒫(ω) (Fig. 1). It is 

noteworthy that the observed area of the ISGQR2 strength concentration (around 

26 MeV [22]) is in agreement with the respective data of Table 2. We note also that 

the centroid energies of ISGMPRs calculated within cRPA and the microscopic 

approach of HF-based RPA using the SkT1 Skyrme force associated with m∗/m = 1 

[10] are close (Table 2). 

The evaluated ISGMPR parameters given in Tables 2, 3 are deduced from 

strength functions 𝑆#(ω) calculated in a large excitation energy interval. It is 

convenient to compare the strength distributions for various GRs in terms of the 

relative energy-weighted strength functions 𝑦#(ω) (Figs. 2-4). As expected, the 

degree of strength concentration is decreased with increasing GR excitation 

energy. 



Main characteristics of ISGMPR include the projected transition density 

𝜌."(𝑟, ω) considered in a large excitation energy interval. The radial dependence 

of 𝜌."J𝑟, ω = ω#(2CDE)K (Figs. 5-8) can be considered as a signature of considered 

GR. The nodeless radial dependence is related to main-tone GRs (ISGQR and 

ISGOR); the one-node radial dependence is related to first-order-overtone GRs 

(ISGMR, ISGDR, ISGQR2); the two-node radial dependence is related to second-

order-overtone GRs (ISGMR2). The radial dependence of the 1! spurious-state 

transition density 𝜌#4';; (𝑟) (Fig. 7) exhibits, naturally, nodeless radial dependence. 

A possibility to estimate the branching ratios for direct one-nucleon decay of 

an arbitrary GR related to unique features of the PHDOM-based approach is shown. 

The respective relations given in Section II are, actually, obtained under assumption 

of a purely single-hole nature of the product-nucleus states that are populated in 

the decay process. Therefore, the calculated partial branching ratios can be 

considered as an upper limit of possible values. In Table 5, the evaluated branching 

ratios for direct one-neutron decay of four ISGMPRs in the 208Pb nucleus are given 

together with available experimental data. An approximately two-fold excess of the 

calculated values above the respective experimental values for ISGMR and ISGDR 

is worth noting. This note is also valid for the calculated values of the branching 

ratios for direct one-proton decay of ISGDR (Table 6). However, the description of 

experimental data is markedly improved upon multiplying the calculated branching 

ratios 𝑏#4',6↑  by the experimental values of spectroscopic factors 𝑆6 for proton-hole 

states of the product nucleus 207Tl. (The experimental spectroscopic factors 𝑆6 are 

close to unity for the majority of neutron-hole states of the 207Pb nucleus, which 

are indicated in Table 5). 

In conclusion, the particle-hole dispersive optical model, was adopted for 

describing main properties of Isoscalar Giant Multipole Resonances up to 𝐿 = 3 in 

medium-heavy closed-shell nuclei. The overtones of the monopole and quadrupole 

isoscalar giant resonances were also studied. The main properties, considered in a 



large excitation-energy interval, include the following energy-averaged quantities: 

(i) the strength function related to an appropriate probing operator; (ii) the 

projected one-body transition density (related to the corresponding operator), 

and; (iii) partial probabilities of direct one-nucleon decay. Unique abilities of 

PHDOM where conditioned by a joint description of the main relaxation processes 

of high-energy p-h configurations associated with a given giant resonance. Two 

processes, Landau damping and coupling the mentioned configurations to the 

single-particle continuum, were described microscopically in terms of Landau-

Migdal p-h interaction and a phenomenological mean field, partially consistent 

with this interaction. Another mode, the coupling to many quasiparticle states (the 

spreading effect) was described phenomenologically in terms of the imaginary part 

of the properly parameterized energy-averaged p-h self-energy term. The 

imaginary part determines the real one via a microscopically-based dispersive 

relationship.  

 The model parameters related to a mean field and p-h interaction were taken 

from independent data accounting for the isospin symmetry and translation 

invariance of the model Hamiltonian. Parameters of the imaginary part of the 

strength of self-energy term were adjusted to reproduce in PHDOM-based 

calculations of ISGMPR total widths for the considered closed-shell nucleus. The 

adopted model is implemented to describe the characteristics of the ISGMPRs in 

the 208Pb nucleus, taken as an example. Calculation results were compared with 

available experimental data. Some of the results were compared with those 

obtained in microscopic HF-based RPA calculations using Skyrme force. These 

comparisons indicate that PHDOM represents a rather powerful tool for describing 

ISGMPRs in medium-heavy closed-shell nuclei. The implementation of the PHDOM-

based approach to describing ISGMPRs in other medium-heavy closed-shell nuclei 

is in progress. 
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APPENDIX A 

 

A cRPA description of isoscalar bound (p-h)-type states 

 

1. The description is based on the spectral expansion of the cRPA p-h Green 

function, whose radial components, 𝐴&#UXYZ(𝑟, 𝑟$, ω), satisfying Eq. (1) in neglecting 

the spreading effect, can be presented in the form: 

𝐴&#UXYZ(𝑟, 𝑟$, ω) = ∑ 𝜌U,#(𝑟)𝜌U,#(𝑟′) �
'

J!J(,"=T5
− '

J=J(,"!T5
�U .            (A1) 

Here, ωU,# and 𝜌U,#(𝑟) are, respectively, the energy and radial (one-dimensional) 

transition density of (p-h)-type states. These are (latter) normalized to unity for 

bound states and to the δ-function of the energy for continuum states.  

 

2. In case of the spurious isoscalar 1! state, having within the model the energy 

ω#4';;  close to zero, the expression for the polarizability of Eqs. (6) and (9) related 

to the external field 𝑉#4';; (𝑟) = 𝑟 and taken in the cRPA limit follows from (A1): 

𝑃#4';; (ω → 0) = 2ω#4';; (𝑀#4'
;; )"/ eω" − Jω[4'\\ K

"f.                    (A2) 

Here, 𝑀#4'
;; = ∫𝜌#4';; (𝑟)𝑟𝑑𝑟 is the spurious-state excitation amplitude. The use of 

the inverse polarizability of Eq. (22) is more convenient for searching the spurious-

state energy and fraction of 𝐸𝑊𝑆𝑅#4';; . 

 



3. The expression for the spurious-state transition density 𝜌#4';; (𝑟) of Eq. (23) 

follows from Eqs. (6) and (7) (considered in the cRPA limit) and Eqs. (A1) and (A2) 

taken at ω → ω#4';; → 0: 

𝑉D#4';; (𝑟, ω → 0) − 𝑉#4';; (𝑟) = *(,)
,!
𝜌#4';; (𝑟)𝑀#4'

;; 2𝜔#4';; / eω" − Jω[4'\\ K
"f.   (A3) 

The radial dependence of 𝜌#4';; (𝑟)/𝑟" is expected to be close to the “ideal” 

spurious-state transition density, which is proportional to the radial gradient of 

nuclear density. As a result, the parameter 𝜂' in the expression for the probing 

operator 𝑉#4'(𝑟) (Section II) is expected to be close to the widely-used              

quantity 5/3. 

 

4. The main characteristics of isoscalar collective bound states, ω#UFPP, 𝑀#
UFPP (or 

𝑥#UFPP), and 𝜌#UFPP(𝑟) can be obtained from Eqs. (A2) and (A3), related to the 

respective external field 𝑉#(𝑟) and taken at ω → ω#UFPP. In such a case, the ratio 

2ω#UFPP/ eω" − Jω#UFPPK
"f
"

 is going to 1/(ω − ω#UFPP) (see, e.g., Eq. (24)). 
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Table 1. The list of mean-field and adjustable model parameters (notations are 

given in the text) used in calculations for 208Pb.  

𝑈5, 
MeV 

𝑈PQ,   
MeV fm2 

𝑓′ 𝑟5,    
fm 

𝑎,       
fm 

𝑓CS  𝑓T0  α,  
MeV-1 

B,    
MeV 

∆,       
MeV 

55.74 33.35 0.976 1.21 0.63 -2.66 0.0875 0.20 4.5 3.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. The ISGMPRs parameters calculated for 208Pb together with available 

experimental data (notations are given in the text). 
 

𝐿	, 𝜂#  
ω' − ω", 

MeV 
𝑥#, 
% 

ω�#, 
MeV 

ω#(2CDE), 
MeV 

Γ#(*:W%), 
MeV 

 

 
0 

𝜂5 = 1 
 

5 – 35 100 13.9 14.2 1.3 cRPA 

5 – 35 103 14.5 14.2 4.2 PHDOM 
8 – 20 99±15 - 13.96±0.20 

13.6±0.2 
2.88±0.20 

3.6±0.4 
Expt. [14] 
Expt. [21] 

7 – 60 - 13.92 - - SkT1 
1 

(LE) 
𝜂' = 1.72 

5 – 15 18 9.5 - - cRPA 

5 – 15 18 9.7 6.3 ; 11.8 - PHDOM 
- 24±15 - 13.26±0.30 5.68±0.50 Expt. [14] 

 
1 

(HE) 
𝜂' = 1.72 

15 – 35 81 22.9 - - cRPA 
15 – 35 83 23.5 23.9 7.0 PHDOM 
8 – 35 88±15 - 22.20±0.30 

22.5±0.3 
22.1±0.3 

9.39±0.35 
10.9±0.9 
3.8±0.8 

Expt. [14] 
Expt. [21] 
Expt. [19] 

16 – 60 - 23.40 - - SkT1 
 

2 
5 – 35 86 11.0 10.7 0.1 cRPA 
5 – 35 90 11.3 10.6 2.7 PHDOM 
8 – 35 100±13 - 10.89±0.30 

10.9±0.3 
3.0±0.3 
3.1±0.3 

Expt. [14] 
Expt. [23] 

7 – 60 - 10.55 - - SkT1 
3 

(LE) 
5 – 15 17 8.4 - - cRPA 
5 – 15 19 8.7 5.8 1.1 PHDOM 

 
3 

(HE) 

15 – 35 60 19.8 18.9 0.3 cRPA 
15 – 35 61 20.7 19.5 3.7 PHDOM 
8 – 35 70±14 - 19.6±0.5 

19.1±1.1 
7.4±0.6 
5.3±0.8  

Expt. [14] 
Expt. [24] 

15 – 60 - 19.34 - - SkT1 
 

 

 

 



 

Table 3. The overtone parameters calculated for ISGMR2 and ISGQR2 in 208Pb (see 

text).  
 

𝐿	, 𝜂#  
ω' − ω", 

MeV 
𝑥#, 
% 

ω�#, 
MeV 

ω#(2CDE), 
MeV 

 

 
0 

𝜂5FG = 2.43 

5 – 15 17 10.9 - cRPA 

5 – 15 18 11.1 10.0 PHDOM 

15 – 45 81 27.1 - cRPA 

15 – 45 81 27.6 33.6 PHDOM 

 
2 

𝜂"FG =1.73 

5 – 15 22 11.7 - cRPA 

5 – 15 22 11.4 10.7 PHDOM 

15 – 45 78 26.0 - cRPA 

15 – 45 81 26.5 32.1 PHDOM 

 

 

Table 4. Evaluated within cRPA parameters of isoscalar collective low-energy 3! 

and 2= states in 208Pb in comparison with respective experimental data [25] (see 

text). 

𝐽) ω#	UFPP, 
MeV 

ω#	,CS2MUFPP , 
MeV 

𝑥#UFPP,    
% 

𝐵(𝐸𝐿),  
10"#!'𝑒"fm"# 

𝐵CS2M(𝐸𝐿),  
10"#!'𝑒"fm"# 

3! 2.40 2.62 21 12.1 6.11±0.09 

	2= 4.42 4.09 14 4.0 3.18±0.16 

 

 

 

 

 

 



 

Table 5. The partial and total branching ratios for direct one-neutron decay of the 

ISGMPR into the channel µ. The evaluated within PHDOM branching ratios (in %) 

for 208Pb are given with indication of the respective excitation-energy intervals 

𝜔'"	(in MeV) (see text). 

 𝑏#45,6	↑  𝑏#4',6	↑  𝑏#4",6	↑  𝑏#4B,6	↑  

𝜇!' \ 𝜔'" 12.5 – 15.5 [26] 20 – 25 [27] 9 – 12 16 – 23 

3p1/2 3.6 1.1 2.8 1.6 

2f5/2 18.0 5.4 1.5 5.9 

3p3/2 7.5 2.6 5.8 3.8 

1i13/2 0.8 11.4 0.2 5.9 

2f7/2 26.6 9.3 0.2 13.3 

� 𝑏#,6	↑
6

 56.5 29.8 10.5 30.5 

�� 𝑏#,6	↑
6

�
CS2M

 
22 ± 6	[26] 

14.3 ± 3 [28] 

23 ± 5	[27] 

10.5 [22] 

- - 

𝑏#
↑,0 56.7 66.8 10.6 37.5 

 

 

 

 

 

 

 

 

 

 



 

Table 6. The branching ratios (in %) for direct one-proton decay of the ISGDR in 
208Pb evaluated within PHDOM for the excitation-energy intervals                                

𝜔'" = 20 − 25	MeV (see text). 

𝜇!' 𝑏#4',6	↑  𝑆6 [29] 𝑆6 ∙ 𝑏#4',6	↑  J𝑏#4',6	↑ K
CS2M

 [27] 

3s1/2 3.4 0.55 1.9  

2.3 ± 1.1 
2d3/2 3.0 0.57 1.7 

1h11/2 0.2 0.58 0.1  

1.2 ± 0.7 
2d5/2 4.1 0.54 2.2 

� 𝑏#,6	↑
6

 
 

10.7 
 

- 
 

5.9 
 

3.5 ± 1.8 

 

 

 



 

Fig. 1. The phenomenological imaginary part 𝑊(ω) (solid line) and real part 𝒫(ω) 

(thin line) of the energy-averaged p-h self-energy term intensity, evaluated for 
208Pb (the “spreading” parameters used are given in Table 1). 
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Fig. 2. The relative energy-weighted strength functions calculated within PHDOM 

for ISGMR (solid line) and ISGMR2 (thin line) in 208Pb. 
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Fig. 3. The same as in Fig.2, but for ISGQR and ISGQR2. 
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Fig. 4. The same as in Fig.2, but for ISGDR (solid line) and ISGOR (thin line). 
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Fig. 5. The projected transition densities taken at the resonance peak-energy and 

calculated within PHDOM for ISGMR (solid line) and High-Energy ISGMR2 (thin line) 

in 208Pb. 
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Fig. 6. The same as in Fig.5, but for ISGQR and High-Energy ISGQR2. 
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Fig. 7. The projected transition density taken at the resonance peak-energy and 

calculated within PHDOM for High-Energy ISGDR (solid line), and the 1" spurious-

state transition density calculated within cRPA (thin line) for 208Pb. 
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Fig. 8. The projected transition density taken at the resonance peak-energy and 

calculated within PHDOM for High-Energy ISGOR (solid line), and the 3" state 

transition density calculated within cRPA (thin line) for 208Pb. 
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