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We propose the skewness of mean transverse momentum, 〈pt〉, fluctuations as a fine probe of
hydrodynamic behavior in relativistic nuclear collisions. We describe how the skewness of the
〈pt〉 distribution can be analyzed experimentally, and we use hydrodynamic simulations to predict
its value. We predict in particular that 〈pt〉 fluctuations have positive skew, which is significantly
larger than if particles were emitted independently. We elucidate the origin of this result by deriving
generic formulas relating the fluctuations of 〈pt〉 to the fluctuations of the early-time thermodynamic
quantities. We postulate that the large positive skewness of 〈pt〉 fluctuations is a generic prediction
of hydrodynamic models.

I. INTRODUCTION

In ultrarelativistic nucleus-nucleus collisions, the mean
transverse momentum, 〈pt〉, of emitted particles fluc-
tuates event to event, for a given collision centrality.
There are trivial statistical fluctuations of 〈pt〉, due to
the fact that the average is evaluated over a finite sam-
ple of particles, but the observed fluctuations are larger.
The excess fluctuations are called dynamical fluctua-
tions, and have been measured in Au+Au collisions at√
sNN = 200 GeV [1] and lower energies [2–4], and in

Pb+Pb collisions at
√
sNN = 2.76 TeV [5]. In hydro-

dynamic models of particle production, dynamical 〈pt〉
fluctuations originate from event-to-event fluctuations at
the early stage of the collision [6, 7]. 〈pt〉 fluctuations
have received much less attention in hydrodynamic stud-
ies than anisotropic flow [8, 9], yet they are a more direct
way of observing initial-state fluctuations. They actu-
ally strongly constrain the modeling of the initial stages,
and only a few recent hydrodynamic studies are able to
reproduce experimental data on 〈pt〉 fluctuations [10–12].

In this paper, we argue that, at a given collision cen-
trality, the probability distribution of 〈pt〉 is not Gaus-
sian, but has positive skew. In Sec. II we show that a
hint of this positive skew can be seen in existing STAR
data [2] on Au+Au collisions, while it is clearly visible in
the results of event-by-event hydrodynamic simulations
of Pb+Pb collisions. This motivates us to investigate this
phenomenon. We define measures of the skewness of 〈pt〉
fluctuations in Sec. III, with detailed explanations about
the analysis procedure to measure them given in Ap-
pendix A, and we make quantitative predictions for these
quantities using hydrodynamic calculations in Sec. IV.
The resulting skewness is significantly larger than if par-
ticles were independent.

We investigate, hence, the origin of the skewness. In
Sec. V, we use the idea put forward in Refs. [13, 14]
that the fluctuations of 〈pt〉 at a given centrality origi-
nate from the fluctuations of the total energy in the fluid
at the initial condition, E0. We first show that the dis-
tribution of E0 is indeed positively skewed in our hydro-
dynamic calculation, and then argue that this is likely

to be observed in any hydrodynamic calculation. This is
done in Sec. VI, where we derive a generic formula relat-
ing the skewness of the E0 distribution to the statistical
properties of the initial density field in a perturbative
approach [15, 16].

II. SKEWNESS IN DATA AND IN
HYDRODYNAMICS

Figure 1 displays the histogram of the distribution
of 〈pt〉 measured by the STAR collaboration in central
Au+Au collisions [2], where 〈pt〉 is evaluated by aver-
aging the transverse momenta of the charged particles
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FIG. 1. (Color online) Distribution of 〈pt〉 for Au+Au col-
lisions at

√
sNN = 200 GeV in the 0-5% centrality window.

Data from the STAR collaboration [2] are shown as a his-
togram. The solid line is a Gaussian fit to these data. The
lower panel is the ratio between the Gaussian fit and the data.
The data are above the Gaussian to the right, and below the
Gaussian to the left, which hints at a positive skew.
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observed in the detector. As mentioned in the Intro-
duction, this quantity has trivial fluctuations due to the
finite number of particles, typically of order 1000, in ev-
ery event. The width of the distribution of 〈pt〉 is ac-
tually dominated by these statistical fluctuations, and
the dynamical fluctuations only represent a modest frac-
tion of this width. Even though this histogram does not
represent a distribution of dynamical fluctuations, it is
instructive to see that the distribution is not symmet-
ric. Comparison with a Gaussian fit, shown as a solid
line, shows that the data points are above the fit to the
right, and below the fit to the left, which is an indica-
tion that the distribution of 〈pt〉 has positive skew. A
quantitative calculation gives for the standardized skew-
ness (7.3 ± 1.0) × 10−2, which shows that the skew is
far beyond error bars, even though the statistics is mod-
est (∼ 5 × 104 events). We use this as an illustration
that the skewness should be easy to measure accurately
with the large statistics now available at colliders. How-
ever, the qualitative prediction that the skewness is posi-
tive is to some extent trivial when fluctuations are large.
The reason is that the transverse momentum is positive
by construction, which naturally produces the left-right
asymmetry seen in Fig. 1. In particular, the same study
applied to mixed events [2], made up artificially using
particles from different events, results in a skewness of
comparable magnitude, even though it contains no dy-
namical information by construction. Therefore, it is es-
sential to isolate dynamical fluctuations before measuring
the skewness, as will be explained in Sec. III.

We present now the distribution of 〈pt〉 in event-by-
event hydrodynamics. We do not run new hydrodynamic
calculations, but use results from a prior high-statistics
simulation, in which 50000 minimum bias Pb+Pb colli-
sions at

√
sNN = 5.02 TeV were generated [17, 18]. This

hydrodynamic calculation was shown to successfully re-
produce the observed magnitude and centrality depen-
dence of anisotropic flow (v2, v3, v4), and to slightly
overestimate the mean transverse momentum of charged
particles 〈pt〉. Back then, we had not evaluated 〈pt〉 fluc-
tuations in this hydrodynamic calculation. It turns out
that it overestimates their magnitude. This is a com-
mon limitation of event-by-event hydrodynamic calcula-
tions [7, 19], which has been overcome recently by using
smoother initial conditions [10–12]. Note that agreement
with v3 data, for which initial fluctuations are essential,
then requires to model the nucleon substructure [20, 21].
Since our hydrodynamic calculation does not quantita-
tively reproduce the magnitude of 〈pt〉 fluctuations, our
predictions for the skewness are also not fully quantita-
tive, as will be discussed below.

The setup of our hydrodynamic calculation is the fol-
lowing. We start from a boost-invariant initial profile of
entropy density given, event-to-event, by the TRENTo
model of initial conditions [22], which has been tuned

following Ref. [23].1 Events are sorted into centrality
bins according to their total initial entropy (5% bins are
used). This is done to mimic the centrality selection per-
formed in experiments. We neglect the pre-equilibrium
dynamics of the system [24–26], which is evolved hydro-
dynamically starting from proper time τ0 = 0.6 fm/c
after the collision [27] through the viscous hydrodynamic
code V-USPHYDRO [28–30], We implement a small spe-
cific shear viscosity, η/s = 0.047 [17], and the 2+1 equa-
tion of state from lattice QCD [31]. Fluid elements
hadronize [32] when reaching a temperature of 150 MeV.
We include all hadronic resonances in the freezeout pro-
cess (from the PDG16+ list [33]), and their subsequent
strong decays, but we neglect rescattering in the hadronic
phase [23, 34, 35].

Each hydrodynamic “event” corresponds to a different
initial condition [36–39]. The output of hydrodynamics is
the continuous probability distribution of the transverse
momentum [40, 41], which one integrates to calculate the
mean value, 〈pt〉. Therefore, the statistical fluctuations
mentioned in the discussion of Fig. 1, due to the finite
event multiplicity, are absent in the hydrodynamic calcu-
lation, so that the event-to-event fluctuations of 〈pt〉 are
the dynamical fluctuations themselves. The histogram of
the distribution of 〈pt〉 is displayed as solid lines in Fig. 2
for two different centrality windows. Note that the val-
ues of 〈pt〉 are larger than in Fig. 1, because the collision
energy is much higher.2 As mentioned above, our model
of initial conditions overestimates 〈pt〉 fluctuations, and
the width in Fig. 2 is too large by a factor ∼ 2. Our point
here is that the distributions of 〈pt〉 in Fig. 2 are clearly
asymmetric, with a long tail on the right. This positive
skew is more pronounced in peripheral collisions [panel
(b)] than in central collisions [panel (a)]. However, the
comment made about Fig. 1 also applies here: Namely,
the condition that 〈pt〉 is positive naturally generates a
positive skewness, also for dynamical fluctuations. It is
therefore essential to define a baseline corresponding to
the value of the skewness naturally generated by the pos-
itivity condition. This is a non-trivial issue, which will
be discussed in Sec. III C.

III. MEASURING THE SKEWNESS

A quantitative measure of the skewness of a random
variable x is the third centered moment, 〈(x − 〈x〉)3〉,

1 We use p = 0, corresponding to a geometric average of nuclear
thickness functions. The thickness of a nucleus is a linear super-
imposition of participant nucleon thicknesses, which are taken
as Gaussian profiles of width w = 0.51 fm. The normalization
of each nucleon thickness fluctuates following a gamma distribu-
tion of unit mean and standard deviation 1/

√
k, where we use

k = 1.6.
2 Also, our calculation overestimates 〈pt〉 by a few percent even at

the higher energy, as discussed in Ref. [18].
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where angular brackets denote an average value with re-
spect to the probability distribution of x. It is usually
positive when the tail is larger to the right than to the
left, as in Figs. 1 and 2. The skewness is the third term in
a systematic cumulant expansion, whose first and second
terms are the mean and the variance, respectively.

A. Experimental analysis

We first recall how the mean value of the pt distribu-
tion in a centrality class, which we denote by 〈〈pt〉〉, is
evaluated in heavy-ion experiments. There are two ways
of defining it, depending on whether one first averages
over particles in an event [2], and then over all events,
or whether one does both averages simultaneously [5].
Specifically, the STAR collaboration defines [2]:

〈〈pt〉〉STAR ≡
〈∑Nch

i=1 pi
Nch

〉
ev

, (1)

where Nch denotes the number of charged particles in an
event, pi is the transverse momentum of the ith particle,
and angular brackets denote an average over events in a
centrality class. On the other hand, the ALICE collabo-
ration defines [5]:

〈〈pt〉〉ALICE ≡

〈∑Nch

i=1 pi

〉
ev

〈Nch〉ev

. (2)

These definitions are almost equivalent, but not strictly
equivalent when the multiplicity Nch fluctuates event to
event.

Either convention can be used when analyzing the vari-
ance of dynamical pt fluctuations. We denote this vari-
ance by 〈∆pi∆pj〉, where the subscripts i, j are meant to
remind that it is constructed from pair correlations, with
i 6= j. The STAR collaboration defines it as [2]:

〈∆pi∆pj〉STAR ≡
〈∑

i,j 6=i (pi − 〈〈pt〉〉) (pj − 〈〈pt〉〉)
Nch (Nch − 1)

〉
ev

,

(3)
where 〈〈pt〉〉 is defined by Eq. (1), while the ALICE col-
laboration defines it as [5]:

〈∆pi∆pj〉ALICE ≡

〈∑
i,j 6=i (pi − 〈〈pt〉〉) (pj − 〈〈pt〉〉)

〉
ev

〈Nch (Nch − 1)〉ev

,

(4)
where 〈〈pt〉〉 is defined by Eq. (2). Note that even though
Eqs. (3) and (4) involve double sums over i and j,
they can be expressed in terms of simple sums, which
are much faster to compute. The corresponding formu-
las for Eq. (3) are derived in Appendix A. The skew-
ness is the third centered moment, which we denote by
〈∆pi∆pj∆pk〉. It is defined by straightforward general-
izations of Eqs. (3) and (4):

〈∆pi∆pj∆pk〉STAR ≡
〈∑

i,j 6=i,k 6=i,j (pi − 〈〈pt〉〉) (pj − 〈〈pt〉〉) (pk − 〈〈pt〉〉)
Nch (Nch − 1) (Nch − 2)

〉
ev

, (5)

where 〈〈pt〉〉 is defined by Eq. (1), and

〈∆pi∆pj∆pk〉ALICE ≡

〈∑
i,j 6=i,k 6=i,j (pi − 〈〈pt〉〉) (pj − 〈〈pt〉〉) (pk − 〈〈pt〉〉)

〉
ev

〈Nch (Nch − 1) (Nch − 2)〉ev

, (6)

where 〈〈pt〉〉 is defined by Eq. (2). An efficient way of com-
puting Eq. (5) is detailed in Appendix A. Note that the
ATLAS collaboration follows the same convention as the
STAR collaboration in its recent analysis of transverse
momentum fluctuations [42].

B. Dimensionless observables

We now define two dimensionless measures of the skew-
ness, which should have less sensitivity to analysis details,
in particular the acceptance in pt, which varies depend-
ing on the detector. The first measure is the standardized

skewness, defined by:

γpt
≡ 〈∆pi∆pj∆pk〉
〈∆pi∆pj〉3/2

. (7)

This is a dimensionless quantity, but one expects it to de-
pend on centrality and system size, as measured by the
number of participant nucleons, Npart. In order to get an
idea of this centrality dependence, let us assume for sim-
plicity that dynamical fluctuations are proportional to
statistical fluctuations. Statistical fluctuations are gen-
erated by the finite multiplicity, which is roughly propor-
tional to Npart. Therefore, the variance is proportional
to 1/Npart, and the skewness to 1/N2

part [43]. Hence, one
expects the standardized skewness to be proportional to
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FIG. 2. (Color online) Solid lines: Distribution of 〈pt〉 in event-by-event hydrodynamic simulations of Pb+Pb collisions at√
sNN = 5.02 TeV [18], for charged particles in the transverse momentum interval 0.2 < pt < 3 GeV and in the pseudorapidity

interval |η| < 0.8. Dash-dotted line: Distribution of E0/S, where E0 and S are, respectively, the total energy and total entropy
in the fluid at the beginning of the hydrodynamic evolution (see Sec. V). In order to facilitate the comparison, the value of E0/S
has been multiplied by a constant in each panel so that the mean matches that of the 〈pt〉 distribution. (a) 5-10% centrality.
(b) 50-55% centrality.

1/
√
Npart.

3 The fact that it decreases with Npart is a
consequence of the central limit theorem, which states
that fluctuations are more Gaussian for a large system.
Even though there is a priori no argument why dynami-
cal fluctuations should be proportional to statistical fluc-
tuations, it is reasonable to expect that the qualitative
trends are similar, and that the standardized skewness is
smaller in central collisions than in peripheral collisions.
This can be seen by eye by comparing the full curves
in Fig. 2(a) and Fig. 2(b). The corresponding values
of the standardized skewness are γpt

= 0.26 ± 0.05 and
γpt

= 0.89 ± 0.08 respectively, for these two centrality
intervals.

In order to eliminate the trivial dependence on the
global size, we introduce a second measure of the skew-
ness, which we dub the intensive skewness, and denote
by Γ:

Γpt
≡ 〈∆pi∆pj∆pk〉 〈〈pt〉〉

〈∆pi∆pj〉2
. (8)

With the above scaling rules, Γpt
is independent of Npart.

In general, one does not expect Γpt
to be independent

of Npart, but its centrality dependence should be milder
than that of the standardized skewness. This is confirmed
by an explicit calculation for the results shown as full
lines in Fig. 2(a) and Fig. 2(b), which gives Γpt

= 7.5±1.5
and Γpt

= 10.6± 0.9 (see also Sec. IV and Fig. 3).

3 These scaling rules are verified in a toy model in Appendix B.

C. Baseline for the intensive skewness

We have pointed out in Sec. II that a positive skewness
is anyway expected as a result of the positiveness of pt.
A natural baseline is provided by the distribution of 〈pt〉
for mixed events, which are constructed by mixing ran-
dom particles from different events. Since mixed events
are made of N independent particles, the cumulants of

the distribution of
∑N

i=1 pt,i are the cumulants of the
distribution of pt for a single particle, multiplied by N .
The dependence on N cancels in the intensive skewness
(8). Therefore, the intensive skewness for mixed events
reduces to that for a single particle:

Γindependent ≡
〈
(pt − 〈pt〉)3

〉
〈pt〉

〈(pt − 〈pt〉)2〉2
, (9)

where angular brackets denote an average over pt with
the weight dN/dpt. The value of Γindependent can easily be
evaluated using available data on dN/dpt. It is typically
around 3, and increases mildly as a function of centrality
percentile. Specifically, it varies between 2.8 and 3.0 in
Au+Au collisions at

√
sNN = 200 GeV [44] and between

3.2 and 3.7 in Pb+Pb collisions at
√
sNN = 5.02 TeV [45]

(see Fig. 3).

IV. RESULTS FROM HYDRODYNAMIC
SIMULATIONS

Evaluating the skewness in event-by-event hydrody-
namics is much simpler than in experiment because, as
explained in Sec. II, one need not worry about statistical
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FIG. 3. (Color online) Results of our hydrodynamic calculations for: (a) the standardized skewness, γpt , defined by Eq. (7); (b)
the intensive skewness, Γpt , defined by Eq. (8), in Pb+Pb collisions at

√
sNN = 5.02 TeV (open symbols) and Xe-Xe collisions

at
√
sNN = 5.44 TeV (full symbols), as a function of the centrality percentile. Error bars represent the statistical error, due to

the finite number of hydrodynamic events, estimated via jackknife resampling. The open and full symbols have been slightly
shifted to the left and to the right, respectively, for the sake of readability. Lines are the same quantities as symbols, where
one replaces 〈pt〉 with the value of E0/S at the beginning of the hydrodynamic evolution (Sec. V). The dotted line in panel (b)
represents the baseline defined by Eq. (9) for the intensive skewness, evaluated using the measured pt spectra [45].

fluctuations. One evaluates 〈pt〉 for each initial condi-
tion by integrating the continuous momentum distribu-
tion resulting from the hydrodynamic expansion. The
mean transverse momentum in a centrality class, 〈〈pt〉〉,
is obtained by averaging 〈pt〉 over initial conditions. The
variance and the skewness are then defined by:

〈∆pi∆pj〉hydro =
〈

(〈pt〉 − 〈〈pt〉〉)2
〉

ev

〈∆pi∆pj∆pk〉hydro =
〈

(〈pt〉 − 〈〈pt〉〉)3
〉

ev
, (10)

where the outer angular brackets denote an average over
initial conditions.

Figure 3 presents our result for the standardized skew-
ness [panel (a)], and the intensive skewness [panel (b)]
for Xe+Xe and Pb+Pb collisions, as a function of the
centrality percentile, using the same hydrodynamic cal-
culation as in Sec. II. The standardized skewness in panel
(a) increases as a function of the centrality percentile, as
already observed in Fig. 2, reflecting the fact that larger
centrality implies a smaller number of participant nucle-
ons. One also expects the standardized skewness to be
larger in the smaller system, Xe+Xe, although, within
our numerical precision, this is not observed in all the
centrality bins. Since, as discussed in Sec. II, our hydro-
dynamic model overestimates 〈pt〉 fluctuations, it is likely
to also overestimate the standardized skewness, and the
results in Fig. 3 (a) should not be considered a quantita-
tive prediction.

The intensive skewness should be more robust against
a rescaling of the fluctuations. We therefore hope that

our hydrodynamic calculation, even though they overes-
timate 〈pt〉 fluctuations, have some predictive power for
this quantity, shown in panel (b). It depends mildly on
the collision species and the collision centrality. While
the baseline defined by Eq. (9) is between 3 and 4, the
prediction from hydrodynamics is much larger, 7 < Γpt

<
10. The prediction that the skewness is “larger than triv-
ial” is our main point.

V. ORIGIN OF THE SKEWNESS

We now investigate the origin of the large positive
skewness of 〈pt〉 fluctuations found in hydrodynamic cal-
culations. As it was shown in Refs. [13, 14], if one looks at
events with the same initial entropy (which experimen-
tally can be achieved to a good approximation by fixing
the final-state multiplicity), then 〈pt〉 is tightly correlated
with the total energy of the fluid at the beginning of the
hydrodynamic evolution, E0. Intuitively, this is due to
the fact that the momentum is a function of the energy,
and thus, if the number of particles is fixed, it is the
energy that determines the mean transverse momentum.
The nontrivial aspect of this correspondence is that the
correlation of 〈pt〉 is tighter with the initial energy, E0,
than with the energy at freeze-out [13], even though par-
ticles are emitted at freeze-out. The goal of this section
is to show that, at fixed centrality, one expects the skew-
ness of 〈pt〉 fluctuations to be driven by the skewness of
E0 fluctuations.

Although the relation between 〈pt〉 and E0 is not quite
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linear, we can relate their fluctuations in a simplified,
effective hydrodynamic description [46]. This descrip-
tion replaces the space-time evolution of the quark-gluon
plasma with an equivalent uniform gas at an effective
temperature, Teff , that contains the same total entropy
and total energy as the quark-gluon plasma at freeze-
out. In this effective description, the final-state 〈pt〉 is
proportional to Teff , whereas E0 is proportional to ε/s,
where the energy density, ε, and the entropy density, s,
are evaluated at temperature Teff . The fluctuations of
E0 and those of 〈pt〉 can be then related through the
equation of state.

Let us first derive a relation between the relative varia-
tion of 〈pt〉 and that of E0 in the regime of small fluctua-
tions. First note that the relative 〈pt〉 variation is related
to that of the effective entropy density, seff , through:

d ln〈pt〉 = d lnTeff = c2s,effd ln seff , (11)

where cs,eff = (d lnT/d ln s)1/2 is the speed of sound at
temperature Teff . Similarly, the relative variation of E0

is given by:

d lnE0 = d ln

(
εeff

seff

)
=
dεeff

εeff
− dseff

seff

=
Teffdseff

εeff
− dseff

seff
=

(εeff + Peff)dseff − εeffdseff

εeffseff

=(Peff/εeff)d ln seff , (12)

where we have used the thermodynamic identities dε =
Tds and ε+ P = Ts. Combining the last two equations,
one predicts

σ(〈pt〉)
〈〈pt〉〉

= c2s
εeff

Peff

σ(E0)

〈E0〉
' 1.24

σ(E0)

〈E0〉
(13)

where σ(〈pt〉) and σ(E0) denote, respectively, the stan-
dard deviation of 〈pt〉 and E0, and, in the last equal-
ity, we have used Teff = 222 MeV for 5.02 TeV Pb+Pb
collisions [46], at which we have evaluated the thermo-
dynamic quantities using the lattice QCD equation of
state [31]. Note that the relative fluctuations of E0 is
equal to that of E0/S, where S is the total entropy, when
S is kept fixed. To correct for potential effects of finite-
sized centrality intervals, or entropy production due to
viscosity, one should replace E0 by E0/S in Eq. (13).

To prove that Eq. (13) provides a meaningful predic-
tion, we show in Fig. 2 the distribution of E0/S, which
we have rescaled so that its mean value coincides with
that of 〈pt〉. Equation (13) predicts that the fluctuations
of 〈pt〉 are larger than those of the rescaled E0/S by a
factor 1.24. One sees by eye on the figure that the distri-
bution of 〈pt〉 is broader. The factor is somewhat larger
than 1.24 (it is 1.3 in panel (a) and 1.6 in panel (b)), and
we do not understand the origin of this difference.

Let us now move on to the skewness. Even if 〈pt〉 is
exactly determined by the initial energy E0 on an event-
by-event basis, the skewness of 〈pt〉 is not trivially related
to the skewness of E0.

To see this, let us consider a background-fluctuation
splitting, 〈pt〉 = 〈〈pt〉〉 + δpt, E0 = 〈E0〉 + δE0, and as-
sume that the average transverse momentum is a generic
function of the initial energy, 〈pt〉 = f(E0). To leading
order, the expansion of f(E0) in powers of the fluctuation
leads to:

〈(δpt)2〉 =f ′(〈E0〉)2〈(δE0)2〉
〈(δpt)3〉 =f ′(〈E0〉)3〈(δE0)3〉

+
3

2
f ′(〈E0〉)2f ′′(〈E0〉)

(
〈(δE0)4〉 − 〈(δE0)2〉2

)
.

(14)

In general, the two terms in the second equation are of
the same order of magnitude.4 The function f(E0) rep-
resents, however, the variation of the temperature of the
system as a function of the energy over entropy ratio, ε/s.
This variation is nearly linear. One can thus neglect the
term proportional to f ′′(〈E0〉) in Eq. (14). By doing so,
one immediately sees that the standardized skewness of
〈pt〉 fluctuations, γpt = 〈(δpt)3〉/〈(δpt)2〉3/2, is the same
as that of E0 fluctuations:

γpt ' γE0 . (15)

On the other hand, the intensive skewness is different:

Γpt ≡
〈(δpt)3〉

〈(δpt)2〉/〈〈pt〉〉
' 〈〈pt〉〉
〈E0〉f ′(〈E0〉)

ΓE0

' 〈〈pt〉〉〈E0〉
σpt

σE0

ΓE0

' Peff

εeff

1

c2s,eff

ΓE0

' 0.8 ΓE0
, (16)

where we have used Eq. (13). Thus, even though it is not
obvious why the skewnesses of 〈pt〉 fluctuations and E0

fluctuations should be closely related, they are in practice
if one can neglect f ′′(E0) in Eq. (14).

Figure 3 displays the standardized skewness and the
intensive skewness of the distribution of E0/S (we swap
E0 for E0/S to account for the fluctuations of central-
ity within the bin, as explained above). One sees that
γE0

is smaller than γpt
,5 while ΓE0

is comparable to Γpt
.

The fact that Eq. (15) is not precisely verified seems to
imply that the correction from the last line of Eq. (14)
is not negligible. However, the main features displayed
by the skewness of 〈pt〉 fluctuations stem from the skew-
ness of the initial energy, E0. In particular, the large

4 This is estimated from the fact that both 〈E0〉〈(δE0)3〉 and
〈(δE0)4〉 − 〈(δE0)2〉2 are of order 〈(δE0)2〉2. As a conse-
quence, the magnitude of the second term relative to the first
is ∼ E0f ′′(E0)/f ′(E0), evaluated at 〈E0〉. This is the relative
variation of f ′(E0) over a range of order E0, which is typically
of order unity.

5 Note that γE0
is larger in Xe+Xe collisions than in Pb+Pb col-

lisions, as expected from the smaller system size.
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intensive skewness of 〈pt〉 fluctuations, which is our main
prediction, stems from that of E0 fluctuations. Note that
a more quantitative understanding may be achieved by
improving the initial-state predictor. In a recent preprint
Schenke, Shen and Teaney [47] studied the goodness of
various estimators of 〈pt〉, and found that an improved
predictor, especially for peripheral collisions, can be ob-
tained by adding a dependence on the elliptical area of
the system [10]. We do not investigate this possibility
here.

VI. RELATING THE SKEWNESS TO INITIAL
DENSITY FLUCTUATIONS

The results of the previous section show that the skew-
ness of 〈pt〉 fluctuations originates from the skewness of
E0 fluctuations. The fact that the latter skewness is pos-
itive, though, is specific to the model used in the numeri-
cal evaluation, i.e., a TRENTo parametrization tuned to
reproduce some sets of experimental data. In this sec-
tion, we argue that the prediction that 〈pt〉 fluctuations
have positive skewness is more general, and does not rely
on a specific model of initial conditions. For this purpose,
we derive formulas for the variance and the skewness of
E0 fluctuations for a generic fluctuating initial density
profile.

A. Formalism

Our study is limited to boost-invariant ideal hydro-
dynamics for simplicity, and neglects initial transverse
flow [24, 26]. The hydrodynamic evolution is then de-
termined by the entropy density field at the initial con-
dition, s(x), where x denotes a point in the transverse
plane. We consider an ensemble of events with the same
geometry (same positions of incoming nuclei) and same
total entropy,

∫
s(x)dx. The fluctuations of the field s(x)

within this ensemble of events can be characterized by its
n-point correlation functions. We assume that, for any
event, s(x) can be decomposed as a fluctuation on top
of a background: s(x) = 〈s(x)〉 + δs(x), where 〈s(x)〉,
or 1-point function, is the average value of s(x) for a
fixed x, and δs(x) is the fluctuation. Observables are
evaluated through a perturbative expansion in powers of
the fluctuation. This approach is identical to that of
Refs. [15, 43, 48, 49].

The only technical difference with these references is
that we take now s(x) as the fundamental field instead
of the energy density, ε(x). This choice simplifies the
algebra, because the centrality is defined in terms of the
total entropy, not energy. At a fixed centrality, the total
entropy is fixed, which implies:∫

x

δs(x) = 0, (17)

where we use the shortcut
∫
x

for the integration over the
transverse plane, which is a double integral.

Initial-state fluctuations are characterized by the sta-
tistical properties of the field δs(x) or, equivalently, by its
n-point functions. The connected 2-point function is the
average over events of δs(x1)δs(x2). It characterizes how
fluctuations at different points x1 and x2 are correlated
with one another. We assume that all fluctuations are
local, which implies that correlations are short ranged.
Under this condition, one can write the two-point func-
tion in the form [48]:

〈δs(x1)δs(x2)〉 = κ2(x1)δ(x1−x2)− κ2(x1)κ2(x2)∫
x
κ2(x)

, (18)

where we assimilate the short range correlation to a Dirac
peak, δ(x1−x2), with a positive x-dependent amplitude,
κ2(x), which represents the density of variance of the
entropy field. Equation (17) implies that the two-point
function must vanish upon integration over x1 or x2. This
is guaranteed by the last term in the right-hand side of
Eq. (18).

To evaluate the skewness, we shall also need the three-
point function of the density field. As shown in Ref. [48],
for short-range correlations the three-point function at
fixed total entropy can be written in the form:

〈δs(x1)δs(x2)δs(x3)〉 = κ3(x1)δ(x1 − x2)δ(x1 − x3)

− κ3(x1)δ(x1 − x2)κ2(x3) + perm.∫
x
κ2(x)

+
κ3(x1)κ2(x2)κ2(x3) + perm.(∫

x
κ2(x)

)2
−

∫
x
κ3(∫

x
κ2

)3κ2(x1)κ2(x2)κ2(x3),

(19)

where the second and third lines must be summed over
circular permutations of x1, x2, x3. The first term in
the right-hand side is the contribution of the short-range
correlation, and κ3(x) is the “density of skewness”, in
the same way as κ2(x) is the density of variance. Note
that κ3(x) is typically positive everywhere (e.g. for Pois-
son fluctuations), even though this is not a mathematical
requirement. The additional terms in Eq. (19) are contri-
butions from the condition that all events have the same
total entropy. This expression is consistent with the sum
rule (17), as can be checked upon integration over x1 (or
x2 or x3, by symmetry). Note that the three-point func-
tion involves both κ2(x) and κ3(x), and it is linear in
κ3(x).

B. Variance of initial energy fluctuations

Equipped with this formalism, we evaluate the fluctu-
ations of the initial energy, E0. This quantity is given by
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the integral of the energy density, ε(x), which is related
to s(x) through the equation of state:

E0 =

∫
x

ε (s(x)) . (20)

We then write s(x) = 〈s(x)〉 + δs(x), and expand in
powers of δs(x). To first order in δs(x), one can write
E0 = 〈E0〉+ δE0, with

〈E0〉 =

∫
x

ε(〈s(x)〉),

δE0 =

∫
x

T (x)δs(x), (21)

where T (x) is the temperature corresponding to the aver-
age entropy density, 〈s(x)〉, and we have used the thermo-
dynamic identity dε = Tds. The variance of the energy
is:

〈δE2
0〉 =

∫
x1,x2

T (x1)T (x2)〈δs(x1)δs(x2)〉. (22)

Using the expression (18) of the two-point function, one
obtains

〈δE2
0〉 =

∫
x

T (x)2κ2(x)−
(∫

x
T (x)κ2(x)

)2∫
x
κ2(x)

, (23)

where the last term in the right-hand side comes from the
condition that the total entropy is fixed. This equation
can be rewritten in a simpler form by introducing the
average temperature T̄ defined by:

T̄ ≡
∫
x
T (x)κ2(x)∫
x
κ2(x)

. (24)

It is the temperature averaged over the transverse plane,
weighted with the variance of the entropy field κ2(x).
With this notation, Eq. (23) can be rewritten as

〈δE2
0〉 =

∫
x

(T (x)− T̄ )2κ2(x). (25)

Note that the condition that all events have the same
total entropy results in the substitution T (x)→ T (x)−T̄ .

Let us comment on the physical implication of Eq. (25).
In this equation, T (x) denotes the temperature profile at
the beginning of the hydrodynamic expansion, that is,
when the temperature is the highest, and T̄ its value av-
eraged over x. The difference T (x)− T̄ is a temperature
difference, which is proportional to c2s. Therefore, one
expects the relative fluctuation of E0 to be itself propor-
tional to c2s, where cs is the velocity of sound at the begin-
ning of the hydrodynamic calculation. This is checked by
an explicit calculation in Appendix B 2. This correspon-
dence only holds in ideal hydrodynamics, and viscous
corrections are large at early times, therefore, its rele-
vance to the phenomenology is questionable. However, it
suggests that the physics of 〈pt〉 fluctuations might open
a window onto early-time thermodynamics.

C. Skewness of initial energy fluctuations

We now evaluate the skewness of the distribution of
E0. This is a higher-order quantity, therefore, we need
to expand the energy density to order 2 in δs:

ε(s(x)) = ε(〈s(x)〉) + T (x)δs(x) +
1

2
T ′(x)δs(x)2, (26)

where we define

T ′(x) ≡ dT

ds
= c2s(x)

T (x)

〈s(x)〉 , (27)

where cs(x) is the speed of sound at the temperature
T (x). With the second order term taken into account,
Eq. (21) is replaced by:

〈E0〉 =

∫
x

ε(〈s(x)〉) +
1

2

∫
x

T ′(x)〈δs(x)2〉,

δE0 =

∫
x

T (x)δs(x) +
1

2

∫
x

T ′(x)
(
δs(x)2 − 〈δs(x)2〉

)
.

(28)

The skewness is the third centered moment, that is,
〈δE3

0〉. To leading order in the fluctuations, one must
keep all terms of order 3 and 4 in δs, which contribute to
the same order after averaging over events. We write

〈δE3
0〉 = 〈δE3

0〉3 + 〈δE3
0〉4, (29)

where we separate the contributions of terms of order δs3

and δs4.
The contribution of order δs3 is obtained by keeping

only the first term in the second line of Eq. (28):

〈δE3
0〉3 =

∫
x1,x2,x3

T (x1)T (x2)T (x3)〈δs(x1)δs(x2)δs(x3)〉.
(30)

It involves the three-point function of the density field.
Inserting Eq. (19) into Eq. (30), one obtains, after some
algebra, a compact result:

〈δE3
0〉3 =

∫
x

(
T (x)− T̄

)3
κ3(x), (31)

where T̄ is defined by Eq. (24). As in Eq. (25), the condi-
tion that all events have the same entropy results in the
substitution T (x)→ T (x)− T̄ .

We finally evaluate 〈δE3〉4, which is the contribution
obtained by expanding two factors of δE to order δs and
the third factor to order δs2. One is led to evaluate the
average value of quantities such as:

A(x1, x2, x3) ≡ δs(x1)δs(x2)
(
δs(x3)2 − 〈δs(x3)2〉

)
,

(32)
where four-point averages can be computed using Wick’s
theorem, which gives:

〈A(x1, x2, x3)〉 = 2〈δs(x1)δs(x3)〉〈δs(x2)δs(x3)〉, (33)
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where the right-hand side involves the 2-point function,
Eq. (18). After some algebra, one obtains

〈δE3
0〉4 = 3

∫
x

(T (x)− T̄ )2T ′(x)κ2(x)2. (34)

The integrand is everywhere positive, so that 〈δE3
0〉4

is positive. It is interesting to note that the intermediate
calculations involve the variance of the entropy density
at a given point, i.e., the term 〈δs(x)2〉 in Eq. (28). This
quantity is sensitive to the scale of inhomogeneities [30],
that is, to the transverse size of the “hot spots” in the
initial density profile. However, this dependence can-
cels in Eq. (33), and the final results depend only on the
functions κn(x), which are integrated over the relative
distance. This implies that both the width of 〈pt〉 fluc-
tuations and their skewness should have limited sensitiv-
ity to short-range, subnucleonic fluctuations, in the same
way as anisotropic flow fluctuations [30, 50–52]. They are
on the other hand potentially useful probes of early-time
thermodynamics, as suggested at the end of Sec. VI B.

To conclude, let us write down our final formula for
the skewness, Eq. (29). It is the sum of the contributions
(31) and (34):

〈δE3
0〉 =

∫
x

(
T (x)− T̄

)3
κ3(x)

+ 3

∫
x

(T (x)− T̄ )2T ′(x)κ2(x)2. (35)

The second term is always positive, while the first contri-
bution is typically negative, but smaller in magnitude. In
Appendix B we check explicitly that, in the simple case
of identical, localized sources with a Gaussian distribu-
tion, where all integrals can be carried out analytically,
the second term indeed dominates over the first term
so that the skewness is positive. The contribution (34)
provides, thus, a model-independent explanation for the
positive skewness of E0 fluctuations, and consequently of
〈pt〉 fluctuations.

VII. CONCLUSIONS

Hydrodynamics predicts that the event-by-event fluc-
tuations of the mean transverse momentum, 〈pt〉, have
positive skew. This prediction could be verified straight-
forwardly in experiments, following the analysis pro-
cedures explained in this manuscript. The skewness
is the simplest manifestation of non-Gaussian fluctua-
tions. Non-Gaussian fluctuations are generic in small
systems. Their study has proven useful in the context
of anisotropic flow fluctuations in peripheral nucleus-
nucleus collisions [53–55] and in proton-nucleus colli-
sions [56, 57]. In the case of 〈pt〉 fluctuations, the non-
Gaussianity should be easy to measure all the way up to
central nucleus-nucleus collisions.

We have argued that 〈pt〉 fluctuations result from fluc-
tuations of the energy of the fluid when the hydrody-
namic expansion starts. This confirms that dynamical

〈pt〉 fluctuations are a collective effect, much in the same
way as anisotropic flow. It also implies, more specifi-
cally, that they are sensitive to the early thermodynam-
ics of the quark-gluon plasma, corresponding to the high-
est temperatures achieved in the collision. This insight
into high temperatures is very unique. Other hadronic
observables, such as the average transverse momentum,
also provide insight about the thermodynamics, but at a
much lower temperature (around T ∼ 220 MeV in 5.02
TeV Pb-Pb collisions [46]).

The width of 〈pt〉 fluctuations alone cannot constrain
early thermodynamics, because it also depends on the
model of initial conditions. However, we have shown that
by measuring simultaneously the skewness and the width,
one can combine them in such a way that the sensitivity
to the initial condition model is significantly reduced. We
have introduced a dimensionless quantity, the intensive
skewness, and shown in a simplified model (Appendix B)
that it only depends on the speed of sound at the time
when the hydrodynamic expansion starts. Our simpli-
fied model assumes a constant speed of sound, and does
not take into account that the relation between 〈pt〉 and
the initial energy is nonlinear. We have also carried out
full hydrodynamic calculations, but using a model which
overestimates the width of 〈pt〉 fluctuations. This study
is only preliminary, and more are needed. Based on the
work done in this paper, we conjecture that the intensive
skewness should lie between 7 and 10 in nucleus-nucleus
collisions, about twice as large as the baseline from inde-
pendent particles. We also predict that it depends little
on the collision centrality and of the size of the colliding
nuclei.
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Appendix A: Coding the skewness analysis

In this Appendix, we explain how to efficiently com-
pute the skewness. We choose the first definition, Eq. (5),
but similar algebraic manipulations can be carried out to
simplify the second definition, Eq. (6). In every event,
one evaluates the moments of the pt distributions, defined
by

Qn =

Nch∑
i=1

(pi)
n, (A1)
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where n = 1, 2, 3, pi is the transverse momentum of par-
ticle i, and the sum runs over all the charged particles
detected in the event. Sums over pairs and triplets of
particles can be expressed simply in terms of these mo-
ments:

∑
i,j 6=i

pipj = (Q1)2 −Q2,∑
i,j 6=i,k 6=i,j

pipjpk = (Q1)3 − 3Q2Q1 + 2Q3. (A2)

These equations express the multiple sums in the left-
hand side in terms of simple sums, which are faster to
evaluate. They are specific cases of Eqs. (11) and (14)
of Ref. [58] in the case of a unique set of particles, A1 =

A2 = A3.
With these notations, Eqs. (1) and (3) can be rewritten

in the form:

〈〈pt〉〉STAR =

〈
Q1

Nch

〉
,

〈∆pi∆pj〉STAR =

〈
(Q1)2 −Q2

Nch (Nch − 1)

〉
−
〈
Q1

Nch

〉2

,

(A3)

where angular brackets denote an average value over
events in a narrow centrality bin. Note that these expres-
sions are strictly equivalent to those used by the STAR
collaboration (Eqs. (1)-(4) of Ref. [2]), even though they
are written in a different form.

Finally, Eq. (5) can be rewritten in the form:

〈∆pi∆pj∆pk〉STAR =

〈
(Q1)3 − 3Q2Q1 + 2Q3

Nch (Nch − 1) (Nch − 2)

〉
− 3

〈
(Q1)2 −Q2

Nch (Nch − 1)

〉〈
Q1

Nch

〉
+ 2

〈
Q1

Nch

〉3

.

This equation expresses the skewness in terms of the sim-
ple sums in Eq. (A1), which are much faster to compute
than the multiple sums in Eq. (5). It has been advo-
cated [47] that the analysis of 〈pt〉 fluctuations should be
done by enforcing rapidity gaps between the particles i,
j, k, in the same way as analyses of anisotropic flow [59],
in order to suppress correlations due to decay kinematics
and other “nonflow” effects. The skewness is likely to be
less affected by nonflow effects than the variance as it is
a higher-order cumulant [60], but rapidity gaps can be
easily implemented [58].

Appendix B: Simple model of density fluctuations

In this appendix, we present an explicit application of
the perturbative approach of Sec. VI by working out a
simple example, and we assess its validity by showing
the comparison between perturbative results and exact
results coming from a Monte Carlo calculation.

1. Identical sources

We model the entropy density at the beginning of the
hydrodynamic evolution as the sum of N identical con-
tributions [50], in the spirit of the Glauber modeling [61]:

s(x) =

N∑
i=1

∆(x− ri), (B1)

where ri are the positions of “sources”, whose positions
in the transverse plane are independent random variables

with a probability distribution p(ri), and ∆(x) is a nar-
row peak centered around the origin. The total entropy is∫
x
s(x) = N

∫
x

∆(x). Therefore, fixing the total entropy
amounts to fixing the number of sources, N .

The n-point functions of this model can be evaluated
explicitly in terms of N , p(x) and ∆(x) [62]. The 1-point
function is:

〈s(x)〉 = N

∫
r

p(r)∆(x− r), (B2)

while the 2-point function is:

〈δs(x1)δs(x2)〉 = N

∫
r

p(r)∆(x1 − r)∆(x2 − r)

−N
∫
r

p(r)∆(x1 − r)
∫
r′
p(r′)∆(x2 − r′).

(B3)

If the width of the function ∆(r) is much smaller than
the scale over which p(x) varies, one can neglect the vari-
ation of p(x) across the extension of the source, and these
equations simplify to:

〈s(x)〉 = Np(x)

∫
r

∆(r), (B4)

and

〈δs(x1)δs(x2)〉= Np(x1)

∫
r

∆(x1 − r)∆(x2 − r)

−Np(x1)p(x2)

(∫
r

∆(r)

)2

. (B5)
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Note that the latter equation is a specific case of Eq. (18),
with

κ2(x) = Np(x)

(∫
r

∆(r)

)2

, (B6)

which amounts to assimilating the sources to Dirac delta
peaks. A similar calculation [48] shows that the 3-point
function has the same form as in Eq. (19), with

κ3(x) = Np(x)

(∫
r

∆(r)

)3

. (B7)

Note that both κ2(x) and κ3(x) depend on the integral
of ∆(x) over the plane and, thus, are independent of the
actual shape of this function. This confirms somewhat
more explicitly the previous argument that the variance
and the skewness are indeed not sensitive to short-scale
structures.

2. Gaussian density profile, constant cs

To move forward, we need to specify the functional
form of p(ri) and an equation of state. To obtain compact
analytic expressions, we consider for simplicity that the
distribution of sources in the transverse plane is Gaus-
sian:

p(x) =
1

πσ2
exp

(
−x

2

σ2

)
. (B8)

Then, according to Eq. (B4), the average entropy density
profile is also Gaussian form. The energy density requires
the knowledge of the equation of state. For simplicity, we
consider a power-law equation of state:

T = sc
2
s ,

ε =
s1+c2s

1 + c2s
, (B9)

where c2s is the velocity of sound. At early times (or
high temperatures), c2s ' 1

3 in hydrodynamic calculations
using the lattice QCD equation of state.

We can thus proceed to the evaluation of the average
temperature T̄ . If we denote by T0 the temperature in
the center, the average entropy density and the corre-
sponding temperature profiles are given by:

〈s(x)〉 = T
1/c2s
0 exp

(
−x

2

σ2

)
,

T (x) = T0 exp

(
−c

2
sx

2

σ2

)
. (B10)

Identifying the first of these equations with Eq. (B4), one
obtains: ∫

r

∆(r) =
πσ2T

1/c2s
0

N
. (B11)

This expression can be used to express κ2(x) and κ3(x),
defined by Eqs. (B6) and (B7), as a function of N , cs and
T0. Equation (24) then gives:

T̄ =
T0

1 + c2s
. (B12)

Finally, we can evaluate the mean, the variance, and
the skewness of the initial energy, E0, analytically using
Eqs. (21), (25), (31), and (34). One obtains:

〈E0〉 =
πσ2

(1 + c2s)2
T

1+c−2
s

0 ,

〈δE2
0〉 =

1

N

(
c2s(1 + c2s)

)2
(1 + 2c2s)

〈E0〉2,

〈δE3
0〉3 = − 1

N2
(2− 2c2s)

(
c2s(1 + c2s)

)3
(1 + 5c2s + 6c4s)

〈E0〉3,

〈δE3
0〉4 =

1

N2
(3 + 3c2s + 6c4s)

(
c2s(1 + c2s)

)3
(1 + 5c2s + 6c4s)

〈E0〉3.
(B13)

The variance and the skewness are proportional to 1/N
and 1/N2, respectively, as anticipated from the discus-
sion in Sec. III B. The two contributions to the skewness
in Eq. (29) are of the same order of magnitude. The first
is negative while the second is positive, and larger in mag-
nitude for any value of c2s. Note that, for a typical speed
of sound, c2s = 1/3, we find that 〈δE3

0〉4 is larger than
〈δE3

0〉3 by a factor 3. The positive term thus dominates.
This is a clear indication that the positive skewness of
E0 fluctuations is generic, and that one can safely expect
to observe it in any model of the initial state.

Finally, the relative standard deviation, the standard-
ized skewness, and the intensive skewness are given, re-
spectively, by:√

〈δE2
0〉

〈E0〉
=

1√
N

c2s(1 + c2s)√
1 + 2c2s

,

γE0 =
1√
N

(
1 + 2c2s

)3/2
,

ΓE0
=

(1 + 2c2s)2

c2s(1 + c2s)
. (B14)

A few comments are in order. As anticipated in the dis-
cussion at the end of Sec. VI B, the relative fluctuation of
E0 is roughly proportional to c2s. The intensive skewness
is independent ofN , and inversely proportional to c2s. For
c2s = 1

3 , its value is 6.25, which is actually close to the
intensive skewness of the more sophisticated TRENTo
calculation presented in Fig. 3(b).

3. Monte Carlo calculations

We check now the validity of the perturbative results
by carrying out Monte Carlo simulations. To reproduce
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FIG. 4. (Color online) Symbols: Results of Monte Carlo (MC)
simulations (see text). Lines: leading order perturbative ex-
pression given by Eq, (B14). Panels (a), (b) and (c) dis-
play the quantities corresponding to the three lines of these
equations, respectively: relative standard deviation, stan-
dardized skewness, intensive skewness. The speed of sound
is cs = 1/

√
3 for the closed symbols and solid lines, while

cs = 1/
√

6 for the open symbols and dashed lines.

the model outlined in the previous section, the only addi-
tional ingredient to specify is the shape of a single source,
∆(x), appearing in Eq. (B1). One can use any function
whose integral over the transverse plane is finite, since
the final results do not depend on this choice, as argued

previously. For simplicity, we choose a Gaussian:

∆(x) ∝ exp

(
− x

2

w2

)
. (B15)

The validity of the perturbative calculation relies on two
conditions. First, the width of ∆(x), w, must be small
compared to the typical transverse extent of one event
(as determined by the positions of N sources), which is
in turn proportional to σ in Eq. (B8). Second, the stan-
dard deviation of the entropy density at a given point,
obtained as the square root of Eq. (B5) after setting
x2 = x1, must be smaller than the average density (B4)
at the same point, in order for the Taylor expansion in
Eq. (26) to be valid. Since in this source model the fluc-
tuation of local quantities are determined by the density
of sources at a given point, this is naturally a condition
on the value of N . In formulas, the conditions we need
to fulfill are:

w

σ
� 1,

σ

w
√
N
� 1. (B16)

We simply define w by:

w = N−1/4σ, (B17)

so that both conditions (B16) are satisfied in the limit
N � 1.

We generate a large number of Monte Carlo events.
For each event, we sample the positions of N sources,
where N is the same for all events, according to the dis-
tribution (B8). The initial entropy density in the event is
then defined by Eqs. (B1) and (B15). We then compute
the corresponding energy density, ε(x), using the equa-
tion of state, Eq. (B9). Since the equation of state is scale
invariant, the final results are independent of the normal-
ization constant in Eq. (B15). We carry out two sets of
calculations, using two different values of the speed of
sound: c2s = 1

3 corresponding to the quark-gluon plasma
at high temperature, and a value twice smaller, in order
to check that the analytic results capture the dependence
of fluctuation observables on cs. The total energy, E0, is
evaluated by integrating the energy density, E0 ≡

∫
x
ε(x).

Its cumulants (mean, variance, skewness) are finally eval-
uated by averaging over the ensemble of events.

Figure 4 displays our results for the relative fluctua-
tion, the standardized skewness, and the intensive skew-
ness, together with the perturbative results of Eqs. (B14).
Agreement is not perfect, which shows that a leading-
order perturbative calculation is not accurate enough
even with a few hundred sources. Nevertheless, the per-
turbative results capture the order of magnitude and the
dependence on c2s: In particular, Monte Carlo results con-
firm that a softer equation of state results in narrower
fluctuations, with a larger intensive skewness.
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