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We study the 1S0 proton pairing gap in beta-equilibrated neutron star matter within the frame-
work of chiral effective field theory. We focus on the role of three-body forces, which strongly modify
the effective proton-proton spin-singlet interaction in dense matter. We find that three-body forces
generically reduce both the size of the pairing gap and the maximum density at which proton pair-
ing may occur. The pairing gap is computed within BCS theory using a single-particle dispersion
relation calculated up to second order in perturbation theory. Model uncertainties are estimated
by varying the nuclear potential (its order in the chiral expansion and high-momentum cutoff) and
the choice of single-particle spectrum in the gap equation. We find that a second-order perturbative
treatment of the single-particle spectrum suppresses the proton 1S0 pairing gap relative to the use
of a free spectrum. We estimate the critical temperature for the onset of proton superconductivity
to be Tc = (3.2 − 5.1) × 109 K, which is consistent with previous theoretical results in the literature
and marginally within the range deduced from a recent Bayesian analysis of neutron star cooling
observations.

PACS numbers: 21.30.-x, 21.65.Ef,

I. INTRODUCTION

Neutron superfluidity and proton superconductivity
play an important role in the physics of neutron stars [1].
The dilute gas of neutrons in the inner crust of a neutron
star is expected to pair in the spin-singlet channel, result-
ing in a neutron superfluid whose vortices provide a large
angular momentum reservoir critical for the production
of pulsar glitches [2–5]. At the higher densities present in
the core of neutron stars, the proton fraction is much less
than that of neutrons, and therefore the proton Fermi
momentum is not comparable with the neutron Fermi
momentum and the formation of neutron-proton Cooper
pairs is unlikely. It is then natural to consider neutron-
neutron and proton-proton pairing separately. At large
densities, neutrons may be paired in the spin-triplet
channel, leading to novel cooling processes involving pair
formation/breaking that can impact the early thermal
evolution of neutron stars [6–14]. Neutron star cooling
may also be affected by the presence of superconducting
protons in neutron star cores [15, 16], though the critical
temperature is expected to be somewhat larger than that
for neutron superfluidity and consequently would impact
the cooling curve at earlier timescales. Well below the
critical temperature for neutron superfluidity and proton
superconductivity, neutrino emission involving neutrons
or protons is highly suppressed due to the minimum gap
energy required to break a Cooper pair [17]. Superfluid-
ity also gives reduction factors to the heat capacity and
thermal conductivity of dense nuclear matter [8, 18]. Be-
sides neutrino emission from Cooper pairs, superfluidity
and superconductivity in the crust and core affect pulsar
glitches [19, 20], vortex pinning [21, 22], and neutron star
precession [23, 24].

Accurate estimates for nuclear pairing gaps in the var-
ious spin and isospin channels are challenging due to

uncertainties in strong interaction physics, in particular
poorly constrained nuclear many-body correlations and
three-body forces that become increasingly important at
high densities. In the past, neutron spin-singlet pairing
in pure neutron matter has been widely studied, with
recent work focusing on the role of three-body forces
[25, 26] and long- and short-range correlations [27, 28]
in the BCS approximation. Quantum Monte Carlo cal-
culations [29], on the other hand, can explore neutron
pairing in the strong superfluid regime and connections
to ultracold Fermi gases at unitarity. In nearly all cases,
however, lattice effects and the presence of nuclear clus-
ters in the neutron star crust are neglected in microscopic
many-body calculations of the neutron 1S0 pairing gap.
Spin-triplet pairing of neutrons in the neutron star core
is anticipated from the strong attraction in the 3P2− 3F2

partial-wave channel observed in nucleon-nucleon (NN)
elastic scattering [30]. However, many-body effects such
as screening, short-range correlations, and three-body
forces play a substantial role, and there is currently much
uncertainty in estimates of the spin-triplet pairing gap
(for a recent review, see Ref. [31]).

Previous works [32–37] studying proton pairing in neu-
tron star cores have employed a variety of NN inter-
action models and many-body methods. The peak in
the proton pairing gap was found to vary between ∆ '
0.4 − 0.9 MeV and to occur around normal nuclear den-
sities n0 ' 0.16 fm−3, though the density of protons is
one or two orders of magnitude less and set by the condi-
tion of beta equilibrium. More recently [38] a three-body
force based on π and ρ meson exchange was included in
the solution of the BCS gap equation and found to re-
duce by half the maximum value of the proton pairing gap
compared to the inclusion of two-body forces alone. The
two-body force employed in Ref. [38] was the Argonne
v18 potential, which includes explicit one-pion exchange
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at large distances but treats the medium- and short-range
parts of the NN potential in terms of parametrized phe-
nomenological functions.

In the present study we focus on a microscopic descrip-
tion of proton pairing in neutron star cores employing a
set of two- and three-body nuclear forces [39–43] derived
in the framework of chiral effective field theory [44–46].
Previous works employing these potentials have shown
that they provide a good description of nuclear matter
saturation [42, 43], the liquid-gas phase transition [47–
49], nucleon-nucleus optical potentials [50, 51] and Fermi
liquid parameters [52]. In addition the derived nuclear
equation of state (EOS) is consistent with other stud-
ies [53–57] employing different chiral nuclear forces and
many-body methods. The present work will be impor-
tant for developing consistent modeling of the equation
of state and nucleonic pairing needed for neutron star
cooling calculations.

The paper is organized as follows. In Section II we de-
scribe the method employed to solve the BCS gap equa-
tion. We also detail the treatment of the proton-proton
effective interaction and the proton single-particle po-
tential in neutron-rich matter from chiral effective field
theory. In Section III we present results for the density-
dependent 1S0 proton pairing gap at the Fermi surface in
beta-equilibrated nuclear matter. Theoretical uncertain-
ties are estimated by varying the resolution scale of the
nuclear potential, the order in the chiral expansion, and
the treatment of the single-particle dispersion relation.
We conclude with a summary and outlook.

II. PROTON PAIRING GAPS IN
NEUTRON-RICH MATTER

A. BCS gap equation

The 1S0 pairing gap for a given baryon number density
can be obtained in the BCS approximation by solving the
gap equation

∆(k) = −1

2

∑
k′

Veff(k, k′)
∆(k′)√

(ek′ − µ)2 + ∆2(k′)
, (1)

where ∆(k) is the pairing gap for the momentum k,
Veff(k, k′) is the effective potential between two incom-
ing particles with relative momentum k and outgoing
relative momentum k′. The single-particle energy as a
function of momentum k is denoted by ek, and µ is the
chemical potential for protons at a given density. In
the BCS approximation, the effective potential is chosen
as the free-space nucleon-nucleon interaction VNN . Im-
proved approximations account for medium effects, such
as three-body force contributions to the in-medium NN
interaction V med

NN , as well as long-range correlations and
polarization effects. In the present work, we will consider
only the additional contributions to Veff(k, k′) from three-
body forces. Extensions to include polarization effects

through the Fermi liquid theory quasiparticle interaction
[28, 58, 59] will be studied in later work.

Many BCS calculations in nuclear matter employ an
effective mass approximation

ek =
k2

2M∗
+ U, (2)

where U depends on the density but is independent of
the momentum k. From Eq. (2), the gap equation is
then approximated by substituting

ek − µ '
1

2M∗
(k2 − k2

F ) . (3)

The above approximation assumes that the single-
particle energy is nearly quadratic in k near the Fermi
momentum kF . In this case the numerical solution for
Eq. (1) can be obtained from a generalized matrix eigen-
value solution [60] by noting that ∆i = Fij∆j as in gap
Eq. (1). In practice one applies an adaptive mesh point
scheme that depends on the effective mass for a given
Fermi momentum.

We also employ the modified Broyden method [61] to
verify our numerical solutions. In this approach the gap
solution is obtained from a version of direct iteration,
where an initial guess of the momentum-dependent gap
function is inserted into the right-hand side of Eq. (1)
to obtain an updated guess for the gap function on the
left-hand side of Eq. (1). The modified Broyden method
uses a numerically efficient algorithm for computing and
storing the Jacobian, from which the gap equation can
be solved iteratively using a pseudo-Newton convergence
method (see Refs. [61, 62] for complete details). We find
that this method converges rapidly once we have an ini-
tial guess for the gap size ∆(k). Moreover, the solution
is not particularly sensitive to the initial guess ∆(0)(k).
We find that both methods agree within 1 keV when we
use the effective mass approximation in Eq. (2).

The numerical solution to the generalized matrix eigen-
value problem, however, is not applicable when we use
a general single-particle energy spectrum instead of the
effective mass approximation. The matrix eigenvalue
method enables us to obtain an analytic solution for
the denominator in Eq. (1),

√
(ek′ − µ)2 + ∆2(k′), when

we apply the effective mass approximation. When the
single particle energy spectrum does not actually fol-
low a quadratic approximation, the different momentum-
dependent effective masses give different gap sizes even
though the order of magnitude is similar for each effective
mass. Thus, we implement the Broyden method tech-
nique as explained in Drischeler et al. [62] to obtain the
BCS solution in this work.

B. Nucleon single-particle energy

The single-particle energy spectrum plays an impor-
tant role in determining the solution to the gap equa-
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FIG. 1: Diagrammatic contributions to the nucleon self-
energy in nuclear matter. The wavy line represents a medium-
dependent effective NN interaction derived from two- and
three-body chiral forces in isospin-asymmetric nuclear mat-
ter.

tion, and in the present work we consider three approx-
imations to estimate the associated theoretical uncer-
tainty. First, we assume a free-particle spectrum given

by e
(0)
k = k2/2M . Second, we compute the proton single-

particle energy in the Hartree-Fock approximation

e
(1)
k = k2/2M + Σ(1)(k), (4)

where the first-order contribution Σ(1)(k) to the nucleon
self energy is shown diagrammatically in Fig. 1(a). Third,
we compute the single-particle energy self-consistently at
second-order in perturbation theory

e
(2)
k = k2/2M + Σ(1)(k) + ReΣ(2)(e

(2)
k , k), (5)

where Σ(2)(ek, k) is represented by the sum of diagrams
(b) and (c) in Fig. 1. The first- and second-order dia-
grammatic contributions to the nucleon self energy have
the form

Σ
(1a)
t (k) (6)

=
∑

1

〈~k~h1ss1tt1|(V̄NN + V̄ med
NN /2)|~k~h1ss1tt1〉n1,

Σ
(2b)
t (k, ω) (7)

=
1

2

∑
123

|〈~p1~p3s1s3t1t3|V̄eff |~k~h2ss2tt2〉|2
ω + ε2 − ε1 − ε3 + iη

n̄1n2n̄3,

Σ
(2c)
t (k, ω) (8)

=
1

2

∑
123

|〈~h1
~h3s1s3t1t3|V̄eff |~k ~p2ss2tt2〉|2
ω + ε2 − ε1 − ε3 − iη

n1n̄2n3,

where t labels the isospin quantum number of the exter-
nal particle, nj = θ(kf − |~pj |) is the zero-temperature
momentum distribution function, n̄j = 1 − nj , V̄ =
V −P12V is the antisymmetrized NN potential with P12

the exchange-operator, and all sums are taken over mo-
mentum, spin, and isospin states.

The effective interaction in Eqs. (8) and (9) is de-
fined by Veff = VNN + V med

NN , where V med
NN is the density-

dependent NN potential derived from the N2LO chiral
three-body force by averaging one state over the filled
Fermi sea of noninteracting protons and neutrons in
asymmetric nuclear matter [63] (for additional details
see Refs. [25, 64]). In computing the in-medium inter-
action V med

NN , we effectively normal order with respect to
a noninteracting (unpaired) ground state. The inclusion
of pairing correlations in the normal-ordering reference
state for V med

NN [65] amounts to summing the third parti-
cle over a single-particle BCS spectrum but which other-
wise leads to a gap equation that has the same structure
as Eq. (1). The double-wavy line in Fig. 1(a) represents
the fact that in the first-order Hartree-Fock contribution
to the nucleon self-energy, there is an additional sym-
metry factor of 1

2 for the medium-dependent potential,

namely V HFeff = VNN + 1
2V

med
NN . The effective interaction

in the BCS gap equation, Eq. (1), however, requires no
additional symmetry factor [62]. We note that V med

NN de-
pends on both the density and composition, namely, the
proton fraction. The proton fraction is determined by en-
forcing beta equilibrium, which requires computing the
proton and neutron chemical potentials from the equa-
tion of state of asymmetric nuclear matter [57, 66]. The
electrons are treated as a relativistic gas of noninteract-
ing Fermions.

We employ chiral nucleon-nucleon interactions at next-
to-next-to-leading order (N2LO) and next-to-next-to-
next-to-leading order (N3LO) in the chiral power count-
ing. For values of the momentum-space cutoff Λ .
500 MeV, nucleon-nucleon potentials generally exhibit
good convergence properties in many-body perturbation
theory. In the present work we therefore consider two
values of the cutoff (Λ = 450 MeV and 500 MeV) at
N2LO and three values of the cutoff (Λ = 414 MeV,
Λ = 450 MeV and 500 MeV) at N3LO [40]. We note
that the value Λ = 414 MeV is not the result of fine
tuning but instead corresponds to the relative momen-
tum for nucleon-nucleon scattering at a lab energy of
Elab = 350 MeV, the maximum energy at which mod-
ern nucleon-nucleon potentials are fitted to phase shifts.
In all cases we include also the N2LO chiral three-body
force whose low-energy constants cD and cE are fitted to
reproduce the binding energies of A = 3 nuclei and the
beta-decay lifetime of 3He [42, 43]. We note that in all
cases we employ the charge-dependent versions of these
potentials that differ primarily in the leading-order low-
energy constant associated with the 1S0 partial wave.

The same approximations for the single-particle energy
employed in the present work have been shown to give a
good description of the nucleon-nucleus optical potential,
especially the dependence of the real part on the isospin
asymmetry and energy [67, 68]. As we demonstrate be-
low, the many-body perturbation series expansion of the
single-particle energies appears to be under control, but
uncertainties persist. Despite the above consistencies
in the treatment of the effective interaction and single-
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FIG. 2: (Color online) Equation of state of nuclear matter in
beta equilibrium from the chiral two- and three-nuclear forces
used in this work.

particle spectrum, additional many-body effects beyond
the BCS mean field approximation are important. In
particular, both short- and long-range correlations lead
to a fragmentation of single-particle strength, encoded
in nuclear spectral functions, that modify the quasipar-
ticle energy spectrum. While such effects are partly ac-
counted for through our use of the single-particle energy
at second order in perturbation theory, Eq. (5), a com-
plete treatment involving the superfluid Green’s function
involves a more complicated double energy convolution
of the spectral function [69]. Short-range correlations
have been shown [28] to reduce by about 25% the size
of the neutron pairing gap in the spin-singlet channel.
Long-range correlations in the effective pairing interac-
tion, which represent the exchange of virtual collective
modes, tend to decrease the strength of the singlet pair-
ing gap by about 20% or less on average for a range of
nuclear interactions and densities [28].

III. RESULTS

In Fig. 2 we show the equation of state of beta equili-
brated nuclear matter calculated from the five chiral nu-
clear forces employed in the present work. We first com-
pute the equation of state for isospin-asymmetric nuclear
matter at second order in perturbation theory:

E(1) =
1

2

∑
12

n1n2〈12|(V̄NN + V̄ med
NN /3)|12〉, (9)

E(2) = −1

4

∑
1234

∣∣〈12
∣∣V̄eff

∣∣ 34〉
∣∣2 n1n2n̄3n̄4

e3 + e4 − e1 − e2
, (10)

where E = E/V is the energy density and the single-
particle energies ei in E(2) are computed according to

Eq. (4). Analogous to the calculation of the nucleon self
energy in the previous section, the in-medium nucleon-
nucleon interaction V med

NN requires an additional symme-
try factor of 1/3 in the calculation of the Hartree-Fock
contribution to the energy density.

From Eqs. (9) and (10), the proton and neutron chem-
ical potentials can be evaluated as

µp =
∂E
∂np

∣∣∣∣
nn

, µn =
∂E
∂nn

∣∣∣∣
np

, (11)

where np is the proton number density and nn is the
neutron number density. The electron density is set by
charge neutrality, and beta equilibrium is then found by
enforcing µn = µp + µe. As a practical approach, we fit
an energy density functional that is consistent with the
chiral effective field theory neutron matter and symmet-
ric nuclear matter equations of state from many-body
perturbation theory. We have verified that this intro-
duces no significant error in computing the chemical po-
tentials. Strictly speaking, our perturbation theory treat-
ment of the equation of state and single-particle potential
does not constitute a conserving approximation, which
means that there is some ambiguity in the definition of
the chemical potential. Nevertheless, we find good nu-
merical agreement between the chemical potentials com-
puted from Eq. (11) and from the single-particle energy
at the Fermi surface up to a proton Fermi momentum
of kpF = 0.6 fm−1, corresponding to a density of about
1.5n0. At higher densities we find that the consistency
begins to break down, reaching deviations of about 10%
at 2n0 at which point the pairing gap vanishes.

As observed in Ref. [43] the energy per particle from
the two N2LO chiral potentials is systematically larger
than that from the three N3LO potentials, and this dif-
ference grows as the density increases. We anticipate a
corresponding increase in the 1S0 proton pairing gap un-
certainty band for densities n & n0. Beyond n = 2n0

a description of the nuclear equation of state based on
chiral effective field theory is likely unreliable for the
low-momentum perturbative potentials considered in the
present work. All results shown below are therefore re-
stricted to the regime n ≤ 2n0.

At low densities the results for the nuclear equation
of state shown in Fig. 2 are in better agreement for the
different potentials. However, below n . 0.5n0 protons
in the neutron star inner crust are confined in nuclei and
therefore do not form a macroscopic superconductor. Re-
cently it was shown [70] that the crust-core transition
density nt at which unbound protons appear lies in a
limited range of nt ' 0.082 − 0.089 fm−3 for the three
N3LO chiral potentials considered in the present work.
The transition density was identified employing two dif-
ferent methods: (i) comparing the ground state energies
of the homogeneous and inhomogeneous phase as a func-
tion of density in the Thomas-Fermi approximation and
(ii) the thermodynamic instability method [71] where the
density of homogeneous matter is lowered until an insta-
bility to cluster formation appears. Given the tight range
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FIG. 3: (Color online) Proton fraction as a function of density
for beta-equilibrated nuclear matter for n ≥ 0.5n0. Results
are shown for the five density-dependent nuclear interactions
at N2LO and N3LO.

of crust-core transition densities found in Ref. [70], we
consistently take nt ≥ 0.5n0 as the region above which
proton pairing may occur.

In Fig. 3 we plot the proton fraction of nuclear matter
in beta equilibrium as a function of density for the five
nuclear force models considered. We show only densities
greater than n ≥ 0.5n0 as explained above. Nearly all
of the nuclear potentials give consistent predictions for
the proton fraction below n < n0, except for the n3lo500
chiral potential which has been shown [72] to exhibit rel-
atively slow convergence in many-body perturbation the-
ory. The proton fraction in nuclear matter depends on
the nuclear symmetry energy and its density dependence.
For the n3lo500 potential the nuclear symmetry energy
is Sv ' 25 MeV [72] when only the first- and second-
order perturbative contributions to the equation of state
are included, which is significantly smaller than the val-
ues Sv = 30 − 33 MeV for the other potentials consid-
ered. Third-order perturbative contributions have been
shown [72] to increase the nuclear symmetry energy by
2 − 3 MeV for this potential, but systematically includ-
ing such higher-order terms in the present calculation of
the pairing gap would not meaningfully alter the final re-
sults. In all cases the values of the symmetry energy Sv
and its slope parameter L are within the range suggested
by Lattimer and Lim [73]. Thus the proton fraction in
the beta-equilibrated nuclear matter found in this work is
consistent with constraints from the most current exper-
imental and theoretical predictions. Beyond nuclear sat-
uration density, the theoretical uncertainty in the proton
fraction increases significantly, and higher-order contri-
butions to the symmetry energy become important [74–
76]. The two N2LO chiral potentials produce the largest
ground-state energy for beta-equilibrated nuclear matter
and give rise to proton fractions Yp = 7.5−8.5% at twice
saturation density. The three N3LO chiral potentials, on
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FIG. 4: (Color online) Single-particle energies as a function
of momentum for protons and neutrons in beta-equilibrated
nuclear matter at kpF = 0.4 fm−1. The self-consistent second-
order approximation to the single-particle energy, shown in
Eq. (5), is employed.

the other hand, predict smaller values of Yp = 4− 6% at
n = 2n0.

In Fig. 4 we show the proton and neutron single-

particle energies in the Hartree-Fock approximation e
(1)
k

(top panel) and in the self-consistent second-order ap-

proximation e
(2)
k (bottom panel) as a function of the mo-

mentum k for a specific value of the proton Fermi mo-
mentum kpF = 0.4 fm−1, corresponding to a total baryon
number density of n ' 0.5n0. This is the density at which
the neutron star inner crust transitions to homogeneous
nuclear matter in the core, and as we show below it also
corresponds to the density at which the proton 1S0 pair-
ing gap is maximal. We see that the inclusion of second-
order perturbative corrections to the nucleon self energy
leads to a larger isoscalar depth but also a larger isovector
splitting between the proton and neutron single-particle
energies. Quantitative inspection indicates that whereas

the e
(1)
k spectrum is nearly quadratic, and hence admits

an approximation of the form in Eq. (2), the e
(2)
k spec-

trum deviates strongly from this form in the vicinity of
the Fermi momentum. From Fig. 4 we see that the differ-
ent nuclear potentials give very similar results for the mo-
mentum dependence of the proton single-particle energy.
As expected for the case of highly neutron-rich matter,
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the proton single-particle potential is much more strongly
attractive than the neutron single-particle potential. In
fact, at the proton Fermi momentum kpF = 0.4 fm−1 the
proton chemical potential is µp = ep(k

p
F ) ' −65 MeV.

We next turn our attention to the calculation of the
proton pairing gap from Eq. (1). The pairing gap at
the Fermi momentum ∆(kF ) is denoted by ∆F here and
throughout. We first neglect the presence of three-body
forces, in which case the nuclear potential is indepen-
dent of the density and proton fraction, and focus on the
role of the single-particle potential, which we parametrize
with different choices of the effective mass. In general,
the effective mass depends on the density and proton
fraction (and also on the momentum when the self en-
ergy is computed beyond the Hartree-Fock approxima-
tion), but for orientation we consider the case of a con-
stant effective mass. In Fig. 5 we show the proton 1S0

pairing gap from the n3lo450 nucleon-nucleon potential
as a function of the proton Fermi momentum for effective
masses ranging from M∗/M = 0.6 − 1.0. A free proton
spectrum (M∗/M = 1.0) gives rise to a maximum in the
pairing gap of ∆ ' 3.2 MeV. Even a moderate reduc-
tion in the effective mass to M∗/M = 0.75 leads to a
decrease in the maximum of the pairing gap by a fac-
tor of 2. However, the density at which the pairing gap
is maximal decreases by only 10%. The strong depen-
dence of the maximum in the pairing gap on the effective
mass can be understood from Eq. (1). A small effective
mass corresponds to a strong momentum dependence of
the single-particle energy around the Fermi surface. As
the intermediate-state momentum in Eq. (1) varies away
from the Fermi momentum, the energy denominator in-
creases more rapidly for a small effective mass, reducing
the size of the pairing gap.

The effective mass approximation, Eq. (2), provides an

TABLE I: Proton effective masses at the Fermi surface kpF =
0.4 fm−1 for different chiral NN + 3N interactions and two
choices of the single-particle energy e

(1)
k and e

(2)
k .

V M∗
p /Mp from e

(1)
k M∗

p /Mp from e
(2)
k

N2LO450 0.76 0.98

N2LO500 0.76 0.97

N3LO414 0.80 0.97

N3LO450 0.82 0.93

N3LO500 0.80 0.87

accurate parametrization of the nucleon single-particle
energy at the Hartree-Fock level. However, second-order
perturbative contributions to the nucleon self-energy lead
to a strong momentum dependence of the effective mass
that is peaked close to M∗/M = 1 at the Fermi surface
[77], the regime where the spectrum most strongly affects
the value of the pairing gap. In Table I we show the
effective masses at the Fermi surface kpF = 0.4 fm−1 for
five different chiral NN + 3N interactions and two choices
of the single-particle energy e

(1)
k and e

(2)
k . We see that the

second-order perturbative corrections strongly enhance
the proton effective mass in comparison to the Hartree-
Fock values.

In Fig. 6 we study the effect of different parametriza-
tions of the nucleon single-particle energy on the density-
dependent pairing gap. In all cases we include both two-
and three-body forces. In the first case, shown as the
dotted curve in Fig. 6, we consider a free-particle spec-

trum e
(0)
k = k2/2M . The dotted vertical line stands for

the Fermi momentum at the core-crust boundary of a
neutron star (n ∼ 1/2n0, Yp ∼ 0.03). Comparing to
Fig. 5 we see that three-body forces lead to a reduction
in the maximum value of the pairing gap by a factor of
four. Although the proton Fermi momentum is small,
the large neutron density leads to a more strongly re-
pulsive effective two-body proton-proton interaction as
shown in Ref. [64]. Consequently the maximum proton
pairing gap shown in Fig. 6 is roughly 1/3 the 1S0 neu-
tron pairing gap in neutron star inner crusts [26], where
three-body forces play a much smaller role. Treating
the single-particle energy in the Hartree-Fock approxi-

mation e
(1)
k = k2/2M + Σ(1)(k) leads to an additional

reduction in the pairing gap by about 40% as shown by
the dashed line of Fig. 6. Finally, employing the self-

consistent second-order single-particle energy e
(2)
k (see

Eq. (5)) in the denominator of the gap equation leads
to an increase of 20% in the maximum gap size relative
to the Hartree-Fock approximation. This may be under-
stood from the fact that the second-order contribution
Σ(2)(ek, k) to the self energy on average increases the ef-
fective mass in the vicinity of the Fermi surface.

Fig. 7 shows the 1S0 proton pairing gap in the pres-
ence of three body forces using the n3lo450 chiral nu-
clear potential. The dashed curves correspond to dif-
ferent values of the (fixed) proton fraction Yp, which
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FIG. 6: (Color online) Proton-proton pairing gap in beta-
equilibrated nuclear matter from the n3lo450 chiral nuclear
potential, including three-body forces. The dotted vertical
line represents the proton Fermi momentum at the neutron
star core-crust boundary. Three approximations were em-
ployed for the single-particle energy spectrum: (i) free spec-
trum (dotted line), (ii) Hartree-Fock spectrum (dashed line),
and (3) self-consistent second-order spectrum (solid line).

ranges from 0.002 ≤ Yp ≤ 0.06 with ∆Yp = 0.002, and
the solid red curve is that for nuclear matter in beta
equilibrium. For a given Yp we calculate the solution
to the BCS gap equation using the first-order approx-
imation for the single-particle energies e(1)(k). We see
that the proton fraction is an important parameter for
determining the size of the pairing gap. For instance
at kpF = 0.4 fm−1, changing the proton fraction from
Yp = 0.03 to Yp = 0.04 would increase the gap size from
∆F = 0.5 MeV to ∆F = 0.75 MeV.

We note that the nuclear potential Veff(k, k′) depends
on the proton fraction when three-body forces are in-
cluded. As shown in Fig. 7, the proton pairing gap and
the available pairing domain in kpF increase as the pro-
ton fraction increases because Veff(k, k′) depends sensi-
tively on the proton fraction. As mentioned in Section
I, three-body forces have been considered previously in
a phenomenological way to compute the proton pairing
gap in beta-stable nuclear matter. In this work, three-
nucleon forces consistent with the low-energy constants in
the two-body force and fitted to the properties of A = 3
nuclei have been employed. In addition we have calcu-
lated the nuclear EOS with the same nuclear forces to
determine the proton fraction.

Fig. 8 shows the proton pairing gap in beta-equilibrium
matter using five different chiral potentials and two differ-

ent approximations for the single-particle spectrum: e
(1)
k

(green) and e
(2)
k (red). The dotted sections of the curves

indicate the pairing gap for densities lower than that of
the neutron star core-crust boundary. The large symbols
on the curves indicate the values of the pairing gap at nu-
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k

Yp = 0.06

Yp = 0.002

β equilibrium

FIG. 7: (Color online) Density-dependent proton-proton pair-
ing gap from the n3lo450 chiral nuclear potential for different
values of the proton fraction Yp and for nuclear matter in
beta equilibrium. A Hartree-Fock single-particle spectrum is
employed.

clear densities n = n0/2 (open circle), n0 (filled circle),
3n0/2 (open square), and 2n0 (filled square). Only the
proton pairing gap from the N3LO500 potential using the

e
(2)
k spectrum does not show closure in kpF . This is due to

the associated small proton fraction (see Fig. 3), which
leads to a larger value of the total baryon number density
for a given value of kpF . We have restricted our calcula-
tions to the density regime n ≤ 2n0 and therefore do
not report results for kpF > 0.72 fm−1 from the N3LO500
potential. In particular, just below twice saturation den-
sity, the self-consistent calculation of the single-particle
potential from the N3LO500 potential begins to break
down.

We note several nearly universal features in the re-
sults of Fig. 8, independent of the choice of chiral in-
teraction and the associated derived quantities, such as
the single-particle spectrum and proton fraction. First,
for all cases the peak in the pairing gap occurs very
close to the crust-core boundary and within a very small
window of the proton Fermi momentum 0.35 fm−1 <
kpF < 0.43 fm−1. Second, apart from the results of the

N3LO414 and N3LO500 potentials using the e
(2)
k energy

spectrum, nearly all potentials lead to a proton pairing
gap that vanishes when the proton Fermi momentum is
in the range 0.65 fm−1 < kpF < 0.75 fm−1. Even the in-
clusion of both the N3LO414 and N3LO500 potentials
would only increase the upper bound to kpF ' 0.8 fm−1,
which corresponds to a total baryon number density less
than 2n0. We therefore note that proton pairing is ex-
pected to exist within a neutron star at densities where
chiral effective field theory is valid.

Chiral potentials generally become more repulsive as
the momentum-space cutoff Λ increases, which partly ac-
counts for the smaller proton pairing gaps associated with
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FIG. 8: Proton 1S0 pairing gap as a function of the Fermi
momentum kF for the five chiral potentials considered in the
present work.

the N2LO500 and N3LO500 chiral potentials and the
largest proton pairing gaps associated with the N3LO414
potential. For neutron matter and beta stable nuclear
matter, it was also shown that the N2LO equations of
state are stiffer than at N3LO. The effect of repulsive con-
tributions in the nuclear potential are mostly clearly seen

in the pairing gaps associated with the e
(1)
k spectrum,

where there is a clear trend from the N2LO potentials
(with the smallest gaps) to the N3LO potentials ordered
according to the value of the cutoff Λ. In addition to the
EOS stiffness (where an attractive force would increase
the gap size and the EOS would be soft), the gap size
is also related to the proton fraction in beta-equilibrium
matter (which controls the proton Fermi momentum),
and the proton single-particle spectrum. From Fig. 8
we see that the inclusion of second-order contributions
to the single-particle energy has a strong impact on the
proton pairing gap. The nucleon effective mass at the

Hartree-Fock e
(1)
k approximation is small M∗/M ∼ 0.75,

while second-order perturbative contributions lead to a
strong energy dependence in the single-particle potential
that increases the effective mass to M∗/M ∼ 1 near the
Fermi surface. As can be inferred from Fig. 5, this gener-
ically leads to larger proton pairing gaps in Fig. 8 for the

e
(2)
k spectrum. Specifically, in the e

(2)
k approximation we

find that the N2LO450, N2LO500, and N3LO414 poten-
tials experience the largest changes in the proton effective
mass, which enhances the magnitude of the pairing gap

relative to their values with the e
(1)
k spectrum. From

the above considerations we find that multiple effects
strengthen the pairing gap associated with the N3LO414
potential, which explains why it deviates most strongly

from the other potentials when the e
(2)
k spectrum is em-

ployed.

In Fig. 9 we compare the proton pairing gap uncer-
tainty band calculated in the present work to previous
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FIG. 9: (Color online) 1S0 proton pairing curves from nu-
clear model. Our EFT calculation (red band) gives similar
pairing gaps and smaller range of Fermi momentum where
the pairing is available. For comparison, it is shown the
previous BCS calculations, Chao et al. [32](‘CCY’), Takat-
suka [33] (‘T’), Amundsen and Østgaard [34] (‘AO’), Baldo
et al. [35] (‘BCLL’), Chen et al. [36] (‘CCDK’), Elgarøy et
al. [37] (‘EEHO’), Zuo et al. [38](‘Zuo et al.’), and Baldo and
Schulze [90](‘BS’).

results in the literature. We find that employing the e
(2)
k

approximation for the single-particle spectrum, the max-
imum in the pairing gap lies in the range 0.51 MeV <
∆F < 0.82 MeV, which is consistent with previous cal-
culations, but the maximum density at which proton
pairing is expected to occur is systematically smaller
than other models. This is largely caused by three-body
forces and the behavior of the chiral potential Veff(k, k′)
as the proton fraction is increased in neutron star mat-

ter. Employing the e
(1)
k spectrum we find instead that

0.25 MeV < ∆F < 0.38 MeV. The medium-dependent
nuclear potential in isospin-asymmetric nuclear matter
might also affect to a lesser extent the 3P2 − 3F2 neu-
tron pairing gap, which is typically calculated in pure
neutron matter. We note that our error bands in Fig.
9 partially account for uncertainties due to (i) the con-
vergence of the chiral expansion (where we have varied
the chiral order of the nucleon-nucleon interaction from
N2LO to N3LO), (ii) the choice of the resolution scale at
which nuclear dynamics is resolved (encoded in the high-
momentum cutoff in the chiral potential), and (iii) the
convergence in the many-body expansion (through differ-
ent choices of the single-particle spectrum). A more com-
prehensive account of uncertainties would include varying
the chiral EFT low-energy constants within ranges con-
sistent with 2N and 3N scattering data and three-body
bound state properties [78, 79], improved order-by-order
effective field theory truncation errors [80–82] including
consistent N3LO three-body forces [83–88], and the im-
proved description of short- and long-range correlations
that go beyond the BCS approximation [28, 89].
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FIG. 10: Calculated proton pairing gaps using the e
(1)
k single-

particle energy (open symbols) and the e
(2)
k single-particle en-

ergy (filled symbols) together with the parameterization (solid
lines) in Eq. (14).

In the weak coupling approximation, the critical tem-
perature for the onset of pairing is given by [91]

Tc ' 0.57 ∆F (T = 0). (12)

We find that in the present analysis with the e
(2)
k spec-

trum, the critical temperature for proton pairing in the
core of neutron stars is

Tc ∼ (3.2− 5.1)× 109 K . (13)

Compared to the range of critical temperatures pre-
dicted in a recent study from neutron star cooling using
Bayesian analysis [92], where Tc = 7.59+2.48

−5.81×109 K, our
prediction has a smaller central value but is consistent at
the highest range.

Finally, we consider parameterized fitting functions for
the pairing gaps shown in Fig. 8. We find that the pairing
gap can be well fitted with the simple function [14]

∆(kF ) =

{
∆mN (kF − k1)α(k2 − kF )β , if k1 < kf < k2 ,

0, otherwise ,

(14)
where N is the normalization factor given by

N =
1

ααββ

(
α+ β

k2 − k1

)α+β

. (15)

In Fig. 10 we plot the numerical pairing gaps as well
as the fitting functions under the two approximations

e
(1)
k (open circles) and e

(2)
k (filled squares) for the single-

particle energies. We see that in all cases the parame-
terized form in Eq. (14) captures very well the kpF de-
pendence of the gaps. In Table II will list the values of
the parameters for the different chiral interactions and
choices of single-particle spectrum.

TABLE II: Fitting parameters for the 1S0 proton pairing gap
in Eq. (14) for different chiral potentials and choices for the
single-particle energy spectrum.

Model
∆m k1 k2 α β

(MeV) (fm−1) (fm−1)

e
(1)
k n3lo414 0.380 0.000 0.748 2.998 2.432

e
(1)
k n3lo450 0.336 0.000 0.663 3.116 2.319

e
(1)
k n3lo500 0.317 0.004 0.672 3.041 2.325

e
(1)
k n2lo450 0.287 0.000 0.682 3.058 2.713

e
(1)
k n2lo500 0.251 0.000 0.658 3.054 2.723

e
(2)
k n3lo414 0.827 0.002 0.828 2.769 2.434

e
(2)
k n3lo450 0.571 0.000 0.689 2.965 2.275

e
(2)
k n3lo500 0.501 0.000 0.860 3.507 4.003

e
(2)
k n2lo450 0.649 0.000 0.726 3.019 2.672

e
(2)
k n2lo500 0.562 0.000 0.722 3.159 2.914

IV. SUMMARY

In this work we have studied the proton 1S0 pairing gap
in nuclear matter at beta equilibrium using five different
nuclear two- and three-body potentials derived within
the framework of chiral effective field theory. Nucleon-
nucleon potentials at both N2LO and N3LO were consid-
ered, together with the chiral three-body force at N2LO.
In addition to the choice of nuclear potential, also the
single-particle spectrum employed in the BCS gap equa-
tion is a source of theoretical uncertainty.

We find that both three-body forces and a realistic
proton single-particle potential in neutron star matter
reduce the maximum size of the proton 1S0 pairing gap.
In particular, three-body forces reduce the maximum gap
size by a factor of 3, while a self-consistent second-order
treatment of the proton single-particle potential leads to
an additional reduction of about 30%. Our results for the
1S0 proton pairing gap have a similar range of sizes com-
pared to previous studies. However, the maximum den-
sity at which proton pairing may exist in neutron stars
is systematically smaller than previous results. This ul-
timately comes from the inclusion of three-body forces
in our effective field theory calculation, which requires
a consistent calculation of the proton fraction in beta-
equilibrium matter. The three-body force leads to ad-
ditional repulsion in the effective interaction and a sup-
pression in the pairing gap as the density increases.

These results will be important for a consistent de-
scription of neutron star cooling. Proton 1S0 pairing
will likely not give any reduction factor for nucleon di-
rect Urca cooling, since the pairing gap is seen to van-
ish well before the proton fraction reaches a value high
enough for the onset of the direct URCA process. How-
ever, proton pairing will certainly give a reduction factor
to the thermal conductivity, heat capacity, and neutrino
emission processes involving protons. Thus the enhanced
cooling processes in neutrons stars arising from Cooper-
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pair breaking/formation is likely to be dominated by 3P2

neutron pairing in the core rather than 1S0 pairing of
protons.
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